51
|
Bo X, Mu D, Wu M, Xiao H, Wang H. The morphological changes and molecular biomarker responses in the liver of fluoride-exposed Bufo gargarizans larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:199-205. [PMID: 29367176 DOI: 10.1016/j.ecoenv.2018.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The goal of the current study was to evaluate the negative influences of fluoride on liver of Bufo gargarizans larvae. B. gargarizans larvae were treated with 42.4mgF-/L for 0, 24, 48 and 72h at Gosner stage 37. The morphological changes and responses of molecular biomarkers involved in lipid metabolism, oxidative stress and apoptosis were examined in liver. Disappearance of cell boundaries, degeneration of hepatic parenchyma cells and significant increase in the number of melanomacrophage centres and the quantity of lipid droplets were found in the liver treated with 42.4mgF-/L for 72h. In addition, in the relative expression of acetyl CoA carboxylase 1 (ACC-1), fatty acid elongase 1 (FAE-1), sterol carrier protein 2 (SCP-2), and carnitine palmitoyltransferase-1 (CPT-1), decrease was observed after 24, 48 and 72h of 42.4mgF-/L exposure. Furthermore, the transcript levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were downregulated in tadpoles exposed for 24, 48 and 72h to 42.4mgF-/L, while the transcript level of heat shock protein 90 (HSP90) was upregulated at 42.4mgF-/L for 72h. Also, mRNA expression of Bcl-2-associated transcription factor 1(BCLAF1) and thyroid hormone receptors (TRα and TRβ) was significantly upregulated in tadpoles treated with 42.4mgF-/L for 72h. Therefore, our results suggested that the liver injury induced by fluoride might result from disruption of lipid metabolism, oxidative damage and apoptosis.
Collapse
Affiliation(s)
- Xiaoxue Bo
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Danyang Mu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hui Xiao
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
52
|
Starčević K, Filipović N, Galan A, Micek V, Gudan Kurilj A, Mašek T. Hepatic Lipogenesis and Brain Fatty Acid Profile in Response to Different Dietary n6/n3 Ratios and DHA/EPA Supplementation in Streptozotocin Treated Rats. Mol Nutr Food Res 2018; 62:e1701007. [PMID: 29579359 DOI: 10.1002/mnfr.201701007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Indexed: 11/06/2022]
Abstract
SCOPE We investigated the interaction between streptozotocin (STZ)-induced diabetes and dietary n6/n3 ratio, and its influence on lipogenesis. METHODS AND RESULTS The animals were treated with STZ and fed with different dietary n6/n3 ratios: 1, 7, and 60, or supplemented with DHA/EPA. Gene expression was assessed by RT-PCR and protein expression by western blotting and immunohistochemistry. Fatty acid profile was determined by GC-MS. Pancreas and liver histology were assessed by hematoxylin and eosin (H&E) staining. STZ-induced characteristic changes in all STZ treated groups, including: increased blood glucose, decreased body mass, increased lipid peroxidation and CD36 expression, decreased 16:1n7 and 18:1n7, increases in 20:3n6, decreases in phospholipid (PL) content of 20:4n6, as well as decreases in the expression of SREBP1c, Δ-9-desaturase (Δ9D), and Δ-5-desaturase (Δ5D). Additionally, other changes occurred that were dependent on the n6/n3 ratio. Among the diabetic groups, the lower n6/n3 ratio caused higher lipid peroxidation and CD36 expression, a greater decrease in 20:4n6 and decreased Δ6-desaturase (Δ6D) expression, while the higher n6/n3 ratio caused increased partitioning of 20:4n6 into hepatic neutral lipids (NL), a decrease in 20:5n3 content, and increased β-oxidation. CONCLUSION Presented data suggest that the n6/n3 ratio could significantly influence lipogenesis, lipid peroxidation, and β-oxidation in STZ-induced diabetes, which could have clinical significance.
Collapse
Affiliation(s)
- Kristina Starčević
- Department of Animal Husbandry, University of Zagreb, Faculty of Veterinary Medicine, 10000, Zagreb, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split, School of Medicine, 21000, Split, Croatia
| | - Asier Galan
- VetMedZg ERA Chair project, University of Zagreb, Faculty of Veterinary Medicine, 10000, Zagreb, Croatia
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia
| | - Andrea Gudan Kurilj
- Department of Veterinary Pathology, University of Zagreb, Faculty of Veterinary Medicine, 10000, Zagreb, Croatia
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, University of Zagreb, Faculty of Veterinary Medicine, 10000, Zagreb, Croatia
| |
Collapse
|
53
|
Liu D, Xu JH, Tong HL, Li SF, Yan YQ. Effect of ELOVL3 expression on bovine skeletal muscle-derived satellite cell differentiation. Biochem Biophys Res Commun 2017; 493:1457-1463. [PMID: 28780350 DOI: 10.1016/j.bbrc.2017.07.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022]
Abstract
ELOVL3 is involved in elongating saturated and monounsaturated fatty acids, and is a critical enzyme for lipid accumulation in brown adipocytes during the early phase of tissue recruitment. In addition, ELOVL3 is related to increased fatty acid oxidation in brown adipocytes. However, the potential functions of ELOVL3 in bovine cells remain unclear. Herein, we aimed to elucidate the effect of the ELOVL3 on the differentiation of bovine skeletal muscle-derived satellite cells (MDSCs). Western blot and immunofluorescence analyses were used for elucidating ELOVL3 expression pattern in bovine MDSCs during differentiation in vitro. We activated or inhibited ELOVL3 to study the effect of alterations in its expression on in vitro differentiation of bovine MDSCs. ELOVL3 expression increased gradually during bovine MDSC differentiation, and its levels were higher in the more highly differentiated myotubes. Activation of ELOVL3 promoted MDSC differentiation, while inhibition of ELOVL3 hindered differentiation of these cells. Here, for the first time, we demonstrate the importance of ELOVL3 during bovine MDSC differentiation, which may assist in increasing beef cattle muscularity.
Collapse
Affiliation(s)
- Dan Liu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jia-Hui Xu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui-Li Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shu-Feng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yun-Qin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
54
|
Zheng T, Li H, Han N, Wang S, Hackney Price J, Wang M, Zhang D. Functional Characterization of Two Elongases of Very Long-Chain Fatty Acid from Tenebrio molitor L. (Coleoptera: Tenebrionidae). Sci Rep 2017; 7:10990. [PMID: 28887463 PMCID: PMC5591304 DOI: 10.1038/s41598-017-11134-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/17/2017] [Indexed: 11/16/2022] Open
Abstract
The elongases of very long chain fatty acid (ELOVL or ELO) are essential in the biosynthesis of fatty acids longer than C14. Here, two ELO full-length cDNAs (TmELO1, TmELO2) from the yellow mealworm (Tenebrio molitor L.) were isolated and the functions were characterized. The open reading frame (ORF) lengths of TmELO1 and TmELO2 were 1005 bp and 972 bp, respectively and the corresponding peptide sequences each contained several conserved motifs including the histidine-box motif HXXHH. Phylogenetic analysis demonstrated high similarity with the ELO of Tribolium castaneum and Drosophila melanogaster. Both TmELO genes were expressed at various levels in eggs, 1st and 2nd instar larvae, mature larvae, pupae, male and female adults. Injection of dsTmELO1 but not dsTmELO2 RNA into mature larvae significantly increased mortality although RNAi did not produce any obvious changes in the fatty acid composition in the survivors. Heterologous expression of TmELO genes in yeast revealed that TmELO1 and TmELO2 function to synthesize long chain and very long chain fatty acids.
Collapse
Affiliation(s)
- Tianxiang Zheng
- School of Forestry and Biotechnology, Zhejiang A&F University, Linan, Zhejiang, China
| | - Hongshuang Li
- School of Forestry and Biotechnology, Zhejiang A&F University, Linan, Zhejiang, China
| | - Na Han
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Linan, Zhejiang, China
| | - Shengyin Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Linan, Zhejiang, China
| | - Jennifer Hackney Price
- School of Mathematical & Natural Sciences, New College of Interdisciplinary Arts & Sciences, Arizona State University, Phoenix, AZ, USA
| | - Minzi Wang
- Zhejiang Dean Biotechnology Co. Hangzhou, Zhejiang, China
| | - Dayu Zhang
- School of Forestry and Biotechnology, Zhejiang A&F University, Linan, Zhejiang, China.
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Linan, Zhejiang, China.
| |
Collapse
|
55
|
Jump DB, Lytle KA, Depner CM, Tripathy S. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. Pharmacol Ther 2017; 181:108-125. [PMID: 28723414 DOI: 10.1016/j.pharmthera.2017.07.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obese and type 2 diabetic (T2DM) patients have a high prevalence of nonalcoholic fatty liver disease (NAFLD). NAFLD is a continuum of chronic liver diseases ranging from benign hepatosteatosis to nonalcoholic steatohepatitis (NASH), cirrhosis and primary hepatocellular cancer (HCC). Because of its strong association with the obesity epidemic, NAFLD is rapidly becoming a major public health concern worldwide. Surprisingly, there are no FDA approved NAFLD therapies; and current therapies focus on the co-morbidities associated with NAFLD, namely, obesity, hyperglycemia, dyslipidemia, and hypertension. The goal of this review is to provide background on the disease process, discuss human studies and preclinical models that have examined treatment options. We also provide an in-depth rationale for the use of dietary ω3 polyunsaturated fatty acid (ω3 PUFA) supplements as a treatment option for NAFLD. This focus is based on recent studies indicating that NASH patients and preclinical mouse models of NASH have low levels of hepatic C20-22 ω3 PUFA. This decline in hepatic PUFA may account for the major phenotypic features associated with NASH, including steatosis, inflammation and fibrosis. Finally, our discussion will address the strengths and limitations of ω3 PUFA supplements use in NAFLD therapy.
Collapse
Affiliation(s)
- Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States.
| | - Kelli A Lytle
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Christopher M Depner
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Sasmita Tripathy
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
56
|
Gong Y, Fu Z, Liegl R, Chen J, Hellström A, Smith LEH. ω-3 and ω-6 long-chain PUFAs and their enzymatic metabolites in neovascular eye diseases. Am J Clin Nutr 2017; 106:16-26. [PMID: 28515072 PMCID: PMC5486202 DOI: 10.3945/ajcn.117.153825] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
Neovascular eye diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, threaten the visual health of children and adults. Current treatment options, including anti-vascular endothelial growth factor therapy and laser retinal photocoagulation, have limitations and are associated with adverse effects; therefore, the identification of additional therapies is highly desirable. Both clinical and experimental studies show that dietary ω-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs) reduce retinal and choroidal angiogenesis. The ω-3 LC-PUFA metabolites from 2 groups of enzymes, cyclooxygenases and lipoxygenases, inhibit [and the ω-6 (n-6) LC-PUFA metabolites promote] inflammation and angiogenesis. However, both of the ω-3 and the ω-6 lipid products of cytochrome P450 oxidase 2C promote neovascularization in both the retina and choroid, which suggests that inhibition of this pathway might be beneficial. This review summarizes our current understanding of the roles of ω-3 and ω-6 LC-PUFAs and their enzymatic metabolites in neovascular eye diseases.
Collapse
Affiliation(s)
- Yan Gong
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA; and
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA; and
| | - Raffael Liegl
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA; and
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA; and
| | - Ann Hellström
- Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lois EH Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
57
|
Estrogen Promotes Hepatic Synthesis of Long-Chain Polyunsaturated Fatty Acids by Regulating ELOVL5 at Post-Transcriptional Level in Laying Hens. Int J Mol Sci 2017; 18:ijms18071405. [PMID: 28665359 PMCID: PMC5535898 DOI: 10.3390/ijms18071405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 01/14/2023] Open
Abstract
The very long chain fatty acid elongase (ELOVL) plays an important role in the synthesis of long-chain polyunsaturated fatty acids (LCPUFA). Previous studies suggest that chicken could be an alternate source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In this study, we detected that ELOVL5, which plays a key role in the biosynthesis of omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFA), was highly expressed in the liver of laying hens and increased rapidly after sexual maturity. Bioinformatic analysis revealed ELOVL fatty acid elongase 5 (ELOVL5) gene as a putative target of miR-218-5p, miR-19a-3p, miR-19b-3p, miR-30a-5p, miR-30b-5p, and miR-30e-5p. We demonstrated estrogen downregulated microRNA (miRNA), and that ELOVL5 is a direct target of miR-218-5p, which was located in intron 14 of the Slit guidance ligand 2 (SLIT2) gene and co-expressed with the host gene. Overall, estrogen enhanced hepatic synthesis of LCPUFA by functioning as a negative regulator of miRNA thereby augmenting the expression of these miRNA target genes, especially ELOVL5, which plays a key role in the biosynthesis of n-3 and n-6 LCPUFA. This study provides a novel model for the use of estrogen in the poultry industry as an inducer of ELOVL5 expression to enhance hepatic n-3 and n-6 LCPUFA synthesis at the post-transcriptional level.
Collapse
|
58
|
Hammer SS, Busik JV. The role of dyslipidemia in diabetic retinopathy. Vision Res 2017; 139:228-236. [PMID: 28545981 DOI: 10.1016/j.visres.2017.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy (DR) affects over 93million people worldwide and is the number one cause of blindness among working age adults. These indicators coupled with the projected rise of patients diagnosed with diabetes, makes DR a serious and prevalent vision threating disease. Data from recent clinical trials demonstrate that in addition to the well accepted role of hyperglycemia, dyslipidemia is an important, but often overlooked factor in the development of DR. The central aim of this review article is to showcase the critical role of dyslipidemia in DR progression as well as highlight novel therapeutic solutions that take advantage of the vital roles lipid metabolism plays in DR progression.
Collapse
Affiliation(s)
- Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
59
|
Ma Z, Li H, Zheng H, Jiang K, Yan F, Tian Y, Kang X, Wang Y, Liu X. Hepatic ELOVL6 mRNA is regulated by the gga-miR-22-3p in egg-laying hen. Gene 2017; 623:72-79. [PMID: 28445717 DOI: 10.1016/j.gene.2017.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 01/22/2023]
Abstract
The elongation of very long chain fatty acids protein 6 (ELOVL6) encodes a fatty acid elongase that is responsible for the final step in endogenous saturated fatty acid synthesis and involves in de novo lipogenesis. Though the regulatory mechanism of ELOVL6 expression has been studied extensively, little is known about the role of miRNA in regulating ELOVL6 gene expression in chicken until now. To investigate the regulatory mechanism of miRNA on the expression of ELOVL6 gene, bioinformatics analysis was employed to predict the potential miRNAs that binding with the 3'untranslated region (3'UTR) of ELOVL6. The putative miRNA was further screened by comparative analysis with previous miRNA-seq results. Gga-miR-22-3p, which could bind with the 3'UTR of ELOVL6 and showed negative expression correlation with ELOVL6 gene in chicken liver, was obtained. Tissue expression profiles showed that gga-miR-22-3p and ELOVL6 are extensively expressed in many tissues, and ELOVL6 with high expression level in kidney and liver tissues, and gga-miR-22-3p with high expression in lung and heart. Dual-luciferase reporter assays results indicated that the expression of luciferase reporter gene linked with part sequence of the 3'UTR of chicken ELOVL6 gene was down-regulated by the overexpression of gga-miR-22-3p in the DF1 cells, and the down-regulation behavior was abolished when the gga-miR-22-3p binding site in 3'UTR of ELOVL6 was mutated (P>0.05). Furthermore, the ELOVL6 expression in chicken hepatocytes was down-regulated when miR-22-3p was over-expressed. Therefore, we concluded that miR-22-3p might involve in controlling the hepatic lipid composition through affecting the expression of ELOVL6 gene, and could serve as a regulator of lipid metabolism in the liver of egg-laying hen.
Collapse
Affiliation(s)
- Zheng Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Hang Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Keren Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
60
|
Rocha-Rodrigues S, Rodríguez A, Gonçalves IO, Moreira A, Maciel E, Santos S, Domingues MR, Frühbeck G, Ascensão A, Magalhães J. Impact of physical exercise on visceral adipose tissue fatty acid profile and inflammation in response to a high-fat diet regimen. Int J Biochem Cell Biol 2017; 87:114-124. [PMID: 28438715 DOI: 10.1016/j.biocel.2017.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 01/14/2023]
Abstract
PURPOSE Studies associate specific fatty-acids (FA) with the pathophysiology of inflammation. We aimed to analyze the impact of exercise on adipose tissue FA profile in response to a high-fat diet (HFD) and to ascertain whether these exercise-induced changes in specific FA have repercussions on obesity-related inflammation. METHODS Sprague-Dawley rats were assigned into sedentary, voluntary physical-activity (VPA) and endurance training (ET) groups fed a standard (S, 35kcal% fat) or high-fat (71kcal% fat) diets. VPA-animals had unrestricted access to wheel-running. After 9-wks, ET-animals engaged a running protocol for 8-wks, while maintained dietary treatments. The FA content in epididymal white-adipose tissue (eWAT) triglycerides was analyzed by gas-chromatography and the expression of inflammatory markers was determined using RT-qPCR, Western and slot blotting. RESULTS Eight-wks of ET reversed obesity-related anatomical features. HFD increased plasma tumor necrosis factor (TNF)-α content and eWAT monocyte chemoattractant protein (MCP)-1 protein expression. HFD decreased eWAT content of saturated FA and monounsaturated FA, while increased linoleic acid and prostaglandin E2 (PGE2) levels in eWAT. VPA decreased visceral adiposity, adipocyte size and MCP-1 in HFD-fed animals. The VPA and ET interventions diminished palmitoleic acid and increased linoleic acid in HFD-fed groups. Moreover, both interventions increased PGE2 levels in standard diet-fed groups and decreased in HFD. ET increased eWAT fatty acid desaturase 1 (FADS1) and elongase 5 (ELOVL5) protein content in both diet types. ET reduced eWAT inflammatory markers (TNF-α, IL-6), macrophage recruitment (MCP-1 and F4/80) and increased IL-10/TNF-α ratio in plasma and in eWAT in both diet types. CONCLUSIONS Exercise induced FA-specific changes independently of dietary FA composition, but only ET attenuated the inflammatory response in VAT of HFD-fed rats. Moreover, the exercise-induced FA changes did not correlate with the inflammatory response in VAT of rats submitted to HFD.
Collapse
Affiliation(s)
- Sílvia Rocha-Rodrigues
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Obesity & Adipobiology Group, Instituto de Investigación Sanitario de Navarra (IdiSNA), CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
| | - Inês O Gonçalves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - Ana Moreira
- Mass spectrometry Centre, UI-QOPNA Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Elisabete Maciel
- Mass spectrometry Centre, UI-QOPNA Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sónia Santos
- CICECO, Department of Chemistry, University of Aveiro, Campus Santiago, 3810-193 Aveiro, Portugal
| | - Maria R Domingues
- Mass spectrometry Centre, UI-QOPNA Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Obesity & Adipobiology Group, Instituto de Investigación Sanitario de Navarra (IdiSNA), CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - António Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - José Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
61
|
Azulay Chertok IR, Haile ZT, Eventov-Friedman S, Silanikove N, Argov-Argaman N. Influence of gestational diabetes mellitus on fatty acid concentrations in human colostrum. Nutrition 2017; 36:17-21. [DOI: 10.1016/j.nut.2016.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/12/2016] [Accepted: 12/05/2016] [Indexed: 11/28/2022]
|
62
|
Garay-Lugo N, Domínguez-Lopez A, Miliar García A, Aguilar Barrera E, Gómez López M, Gómez Alcalá A, Martínez Godinez MDLA, Lara-Padilla E. n-3 Fatty acids modulate the mRNA expression of the Nlrp3 inflammasome and Mtor in the liver of rats fed with high-fat or high-fat/fructose diets. Immunopharmacol Immunotoxicol 2017; 38:353-63. [PMID: 27367537 DOI: 10.1080/08923973.2016.1208221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT There is evidence that n-3 polyunsaturated fatty acids (n-3-PUFAs) can inhibit mTORC1, which should potentiate autophagy and eliminate NLRP3 inflammasome activity. OBJECTIVE Evaluate the effect of a high-fat or high-fat/fructose diet with and without n-3-PUFAs on hepatic gene expression. MATERIALS AND METHODS We examined the mRNA expression by RT-PCR of Mtor, Nlrp3, and other 22 genes associated with inflammation in rats livers after a 9-week diet. The dietary regimens were low-fat (control, CD), high-fat (HF), high-fat/fructose (HF-Fr), and also each of these supplemented with n-3-PUFAs (CD-n-3-PUFAs, HF-n-3-PUFAs, and HF-Fr-n-3-PUFAs). These data were processed by GeneMania and STRING databases. RESULTS Compared to the control, the HF group showed a significant increase (between p < 0.05 and p < 0.0001) in 20 of these genes (Il1b, Il18, Rxra, Nlrp3, Casp1, Il33, Tnf, Acaca, Mtor, Eif2s1, Eif2ak4, Nfkb1, Srebf1, Hif1a, Ppara, Ppard, Pparg, Mlxipl, Fasn y Scd1), and a decrease in Sirt1 (p < 0.05). With the HF-Fr diet, a significant increase (between p < 0.05 and p < 0.005) was also found in the expression of 16 evaluated genes (Srebf1, Mlxipl, Rxra, Abca1, Il33, Nfkb1, Hif1a, Pparg, Casp1, Il1b, Il-18, Tnf, Ppard, Acaca, Fasn, Scd1), along with a decrease in the transcription of Mtor and Elovl6 (p < 0.05). Contrarily, many of the genes whose expression increased with the HF and HF-Fr diets did not significantly increase with the HF-n-3-PUFAs or HF-Fr-n-3-PUFAs diet. DISCUSSION AND CONCLUSION We found the interrelation of the genes for the mTORC1 complex, the NLRP3 inflammasome, and other metabolically important proteins, and that these genes respond to n-3-PUFAs.
Collapse
Affiliation(s)
- Natalia Garay-Lugo
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Aarón Domínguez-Lopez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Angel Miliar García
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eliud Aguilar Barrera
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Modesto Gómez López
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Alejandro Gómez Alcalá
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Maria de Los Angeles Martínez Godinez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eleazar Lara-Padilla
- b Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Díaz Mirón , México , D.F , México
| |
Collapse
|
63
|
Drąg J, Goździalska A, Knapik-Czajka M, Gawędzka A, Gawlik K, Jaśkiewicz J. Effect of high carbohydrate diet on elongase and desaturase activity and accompanying gene expression in rat's liver. GENES AND NUTRITION 2017; 12:2. [PMID: 28138346 PMCID: PMC5264288 DOI: 10.1186/s12263-017-0551-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/14/2016] [Indexed: 01/15/2023]
Abstract
Background Hepatic fatty acids (FAs) are modified through different metabolic pathways including elongation and desaturation. These processes are catalyzed by elongases and desaturases, respectively. Glucose, by transcription factors, regulates these processes. The aim of the study was to evaluate the influence of high carbohydrate diet (68%) on the expression of elongase (Elovl-2, Elovl-5, and Elovl-6) and desaturase (∆5D, ∆6D, Scd 1, Scd 2) genes and the activity of the enzymes. The changes in serum lipid profile (triglycerides (TG), total cholesterol (TC), HDL cholesterol) and glucose concentration were measured. Male Wistar rats were randomized into two study groups: animals fed with high carbohydrate diet (n = 6; HiCHO) and a control group fed with a standard diet (n = 6; ST). The expression of mRNA was determinate using reverse transcription PCR (RT-PCR). Hepatic FA composition was determined by gas chromatography, and FA ratios were used to estimate the activity of enzymes. Serum lipid profile and glucose concentration were measured using spectrophotometric methods. Results The mean values of transcript expression of all examined elongases and desaturases in liver HiCHO rats were higher as compared to ST. Higher expression did not always correspond to higher activity (as index). More monounsaturated FAs (MUFAs) were detected in the liver of HiCHO rats as compared to ST. Serum TG level was higher in the HiCHO than in ST. Conclusions These studies support the notion that the regulation of both Elovl and desaturase expression may play an important role in managing hepatic lipid composition in response to changes in dietary status.
Collapse
Affiliation(s)
- Jagoda Drąg
- Department of Analytical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.,Andrzej Frycz Modrzewski Krakow University, 1 G. Herlinga-Grudzińskiego St., 30-705 Krakow, Poland
| | - Anna Goździalska
- Faculty of Health and Medical Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Małgorzata Knapik-Czajka
- Department of Analytical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Gawędzka
- Department of Analytical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Gawlik
- Department of Diagnostics, Chair of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy Jaśkiewicz
- Faculty of Health and Medical Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| |
Collapse
|
64
|
Jump DB, Botolin D, Wang Y, Xu J, Christian B. Fatty acids and gene transcription. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [DOI: 10.1080/17482970601069318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Donald B. Jump
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Daniela Botolin
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Yun Wang
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Jinghua Xu
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Barbara Christian
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| |
Collapse
|
65
|
Chen XL, Wang N, Tian ML, Wang L, Liu T, Zhang XW, Shi BM, Shan AS. Dietary linseed oil in the maternal diet affects immunoglobulins, tissue fatty acid composition and expression of lipid metabolism-related genes in piglets. J Anim Physiol Anim Nutr (Berl) 2016; 101:e257-e265. [PMID: 27868251 DOI: 10.1111/jpn.12599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/15/2016] [Indexed: 01/11/2023]
Abstract
This experiment investigated the effects of supplementing the maternal diet with linseed oil (LSO) and soya bean oil (SBO) on immunoglobulins, the fatty acid composition and hepatic expression of lipid metabolism-related genes in piglets. Multiparous sows (twenty-four per diet) were fed on diets containing a supplement of either SBO or LSO during last week of gestation and lactation. The results indicated that supplementation of maternal diet with LSO could improve the weaning weight of piglets and average daily gain (ADG) (p < 0.05). The concentration of immunoglobulin G (IgG) and immunoglobulin A (IgA) was enhanced in sow plasma, colostrum and milk by the addition of LSO (p < 0.05). In addition, the concentration of 18: 3n-3 fatty acids was higher in the milk of LSO sows. Meanwhile, maternal supplementation with LSO increased the levels of plasma IgG, IgA and the tissues n-3 polyunsaturated fatty acid (PUFA) in piglets (p < 0.05). Correspondingly, the mRNA expression levels of hepatic ∆5-desaturase (D5D) and ∆6-desaturase (D6D) were higher, and fatty acid synthase (FAS) was lower in piglets from LSO-fed sows when compared with that in the SBO group. In conclusion, LSO supplementation of the maternal diet increases immunoglobulins, modifies the fatty acid composition and affects the gene of D5D and D6D expression of piglets.
Collapse
Affiliation(s)
- X L Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - N Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - M L Tian
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - L Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - T Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - X W Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - B M Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - A S Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
66
|
Pauter AM, Trattner S, Gonzalez-Bengtsson A, Talamonti E, Asadi A, Dethlefsen O, Jacobsson A. Both maternal and offspring Elovl2 genotypes determine systemic DHA levels in perinatal mice. J Lipid Res 2016; 58:111-123. [PMID: 27864326 DOI: 10.1194/jlr.m070862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/08/2016] [Indexed: 01/09/2023] Open
Abstract
The molecular details relevant to dietary supplementation of the omega-3 fatty acid DHA in mothers as well as in their offspring are not clear. The PUFA elongase, elongation of very long-chain fatty acid (ELOVL)2, is a critical enzyme in the formation of DHA in mammals. In order to address the question regarding the origin of DHA during perinatal life, we have used DHA-deficient Elovl2-ablated mice as a model system to analyze the maternal impact on the DHA level in their offspring of various genotypes. Elovl2-/- mothers maintained on control diet had significantly lower systemic levels of DHA compared with the Elovl2+/- and Elovl2+/+ mothers. Dietary DHA administration during the pregnancy and lactation periods led to increased DHA accretion in maternal tissues and serum of all genotypes. The proportion of DHA in the liver and serum of the Elovl2-/- offspring was significantly lower than in the Elovl2+/+ offspring. Remarkably, the DHA level in the Elovl2+/- offspring nursed by DHA-free-fed Elovl2-/- mothers was almost as high as in +/+ pups delivered by +/+ mothers, suggesting that endogenous synthesis in the offspring can compensate for maternal DHA deficiency. Maternal DHA supplementation had a strong impact on offspring hepatic gene expression, especially of the fatty acid transporter, Mfsd2a, suggesting a dynamic interplay between DHA synthesis and DHA uptake in the control of systemic levels in the offspring.
Collapse
Affiliation(s)
- Anna M Pauter
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE-10691 Sweden
| | - Sofia Trattner
- Department of Food Science, Swedish University of Agricultural Science, Uppsala, SE-75007 Sweden
| | - Amanda Gonzalez-Bengtsson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE-10691 Sweden
| | - Emanuela Talamonti
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE-10691 Sweden
| | - Abolfazl Asadi
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE-10691 Sweden
| | - Olga Dethlefsen
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, SE-10691 Sweden
| | - Anders Jacobsson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE-10691 Sweden
| |
Collapse
|
67
|
Paniagua JA. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World J Diabetes 2016; 7:483-514. [PMID: 27895819 PMCID: PMC5107710 DOI: 10.4239/wjd.v7.i19.483] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/16/2016] [Accepted: 09/07/2016] [Indexed: 02/05/2023] Open
Abstract
Obesity is an excessive accumulation of body fat that may be harmful to health. Today, obesity is a major public health problem, affecting in greater or lesser proportion all demographic groups. Obesity is estimated by body mass index (BMI) in a clinical setting, but BMI reports neither body composition nor the location of excess body fat. Deaths from cardiovascular diseases, cancer and diabetes accounted for approximately 65% of all deaths, and adiposity and mainly abdominal adiposity are associated with all these disorders. Adipose tissue could expand to inflexibility levels. Then, adiposity is associated with a state of low-grade chronic inflammation, with increased tumor necrosis factor-α and interleukin-6 release, which interfere with adipose cell differentiation, and the action pattern of adiponectin and leptin until the adipose tissue begins to be dysfunctional. In this state the subject presents insulin resistance and hyperinsulinemia, probably the first step of a dysfunctional metabolic system. Subsequent to central obesity, insulin resistance, hyperglycemia, hypertriglyceridemia, hypoalphalipoproteinemia, hypertension and fatty liver are grouped in the so-called metabolic syndrome (MetS). In subjects with MetS an energy balance is critical to maintain a healthy body weight, mainly limiting the intake of high energy density foods (fat). However, high-carbohydrate rich (CHO) diets increase postprandial peaks of insulin and glucose. Triglyceride-rich lipoproteins are also increased, which interferes with reverse cholesterol transport lowering high-density lipoprotein cholesterol. In addition, CHO-rich diets could move fat from peripheral to central deposits and reduce adiponectin activity in peripheral adipose tissue. All these are improved with monounsaturated fatty acid-rich diets. Lastly, increased portions of ω-3 and ω-6 fatty acids also decrease triglyceride levels, and complement the healthy diet that is recommended in patients with MetS.
Collapse
|
68
|
da Silva-Santi LG, Antunes MM, Caparroz-Assef SM, Carbonera F, Masi LN, Curi R, Visentainer JV, Bazotte RB. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet. Nutrients 2016; 8:E682. [PMID: 27801862 PMCID: PMC5133070 DOI: 10.3390/nu8110682] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Both high-carbohydrate diet (HCD) and high-fat diet (HFD) modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA) composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets), and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1), ∆-6 desaturase (D6D), elongases and de novo lipogenesis (DNL) were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO) production, and mRNA expressions of F4/80, type I collagen, interleukin (IL)-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α) were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs) and had a lower omega-6/omega-3 fatty acid (n-6/n-3) ratio. In conclusion, liver lipid accumulation, fatty acids (FA) composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.
Collapse
Affiliation(s)
| | - Marina Masetto Antunes
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | | | - Fabiana Carbonera
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Laureane Nunes Masi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | | | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| |
Collapse
|
69
|
Carmona-Antoñanzas G, Zheng X, Tocher DR, Leaver MJ. Regulatory divergence of homeologous Atlantic salmon elovl5 genes following the salmonid-specific whole-genome duplication. Gene 2016; 591:34-42. [DOI: 10.1016/j.gene.2016.06.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/28/2016] [Indexed: 12/30/2022]
|
70
|
Libby AE, Bales E, Orlicky DJ, McManaman JL. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome. J Biol Chem 2016; 291:24231-24246. [PMID: 27679530 DOI: 10.1074/jbc.m116.759795] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Andrew E Libby
- From the Integrated Physiology Graduate Program.,Division of Reproductive Sciences, and
| | | | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - James L McManaman
- From the Integrated Physiology Graduate Program, .,Division of Reproductive Sciences, and
| |
Collapse
|
71
|
Bae JS, Oh AR, Lee HJ, Ahn YH, Cha JY. Hepatic Elovl6 gene expression is regulated by the synergistic action of ChREBP and SREBP-1c. Biochem Biophys Res Commun 2016; 478:1060-6. [PMID: 27524233 DOI: 10.1016/j.bbrc.2016.08.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Elongation of very long chain fatty acids protein 6 (ELOVL6), a rate-limiting enzyme for the elongation of saturated and monounsaturated fatty acids with 12, 14, and 16 carbons, plays a key role in energy metabolism and insulin sensitivity. Hepatic Elovl6 expression is upregulated in the fasting-refeeding response and in leptin-deficient ob/ob mice. Mouse Elovl6 has been shown to be a direct target of sterol regulatory element binding protein-1 (SREBP-1) in response to insulin. In the present study, we demonstrated that mouse and human Elovl6 expression is under the direct transcriptional control of carbohydrate response element binding protein (ChREBP), a mediator of glucose-induced gene expression. Serial deletion and site-directed mutagenesis studies revealed functional carbohydrate response elements (ChoREs) in the mouse and human Elovl6 promoters and gel shift assays and chromatin immunoprecipitation assays confirmed the binding of ChREBP to the Elovl6-ChoRE sites. In addition, the ectopic co-expression of ChREBP and SREBP-1c in HepG2 cells synergistically stimulated Elovl6 promoter activity and this synergistic activation was abolished by mutating the Elovl6 promoter ChoREs. Taken together, these results suggest that the synergistic action of ChREBP and SREBP-1c is necessary for the maximal induction of Elovl6 expression in the liver.
Collapse
Affiliation(s)
- Jin-Sik Bae
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ah-Reum Oh
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ho-Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Yong-Ho Ahn
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; Gachon Medical Research Institute, Gil Medical Center, Incheon 21565, Republic of Korea.
| |
Collapse
|
72
|
Jump DB, Depner CM, Tripathy S, Lytle KA. Impact of dietary fat on the development of non-alcoholic fatty liver disease in Ldlr-/- mice. Proc Nutr Soc 2016; 75:1-9. [PMID: 26282529 PMCID: PMC4720541 DOI: 10.1017/s002966511500244x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased in parallel with central obesity and is now the most common chronic liver disease in developed countries. NAFLD is defined as excessive accumulation of lipid in the liver, i.e. hepatosteatosis. The severity of NAFLD ranges from simple fatty liver (steatosis) to non-alcoholic steatohepatitis (NASH). Simple steatosis is relatively benign until it progresses to NASH, which is characterised by hepatic injury, inflammation, oxidative stress and fibrosis. Hepatic fibrosis is a risk factor for cirrhosis and primary hepatocellular carcinoma. Our studies have focused on the impact of diet on the onset and progression of NASH. We developed a mouse model of NASH by feeding Ldlr-/- mice a western diet (WD), a diet moderately high in saturated and trans-fat, sucrose and cholesterol. The WD induced a NASH phenotype in Ldlr-/- mice that recapitulates many of the clinical features of human NASH. We also assessed the capacity of the dietary n-3 PUFA, i.e. EPA (20 : 5,n-3) and DHA (22 : 6,n-3), to prevent WD-induced NASH in Ldlr-/- mice. Histologic, transcriptomic, lipidomic and metabolomic analyses established that DHA was equal or superior to EPA at attenuating WD-induced dyslipidemia and hepatic injury, inflammation, oxidative stress and fibrosis. Dietary n-3 PUFA, however, had no significant effect on WD-induced changes in body weight, body fat or blood glucose. These studies provide a molecular and metabolic basis for understanding the strengths and weaknesses of using dietary n-3 PUFA to prevent NASH in human subjects.
Collapse
Affiliation(s)
- Donald B. Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| | - Christopher M. Depner
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| | - Sasmita Tripathy
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| | - Kelli A. Lytle
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis Oregon, 97331, USA
| |
Collapse
|
73
|
Tejera N, Vauzour D, Betancor MB, Sayanova O, Usher S, Cochard M, Rigby N, Ruiz-Lopez N, Menoyo D, Tocher DR, Napier JA, Minihane AM. A Transgenic Camelina sativa Seed Oil Effectively Replaces Fish Oil as a Dietary Source of Eicosapentaenoic Acid in Mice. J Nutr 2016; 146:227-35. [PMID: 26791554 PMCID: PMC4725436 DOI: 10.3945/jn.115.223941] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/08/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Fish currently supplies only 40% of the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) required to allow all individuals globally to meet the minimum intake recommendation of 500 mg/d. Therefore, alternative sustainable sources are needed. OBJECTIVE The main objective was to investigate the ability of genetically engineered Camelina sativa (20% EPA) oil (CO) to enrich tissue EPA and DHA relative to an EPA-rich fish oil (FO) in mammals. METHODS Six-week-old male C57BL/6J mice were fed for 10 wk either a palm oil-containing control (C) diet or diets supplemented with EPA-CO or FO, with the C, low-EPA CO (COL), high-EPA CO (COH), low-EPA FO (FOL), and high-EPA FO (FOH) diets providing 0, 0.4, 3.4, 0.3, and 2.9 g EPA/kg diet, respectively. Liver, muscle, and brain were collected for fatty acid analysis, and blood glucose and serum lipids were quantified. The expression of selected hepatic genes involved in EPA and DHA biosynthesis and in modulating their cellular impact was determined. RESULTS The oils were well tolerated, with significantly greater weight gain in the COH and FOH groups relative to the C group (P < 0.001). Significantly lower (36-38%) blood glucose concentrations were evident in the FOH and COH mice relative to C mice (P < 0.01). Hepatic EPA concentrations were higher in all EPA groups relative to the C group (P < 0.001), with concentrations of 0.0, 0.4, 2.9, 0.2, and 3.6 g/100 g liver total lipids in the C, COL, COH, FOL, and FOH groups, respectively. Comparable dose-independent enrichments of liver DHA were observed in mice fed CO and FO diets (P < 0.001). Relative to the C group, lower fatty acid desaturase 1 (Fads1) expression (P < 0.005) was observed in the COH and FOH groups. Higher fatty acid desaturase 2 (Fads2), peroxisome proliferator-activated receptor α (Ppara), and peroxisome proliferator-activated receptor γ (Pparg) (P < 0.005) expressions were induced by CO. No impact of treatment on liver X receptor α (Lxra) or sterol regulatory element-binding protein 1c (Srebp1c) was evident. CONCLUSIONS Oil from transgenic Camelina is a bioavailable source of EPA in mice. These data provide support for the future assessment of this oil in a human feeding trial.
Collapse
Affiliation(s)
- Noemi Tejera
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom;
| | - David Vauzour
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom;,Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Monica B Betancor
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Olga Sayanova
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom; and
| | - Sarah Usher
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom; and
| | - Marianne Cochard
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Neil Rigby
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Noemi Ruiz-Lopez
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, Madrid, Spain
| | - David Menoyo
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, Madrid, Spain
| | - Douglas R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Johnathan A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom; and
| | - Anne Marie Minihane
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
74
|
High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat. Nutrients 2016; 8:nu8010025. [PMID: 26742067 PMCID: PMC4728639 DOI: 10.3390/nu8010025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/04/2015] [Accepted: 09/18/2015] [Indexed: 01/07/2023] Open
Abstract
Excessive fat intake is a global health concern as women of childbearing age increasingly ingest high fat diets (HFDs). We therefore determined the maternal fatty acid (FA) profiles in metabolic organs after HFD administration during specific periods of gestation. Rats were fed a HFD for the first (HF1), second (HF2), or third (HF3) week, or for all three weeks (HFG) of gestation. Total maternal plasma non-esterified fatty acid (NEFA) concentrations were monitored throughout pregnancy. At day 20 of gestation, maternal plasma, liver, adipose tissue, and placenta FA profiles were determined. In HF3 mothers, plasma myristic and stearic acid concentrations were elevated, whereas docosahexaenoic acid (DHA) was reduced in both HF3 and HFG mothers. In HF3 and HFG mothers, hepatic stearic and oleic acid proportions were elevated; conversely, DHA and linoleic acid (LA) proportions were reduced. In adipose tissue, myristic acid was elevated, whereas DHA and LA proportions were reduced in all mothers. Further, adipose tissue stearic acid proportions were elevated in HF2, HF3, and HFG mothers; with oleic acid increased in HF1 and HFG mothers. In HF3 and HFG mothers, placental neutral myristic acid proportions were elevated, whereas DHA was reduced. Further, placental phospholipid DHA proportions were reduced in HF3 and HFG mothers. Maintenance on a diet, high in saturated fat, but low in DHA and LA proportions, during late or throughout gestation, perpetuated reduced DHA across metabolic organs that adapt during pregnancy. Therefore a diet, with normal DHA proportions during gestation, may be important for balancing maternal FA status.
Collapse
|
75
|
Picklo MJ, Murphy EJ. A High-Fat, High-Oleic Diet, But Not a High-Fat, Saturated Diet, Reduces Hepatic α-Linolenic Acid and Eicosapentaenoic Acid Content in Mice. Lipids 2015; 51:537-47. [DOI: 10.1007/s11745-015-4106-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
76
|
Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature. PLoS One 2015; 10:e0143622. [PMID: 26599513 PMCID: PMC4658193 DOI: 10.1371/journal.pone.0143622] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/06/2015] [Indexed: 01/17/2023] Open
Abstract
Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature recorded a significantly increased feed intake, these results clearly suggested that at high, sub-optimal water temperature, fish metabolism attempted to increment its overall ARA status -the most bioactive LC-PUFA participating in the inflammatory response- by modulating the metabolic fate of dietary ARA (expressed as % of net intake), reducing its β-oxidation and favouring synthesis and deposition. This correlates also with results from other recent studies showing that both immune- and stress- responses in fish are up regulated in fish held at high temperatures. This is a novel and fundamental information that warrants industry and scientific attention, in consideration of the imminent increase in water temperatures, continuous expansion of aquaculture operations, resources utilisation in aquafeed and much needed seasonal/adaptive nutritional strategies.
Collapse
|
77
|
Jiménez MJ, Bocos C, Panadero M, Herrera E. Fish oil diet in pregnancy and lactation reduces pup weight and modifies newborn hepatic metabolic adaptations in rats. Eur J Nutr 2015; 56:409-420. [PMID: 26578529 DOI: 10.1007/s00394-015-1091-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE To determine the effects of a diet containing fish oil (FD) during pregnancy and lactation in rats on the metabolic adaptations made by the offspring during early extrauterine life and to compare it to an olive oil diet (OD). METHODS Rats were mated and randomly allocated to OD or FD containing 10 % of the corresponding oil. During lactation, litters were adjusted to eight pups per dam. Fetuses of 20 days and pups of 0, 1, 10, 20 and 30 days of age were studied. RESULTS Body weight and length were lower in pups of the FD group from birth. The diet, milk, pups' plasma and liver of FD group had higher proportions of n-3 LCPUFA, but the content of arachidonic acid (ARA) was lower. Plasma glucose was higher, but unesterified fatty acids, triacylglycerols (TAG), 3-hydroxybutyrate and liver TAG in 1-day-old pups were lower in the FD group, and differences in some of these variables were also found in pups up to 30 days old. Liver lipoprotein lipase activity and mRNA expression, and the expression of carnitine palmitoyl transferase I, acyl-CoA oxidase and 3-hydroxy 3-methyl glutaryl-CoA synthase increased more at birth in pups of the FD group, but the expression of sterol regulatory element binding protein-1c and Δ6-desaturase mRNA was lower in the FD group. CONCLUSIONS Maternal intake of high n-3 LCPUFA retards postnatal development, which could be the result of impaired ARA synthesis, and affects hepatic metabolic adaptations to extrauterine life.
Collapse
Affiliation(s)
- Maria J Jiménez
- Departamento de Química y Bioquímica, Universidad San Pablo CEU, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Carlos Bocos
- Departamento de Química y Bioquímica, Universidad San Pablo CEU, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Maribel Panadero
- Departamento de Química y Bioquímica, Universidad San Pablo CEU, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain
| | - Emilio Herrera
- Departamento de Química y Bioquímica, Universidad San Pablo CEU, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain.
| |
Collapse
|
78
|
Delarue J, Lallès JP. Nonalcoholic fatty liver disease: Roles of the gut and the liver and metabolic modulation by some dietary factors and especially long-chain n-3 PUFA. Mol Nutr Food Res 2015; 60:147-59. [DOI: 10.1002/mnfr.201500346] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Jacques Delarue
- Department of Nutritional Sciences; University Hospital and University of Brest; Brest France
- Breton Federation of Food and Human Nutrition (FED4216); University of Brest; Brest France
| | - Jean-Paul Lallès
- Breton Federation of Food and Human Nutrition (FED4216); University of Brest; Brest France
- Institut National de la Recherche Agronomique; UR1341; Alimentation et Adaptations Digestives; Nerveuses et Comportementales (ADNC); Saint-Gilles France
- Centre de Recherche en Nutrition Humaine-Ouest; Nantes Cedex 1 France
| |
Collapse
|
79
|
Tucci S, Behringer S, Spiekerkoetter U. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids. FEBS J 2015; 282:4242-53. [PMID: 26284828 DOI: 10.1111/febs.13418] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/30/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022]
Abstract
An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing.
Collapse
Affiliation(s)
- Sara Tucci
- Department of General Paediatrics, Centre for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Germany
| | - Sidney Behringer
- Department of General Paediatrics, Centre for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Paediatrics, Centre for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Germany
| |
Collapse
|
80
|
High Fat Diet Exposure during Fetal Life Enhances Plasma and Hepatic Omega-6 Fatty Acid Profiles in Fetal Wistar Rats. Nutrients 2015; 7:7231-41. [PMID: 26343716 PMCID: PMC4586532 DOI: 10.3390/nu7095337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/16/2022] Open
Abstract
Pregnant rats were fed a high fat diet (HFD) for the first (HF1), second (HF2), third (HF3) or all three weeks (HFG) of gestation. Maintenance on a HFD during specific periods of gestation was hypothesized to alter fetal glycemia, insulinemia, induce insulin resistance; and alter fetal plasma and hepatic fatty acid (FA) profiles. At day 20 of gestation, fetal plasma and hepatic FA profiles were determined by gas chromatography; body weight, fasting glycemia, insulinemia and the Homeostasis Model Assessment (HOMA-insulin resistance) were also determined. HF3 fetuses were heaviest concomitant with elevated glycemia and insulin resistance (p < 0.05). HFG fetuses had elevated plasma linoleic (18:2 n-6) and arachidonic (20:4 n-6) acid proportions (p < 0.05). In the liver, HF3 fetuses displayed elevated linoleic, eicosatrienoic (20:3 n-6) and arachidonic acid proportions (p < 0.05). HFG fetuses had reduced hepatic docosatrienoic acid (22:5 n-3) proportions (p < 0.05). High fat maintenance during the final week of fetal life enhances hepatic omega-6 FA profiles in fetuses concomitant with hyperglycemia and insulin resistance thereby presenting a metabolically compromised phenotype.
Collapse
|
81
|
Domenichiello AF, Kitson AP, Bazinet RP. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog Lipid Res 2015; 59:54-66. [DOI: 10.1016/j.plipres.2015.04.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
|
82
|
De Rosa MC, Caputo M, Zirpoli H, Rescigno T, Tarallo R, Giurato G, Weisz A, Torino G, Tecce MF. Identification of Genes Selectively Regulated in Human Hepatoma Cells by Treatment With Dyslipidemic Sera and PUFAs. J Cell Physiol 2015; 230:2059-66. [DOI: 10.1002/jcp.24932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/16/2015] [Indexed: 12/30/2022]
Affiliation(s)
| | - Mariella Caputo
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Hylde Zirpoli
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Tania Rescigno
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Gaetano Torino
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Mario Felice Tecce
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| |
Collapse
|
83
|
Yaw HP, Ton SH, Chin HF, Karim MKA, Fernando HA, Kadir KA. Modulation of lipid metabolism in glycyrrhizic acid-treated rats fed on a high-calorie diet and exposed to short or long-term stress. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2015; 7:61-75. [PMID: 26069530 PMCID: PMC4446390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Stress and high-calorie diets increase the risk of developing metabolic syndrome. Glycyrrhizic acid (GA) has been shown to improve dyslipidaemia in rats fed on a high-calorie diet. This study aimed to examine the effects of GA on lipid metabolism in rats exposed to short- or long-term stress and on a high-calorie diet. The parameters examined included serum lipid profiles, serum free fatty acids and fatty acid profiles in tissues, and expression of peroxisome proliferator-activated receptors (PPAR), lipoprotein lipase (LPL), elongases and desaturases. Within the 14- or 28-day exposure groups, neither stress nor GA affected the lipid profile and serum free fatty acids. Stress did not affect PPAR-α expression in both the 14- and 28-day exposure groups. However, GA-treated rats from the former group had increased PPAR-α expression only in the kidney while all other tissues from the latter group were unaffected. Stress increased PPAR-γ expression in the heart of the 28-day exposure group but its expression was unaffected in all tissues of the 14-day exposure group. GA elevated PPAR-γ expression in the kidney and the skeletal muscles. Neither stress nor GA affected LPL expressions in all tissues from the 14-day exposure group but its expressions were elevated in the QF of the stressed rats and heart of the GA-treated rats of the 28-day exposure group. As for the elongases and desaturases in the liver, stress down-regulated ELOVL5 in the long-term exposure group while up-regulated ELOVL6 in the short-term exposure group while hepatic desaturases were unaffected by stress. Neither elongase nor desaturase expressions in the liver were affected by GA. This research is the first report of GA on lipid metabolism under stress and high-calorie diet conditions and the results gives evidence for the role of GA in ameliorating MetS via site-specific regulation of lipid metabolism gene expressions and modification of fatty acids.
Collapse
Affiliation(s)
- Hui Ping Yaw
- School of Science, Monash University MalaysiaJalan Lagoon Selatan, Bandar Sunway 46150, Selangor Darul Ehsan, Malaysia
| | - So Ha Ton
- School of Science, Monash University MalaysiaJalan Lagoon Selatan, Bandar Sunway 46150, Selangor Darul Ehsan, Malaysia
| | - Hsien-Fei Chin
- School of Science, Monash University MalaysiaJalan Lagoon Selatan, Bandar Sunway 46150, Selangor Darul Ehsan, Malaysia
| | - Muhammad Kaiser Abdul Karim
- School of Science, Monash University MalaysiaJalan Lagoon Selatan, Bandar Sunway 46150, Selangor Darul Ehsan, Malaysia
| | - Hamish Alexander Fernando
- School of Science, Monash University MalaysiaJalan Lagoon Selatan, Bandar Sunway 46150, Selangor Darul Ehsan, Malaysia
| | - Khalid Abdul Kadir
- School of Medicine and Health Sciences, Monash University MalaysiaJalan Lagoon Selatan, Bandar Sunway 46150, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
84
|
Elkin RG, Ying Y, Harvatine KJ. Feeding laying hens stearidonic acid-enriched soybean oil, as compared to flaxseed oil, more efficiently enriches eggs with very long-chain n-3 polyunsaturated fatty acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2789-97. [PMID: 25756744 DOI: 10.1021/jf505185u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The desaturation of α-linolenic acid (ALA) to stearidonic acid (SDA) is considered to be rate-limiting for the hepatic conversion of ALA to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in humans, rodents, and chickens. Thus, we hypothesized that feeding laying hens SDA, as a component of the oil derived from the genetic modification of the soybean, would bypass this inefficient metabolic step and result in the enrichment of eggs with EPA and DHA at amounts comparable to that achieved by direct supplementation of hens' diet with these very long-chain (VLC) n-3 polyunsaturated fatty acids (PUFAs). In a 28-d study, laying hens incorporated 0.132 mg, 0.041 mg, or 0.075 mg of VLC n-3 PUFAs into egg yolk for each milligram of ingested dietary ALA derived primarily from conventional soybean oil (CON), dietary ALA derived primarily from flaxseed oil (FLAX), or dietary SDA derived from SDA-enriched soybean oil, respectively. Moreover, the amounts of total yolk VLC n-3 PUFAs in eggs from hens fed the CON (51 mg), FLAX (91 mg), or SDA (125 mg) oils were markedly less than the 305 mg found in eggs from fish oil-fed hens. Unexpectedly, SDA appeared to be more readily incorporated into adipose tissue than into egg yolk. Since egg yolk FAs typically reflect the hens' dietary pattern, these tissue-specific differences suggest the existence of an alternate pathway for the hepatic secretion and transport of SDA in the laying hen.
Collapse
Affiliation(s)
- Robert G Elkin
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yun Ying
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kevin J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
85
|
Harding SV, Bateman KP, Kennedy BP, Rideout TC, Jones PJH. Desaturation index versus isotopically measured de novo lipogenesis as an indicator of acute systemic lipogenesis. BMC Res Notes 2015; 8:49. [PMID: 25879456 PMCID: PMC4345028 DOI: 10.1186/s13104-015-1016-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/13/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND High carbohydrate feeding is known to increase plasma triglycerides as well as hepatic de novo lipogenesis (DNL) and may be implicated in the development of hepatic insulin resistance and fatty liver. Unfortunately, it is technically challenging to determine what proportion of circulating plasma triglycerides have been derived from the newly synthesized fatty acids in the postprandial period. The aims of this study were to 1) characterize the changes in the plasma postprandial total fatty acid pool in beagles following the consumption of meals containing 44% (Control) and 74% (High Sucrose) carbohydrate and 2) determine if changes in plasma fatty acid concentration and delta-9 desaturation index (DI) would be useful as simple and easy to measure biomarkers of systemic DNL. FINDINGS No differences in plasma total palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) concentrations or delta-9 DI for the total 18:0 and 18:1 pools between High Sucrose and Controls were observed. However, newly synthesized 16:0 (2.6 ± 0.2% vs. 8.8 ± 2.0%; p = 0.016), 18:0 (0.93 ± 0.2% vs. 4.1 ± 1.7%; p = 0.007) and 18:1 (0.29 ± 0.09% vs. 3.5 ± 1.2%; p = 0.017) were higher in High Sucrose versus Control animals, respectively. Also, the delta-9 DI for the newly synthesized 18:0 and 18:1 pools was higher at 2 and 6 hours postprandial, with a pattern of change which supports the increased stearoyl-CoA desaturase (SCD-1) activity following high carbohydrate feeding followed by a down regulation of this enzyme. CONCLUSIONS Our data show that high sucrose meals increase the relative contribution of systemic DNL produced fatty acids to the total postprandial plasma fatty acid pool. These data also show that a different pattern of both fatty acid synthesis and disposal occurs depending on energy and macronutrient profile of the meal. These changes are in spite of no observable changes in the plasma concentrations or ratios of the total fatty acid pool opposed to the observed changes in the newly synthesized fatty acid pool.
Collapse
Affiliation(s)
- Scott V Harding
- Diabetes and Nutritional Sciences Division, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Kevin P Bateman
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, One Merck Drive, Whitehouse Station, NJ, 08889, USA.
| | - Brian P Kennedy
- Kaneq Pharma, Montreal, QC, Canada. .,Previously at Department of Biochemistry and Molecular Biology at the Merck Frosst Center for Therapeutic Research, Montreal, QC, Canada.
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, 14214, USA.
| | - Peter J H Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, R3T 6C5, MB, Canada.
| |
Collapse
|
86
|
Xue X, Feng CY, Hixson SM, Johnstone K, Anderson DM, Parrish CC, Rise ML. Characterization of the fatty acyl elongase (elovl) gene family, and hepatic elovl and delta-6 fatty acyl desaturase transcript expression and fatty acid responses to diets containing camelina oil in Atlantic cod (Gadus morhua). Comp Biochem Physiol B Biochem Mol Biol 2014; 175:9-22. [DOI: 10.1016/j.cbpb.2014.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 01/11/2023]
|
87
|
González RS, Rodriguez-Cruz M, Maldonado J, Saavedra FJ. Role of maternal tissue in the synthesis of polyunsaturated fatty acids in response to a lipid-deficient diet during pregnancy and lactation in rats. Gene 2014; 549:7-23. [PMID: 25046614 DOI: 10.1016/j.gene.2014.06.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P<0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P<0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue.
Collapse
Affiliation(s)
- Raúl Sánchez González
- Laboratorio de Biología Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, Mexico.
| | - Maricela Rodriguez-Cruz
- Laboratorio de Biología Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, Mexico.
| | - Jorge Maldonado
- Laboratorio de Biología Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, Mexico.
| | - Filiberto Jasso Saavedra
- Laboratorio de Biología Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, Mexico
| |
Collapse
|
88
|
Kim KB, Nam YA, Kim HS, Hayes AW, Lee BM. α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem Toxicol 2014; 70:163-78. [PMID: 24859185 DOI: 10.1016/j.fct.2014.05.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
α-Linolenic acid (ALA), a carboxylic acid with 18 carbons and three cis double bonds, is an essential fatty acid needed for human health and can be acquired via regular dietary intake of foods that contain ALA or dietary supplementation of foods high in ALA, for example flaxseed. ALA has been reported to have cardiovascular-protective, anti-cancer, neuro-protective, anti-osteoporotic, anti-inflammatory, and antioxidative effects. ALA is the precursor of longer chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), but its beneficial effects on risk factors for cardiovascular diseases are still inconclusive. The recommended intake of ALA for cardiovascular health is reported to be 1.1-2.2g/day. Although there are limited toxicological data for ALA, no serious adverse effects have been reported. The evidence on an increased prostate cancer risk in association with dietary ALA is not conclusive. Based on the limited data currently available, it may be concluded that ALA may be beneficial as a nutraceutical/pharmaceutical candidate and is safe for use as a food ingredient.
Collapse
Affiliation(s)
- Kyu-Bong Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, Chungnam 330-714, Republic of Korea
| | - Yoon A Nam
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - A Wallace Hayes
- Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea.
| |
Collapse
|
89
|
Valenzuela R, Barrera C, Ayala JM, Sanhueza J, Valenzuela A. Vegetable oils rich in alpha linolenic acid allow a higher accretion of n-3 LCPUFA in the plasma, liver and adipose tissue of the rat. GRASAS Y ACEITES 2014. [DOI: 10.3989/gya.110113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
90
|
Meher A, Joshi A, Joshi S. Differential regulation of hepatic transcription factors in the Wistar rat offspring born to dams fed folic acid, vitamin B12 deficient diets and supplemented with omega-3 fatty acids. PLoS One 2014; 9:e90209. [PMID: 24587285 PMCID: PMC3938654 DOI: 10.1371/journal.pone.0090209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/30/2014] [Indexed: 12/19/2022] Open
Abstract
Nutritional status of the mother is known to influence various metabolic adaptations required for optimal fetal development. These may be mediated by transcription factors like peroxisome proliferator activated receptors (PPARs), which are activated by long chain polyunsaturated fatty acids. The objective of the current study was to examine the expression of different hepatic transcription factors and the levels of global methylation in the liver of the offspring born to dams fed micronutrient deficient (folic acid and vitamin B12) diets and supplemented with omega-3 fatty acids. Female rats were divided into five groups (n = 8/group) as follows; control, folic acid deficient (FD), vitamin B12 deficient (BD) and omega-3 fatty acid supplemented groups (FDO and BDO). Diets were given starting from pre-conception and continued throughout pregnancy and lactation. Pups were dissected at the end of lactation. Liver tissues were removed; snap frozen and stored at −80°C. Maternal micronutrients deficiency resulted in lower (p<0.05) levels of pup liver docosahexaenoic acid (DHA) and arachidonic acid (ARA) as compared to the control group. Pup liver PPARα and PPARγ expression was lower (p<0.05) in the BD group although there were no differences in the expression of SREBP-1c, LXRα and RXRα expression. Omega-3 fatty acids supplementation to this group normalized (p<0.05) levels of both PPARα and PPARγ but reduced (p<0.05) SREBP-1c, LXRα and RXRα expression. There was no change in any of the transcription factors in the pup liver in the FD group. Omega-3 fatty acids supplementation to this group reduced (p<0.05) PPARα, SREBP-1c and RXRα expression. Pup liver global methylation levels were higher (p<0.01) in both the micronutrients deficient groups and could be normalized (p<0.05) by omega-3 fatty acid supplementation. Our novel findings suggest a role for omega-3 fatty acids in the one carbon cycle in influencing the hepatic expression of transcription factors in the offspring.
Collapse
Affiliation(s)
- Akshaya Meher
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Asmita Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| |
Collapse
|
91
|
Lin HQ, Wang Y, Chan KL, Ip TM, Wan CCD. Differential regulation of lipid metabolism genes in the brain of acetylcholinesterase knockout mice. J Mol Neurosci 2014; 53:397-408. [PMID: 24573602 DOI: 10.1007/s12031-014-0267-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/21/2014] [Indexed: 11/26/2022]
Abstract
Mice deficient in acetylcholinesterase (AChE; EC3.1.1.7) exhibited significant phenotypical and biochemical changes when compared with wild-type littermates. They showed a delay of growth in weight and size, immature external ears, and persistent body tremor, and they circled when walking. The molecular mechanisms underlying these changes have not been investigated yet. Here, we studied the profiles of both the messenger RNA (mRNA) and protein expression in the brain of AChE-deficient mice using mRNA microarray, quantitative PCR, and two-dimensional difference gel electrophoresis (2D DIGE) coupled to protein identification with matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Analysis of gene expression profile was conducted by DAVID ( http://david.abcc.ncifcrf.gov ) and Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com ). Previous results implicated that there is a close relationship between lipid metabolisms which were associated with central nervous system development. Here, we demonstrated that the mRNA expressions of brain specific fatty acid protein 7 (fabp-7) and phospholipase A2 group IV (pla2g4) were significantly downregulated in AChE-deficient mice. These results suggested that AChE may play a role in neurogenesis and neurodegeneration by specifically regulating lipid metabolism in the brain.
Collapse
Affiliation(s)
- Huang-Quan Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China,
| | | | | | | | | |
Collapse
|
92
|
Kerner J, Minkler PE, Lesnefsky EJ, Hoppel CL. Fatty acid chain elongation in palmitate-perfused working rat heart: mitochondrial acetyl-CoA is the source of two-carbon units for chain elongation. J Biol Chem 2014; 289:10223-34. [PMID: 24558043 DOI: 10.1074/jbc.m113.524314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat hearts were perfused with [1,2,3,4-(13)C4]palmitic acid (M+4), and the isotopic patterns of myocardial acylcarnitines and acyl-CoAs were analyzed using ultra-HPLC-MS/MS. The 91.2% (13)C enrichment in palmitoylcarnitine shows that little endogenous (M+0) palmitate contributed to its formation. The presence of M+2 myristoylcarnitine (95.7%) and M+2 acetylcarnitine (19.4%) is evidence for β-oxidation of perfused M+4 palmitic acid. Identical enrichment data were obtained in the respective acyl-CoAs. The relative (13)C enrichment in M+4 (84.7%, 69.9%) and M+6 (16.2%, 17.8%) stearoyl- and arachidylcarnitine, respectively, clearly shows that the perfused palmitate is chain-elongated. The observed enrichment of (13)C in acetylcarnitine (19%), M+6 stearoylcarnitine (16.2%), and M+6 arachidylcarnitine (17.8%) suggests that the majority of two-carbon units for chain elongation are derived from β-oxidation of [1,2,3,4-(13)C4]palmitic acid. These data are explained by conversion of the M+2 acetyl-CoA to M+2 malonyl-CoA, which serves as the acceptor for M+4 palmitoyl-CoA in chain elongation. Indeed, the (13)C enrichment in mitochondrial acetyl-CoA (18.9%) and malonyl-CoA (19.9%) are identical. No (13)C enrichment was found in acylcarnitine species with carbon chain lengths between 4 and 12, arguing against the simple reversal of fatty acid β-oxidation. Furthermore, isolated, intact rat heart mitochondria 1) synthesize malonyl-CoA with simultaneous inhibition of carnitine palmitoyltransferase 1b and 2) catalyze the palmitoyl-CoA-dependent incorporation of (14)C from [2-(14)C]malonyl-CoA into lipid-soluble products. In conclusion, rat heart has the capability to chain-elongate fatty acids using mitochondria-derived two-carbon chain extenders. The data suggest that the chain elongation process is localized on the outer surface of the mitochondrial outer membrane.
Collapse
|
93
|
Moallem U, Shafran A, Zachut M, Dekel I, Portnick Y, Arieli A. Dietary α-linolenic acid from flaxseed oil improved folliculogenesis and IVF performance in dairy cows, similar to eicosapentaenoic and docosahexaenoic acids from fish oil. Reproduction 2013; 146:603-14. [DOI: 10.1530/rep-13-0244] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objectives of this study were to determine the differential incorporation of various omega-3 (n-3) fatty acids (FAs) supplemented to dairy cows into ovarian compartments and assess the effects on IVF. Forty-two 256-day pregnant cows were supplemented with encapsulated fats, in treatments designated as i) SFA – saturated fat at 240 and 560 g/day per cow, prepartum and post partum (PP) respectively; ii) FLX – flaxseed oil at 300 and 700 g/day per cow prepartum and PP respectively; and iii) FO – fish oil at 300 and 700 g/day per cow prepartum and PP respectively. Commencing at 60 days in lactation, ovum pickup (OPU) was performed twice weekly (20 sessions; five cows per group) and in vitro maturation and IVF were conducted. The proportion of α-linolenic acid (ALA) was greater in follicular fluid (FF), granulosa cells, and cumulus–oocyte complexes (COCs) of FLX cows than in other groups (P<0.001). The proportion of docosahexaenoic acid (DHA) was 6.7 times as great in FF of FO as in other groups (P<0.001); docosapentaenoic acid n-3 and DHA were detected in COCs of FO but not in others. The follicle number during OPU was higher in FLX and FO than in SFA (P<0.05), and the oocyte cleavage rate was higher in FLX and FO than in SFA (P<0.01). Also, the percentage of oocytes that developed to blastocysts tended to be higher in both n-3 groups than in SFA (P<0.1). In conclusion, both dietary n-3 FAs similarly improved folliculogenesis and IVF performance; therefore, ALA-rich botanical n-3 seems to be a satisfactory approach to improve oocyte quality.
Collapse
|
94
|
Abstract
Fish oil contains a complex mixture of omega-3 fatty acids, of which eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) are the three predominant forms. There has been a plethora of previous research on the effects and associations of fish oil supplementation with various clinical manifestations. While the majority of this work was focused on EPA and DHA as the active compounds, emerging research has begun to elucidate the specific role that DPA plays in these physiological processes and its differences with the other omega-3 fatty acids. The purpose of this review is to focus on the new studies undertaken with DPA. This review summarizes the biochemical mechanisms involved in the biosynthesis and metabolism of DPA before focusing on its effects in cardiovascular disease, immune function, and psychiatric and cognitive health. The limited studies point toward a positive role that DPA supplementation can play in these processes and that is separate and distinct from traditional supplementation with DHA and EPA.
Collapse
Affiliation(s)
- Puya G Yazdi
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA, 92697, USA ; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA, 92697, USA ; Department of Medicine, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
95
|
Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals. Gene 2013; 534:1-9. [PMID: 24177230 DOI: 10.1016/j.gene.2013.10.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/01/2013] [Accepted: 10/21/2013] [Indexed: 01/04/2023]
Abstract
Lipid content and composition in aquafeeds have changed rapidly as a result of the recent drive to replace ecologically limited marine ingredients, fishmeal and fish oil (FO). Terrestrial plant products are the most economic and sustainable alternative; however, plant meals and oils are devoid of physiologically important cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and arachidonic (ARA) acids. Although replacement of dietary FO with vegetable oil (VO) has little effect on growth in Atlantic salmon (Salmo salar), several studies have shown major effects on the activity and expression of genes involved in lipid homeostasis. In vertebrates, sterols and LC-PUFA play crucial roles in lipid metabolism by direct interaction with lipid-sensing transcription factors (TFs) and consequent regulation of target genes. The primary aim of the present study was to elucidate the role of key TFs in the transcriptional regulation of lipid metabolism in fish by transfection and overexpression of TFs. The results show that the expression of genes of LC-PUFA biosynthesis (elovl and fads2) and cholesterol metabolism (abca1) are regulated by Lxr and Srebp TFs in salmon, indicating highly conserved regulatory mechanism across vertebrates. In addition, srebp1 and srebp2 mRNA respond to replacement of dietary FO with VO. Thus, Atlantic salmon adjust lipid metabolism in response to dietary lipid composition through the transcriptional regulation of gene expression. It may be possible to further increase efficient and effective use of sustainable alternatives to marine products in aquaculture by considering these important molecular interactions when formulating diets.
Collapse
|
96
|
Bioconversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acid in hepatocytes and ad hoc cell culture optimisation. PLoS One 2013; 8:e73719. [PMID: 24040040 PMCID: PMC3770698 DOI: 10.1371/journal.pone.0073719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/23/2013] [Indexed: 11/23/2022] Open
Abstract
This study aimed to establish optimal conditions for a cell culture system that would allow the measurement of 18∶3n-3 (ALA) bioconversion into n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), and to determine the overall pathway kinetics. Using rat hepatocytes (FaO) as model cells, it was established that a maximum 20∶5n-3 (EPA) production from 50 µM ALA initial concentration was achieved after 3 days of incubation. Next, it was established that a gradual increase in the ALA concentration from 0 up to 125µM lead to a proportional increase in EPA, without concomitant increase in further elongated or desaturated products, such as 22∶5n-3 (DPA) and 22∶6n-3 (DHA) in 3 day incubations. Of interest, ALA bioconversion products were observed in the culture medium. Therefore, in vitro experiments disregarding the medium fatty acid content are underestimating the metabolism efficiency. The novel application of the fatty acid mass balance (FAMB) method on cell culture system (cells with medium) enabled quantifying the apparent enzymatic activities for the biosynthesis of n-3 LC-PUFA. The activity of the key enzymes was estimated and showed that, under these conditions, 50% (Km) of the theoretical maximal (Vmax = 3654 µmol.g−1 of cell protein.hour−1) Fads2 activity on ALA can be achieved with 81 µM initial ALA. Interestingly, the apparent activity of Elovl2 (20∶5n-3 elongation) was the slowest amongst other biosynthesis steps. Therefore, the possible improvement of Elovl2 activity is suggested toward a more efficient DHA production from ALA. The present study proposed and described an ad hoc optimised cell culture conditions and methodology towards achieving a reliable experimental platform, using FAMB, to assist in studying the efficiency of ALA bioconversion into n-3 LC-PUFA in vitro. The FAMB proved to be a powerful and inexpensive method to generate a detailed description of the kinetics of n-3 LC-PUFA biosynthesis enzymes activities in vitro.
Collapse
|
97
|
Jing M, Gakhar N, Gibson RA, House JD. Dietary and ontogenic regulation of fatty acid desaturase and elongase expression in broiler chickens. Prostaglandins Leukot Essent Fatty Acids 2013; 89:107-13. [PMID: 23809327 DOI: 10.1016/j.plefa.2013.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022]
Abstract
Effects of diet and ontogeny on the expression of fatty acid desaturases and elongases were examined in broiler chickens. In Study 1, 120 day-old male chicks received one of six diets with LA:ALA ranging from 46:4 to 16:34, for 33 days. Total n-6 PUFA decreased, and n-3 PUFA increased in response to a decrease in the dietary LA:ALA. FADS1, FADS2, ELOVL2 and ELOVL5 mRNAs were highest (P<0.05) in birds fed lower LA:ALA diets. In Study 2, 60 day-old male chicks were fed a basal diet, and liver samples were collected on day of hatch, and on days 2, 7, 14, 21 and 35 post-hatch. Total n-6 and n-3 PUFA increased (P<0.01) from days 7 to days 21. FADS1, FADS2 and ELOVL2 mRNAs generally increased (P<0.01) with age. These findings provide evidence for the dietary and developmental regulation of PUFA metabolism in broiler chickens.
Collapse
Affiliation(s)
- M Jing
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | | | | | | |
Collapse
|
98
|
Gruffat D, Cherfaoui M, Bonnet M, Thomas A, Bauchart D, Durand D. Breed and dietary linseed affect gene expression of enzymes and transcription factors involved in n-3 long chain polyunsaturated fatty acids synthesis in longissimus thoracis muscle of bulls1. J Anim Sci 2013; 91:3059-69. [DOI: 10.2527/jas.2012-6112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- D. Gruffat
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| | - M. Cherfaoui
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| | - M. Bonnet
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| | - A. Thomas
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| | - D. Bauchart
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| | - D. Durand
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France; and VetAgro Sup, Élevage et production des ruminants, F-63370 Lempdes, France
| |
Collapse
|
99
|
Chua ME, Sio MCD, Sorongon MC, Morales ML. The relevance of serum levels of long chain omega-3 polyunsaturated fatty acids and prostate cancer risk: A meta-analysis. Can Urol Assoc J 2013; 7:E333-43. [PMID: 23766835 DOI: 10.5489/cuaj.1056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Our objective was to systematically analyze the evidence for an association between serum level long chain omega-3 polyunsaturated fatty acid (n-3 PUFA) and prostate cancer risk from human epidemiological studies. STUDY PROCEDURES: We searched biomedical literature databases up to November 2011 and included epidemiological studies with description of long chain n-3 PUFA and incidence of prostate cancer in humans. Critical appraisal was done by two independent reviewers. Data were pooled using the general variance-based method with random-effects model; effect estimates were expressed as risk ratio with 95% confidence interval (CI). Heterogeneity was assessed by Chi(2) and quantified by I(2), publication bias was also determined. RESULTS In total, 12 studies were included. Significant negative association was noted between high serum level of n-3 PUFA doc-osapentaenoic acid (DPA) and total prostate cancer risk (RR:0.756; 95% CI 0.599, 0.955; p = 0.019). Likewise, a positive association between high blood level of fish oil contents, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and high-grade prostate tumour incidence (RR:1.381; 95% CI 1.050, 1.817; p = 0.021) was noted; however, this finding was evident only after adjustment was done on interstudy variability through the removal of a lower quality study from the pool. CONCLUSIONS High serum levels of long chain n-3 PUFA DPA is associated with reduced total prostate cancer risk. While high blood level of EPA and DHA is possibly associated with increased high-grade prostate tumour risk.
Collapse
Affiliation(s)
- Michael E Chua
- Institute of Urology and Research and Biotechnology Division, St. Luke's Medical Center, Philippines
| | | | | | | |
Collapse
|
100
|
Argov-Argaman N, Mahgrefthe K, Zeron Y, Roth Z. Season-induced variation in lipid composition is associated with semen quality in Holstein bulls. Reproduction 2013; 145:479-89. [DOI: 10.1530/rep-12-0498] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Season-induced variation in fatty acid and cholesterol composition in bovine semen has been associated with semen quality. Given the specific roles of the various semen compartments (seminal fluids, sperm head, and sperm tail) in fertilization, we hypothesized that environmental-stress-induced alterations in the lipid composition of a specific compartment might impair semen quality and sperm function. Semen samples were collected from five mature Holstein–Friesian bulls during the summer (August to September) and winter (December to January). Semen was evaluated by computerized sperm-quality analyzer, calibrated for bulls' semen, and centrifuged to separate the spermatozoa from the seminal fluids. The spermatozoal fraction was sonicated to separate the sperm head and tail compartments. Cold lipid extraction was performed with chloroform:methanol (2:1, vol/vol). Lipids were identified and quantified by gas chromatography. Seasonal variation was found in both physiological and structural parameters. The proportion of spermatozoa defined as morphologically normal was higher in the winter, with higher motility, progressive motility, and velocity relative to summer samples. Lipid composition within fractions varied between seasons with prominent impairment in the tail compartment, characterized by high saturated fatty acid, low polyunsaturated fatty acid, and low cholesterol concentrations during the summer. Given the association between alterations in lipid composition and reduced sperm motility and velocity during the summer, it is suggested that lipid composition might serve to predict sperm quality.
Collapse
|