51
|
Bere A, Tayib S, Kriek JM, Masson L, Jaumdally SZ, Barnabas SL, Carr WH, Allan B, Williamson AL, Denny L, Passmore JAS. Altered phenotype and function of NK cells infiltrating human papillomavirus (HPV)-associated genital warts during HIV infection. Clin Immunol 2013; 150:210-9. [PMID: 24440646 DOI: 10.1016/j.clim.2013.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/25/2022]
Abstract
HIV-infected individuals experience more persistent HPV infections and are less likely to resolve genital warts. This study compared phenotype and functions of NK and T cells from genital warts and blood from 67 women. We compared in vitro functional responses of NK and T cells by multiparametric flow cytometry. HIV+ women had significantly lower frequencies of CD4 T cells in warts (p = 0.001) and blood (p = 0.001). While the distribution of NK cell subsets was similar, HIV+ women tended to have lower frequencies of CD56(Dim) NK cells in both blood (p = 0.0001) and warts (p = 0.006) than HIV- women. Wart NK cells from HIV+ women expressed significantly lower CD107a and produced IFN-γ. HAART status was not associated with differences in NK cell functionality. We conclude that wart NK cells from HIV+ women have defects in their ability to degranulate and/or secrete IFN-γ, which may provide insights into why HIV+ women fail to spontaneously resolve genital warts.
Collapse
Affiliation(s)
- Alfred Bere
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Shahila Tayib
- Dept. Obstetrics and Gynaecology, Jalan Taming Sari, Taiping Hospital, Perak, Malaysia
| | - Jean-Mari Kriek
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Lindi Masson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Shameem Z Jaumdally
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Shaun L Barnabas
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa; Desmond Tutu HIV Foundation, Cape Town, South Africa
| | - William H Carr
- Department of Biology, Medgar Evers College, The City University of New York, NY, USA
| | - Bruce Allan
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa; National Health Laboratory Services, Cape Town, South Africa
| | - Lynette Denny
- Dept Obstetrics and Gynaecology, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Jo-Ann S Passmore
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa; National Health Laboratory Services, Cape Town, South Africa.
| |
Collapse
|
52
|
Varchetta S, Lusso P, Hudspeth K, Mikulak J, Mele D, Paolucci S, Cimbro R, Malnati M, Riva A, Maserati R, Mondelli MU, Mavilio D. Sialic acid-binding Ig-like lectin-7 interacts with HIV-1 gp120 and facilitates infection of CD4pos T cells and macrophages. Retrovirology 2013; 10:154. [PMID: 24330394 PMCID: PMC3878752 DOI: 10.1186/1742-4690-10-154] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022] Open
Abstract
Background Sialic acid-binding Ig-like lectin-7 (Siglec-7) expression is strongly reduced on natural killer (NK) cells from HIV-1 infected viremic patients. To investigate the mechanism(s) underlying this phenomenon, we hypothesized that Siglec-7 could contribute to the infection of CD4pos target cells following its interaction with HIV-1 envelope (Env) glycoprotein 120 (gp120). Results The ability of Siglec-7 to bind gp120 Env in a sialic acid-dependent manner facilitates the infection of both T cells and monocyte-derived macrophages (MDMs). Indeed, pre-incubation of HIV-1 with soluble Siglec-7 (sSiglec-7) increases the infection rate of CD4pos T cells, which do not constitutively express Siglec-7. Conversely, selective blockade of Siglec-7 markedly reduces the degree of HIV-1 infection in Siglec-7pos MDMs. Finally, the sSiglec-7 amount is increased in the serum of AIDS patients with high levels of HIV-1 viremia and inversely correlates with CD4pos T cell counts. Conclusions Our results show that Siglec-7 binds HIV-1 and contributes to enhance the susceptibility to infection of CD4pos T cells and MDMs. This phenomenon plays a role in HIV-1 pathogenesis and in disease progression, as suggested by the inverse correlation between high serum level of sSiglec-7 and the low CD4pos T cell count observed in AIDS patients in the presence of chronic viral replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
53
|
Hudspeth K, Pontarini E, Tentorio P, Cimino M, Donadon M, Torzilli G, Lugli E, Della Bella S, Gershwin ME, Mavilio D. The role of natural killer cells in autoimmune liver disease: a comprehensive review. J Autoimmun 2013; 46:55-65. [PMID: 23880068 DOI: 10.1016/j.jaut.2013.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 06/25/2013] [Accepted: 07/03/2013] [Indexed: 12/29/2022]
Abstract
Natural Killer (NK) cells are important players of the innate arm of the immune system and provide an early defense against pathogens and tumor-transformed cells. Peripheral blood NK (PB-NK) cells were first identified because of their ability to spontaneously kill tumor-cell targets in vitro without the need for specific antigen priming, which is the reason that they were named 'natural killer' cells. The characterization of NK cells in human tissues and body organs represented another important step forward to better understand their physiology and physiopathology. In this regard, many reports revealed over the past decade a differential anatomic distribution of NK cell subsets in several sites such as the intestine, lung, cervix, placenta and liver as well as in secondary lymphoid organs such as spleen, lymph nodes and tonsils. Among all these tissues, the liver is certainly unique as its parenchyma contains an unusually high number of infiltrating immune cells with 30-50% of total lymphocytes being NK cells. Given the constant liver intake of non-self antigens from the gastrointestinal tract via the portal vein, hepatic NK (H-NK) cells must retain a certain degree of tolerance in the context of their immune-surveillance against dangers to the host. Indeed, the breakdown of the tolerogenic state of the liver-associated immune system has been shown to induce autoimmunity. However, the role of NK cells during the course of autoimmune liver diseases is still being debated mainly because a complete characterization of H-NK cells normally resident in healthy human liver has not yet been fully disclosed. Furthermore, the differences in phenotype and functions between human and mouse H-NK cells often preclude translation of results obtained from murine models into experimental approaches to be performed in humans. Here, we provide an extensive characterization of the phenotype of H-NK cells physiologically resident in the human liver by both mentioning data available in literature and including a set of original results recently developed in our laboratory. We then review our current knowledge in regard to the contribution of H-NK cells in regulating local immune homeostasis and tolerance as well as in inducing the development of liver autoimmunity.
Collapse
Affiliation(s)
- Kelly Hudspeth
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Vargas-Inchaustegui DA, Robert-Guroff M. Fc receptor-mediated immune responses: new tools but increased complexity in HIV prevention. Curr HIV Res 2013; 11:407-20. [PMID: 24191937 PMCID: PMC6288814 DOI: 10.2174/1570162x113116660063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
Abstract
The modest success of the RV144 HIV vaccine trial in Thailand and the ensuing suggestion that a Fc-receptormediated antibody activity might have played a role in the protection observed have intensified investigations on Fcrelated immune responses. HIV neutralizing antibodies have been and continue to be the focal point of research into humoral immune protection. However, recent knowledge that their protective efficacy can be augmented by Fc-FcR interactions has increased the complexity of identifying immune correlates of protection. If anything, continued studies of both humoral and cellular immune mechanisms point to the lack of a single protective anti-HIV immune response. Here we focus on humoral immunity, analyzing the role played by Fc receptor-related responses and discussing how new knowledge of their interactions requires further investigation, but may also spur novel vaccination approaches. We initially address classical Fc-receptor mediated anti-viral mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell mediated viral inhibition (ADCVI), and antibody-dependent cellular phagocytosis (ADCP), as well as the effector cells that mediate these functions. Next, we summarize key aspects of FcR-Fc interactions that are important for potential control of HIV/SIV such as FcR polymorphisms and post-transcriptional modifications. Finally we discuss less commonly studied non-mechanistic anti-HIV immune functions: antibody avidity and envelopespecific B cell memory. Overall, a spectrum of immune responses, reflecting the immune system's redundancy, will likely be needed to prevent HIV infection and/or disease progression. Aside from elicitation of critical immune mechanisms, a successful vaccine will need to induce mature B cell responses and long-lasting immune memory.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Building 41, Room D804, Bethesda, MD 20192-5065, USA.
| | | |
Collapse
|
55
|
Cossarizza A, De Biasi S, Gibellini L, Bianchini E, Bartolomeo R, Nasi M, Mussini C, Pinti M. Cytometry, immunology, and HIV infection: three decades of strong interactions. Cytometry A 2013; 83:680-91. [PMID: 23788450 DOI: 10.1002/cyto.a.22318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/10/2013] [Accepted: 05/17/2013] [Indexed: 12/13/2022]
Abstract
Flow cytometry (FCM) has been extensively used to investigate immunological changes that occur from infection with the human immunodeficiency virus (HIV). This review describes some of the most relevant cellular and molecular changes in the immune system that can be detected by FCM during HIV infection. Finally, it will be discussed how this technology has facilitated the understanding not only of the biology of the virus but also of the mechanisms that the immune system activates to fight HIV and is allowing to monitor the efficacy of antiretroviral therapy.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Sandberg JK, Andersson SK, Bächle SM, Nixon DF, Moll M. HIV-1 Vpu interference with innate cell-mediated immune mechanisms. Curr HIV Res 2013; 10:327-33. [PMID: 22524181 PMCID: PMC3412205 DOI: 10.2174/157016212800792513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/06/2012] [Accepted: 03/14/2012] [Indexed: 12/26/2022]
Abstract
The HIV-1 accessory protein Vpu is emerging as a viral factor with a range of activities devoted to counteracting host innate immunity. Here, we review recent findings concerning the role of Vpu in hampering activation of cellular immune responses mediated by CD1d-restricted invariant natural killer T (iNKT) cells and natural killer (NK) cells. The two key findings are that Vpu interferes with CD1d expression and antigen presentation, and also with expression of the NK cell activation ligand NK-T and B cell antigen (NTB-A). Both these activities are mechanistically distinct from CD4 and Tetherin (BST-2) down-modulation. We summarize the mechanistic insights gained into Vpu interference with CD1d and NTB-A, as well as important challenges going forward, and discuss these mechanisms in the context of the role that iNKT and NK cells play in HIV-1 immunity and immunopathogenesis.
Collapse
Affiliation(s)
- Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
57
|
Hudspeth K, Silva-Santos B, Mavilio D. Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. Front Immunol 2013; 4:69. [PMID: 23518691 PMCID: PMC3603285 DOI: 10.3389/fimmu.2013.00069] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/03/2013] [Indexed: 01/29/2023] Open
Abstract
Natural cytotoxicity receptors (NCRs) have been classically defined as activating receptors delivering potent signals to Natural Killer (NK) cells in order to lyze harmful cells and to produce inflammatory cytokines. Indeed, the elicitation of NK cell effector functions after engagement of NCRs with their ligands on tumor or virus infected cells without the need for prior antigen recognition is one of the main mechanisms that allow a rapid clearance of target cells. The three known NCRs, NKp46, NKp44, and NKp30, comprise a family of germ-line encoded Ig-like trans-membrane (TM) receptors. Until recently, NCRs were thought to be NK cell specific surface molecules, thus making it possible to easily distinguish NK cells from phenotypically similar cell types. Moreover, it has also been found that the surface expression of NKp46 is conserved on NK cells across mammalian species. This discovery allowed for the use of NKp46 as a reliable marker to identify NK cells in different animal models, a comparison that was not possible before due to the lack of a common and comprehensive receptor repertoire between different species. However, several studies over the recent few years indicated that NCR expression is not exclusively confined to NK cells, but is also present on populations of T as well as of NK-like lymphocytes. These insights raised the hypothesis that the induced expression of NCRs on certain T cell subsets is governed by defined mechanisms involving the engagement of the T cell receptor (TCR) and the action of pro-inflammatory cytokines. In turn, the acquisition of NCRs by T cell subsets is also associated with a functional independence of these Ig-like TM receptors from TCR signaling. Here, we review these novel findings with respect to NCR-mediated functions of NK cells and we also discuss the functional consequences of NCR expression on non-NK cells, with a particular focus on the T cell compartment.
Collapse
Affiliation(s)
- Kelly Hudspeth
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center Rozzano, Milan, Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan Milan, Italy
| | | | | |
Collapse
|
58
|
Naranbhai V, Altfeld M, Karim SSA, Ndung'u T, Karim QA, Carr WH. Changes in Natural Killer cell activation and function during primary HIV-1 Infection. PLoS One 2013; 8:e53251. [PMID: 23326405 PMCID: PMC3541400 DOI: 10.1371/journal.pone.0053251] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/28/2012] [Indexed: 01/26/2023] Open
Abstract
Background Recent reports suggest that Natural Killer (NK) cells may modulate pathogenesis of primary HIV-1 infection. However, HIV dysregulates NK-cell responses. We dissected this bi-directional relationship to understand how HIV impacts NK-cell responses during primary HIV-1 infection. Methodology/Principal Findings Paired samples from 41 high-risk, initially HIV-uninfected CAPRISA004 participants were analysed prior to HIV acquisition, and during viraemic primary HIV-1 infection. At the time of sampling post-infection five women were seronegative, 11 women were serodiscordant, and 25 women were seropositive by HIV-1 rapid immunoassay. Flow cytometry was used to measure NK and T-cell activation, NK-cell receptor expression, cytotoxic and cytokine-secretory functions, and trafficking marker expression (CCR7, α4β7). Non-parametric statistical tests were used. Both NK cells and T-cells were significantly activated following HIV acquisition (p = 0.03 and p<0.0001, respectively), but correlation between NK-cell and T-cell activation was uncoupled following infection (pre-infection r = 0.68;p<0.0001; post-infection, during primary infection r = 0.074;p = 0.09). Nonetheless, during primary infection NK-cell and T-cell activation correlated with HIV viral load (r = 0.32'p = 0.04 and r = 0.35;p = 0.02, respectively). The frequency of Killer Immunoglobulin-like Receptor-expressing (KIRpos) NK cells increased following HIV acquisition (p = 0.006), and KIRpos NK cells were less activated than KIRneg NK cells amongst individuals sampled while seronegative or serodiscordant (p = 0.001;p<0.0001 respectively). During HIV-1 infection, cytotoxic NK cell responses evaluated after IL-2 stimulation alone, or after co-culture with 721 cells, were impaired (p = 0.006 and p = 0.002, respectively). However, NK-cell IFN-y secretory function was not significantly altered. The frequency of CCR7+ NK cells was elevated during primary infection, particularly at early time-points (p<0.0001). Conclusions/Significance Analyses of immune cells before and after HIV infection revealed an increase in both NK-cell activation and KIR expression, but reduced cytotoxicity during acute infection. The increase in frequency of NK cells able to traffic to lymph nodes following HIV infection suggests that these cells may play a role in events in secondary lymphoid tissue.
Collapse
Affiliation(s)
- Vivek Naranbhai
- CAPRISA – Centre for the AIDS Programme of Research in South Africa, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Marcus Altfeld
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
| | - Salim S. Abdool Karim
- CAPRISA – Centre for the AIDS Programme of Research in South Africa, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
| | - Quarraisha Abdool Karim
- CAPRISA – Centre for the AIDS Programme of Research in South Africa, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - William H. Carr
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
59
|
Ohashi M, Fogg MH, Orlova N, Quink C, Wang F. An Epstein-Barr virus encoded inhibitor of Colony Stimulating Factor-1 signaling is an important determinant for acute and persistent EBV infection. PLoS Pathog 2012; 8:e1003095. [PMID: 23300447 PMCID: PMC3531511 DOI: 10.1371/journal.ppat.1003095] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/06/2012] [Indexed: 01/05/2023] Open
Abstract
Acute Epstein-Barr virus (EBV) infection is the most common cause of Infectious Mononucleosis. Nearly all adult humans harbor life-long, persistent EBV infection which can lead to development of cancers including Hodgkin Lymphoma, Burkitt Lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and lymphomas in immunosuppressed patients. BARF1 is an EBV replication-associated, secreted protein that blocks Colony Stimulating Factor 1 (CSF-1) signaling, an innate immunity pathway not targeted by any other virus species. To evaluate effects of BARF1 in acute and persistent infection, we mutated the BARF1 homologue in the EBV-related herpesvirus, or lymphocryptovirus (LCV), naturally infecting rhesus macaques to create a recombinant rhLCV incapable of blocking CSF-1 (ΔrhBARF1). Rhesus macaques orally challenged with ΔrhBARF1 had decreased viral load indicating that CSF-1 is important for acute virus infection. Surprisingly, ΔrhBARF1 was also associated with dramatically lower virus setpoints during persistent infection. Normal acute viral load and normal viral setpoints during persistent rhLCV infection could be restored by Simian/Human Immunodeficiency Virus-induced immunosuppression prior to oral inoculation with ΔrhBARF1 or infection of immunocompetent animals with a recombinant rhLCV where the rhBARF1 was repaired. These results indicate that BARF1 blockade of CSF-1 signaling is an important immune evasion strategy for efficient acute EBV infection and a significant determinant for virus setpoint during persistent EBV infection. Epstein-Barr virus (EBV) is a herpesvirus that persistently infects nearly all humans by adulthood. Acute and persistent phases of EBV infection are associated with a variety of human diseases, including infectious mononucleosis and cancer. To investigate how EBV interacts with the host to successfully establish acute and persistent infection, we combined the power of the rhesus macaque animal model for EBV infection with genetic engineering of the EBV-related herpesvirus, or lymphocryptovirus (LCV), that naturally infects rhesus macaques. We created a recombinant rhLCV carrying a mutated EBV BARF1 homologue, a replication-associated viral protein that is secreted and blocks Colony Stimulating Factor-1 (CSF-1) signaling, a cytokine important for innate immunity. Oral inoculation of rhesus macaques showed that the virus' ability to block CSF-1 was important for achieving the normally high viral loads during acute infection, and surprisingly, was also needed to establish normal levels of virus infection, or viral setpoint, during persistent infection. These studies show that virus-mediated interruption of innate immunity is critical for both acute and persistent phases of EBV infection. Understanding how EBV successfully infects humans and how the natural history of EBV infection can be disrupted will aid in development of vaccines to prevent EBV-associated diseases.
Collapse
Affiliation(s)
- Makoto Ohashi
- Department of Medicine, Brigham & Women's Hospital and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark H. Fogg
- Department of Medicine, Brigham & Women's Hospital and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nina Orlova
- Department of Medicine, Brigham & Women's Hospital and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carol Quink
- Department of Medicine, Brigham & Women's Hospital and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fred Wang
- Department of Medicine, Brigham & Women's Hospital and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
60
|
Depletion and dysfunction of Vγ2Vδ2 T cells in HIV disease: mechanisms, impacts and therapeutic implications. Cell Mol Immunol 2012; 10:42-9. [PMID: 23241900 DOI: 10.1038/cmi.2012.50] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Infection with human immunodeficiency virus (HIV) disrupts the balance among γδ T cell subsets, with increasing Vδ1+ cells and substantial depletion of circulating Vδ2+ cells. Depletion is an indirect effect of HIV in CD4-negative Vδ2 cells, but is specific for phosphoantigen-responsive subpopulations identified by the Vγ2-Jγ1.2 (also called Vγ9-JγP) T cell receptor rearrangement. The extent of cell loss and recovery is related closely to clinical status, with highest levels of functional Vδ2 cells present in virus controllers (undetectable viremia in the absence of antiretroviral therapy). We review the mechanisms and clinical consequences for Vδ2 cell depletion in HIV disease. We address the question of whether HIV-mediated Vδ2 cell depletion, despite being an indirect effect of infection, is an important part of the immune evasion strategy for this virus. The important roles for Vδ2 cells, as effectors and immune regulators, identify key mechanisms affected by HIV and show the strong relationships between Vδ2 cell loss and immunodeficiency disease. This field is moving toward immune therapies based on targeting Vδ2 cells and we now have clear goals and expectations to guide interventional clinical trials.
Collapse
|
61
|
Jost S, Altfeld M. Evasion from NK cell-mediated immune responses by HIV-1. Microbes Infect 2012; 14:904-15. [PMID: 22626930 PMCID: PMC3432664 DOI: 10.1016/j.micinf.2012.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/02/2012] [Accepted: 05/08/2012] [Indexed: 11/17/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) mostly owes its success to its ability to evade host immune responses. Understanding viral immune escape mechanisms is a prerequisite to improve future HIV-1 vaccine design. This review focuses on the strategies that HIV-1 has evolved to evade recognition by natural killer (NK) cells.
Collapse
Affiliation(s)
- Stephanie Jost
- Ragon Institute of MGH, MIT and Harvard, Bldg. 149, 13th Street, 6th Floor, Charlestown, MA 02129, USA
| | | |
Collapse
|
62
|
Lichtfuss GF, Cheng WJ, Farsakoglu Y, Paukovics G, Rajasuriar R, Velayudham P, Kramski M, Hearps AC, Cameron PU, Lewin SR, Crowe SM, Jaworowski A. Virologically suppressed HIV patients show activation of NK cells and persistent innate immune activation. THE JOURNAL OF IMMUNOLOGY 2012; 189:1491-9. [PMID: 22745371 DOI: 10.4049/jimmunol.1200458] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FcRγ is an ITAM-containing adaptor required for CD16 signaling and function in NK cells. We have previously shown that NK cells from HIV patients receiving combination antiretroviral therapy (cART) have decreased FcRγ expression, but the factors causing this are unknown. We conducted a cross-sectional study of cART-naive viremic patients (ART(-)), virologically suppressed patients receiving cART (ART(+)), and HIV-uninfected controls. CD8(+) T cells were activated, as assessed by CD38(+)HLA-DR(+) expression, in ART(-) patients (p < 0.0001), which was significantly reduced in ART(+) patients (p = 0.0005). In contrast, CD38(+)HLA-DR(+) NK cells were elevated in ART(-) patients (p = 0.0001) but did not decrease in ART(+) patients (p = 0.88). NK cells from both ART(-) and ART(+) patients showed high levels of spontaneous degranulation in ex vivo whole blood assays as well as decreased CD16 expression (p = 0.0001 and p = 0.0025, respectively), FcRγ mRNA (p < 0.0001 for both groups), FcRγ protein expression (p = 0.0016 and p < 0.0001, respectively), and CD16-dependent Syk phosphorylation (p = 0.0001 and p = 0.003, respectively). HIV-infected subjects showed alterations in NK activation, degranulation, CD16 expression and signaling, and elevated plasma markers of inflammation and macrophage activation, that is, neopterin and sCD14, which remained elevated in ART(+) patients. Alterations in NK cell measures did not correlate with viral load or CD4 counts. These data show that in HIV patients who achieve viral suppression following cART, NK cell activation persists. This suggests that NK cells respond to factors different from those driving T cell activation, but which are associated with inflammation in HIV patients.
Collapse
Affiliation(s)
- Gregor F Lichtfuss
- Centre for Virology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Peña J, Frías M, Castro-Orgaz L, González R, García F, Gallart T, Gatell JM, Plana M. Effects on innate immunity of a therapeutic dendritic cell-based vaccine for HIV-1 infection. Viral Immunol 2012; 25:37-44. [PMID: 22233253 DOI: 10.1089/vim.2011.0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Changes in natural killer (NK) cells according to their phenotype and expression of certain regulatory receptors were analyzed in a double-blind, controlled study of antiretroviral therapy (ART)-untreated HIV-seropositive patients, who had been vaccinated with monocyte-derived dendritic cells pulsed with inactivated HIV-1 autologous virus. This work extends other recently published studies of the same group of HIV-1(+) vaccinated patients, which demonstrated that the viral load significantly decreases and correlates inversely with an increase in HIV-specific T-cell responses in vaccinated patients, but not in controls who received placebo. Our results indicate that this vaccine raises the level of the NK CD56(neg) cell subpopulation, while levels of the NK CD56(dim) and NK CD56(bright) cells expressing the inhibitory receptor CD85j/ILT-2 fell in vaccinated patients. Taken together, these results suggest that this vaccine might enhance innate immunity by amplifying the inflammatory and cytolytic capacity.
Collapse
Affiliation(s)
- José Peña
- Immunology Service, Maimonides Institute for Biomedical Research of Córdoba, University of Córdoba, Córdoba, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Kulkarni A, Paranjape R, Thakar M. Expansion of defective NK cells in early HIV type 1C infection: a consequence of reduced CD161 expression. AIDS Res Hum Retroviruses 2012; 28:100-5. [PMID: 21612569 DOI: 10.1089/aid.2011.0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human immunodeficiency virus (HIV)-1 infection compromises the natural killer (NK) cell function and leads to defective control on virus multiplication. One of the major features of HIV-1 infection is the expansion of a functionally compromised defective NK cell subset (CD56(-)CD16(+)). We analyzed the NK cell subsets in early HIV infection to determine the effect of NK cell perturbation on the viral load set point, a marker of disease progression. We report that the defective NK cells are expanded in early HIV infection within 6-8 months of acquiring infection and are correlated with a higher plasma viral load set point, suggesting its utility as a predictive marker for disease progression. The expression of CD161, a molecular marker responsible for proliferation and differentiation of NK cells, was significantly down-regulated in the defective NK cells as compared to slow progressors (p=0.0009) and healthy controls (p=0.0003) and was correlated with a higher viral load set point in early HIV-1 infection (r=-0.6154, p=0.03), suggesting the probable role of CD161 expression in the impaired proliferation and differentiation of defective NK cells into the functional NK cells in early HIV infection. The reduction in CD161 expression on the defective NK cells in early HIV infection is thus indicative of the role of innate immune cells in early control of HIV infection.
Collapse
Affiliation(s)
- Archana Kulkarni
- National AIDS Research Institute, Pune Indian Council of Medical Research, Bhosari, Pune, India
| | - Ramesh Paranjape
- National AIDS Research Institute, Pune Indian Council of Medical Research, Bhosari, Pune, India
| | - Madhuri Thakar
- National AIDS Research Institute, Pune Indian Council of Medical Research, Bhosari, Pune, India
| |
Collapse
|
65
|
Natural killer cells, dendritic cells, and the alarmin high-mobility group box 1 protein. Curr Opin HIV AIDS 2011; 6:364-72. [DOI: 10.1097/coh.0b013e328349b089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Lichtfuss GF, Hoy J, Rajasuriar R, Kramski M, Crowe SM, Lewin SR. Biomarkers of immune dysfunction following combination antiretroviral therapy for HIV infection. Biomark Med 2011; 5:171-86. [PMID: 21473720 DOI: 10.2217/bmm.11.15] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Combination antiretroviral therapy (cART) has significantly reduced morbidity and mortality of HIV-infected patients, yet their life expectancy remains reduced compared with the general population. Most HIV-infected patients receiving cART have some persistent immune dysfunction characterized by chronic immune activation and premature aging of the immune system. Here we review biomarkers of T-cell activation (CD69, -25 and -38, HLA-DR, and soluble CD26 and -30); generalized immune activation (C-reactive protein, IL-6 and D-dimer); microbial translocation (lipopolysaccharide, 16S rDNA, lipopolysaccharide-binding protein and soluble CD14); and immune dysfunction of specific cellular subsets (T cells, natural killer cells and monocytes) in HIV-infected patients on cART and their relationship to adverse clinical outcomes including impaired CD4 T-cell recovery, as well as non-AIDS clinical events, such as cardiovascular disease.
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW Over the last decade our understanding of the role of natural killer cells in HIV infection has changed dramatically due to strong epidemiological, phenotypic, and functional data providing evidence for their involvement in antiviral control. Here we review the current literature on natural killer cells in the control of HIV infection, with a specific focus on their role in HIV controllers, individuals that spontaneously control HIV replication in the absence of antiretroviral therapy. RECENT FINDINGS Differences between progressors and controllers are highlighted in the context of genetic influences, natural killer cell phenotypes, function and dysregulation. Also, recent findings on the role of natural killer cell-mediated antibody-dependent cellular cytotoxicity in HIV control are summarized. SUMMARY This evolving understanding of the complex biology of natural killer cells and their multifaceted role in HIV infection offer exciting new approaches for future vaccine strategies. Furthermore, the specific natural killer cell phenotype and function observed in controllers may guide new vaccine modalities that specifically harness the antiviral power of natural killer cells as adjuvants, or as direct effectors.
Collapse
|
68
|
Tomescu C, Abdulhaqq S, Montaner LJ. Evidence for the innate immune response as a correlate of protection in human immunodeficiency virus (HIV)-1 highly exposed seronegative subjects (HESN). Clin Exp Immunol 2011; 164:158-69. [PMID: 21413945 DOI: 10.1111/j.1365-2249.2011.04379.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The description of highly exposed individuals who remain seronegative (HESN) despite repeated exposure to human immunodeficiency virus (HIV)-1 has heightened interest in identifying potential mechanisms of HIV-1 resistance. HIV-specific humoral and T cell-mediated responses have been identified routinely in HESN subjects, although it remains unknown if these responses are a definitive cause of protection or merely a marker for exposure. Approximately half of HESN lack any detectible HIV-specific adaptive immune responses, suggesting that other mechanisms of protection from HIV-1 infection also probably exist. In support of the innate immune response as a mechanism of resistance, increased natural killer (NK) cell activity has been correlated with protection from infection in several high-risk cohorts of HESN subjects, including intravenous drug users, HIV-1 discordant couples and perinatally exposed infants. Inheritance of protective NK KIR3DL1(high) and KIR3DS1 receptor alleles have also been observed to be over-represented in a high-risk cohort of HESN intravenous drug users and HESN partners of HIV-1-infected subjects. Other intrinsic mechanisms of innate immune protection correlated with resistance in HESN subjects include heightened dendritic cell responses and increased secretion of anti-viral factors such as β-chemokines, small anti-viral factors and defensins. This review will highlight the most current evidence in HESN subjects supporting the role of epithelial microenvironment and the innate immune system in sustaining resistance against HIV-1 infection. We will argue that as a front-line defence the innate immune response determines the threshold of infectivity that HIV-1 must overcome to establish a productive infection.
Collapse
Affiliation(s)
- C Tomescu
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | | | | |
Collapse
|
69
|
Rosner C, Kruse PH, Hermes M, Otto N, Walter L. Rhesus macaque inhibitory and activating KIR3D interact with Mamu-A-encoded ligands. THE JOURNAL OF IMMUNOLOGY 2011; 186:2156-63. [PMID: 21257962 DOI: 10.4049/jimmunol.1002634] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Specific interactions between killer cell Ig-like receptors (KIRs) and MHC class I ligands have not been described in rhesus macaques despite their importance in biomedical research. Using KIR-Fc fusion proteins, we detected specific interactions for three inhibitory KIRs (3DLW03, 3DL05, 3DL11) and one activating KIR (3DS05). As ligands we identified Macaca mulatta MHC (Mamu)-A1- and Mamu-A3-encoded allotypes, among them Mamu-A1*001:01, which is well known for association with slow progression to AIDS in the rhesus macaque experimental SIV infection model. Interactions with Mamu-B or Mamu-I molecules were not found. KIR3DLW03 and KIR3DL05 differ in their binding sites to their shared ligand Mamu-A1*001:01, with 3DLW03 depending on presence of the α1 domain, whereas 3DL05 depends on both the α1 and α2 domains. Fine-mapping studies revealed that binding of KIR3DLW03 is influenced by presence of the complete Bw4 epitope (positions 77, 80-83), whereas that of KIR3DL05 is mainly influenced by amino acid position 77 of Bw4 and positions 80-83 of Bw6. Our findings allowed the successful prediction of a further ligand of KIR3DL05, Mamu-A1*002:01. These functional differences of rhesus macaque KIR3DL molecules are in line with the known genetic diversification of lineage II KIRs in macaques.
Collapse
Affiliation(s)
- Cornelia Rosner
- Primate Genetics Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|