51
|
Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway. BIOLOGY 2015; 4:424-42. [PMID: 26075354 PMCID: PMC4498308 DOI: 10.3390/biology4020424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 11/17/2022]
Abstract
Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA) utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism—coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and β-oxidation of fatty acids.
Collapse
|
52
|
Rua CPJ, Gregoracci GB, Santos EO, Soares AC, Francini-Filho RB, Thompson F. Potential metabolic strategies of widely distributed holobionts in the oceanic archipelago of St Peter and St Paul (Brazil). FEMS Microbiol Ecol 2015; 91:fiv043. [PMID: 25873456 DOI: 10.1093/femsec/fiv043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2015] [Indexed: 11/13/2022] Open
Abstract
Sponges are one of the most complex symbiotic communities and while the taxonomic composition of associated microbes has been determined, the biggest challenge now is to uncover their functional role in symbiosis. We investigated the microbiota of two widely distributed sponge species, regarding both their taxonomic composition and their functional roles. Samples of Didiscus oxeata and Scopalina ruetzleri were collected in the oceanic archipelago of St Peter and St Paul and analysed through metagenomics. Sequences generated by 454 pyrosequencing and Ion Torrent were taxonomically and functionally annotated on the MG-RAST server using the GenBank and SEED databases, respectively. Both communities exhibit equivalence in core functions, interestingly played by the most abundant taxa in each community. Conversely, the microbial communities differ in composition, taxonomic diversity and potential metabolic strategies. Functional annotation indirectly suggests differences in preferential pathways of carbon, nitrogen and sulphur metabolisms, which may indicate different metabolic strategies.
Collapse
Affiliation(s)
- Cintia P J Rua
- Av. Carlos Chagas Filho, s/nº - CCS - Instituto de Biologia, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Gustavo B Gregoracci
- Av. Alm. Saldanha da Gama, 89 - Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Santos, CEP 11030-400, Brazil
| | - Eidy O Santos
- Av. Nossa Senhora das Graças, 50 - Divisão de Metrologia Aplicada a Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Xerém, CEP 25250-020, Brazil
| | - Ana Carolina Soares
- Av. Carlos Chagas Filho, s/nº - CCS - Instituto de Biologia, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Ronaldo B Francini-Filho
- Rua da Mangueira, s/nº - Centro de Ciências Aplicadas e Educação, Departamento de Engenharia e Meio Ambiente, Campus IV - Litoral Norte - Universidade Federal da Paraíba (UFPB), Rio Tinto, PB, CEP 58297-000, Brazil
| | - Fabiano Thompson
- Av. Carlos Chagas Filho, s/nº - CCS - Instituto de Biologia, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, CEP 21941-599, Brazil
| |
Collapse
|
53
|
Juárez JF, Liu H, Zamarro MT, McMahon S, Liu H, Naismith JH, Eberlein C, Boll M, Carmona M, Díaz E. Unraveling the specific regulation of the central pathway for anaerobic degradation of 3-methylbenzoate. J Biol Chem 2015; 290:12165-83. [PMID: 25795774 PMCID: PMC4424350 DOI: 10.1074/jbc.m115.637074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 01/06/2023] Open
Abstract
The mbd cluster encodes the anaerobic degradation of 3-methylbenzoate in the β-proteobacterium Azoarcus sp. CIB. The specific transcriptional regulation circuit that controls the expression of the mbd genes was investigated. The PO, PB1, and P3R promoters responsible for the expression of the mbd genes, their cognate MbdR transcriptional repressor, as well as the MbdR operator regions (ATACN10GTAT) have been characterized. The three-dimensional structure of MbdR has been solved revealing a conformation similar to that of other TetR family transcriptional regulators. The first intermediate of the catabolic pathway, i.e. 3-methylbenzoyl-CoA, was shown to act as the inducer molecule. An additional MbdR-dependent promoter, PA, which contributes to the expression of the CoA ligase that activates 3-methylbenzoate to 3-methylbenzoyl-CoA, was shown to be necessary for an efficient induction of the mbd genes. Our results suggest that the mbd cluster recruited a regulatory system based on the MbdR regulator and its target promoters to evolve a distinct central catabolic pathway that is only expressed for the anaerobic degradation of aromatic compounds that generate 3-methylbenzoyl-CoA as the central metabolite. All these results highlight the importance of the regulatory systems in the evolution and adaptation of bacteria to the anaerobic degradation of aromatic compounds.
Collapse
Affiliation(s)
- Javier F Juárez
- From the Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Huixiang Liu
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, Scotland, United Kingdom, and
| | - María T Zamarro
- From the Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Stephen McMahon
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, Scotland, United Kingdom, and
| | - Huanting Liu
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, Scotland, United Kingdom, and
| | - James H Naismith
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, Scotland, United Kingdom, and
| | - Christian Eberlein
- the Institute for Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Boll
- the Institute for Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Manuel Carmona
- From the Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Eduardo Díaz
- From the Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain,
| |
Collapse
|
54
|
Purwantini E, Torto-Alalibo T, Lomax J, Setubal JC, Tyler BM, Mukhopadhyay B. Genetic resources for methane production from biomass described with the Gene Ontology. Front Microbiol 2014; 5:634. [PMID: 25520705 PMCID: PMC4253957 DOI: 10.3389/fmicb.2014.00634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022] Open
Abstract
Methane (CH4) is a valuable fuel, constituting 70–95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO) terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO) project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing “gold standards” for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http://www.mengo.biochem.vt.edu/).
Collapse
Affiliation(s)
- Endang Purwantini
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - Trudy Torto-Alalibo
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - Jane Lomax
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory Hinxton, UK
| | - João C Setubal
- Department of Biochemistry, Universidade de São Paulo São Paulo, Brazil ; Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University Blacksburg, VA, USA ; Center for Genome Research and Biocomputing, Oregon State University Corvallis, OR, USA
| | - Biswarup Mukhopadhyay
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg, VA, USA ; Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University Blacksburg, VA, USA ; Department of Biological Sciences, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| |
Collapse
|
55
|
Porter AW, Young LY. Benzoyl-CoA, a universal biomarker for anaerobic degradation of aromatic compounds. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:167-203. [PMID: 24767428 DOI: 10.1016/b978-0-12-800260-5.00005-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aromatic compounds are a major component of the global carbon pool and include a diverse range of compounds such as humic acid, lignin, amino acids, and industrial contaminants. Due to the prevalence of aromatic compounds in the environment, aerobic and anaerobic microorganisms have evolved mechanisms by which to metabolize that available carbon. Less well understood are the anaerobic pathways. We now know that anaerobic metabolism of a variety of monoaromatic compounds can be initiated in a number of different ways, and a key metabolite for these pathways is benzoyl-CoA. Chemicals can have different upstream anaerobic degradation pathways yet can still be assessed by targeting the downstream benzoyl-CoA pathway. In this pathway, we propose that the ring opening hydrolase, encoded by the bamA gene, is especially useful because, in contrast to the benzoyl-CoA reductase, it is detected under a number of respiratory settings, including denitrifying, iron-reducing, sulfate-reducing, and fermentative conditions, and has a wide distribution in the environment. This review examines the bamA gene in enrichment cultures and environmental DNA extracts to consider whether it can be used as a biomarker for anaerobic aromatic degradation. Given the number of potential upstream inputs from natural and man-made monoaromatic compounds, the benzoyl-CoA pathway and the bamA gene in particular may play an important role in the global carbon cycle that has thus far been overlooked.
Collapse
Affiliation(s)
- Abigail W Porter
- Department of Environmental Science, School of Biological and Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA.
| | - Lily Y Young
- Department of Environmental Science, School of Biological and Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
56
|
Structures of benzylsuccinate synthase elucidate roles of accessory subunits in glycyl radical enzyme activation and activity. Proc Natl Acad Sci U S A 2014; 111:10161-6. [PMID: 24982148 DOI: 10.1073/pnas.1405983111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anaerobic degradation of the environmental pollutant toluene is initiated by the glycyl radical enzyme benzylsuccinate synthase (BSS), which catalyzes the radical addition of toluene to fumarate, forming benzylsuccinate. We have determined crystal structures of the catalytic α-subunit of BSS with its accessory subunits β and γ, which both bind a [4Fe-4S] cluster and are essential for BSS activity in vivo. We find that BSSα has the common glycyl radical enzyme fold, a 10-stranded β/α-barrel that surrounds the glycyl radical cofactor and active site. Both accessory subunits β and γ display folds related to high potential iron-sulfur proteins but differ substantially from each other in how they interact with the α-subunit. BSSγ binds distally to the active site, burying a hydrophobic region of BSSα, whereas BSSβ binds to a hydrophilic surface of BSSα that is proximal to the active site. To further investigate the function of BSSβ, we determined the structure of a BSSαγ complex. Remarkably, we find that the barrel partially opens, allowing the C-terminal region of BSSα that houses the glycyl radical to shift within the barrel toward an exit pathway. The structural changes that we observe in the BSSαγ complex center around the crucial glycyl radical domain, thus suggesting a role for BSSβ in modulating the conformational dynamics required for enzyme activity. Accompanying proteolysis experiments support these structural observations.
Collapse
|
57
|
An uncultivated nitrate-reducing member of the genus Herminiimonas degrades toluene. Appl Environ Microbiol 2014; 80:3233-43. [PMID: 24632261 DOI: 10.1128/aem.03975-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable isotope probing (SIP) is a cultivation-free methodology that provides information about the identity of microorganisms participating in assimilatory processes in complex communities. In this study, a Herminiimonas-related bacterium was identified as the dominant member of a denitrifying microcosm fed [(13)C]toluene. The genome of the uncultivated toluene-degrading bacterium was obtained by applying pyrosequencing to the heavy DNA fraction. The draft genome comprised ~3.8 Mb, in 131 assembled contigs. Metabolic reconstruction of aromatic hydrocarbon (toluene, benzoate, p-cresol, 4-hydroxybenzoate, phenylacetate, and cyclohexane carboxylate) degradation indicated that the bacterium might specialize in anaerobic hydrocarbon degradation. This characteristic is novel for the order Burkholderiales within the class Betaproteobacteria. Under aerobic conditions, the benzoate oxidation gene cluster (BOX) system is likely involved in the degradation of benzoate via benzoyl coenzyme A. Many putative genes for aromatic hydrocarbon degradation were closely related to those in the Rhodocyclaceae (particularly Aromatoleum aromaticum EbN1) with respect to organization and sequence similarity. Putative mobile genetic elements associated with these catabolic genes were highly abundant, suggesting gene acquisition by Herminiimonas via horizontal gene transfer.
Collapse
|
58
|
Kazantzis N, Kazantzi V, Christodoulou EG. Pollutant concentration profile reconstruction using digital soft sensors for biodegradation and exposure assessment in the presence of model uncertainty. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9553-9568. [PMID: 24584587 DOI: 10.1007/s11356-014-2572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
A new approach to the problem of environmental hazard assessment and monitoring for pollutant biodegradation reaction systems in the presence of uncertainty is proposed using soft sensor-based pollutant concentration dynamic profile reconstruction techniques. In particular, a robust reduced-order soft sensor is proposed that can be digitally implemented in the presence of inherent complexity and the inevitable model uncertainty. The proposed method explicitly incorporates all the available information associated with a process model characterized by varying degrees of uncertainty, as well as available sensor measurements of certain physicochemical quantities. Based on the above information, a reduced-order soft sensor is designed enabling the reliable reconstruction of pollutant concentration profiles in complex biodegradation systems that can not be always achieved due to physical and/or technical limitations associated with current sensor technology. The option of using the aforementioned approach to compute toxic load and persistence indexes on the basis of the reconstructed concentration profiles is also pursued. Finally, the performance of the proposed method is evaluated in two illustrative environmental hazard assessment case studies.
Collapse
Affiliation(s)
- Nikolaos Kazantzis
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609-2280, USA,
| | | | | |
Collapse
|
59
|
Sierra-García IN, Correa Alvarez J, Pantaroto de Vasconcellos S, Pereira de Souza A, dos Santos Neto EV, de Oliveira VM. New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs. PLoS One 2014; 9:e90087. [PMID: 24587220 PMCID: PMC3935994 DOI: 10.1371/journal.pone.0090087] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/29/2014] [Indexed: 12/19/2022] Open
Abstract
Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs.
Collapse
Affiliation(s)
- Isabel Natalia Sierra-García
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil
- * E-mail:
| | - Javier Correa Alvarez
- Laboratory of Genomics and Expression, University of Campinas - UNICAMP, Campinas, Brazil
| | | | - Anete Pereira de Souza
- Center of Molecular Biology and Genetic Engineering – CBMEG/UNICAMP, Rio de Janeiro, Brazil
| | | | - Valéria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
60
|
More RP, Mitra S, Raju SC, Kapley A, Purohit HJ. Mining and assessment of catabolic pathways in the metagenome of a common effluent treatment plant to induce the degradative capacity of biomass. BIORESOURCE TECHNOLOGY 2014; 153:137-146. [PMID: 24355504 DOI: 10.1016/j.biortech.2013.11.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 06/03/2023]
Abstract
Metagenome analysis was used to understand the microbial community in activated sludge treating industrial wastewaters at a Common Effluent Treatment Plant (CETP) in South India. The taxonomic profile mapped onto National Center for Biotechnology Information (NCBI) taxonomy using MEtaGenome ANalyzer (MEGAN), demonstrated that the most abundant domain belonged to prokaryotes, dominated by bacteria. Bacteria representing nine phyla were identified from the sequence data including representatives from two new phyla, Synergistetes and Elusimicrobia. Functional analysis of the metagenome, with specific reference to the metabolism of aromatic compounds, revealed the dominance of genes of the central meta-cleavage pathway. This information was used to improve the degradative efficiency in the wastewater treatment plant. A pilot scale plant was set up with 200L of activated sludge using salicylate induced sludge and results demonstrated 52% removal in chemical oxygen demand (COD) against non-induced biomass.
Collapse
Affiliation(s)
- Ravi P More
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440020 (MH), India
| | - Suparna Mitra
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Sajan C Raju
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440020 (MH), India
| | - Atya Kapley
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440020 (MH), India.
| | - Hemant J Purohit
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440020 (MH), India
| |
Collapse
|
61
|
Boll M, Löffler C, Morris BEL, Kung JW. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 2013; 16:612-27. [PMID: 24238333 DOI: 10.1111/1462-2920.12328] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/03/2013] [Indexed: 11/28/2022]
Abstract
Next to carbohydrates, aromatic compounds are the second most abundant class of natural organic molecules in living organic matter but also make up a significant proportion of fossil carbon sources. Only microorganisms are capable of fully mineralizing aromatic compounds. While aerobic microbes use well-studied oxygenases for the activation and cleavage of aromatic rings, anaerobic bacteria follow completely different strategies to initiate catabolism. The key enzymes related to aromatic compound degradation in anaerobic bacteria are comprised of metal- and/or flavin-containing cofactors, of which many use unprecedented radical mechanisms for C-H bond cleavage or dearomatization. Over the past decade, the increasing number of completed genomes has helped to reveal a large variety of anaerobic degradation pathways in Proteobacteria, Gram-positive microbes and in one archaeon. This review aims to update our understanding of the occurrence of aromatic degradation capabilities in anaerobic microorganisms and serves to highlight characteristic enzymatic reactions involved in (i) the anoxic oxidation of alkyl side chains attached to aromatic rings, (ii) the carboxylation of aromatic rings and (iii) the reductive dearomatization of central arylcarboxyl-coenzyme A intermediates. Depending on the redox potential of the electron acceptors used and the metabolic efficiency of the cell, different strategies may be employed for identical overall reactions.
Collapse
Affiliation(s)
- Matthias Boll
- Institute for Biology II, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
62
|
Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol 2013; 79:7800-6. [PMID: 24096430 DOI: 10.1128/aem.03134-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 μM) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with (18)O during growth in H2(18)O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.
Collapse
|
63
|
Grishin AM, Ajamian E, Tao L, Bostina M, Zhang L, Trempe JF, Menard R, Rouiller I, Cygler M. Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases. J Struct Biol 2013; 184:147-54. [PMID: 24055609 DOI: 10.1016/j.jsb.2013.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 11/25/2022]
Abstract
The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved 'lysine bridge' constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20-50 times reduced activity, supporting the functional importance of the 'lysine bridge'.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Tan K, Chang C, Cuff M, Osipiuk J, Landorf E, Mack JC, Zerbs S, Joachimiak A, Collart FR. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids. Proteins 2013; 81:1709-26. [PMID: 23606130 DOI: 10.1002/prot.24305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 03/12/2013] [Accepted: 03/28/2013] [Indexed: 11/10/2022]
Abstract
Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins.
Collapse
Affiliation(s)
- Kemin Tan
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, 60439; The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, Illinois, 60439; Structural Biology Center, Argonne National Laboratory, Lemont, Illinois, 60439
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Wang PH, Leu YL, Ismail W, Tang SL, Tsai CY, Chen HJ, Kao AT, Chiang YR. Anaerobic and aerobic cleavage of the steroid core ring structure by Steroidobacter denitrificans. J Lipid Res 2013; 54:1493-504. [PMID: 23458847 DOI: 10.1194/jlr.m034223] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aerobic degradation of steroids by bacteria has been studied in some detail. In contrast, only little is known about the anaerobic steroid catabolism. Steroidobacter denitrificans can utilize testosterone under both oxic and anoxic conditions. By conducting metabolomic investigations, we demonstrated that S. denitrificans adopts the 9,10-seco-pathway to degrade testosterone under oxic conditions. This pathway depends on the use of oxygenases for oxygenolytic ring fission. Conversely, the detected degradation intermediates under anoxic conditions suggest a novel, oxygenase-independent testosterone catabolic pathway, the 2,3-seco-pathway, which differs significantly from the aerobic route. In this anaerobic pathway, testosterone is first transformed to 1-dehydrotestosterone, which is then reduced to produce 1-testosterone followed by water addition to the C-1/C-2 double bond of 1-testosterone. Subsequently, the C-1 hydroxyl group is oxidized to produce 17-hydroxy-androstan-1,3-dione. The A-ring of this compound is cleaved by hydrolysis as evidenced by H2(18)O-incorporation experiments. Regardless of the growth conditions, testosterone is initially transformed to 1-dehydrotestosterone. This intermediate is a divergence point at which the downstream degradation pathway is governed by oxygen availability. Our results shed light into the previously unknown cleavage of the sterane ring structure without oxygen. We show that, under anoxic conditions, the microbial cleavage of steroidal core ring system begins at the A-ring.
Collapse
Affiliation(s)
- Po-Hsiang Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Méndez-Hernández JE, Ramírez-Vives F, Solís-Oba M, Solís-Oba A, Sobrino-Figueroa AS, Loera O. Detoxification and mineralization of Acid Blue 74: study of an alternative secondary treatment to improve the enzymatic decolourization. World J Microbiol Biotechnol 2012; 29:805-14. [DOI: 10.1007/s11274-012-1235-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/08/2012] [Indexed: 11/25/2022]
|
67
|
Michalska K, Chang C, Mack JC, Zerbs S, Joachimiak A, Collart FR. Characterization of transport proteins for aromatic compounds derived from lignin: benzoate derivative binding proteins. J Mol Biol 2012; 423:555-75. [PMID: 22925578 PMCID: PMC3836681 DOI: 10.1016/j.jmb.2012.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/27/2012] [Accepted: 08/20/2012] [Indexed: 10/28/2022]
Abstract
In vitro growth experiments have demonstrated that aromatic compounds derived from lignin can be metabolized and represent a major carbon resource for many soil bacteria. However, the proteins that mediate the movement of these metabolites across the cell membrane have not been thoroughly characterized. To address this deficiency, we used a library representative of lignin degradation products and a thermal stability screen to determine ligand specificity for a set of solute-binding proteins (SBPs) from ATP-binding cassette (ABC) transporters. The ligand mapping process identified a set of proteins from Alphaproteobacteria that recognize various benzoate derivatives. Seven high-resolution crystal structures of these proteins in complex with four different aromatic compounds were obtained. The protein-ligand complexes provide details of molecular recognition that can be used to infer binding specificity. This structure-function characterization provides new insight for the biological roles of these ABC transporters and their SBPs, which had been previously annotated as branched-chain amino-acid-binding proteins. The knowledge derived from the crystal structures provides a foundation for development of sequence-based methods to predict the ligand specificity of other uncharacterized transporters. These results also demonstrate that Alphaproteobacteria possess a diverse set of transport capabilities for lignin-derived compounds. Characterization of this new class of transporters improves genomic annotation projects and provides insight into the metabolic potential of soil bacteria.
Collapse
Affiliation(s)
- Karolina Michalska
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Changsoo Chang
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jamey C. Mack
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sarah Zerbs
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Andrzej Joachimiak
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Frank R. Collart
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| |
Collapse
|
68
|
Grishin AM, Ajamian E, Zhang L, Rouiller I, Bostina M, Cygler M. Protein-protein interactions in the β-oxidation part of the phenylacetate utilization pathway: crystal structure of the PaaF-PaaG hydratase-isomerase complex. J Biol Chem 2012; 287:37986-96. [PMID: 22961985 PMCID: PMC3488069 DOI: 10.1074/jbc.m112.388231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/29/2012] [Indexed: 11/06/2022] Open
Abstract
Microbial anaerobic and so-called hybrid pathways for degradation of aromatic compounds contain β-oxidation-like steps. These reactions convert the product of the opening of the aromatic ring to common metabolites. The hybrid phenylacetate degradation pathway is encoded in Escherichia coli by the paa operon containing genes for 10 enzymes. Previously, we have analyzed protein-protein interactions among the enzymes catalyzing the initial oxidation steps in the paa pathway (Grishin, A. M., Ajamian, E., Tao, L., Zhang, L., Menard, R., and Cygler, M. (2011) J. Biol. Chem. 286, 10735-10743). Here we report characterization of interactions between the remaining enzymes of this pathway and show another stable complex, PaaFG, an enoyl-CoA hydratase and enoyl-Coa isomerase, both belonging to the crotonase superfamily. These steps are biochemically similar to the well studied fatty acid β-oxidation, which can be catalyzed by individual monofunctional enzymes, multifunctional enzymes comprising several domains, or enzymatic complexes such as the bacterial fatty acid β-oxidation complex. We have determined the structure of the PaaFG complex and determined that although individually PaaF and PaaG are similar to enzymes from the fatty acid β-oxidation pathway, the structure of the complex is dissimilar from bacterial fatty acid β-oxidation complexes. The PaaFG complex has a four-layered structure composed of homotrimeric discs of PaaF and PaaG. The active sites of PaaF and PaaG are adapted to accept the intermediary components of the Paa pathway, different from those of the fatty acid β-oxidation. The association of PaaF and PaaG into a stable complex might serve to speed up the steps of the pathway following the conversion of phenylacetyl-CoA to a toxic and unstable epoxide-CoA by PaaABCE monooxygenase.
Collapse
Affiliation(s)
- Andrey M. Grishin
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Eunice Ajamian
- the Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Linhua Zhang
- the Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Isabelle Rouiller
- the Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada, and
| | - Mihnea Bostina
- Facility for Electron Microscopy Research, McGill University, Montreal, Quebec H3A 2B2, Canada
| | - Miroslaw Cygler
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
- the Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
69
|
Wöhlbrand L, Jacob JH, Kube M, Mussmann M, Jarling R, Beck A, Amann R, Wilkes H, Reinhardt R, Rabus R. Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium. Environ Microbiol 2012; 15:1334-55. [PMID: 23088741 DOI: 10.1111/j.1462-2920.2012.02885.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 11/30/2022]
Abstract
Among the dominant deltaproteobacterial sulfate-reducing bacteria (SRB), members of the genus Desulfobacula are not only present in (hydrocarbon-rich) marine sediments, but occur also frequently in the anoxic water bodies encountered in marine upwelling areas. Here, we present the 5.2 Mbp genome of Desulfobacula toluolica Tol2, which is the first of an aromatic compound-degrading, marine SRB. The genome has apparently been shaped by viral attacks (e.g. CRISPRs) and its high plasticity is reflected by 163 detected genes related to transposases and integrases, a total of 494 paralogous genes and 24 group II introns. Prediction of the catabolic network of strain Tol2 was refined by differential proteome and metabolite analysis of substrate-adapted cells. Toluene and p-cresol are degraded by separate suites of specific enzymes for initial arylsuccinate formation via addition to fumarate (p-cresol-specific enzyme HbsA represents a new phylogenetic branch) as well as for subsequent modified β-oxidation of arylsuccinates to the central intermediate benzoyl-CoA. Proteogenomic evidence suggests specific electron transfer (EtfAB) and membrane proteins to channel electrons from dehydrogenation of both arylsuccinates directly to the membrane redox pool. In contrast to the known anaerobic degradation pathways in other bacteria, strain Tol2 deaminates phenylalanine non-oxidatively to cinnamate by phenylalanine ammonia-lyase and subsequently forms phenylacetate (both metabolites identified in (13) C-labelling experiments). Benzoate degradation involves CoA activation, reductive dearomatization by a class II benzoyl-CoA reductase and hydrolytic ring cleavage as found in the obligate anaerobe Geobacter metallireducens GS-15. The catabolic sub-proteomes displayed high substrate specificity, reflecting the genomically predicted complex and fine-tuned regulatory network of strain Tol2. Despite the genetic equipment for a TCA cycle, proteomic evidence supports complete oxidation of acetyl-CoA to CO2 via the Wood-Ljungdahl pathway. Strain Tol2 possesses transmembrane redox complexes similar to that of other Desulfobacteraceae members. The multiple heterodisulfide reductase-like proteins (more than described for Desulfobacterium autotrophicum HRM2) may constitute a multifaceted cytoplasmic electron transfer network.
Collapse
Affiliation(s)
- Lars Wöhlbrand
- Institute for Chemistry and Biology of Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Philipp B, Schink B. Different strategies in anaerobic biodegradation of aromatic compounds: nitrate reducers versus strict anaerobes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:469-478. [PMID: 23760891 DOI: 10.1111/j.1758-2229.2011.00304.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mononuclear aromatic compounds are degraded anaerobically through pathways that are basically different from those used in the presence of oxygen. Whereas aerobic degradation destabilizes the aromatic π-electron system by oxidative steps through oxygenase reactions, anaerobic degradation is most often initiated by a reductive attack. The benzoyl-CoA pathway is the most important metabolic route in this context, and a broad variety of mononuclear aromatics, including phenol, cresols, toluene, xylenes and ethylbenzene, are channelled into this pathway through various modification reactions. Multifunctional phenolic compounds are metabolized via the reductive resorcinol pathway, the oxidative resorcinol pathway with hydroxyhydroquinone as key intermediate, and the phloroglucinol pathway. Comparison of the various pathways used for modification and degradation of aromatics in the absence of oxygen indicates that the strategies of breakdown of these compounds are largely determined by the redox potentials of the electron acceptors used, and by the overall reaction energetics. Consequently, nitrate reducers quite often use strategies for primary attack on aromatic compounds that differ from those used by sulfate-reducing, iron-reducing or fermenting bacteria.
Collapse
Affiliation(s)
- Bodo Philipp
- Department of Biology, University of Konstanz, Universitätsstr. 10, D-78457 Konstanz, Germany
| | | |
Collapse
|
71
|
Juárez JF, Zamarro MT, Eberlein C, Boll M, Carmona M, Díaz E. Characterization of the mbd cluster encoding the anaerobic 3-methylbenzoyl-CoA central pathway. Environ Microbiol 2012; 15:148-66. [PMID: 22759228 DOI: 10.1111/j.1462-2920.2012.02818.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mbd cluster encoding genes of the 3-methylbenzoyl-CoA pathway involved in the anaerobic catabolism of 3-methylbenzoate and m-xylene was characterized for the first time in the denitrifying β-Proteobacterium Azoarcus sp. CIB. The mbdA gene product was identified as a 3-methylbenzoate-CoA ligase required for 3-methylbenzoate activation; its substrate spectrum was unique in activating all three methylbenzoate isomers. An inducible 3-methylbenzoyl-CoA reductase (mbdONQP gene products), displaying significant amino acid sequence similarities to known class I benzoyl-CoA reductases catalysed the ATP-dependent reduction of 3-methylbenzoyl-CoA to a methyldienoyl-CoA. The mbdW gene encodes a methyldienoyl-CoA hydratase that hydrated the methyldienoyl-CoA to a methyl-6-hydroxymonoenoyl-CoA compound. The mbd cluster also contains the genes predicted to be involved in the subsequent steps of the 3-methylbenzoyl-CoA pathway as well as the electron donor system for the reductase activity. Whereas the catabolic mbd genes are organized in two divergent inducible operons, the putative mbdR regulatory gene was transcribed separately and showed constitutive expression. The efficient expression of the mbd genes required the oxygen-dependent AcpR activator, and it was subject of carbon catabolite repression by some organic acids and amino acids. Sequence analyses suggest that the mbd gene cluster was recruited by Azoarcus sp. CIB through horizontal gene transfer.
Collapse
Affiliation(s)
- Javier F Juárez
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
72
|
Identification and characterization of a succinyl-coenzyme A (CoA):benzoate CoA transferase in Geobacter metallireducens. J Bacteriol 2012; 194:2501-8. [PMID: 22408161 DOI: 10.1128/jb.00306-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Geobacter metallireducens is a Fe(III)-respiring deltaproteobacterium and serves as a model organism for aromatic compound-degrading, obligately anaerobic bacteria. In this study, a genetic system was established for G. metallireducens using nitrate as an alternative electron acceptor. Surprisingly, disruption of the benzoate-induced bamY gene, encoding a benzoate coenzyme A (CoA) ligase, reproducibly showed an increased biomass yield in comparison to the wild type during growth with benzoate but not during growth with acetate. Complementation of bamY in trans converted the biomass yield back to the wild-type level. Growth of the bamY mutant with benzoate can be rationalized by the identification of a previously unknown succinyl-CoA:benzoate CoA transferase activity; it represents an additional, energetically less demanding mode of benzoate activation. The activity was highly enriched from extracts of cells grown on benzoate, yielding a 50-kDa protein band; mass spectrometric analysis identified the corresponding benzoate-induced gene annotated as a CoA transferase. It was heterologously expressed in Escherichia coli and characterized as a specific succinyl-CoA:benzoate CoA transferase. The newly identified enzyme in conjunction with a benzoate-induced succinyl-CoA synthetase links the tricarboxylic acid cycle to the upper benzoyl-CoA degradation pathway during growth on aromatic growth substrates.
Collapse
|
73
|
Kuntze K, Kiefer P, Baumann S, Seifert J, von Bergen M, Vorholt JA, Boll M. Enzymes involved in the anaerobic degradation of meta-substituted halobenzoates. Mol Microbiol 2012; 82:758-69. [PMID: 22010634 DOI: 10.1111/j.1365-2958.2011.07856.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organohalides are environmentally relevant compounds that can be degraded by aerobic and anaerobic microorganisms. The denitrifying Thauera chlorobenzoica is capable of degrading halobenzoates as sole carbon and energy source under anaerobic conditions. LC-MS/MS-based coenzyme A (CoA) thioester analysis revealed that 3-chloro- or 3-bromobenzoate were preferentially metabolized via non-halogenated CoA-ester intermediates of the benzoyl-CoA degradation pathway. In contrast, 3-fluorobenzoate, which does not support growth, was converted to dearomatized fluorinated CoA ester dead-end products. Extracts from cells grown on 3-chloro-/3-bromobenzoate catalysed the Ti(III)-citrate- and ATP-dependent reductive dehalogenation of 3-chloro/3-bromobenzoyl-CoA to benzoyl-CoA, whereas 3-fluorobenzoyl-CoA was converted to a fluorinated cyclic dienoyl-CoA compound. The reductive dehalogenation reactions were identified as previously unknown activities of ATP-dependent class I benzoyl-CoA reductases (BCR) present in all facultatively anaerobic, aromatic compound degrading bacteria. A two-step dearomatization/H-halide elimination mechanism is proposed. A halobenzoate-specific carboxylic acid CoA ligase was characterized in T. chlorobenzoica; however, no such enzyme is present in Thauera aromatica, which cannot grow on halobenzoates. In conclusion, it appears that the presence of a halobenzoate-specific carboxylic acid CoA ligase rather than a specific reductive dehalogenase governs whether an aromatic compound degrading anaerobe is capable of metabolizing halobenzoates.
Collapse
Affiliation(s)
- Kevin Kuntze
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
74
|
Valderrama JA, Durante-Rodríguez G, Blázquez B, García JL, Carmona M, Díaz E. Bacterial degradation of benzoate: cross-regulation between aerobic and anaerobic pathways. J Biol Chem 2012; 287:10494-10508. [PMID: 22303008 DOI: 10.1074/jbc.m111.309005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied for the first time the transcriptional regulatory circuit that controls the expression of the box genes encoding the aerobic hybrid pathway used to assimilate benzoate via coenzyme A (CoA) derivatives in bacteria. The promoters responsible for the expression of the box cluster in the β-proteobacterium Azoarcus sp., their cognate transcriptional repressor, the BoxR protein, and the inducer molecule (benzoyl-CoA) have been characterized. The BoxR protein shows a significant sequence identity to the BzdR transcriptional repressor that controls the bzd genes involved in the anaerobic degradation of benzoate. Because the boxR gene is present in all box clusters so far identified in bacteria, the BoxR/benzoyl-CoA regulatory system appears to be a widespread strategy to control this aerobic hybrid pathway. Interestingly, the paralogous BoxR and BzdR regulators act synergistically to control the expression of the box and bzd genes. This cross-regulation between anaerobic and aerobic pathways for the catabolism of aromatic compounds has never been shown before, and it may reflect a biological strategy to increase the cell fitness in organisms that survive in environments subject to changing oxygen concentrations.
Collapse
Affiliation(s)
- J Andrés Valderrama
- Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Gonzalo Durante-Rodríguez
- Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Blas Blázquez
- Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - José Luis García
- Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Manuel Carmona
- Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Eduardo Díaz
- Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.
| |
Collapse
|
75
|
Abstract
Ring-cleaving dioxygenases catalyze key reactions in the aerobic microbial degradation of aromatic compounds. Many pathways converge to catecholic intermediates, which are subject to ortho or meta cleavage by intradiol or extradiol dioxygenases, respectively. However, a number of degradation pathways proceed via noncatecholic hydroxy-substituted aromatic carboxylic acids like gentisate, salicylate, 1-hydroxy-2-naphthoate, or aminohydroxybenzoates. The ring-cleaving dioxygenases active toward these compounds belong to the cupin superfamily, which is characterized by a six-stranded β-barrel fold and conserved amino acid motifs that provide the 3His or 2- or 3His-1Glu ligand environment of a divalent metal ion. Most cupin-type ring cleavage dioxygenases use an Fe(II) center for catalysis, and the proposed mechanism is very similar to that of the canonical (type I) extradiol dioxygenases. The metal ion is presumed to act as an electron conduit for single electron transfer from the metal-bound substrate anion to O(2), resulting in activation of both substrates to radical species. The family of cupin-type dioxygenases also involves quercetinase (flavonol 2,4-dioxygenase), which opens up two C-C bonds of the heterocyclic ring of quercetin, a wide-spread plant flavonol. Remarkably, bacterial quercetinases are capable of using different divalent metal ions for catalysis, suggesting that the redox properties of the metal are relatively unimportant for the catalytic reaction. The major role of the active-site metal ion could be to correctly position the substrate and to stabilize transition states and intermediates rather than to mediate electron transfer. The tentative hypothesis that quercetinase catalysis involves direct electron transfer from metal-bound flavonolate to O(2) is supported by model chemistry.
Collapse
|
76
|
Lahme S, Eberlein C, Jarling R, Kube M, Boll M, Wilkes H, Reinhardt R, Rabus R. Anaerobic degradation of 4-methylbenzoate via a specific 4-methylbenzoyl-CoA pathway. Environ Microbiol 2012; 14:1118-32. [PMID: 22264224 DOI: 10.1111/j.1462-2920.2011.02693.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pathway for anaerobic degradation of 4-methylbenzoate was studied in the denitrifying alphaproteobacterium Magnetospirillum sp. strain pMbN1. Adaptation studies with whole cells indicated substrate-dependent induction of the capacity to degrade 4-methylbenzoate. Differential protein profiling (2D-DIGE) of 4-methylbenzoate- in comparison with benzoate- or succinate-adapted cells revealed the specific abundance increase of substrate-specific protein sets. Their coding genes form distinct clusters on the genome, two of which were assigned to 4-methylbenzoate and one to benzoate degradation. The predicted functions of the gene products agree with a specific 4-methylbenzoyl-CoA degradation pathway in addition to and analogous to the known anaerobic benzoyl-CoA degradation pathway. In vitro benzoyl-CoA and 4-methylbenzoyl-CoA reductase activities revealed the electron donor and ATP-dependent formation of the corresponding conjugated cyclic dienoyl-CoA/4-methyl-dienoyl-CoA products. The 4-methylbenzoyl-CoA reductase activity was induced in the presence of 4-methylbenzoate. In accordance, metabolite analysis of cultures grown with 4-methylbenzoate tentatively identified 4-methylcyclohex-1,5-diene-1-carboxylate. The 4-methylbenzoate induced genes were assigned to code for the putative 4-methylbenzoyl-CoA reductase; their products display pronounced sequence disparity from the conventional class I benzoyl-CoA reductase, which does not accept substituents at the para-position. Identification of 3-methylglutarate together with the formation of specific proteins for ring cleavage and β-oxidation in 4-methylbenzoate-adapted cells suggest conservation of the methyl group along the specific 4-methylbenzoyl-CoA degradation pathway.
Collapse
Affiliation(s)
- Sven Lahme
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, Oldenburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Microbes are the "unseen majority" of living organisms on Earth and main drivers of the biogeochemical cycles in marine and most other environments. Their significance for an intact biosphere is bringing environmental bacteria increasingly into the focus of genome-based science. Proteomics is playing a prominent role for providing a molecular understanding of how these microbes work and for identifying the key biocatalysts involved in the major biogeochemical processes. This overview describes the major insights obtained from two-dimensional difference gel electrophoresis (2D DIGE) analyses of specific degradation pathways, complex metabolic networks, cellular processes, and regulatory patterns in the marine aerobic heterotrophs Rhodopirellula baltica SH1 (Planctomycetes) and Phaeobacter gallaeciensis DSM 17395 (Roseobacter clade) and the anaerobic aromatic compound degrader Aromatoleum aromaticum EbN1 (Betaproteobacteria).
Collapse
Affiliation(s)
- Ralf Rabus
- Institute of Biology and Chemistry of the Marine Environment (ICBM), University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
78
|
Benzoate mediates repression of C(4)-dicarboxylate utilization in "Aromatoleum aromaticum" EbN1. J Bacteriol 2011; 194:518-28. [PMID: 22081395 DOI: 10.1128/jb.05072-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diauxic growth was observed in anaerobic C(4)-dicarboxylate-adapted cells of "Aromatoleum aromaticum" EbN1 due to preferred benzoate utilization from a substrate mixture of a C(4)-dicarboxylate (succinate, fumarate, or malate) and benzoate. Differential protein profiles (two-dimensional difference gel electrophoresis [2D DIGE]) revealed dynamic changes in abundance for proteins involved in anaerobic benzoate catabolism and C(4)-dicarboxylate uptake. In the first active growth phase, benzoate utilization was paralleled by maximal abundance of proteins involved in anaerobic benzoate degradation (e.g., benzoyl-coenzyme A [CoA] reductase) and minimal abundance of DctP (EbA4158), the periplasmic binding protein of a predicted C(4)-dicarboxylate tripartite ATP-independent periplasmic (TRAP) transporter (DctPQM). The opposite was observed during subsequent succinate utilization in the second active growth phase. The increased dctP (respectively, dctPQM) transcript and DctP protein abundance following benzoate depletion suggests that repression of C(4)-dicarboxylate uptake seems to be a main determinant for the observed diauxie.
Collapse
|
79
|
Abstract
Aromatic compounds are both common growth substrates for microorganisms and prominent environmental pollutants. The crucial step in their degradation is overcoming the resonance energy that stabilizes the ring structure. The classical strategy for degradation comprises an attack by oxygenases that hydroxylate and finally cleave the ring with the help of activated molecular oxygen. Here, we describe three alternative strategies used by microorganisms to degrade aromatic compounds. All three of these methods involve the use of CoA thioesters and ring cleavage by hydrolysis. However, these strategies are based on different ring activation mechanisms that consist of either formation of a non-aromatic ring-epoxide under oxic conditions, or reduction of the aromatic ring under anoxic conditions using one of two completely different systems.
Collapse
|
80
|
Lin’kova YV, Dyakonova AT, Gladchenko MA, Kalyuzhnyi SV, Kotova IB, Stams A, Netrusov AI. Methanogenic degradation of (amino)aromatic compounds by anaerobic microbial communities. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811050085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
81
|
Identification of a transcriptional repressor involved in benzoate metabolism in Geobacter bemidjiensis. Appl Environ Microbiol 2011; 77:7058-62. [PMID: 21821763 DOI: 10.1128/aem.05516-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subsurface environments contaminated with aromatic compounds can be remediated in situ by Geobacter species. A transcription factor that represses expression of bamA, a benzoate-inducible gene, in Geobacter bemidjiensis during growth with acetate was identified. It is likely that this repressor also regulates other genes involved in aromatic compound metabolism.
Collapse
|
82
|
Combined application of PCR-based functional assays for the detection of aromatic-compound-degrading anaerobes. Appl Environ Microbiol 2011; 77:5056-61. [PMID: 21602396 DOI: 10.1128/aem.00335-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To explore the reliability of assays that detect aromatic-compound-degrading anaerobes, a combination of three functional-gene-targeting assays was applied to microcosms from benzene-contaminated aquifers. Results of the assays were consistent and suggest that species related to the genera Azoarcus and Geobacter dominated benzene degradation at the individual sites.
Collapse
|
83
|
Kolukirik M, Ince O, Ince BK. Increment in anaerobic hydrocarbon degradation activity of Halic Bay sediments via nutrient amendment. MICROBIAL ECOLOGY 2011; 61:871-884. [PMID: 21390532 DOI: 10.1007/s00248-011-9825-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 02/08/2011] [Indexed: 05/30/2023]
Abstract
In this study, hydrocarbon (HC) degradation activity of a HC-rich marine sediment was assessed in anaerobic microcosms during a 224 days incubation period. Natural TOC/N/P ratio of the sediment porewater (1,000/5/1) was gradually decreased to 1,000/40/6 which resulted in approximately ninefold increase in gas production (CH(4)+CO(2)) and HC removal. Addition of external HCs to the microcosms was also resulted in approximately twofold higher gas production and HC removal. A high proportion (92%) of aromatic HCs and all n-alkanes were removed from the microcosms under unlimited nutrient supply conditions without external HC addition. The microorganisms of the sediment degraded a wide range of aliphatic (n-C(9-31) alkanes and acyclic isoprenoids) and aromatic (18 different one- to five-ring aromatics) HCs. Monitoring functional gene and transcript abundances revealed that methanogenesis and dissimilatory sulfate reduction took place simultaneously during the first 126 days, afterwards, only the syntrophic methanogenic consortium was active. Genes and transcripts related to initial activation of HCs were highly abundant throughout the incubation period showing that fumarate addition was the main pathway of anaerobic HC degradation. In conclusion, biostimulation of highly polluted anoxic marine sediments via nutrient amendment is effective and may constitute a suitable and cost-effective field-scale bioremediation strategy.
Collapse
Affiliation(s)
- Mustafa Kolukirik
- Department of Molecular Biology and Genetics, Istanbul Technical University, 34469 Istanbul, Turkey.
| | | | | |
Collapse
|
84
|
Teufel R, Gantert C, Voss M, Eisenreich W, Haehnel W, Fuchs G. Studies on the mechanism of ring hydrolysis in phenylacetate degradation: a metabolic branching point. J Biol Chem 2011; 286:11021-34. [PMID: 21296885 DOI: 10.1074/jbc.m110.196667] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The widespread, long sought-after bacterial aerobic phenylalanine/phenylacetate catabolic pathway has recently been elucidated. It proceeds via coenzyme A (CoA) thioesters and involves the epoxidation of the aromatic ring of phenylacetyl-CoA, subsequent isomerization to an uncommon seven-membered C-O-heterocycle (oxepin-CoA), and non-oxygenolytic ring cleavage. Here we characterize the hydrolytic oxepin-CoA ring cleavage catalyzed by the bifunctional fusion protein PaaZ. The enzyme consists of a C-terminal (R)-specific enoyl-CoA hydratase domain (formerly MaoC) that cleaves the ring and produces a highly reactive aldehyde and an N-terminal NADP(+)-dependent aldehyde dehydrogenase domain that oxidizes the aldehyde to 3-oxo-5,6-dehydrosuberyl-CoA. In many phenylacetate-utilizing bacteria, the genes for the pathway exist in a cluster that contains an NAD(+)-dependent aldehyde dehydrogenase in place of PaaZ, whereas the aldehyde-producing hydratase is encoded outside of the cluster. If not oxidized immediately, the reactive aldehyde condenses intramolecularly to a stable cyclic derivative that is largely prevented by PaaZ fusion in vivo. Interestingly, the derivative likely serves as the starting material for the synthesis of antibiotics (e.g. tropodithietic acid) and other tropone/tropolone related compounds as well as for ω-cycloheptyl fatty acids. Apparently, bacteria made a virtue out of the necessity of disposing the dead-end product with ring hydrolysis as a metabolic branching point.
Collapse
Affiliation(s)
- Robin Teufel
- Lehrstuhl Mikrobiologie, Fakultät Biologie, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
85
|
Grishin AM, Ajamian E, Tao L, Zhang L, Menard R, Cygler M. Structural and functional studies of the Escherichia coli phenylacetyl-CoA monooxygenase complex. J Biol Chem 2011; 286:10735-43. [PMID: 21247899 DOI: 10.1074/jbc.m110.194423] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The utilization of phenylacetic acid (PA) in Escherichia coli occurs through a hybrid pathway that shows features of both aerobic and anaerobic metabolism. Oxygenation of the aromatic ring is performed by a multisubunit phenylacetyl-coenzyme A oxygenase complex that shares remote homology of two subunits to well studied bacterial multicomponent monooxygenases and was postulated to form a new bacterial multicomponent monooxygenase subfamily. We expressed the subunits PaaA, B, C, D, and E of the PA-CoA oxygenase and showed that PaaABC, PaaAC, and PaaBC form stable subcomplexes that can be purified. In vitro reconstitution of the oxygenase subunits showed that each of the PaaA, B, C, and E subunits are necessary for catalysis, whereas PaaD is not essential. We have determined the crystal structure of the PaaAC complex in a ligand-free form and with several CoA derivatives. We conclude that PaaAC forms a catalytic core with a monooxygenase fold with PaaA being the catalytic α subunit and PaaC, the structural β subunit. PaaAC forms heterotetramers that are organized very differently from other known multisubunit monooxygenases and lacks their conservative network of hydrogen bonds between the di-iron center and protein surface, suggesting different association with the reductase and different mechanisms of electron transport. The PaaA structure shows adaptation of the common access route to the active site for binding a CoA-bound substrate. The enzyme-substrate complex shows the orientation of the aromatic ring, which is poised for oxygenation at the ortho-position, in accordance with the expected chemistry. The PA-CoA oxygenase complex serves as a paradigm for the new subfamily multicomponent monooxygenases comprising several hundred homologs.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
86
|
Löffler C, Kuntze K, Vazquez JR, Rugor A, Kung JW, Böttcher A, Boll M. Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ Microbiol 2010; 13:696-709. [PMID: 21087381 DOI: 10.1111/j.1462-2920.2010.02374.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Benzoyl-coenzyme A (CoA) reductases (BCRs) are key enzymes in the anaerobic degradation of aromatic compounds and catalyse the reductive dearomatization of benzoyl-CoA to cyclohexa-1,5-dienoyl-1-carboxyl-CoA. Class I BCRs are ATP-dependent FeS enzymes, whereas class II BCRs are supposed to be ATP-independent and contain W, FeS clusters, and most probably selenocysteine. The active site components of a putative eight subunit class II BCR, BamBCDEFGHI, were recently characterized in Geobacter metallireducens. In this organism bamB was identified as structural gene for the W-containing active site subunit; bamF was predicted to code for a selenocysteine containing electron transfer subunit. In this work the occurrence and expression of BCRs in a number of anaerobic, aromatic compound degrading model microorganisms was investigated with a focus on the BamB and BamF components. Benzoate-induced class II BCR in vitro activities were determined in the soluble protein fraction in all obligately anaerobic bacteria tested. Where applicable, the results were in agreement with Western blot analysis using BamB targeting antibodies. By establishing a specific bamB targeting PCR assay, bamB homologues were identified in all tested obligately anaerobic bacteria with the capacity to degrade aromatic compounds; a number of bamB sequences from Gram-negative/positive sulfate-reducing bacteria were newly sequenced. In several organisms at least two bamB paralogues per genome were identified; however, in nearly all cases only one of them was transcribed during growth on an aromatic substrate. These benzoate-induced bamB genes are proposed to code for the active site subunit of class II BCRs; the major part of them group into a phylogenetic subcluster within the bamB homologues. Results from in silico analysis suggested that all class II BCRs contain selenocysteine in the BamF, and in many cases also in the BamE subunit. The results obtained indicate that the distribution of the two classes of BCRs in anaerobic bacteria appears to be strictly ruled by the available free energy from the oxidation of the aromatic carbon source rather than by phylogenetic relationships.
Collapse
Affiliation(s)
- Claudia Löffler
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | | | | | | | | | | | | |
Collapse
|
87
|
Elsen S, Efthymiou G, Peteinatos P, Diallinas G, Kyritsis P, Moulis JM. A bacteria-specific 2[4Fe-4S] ferredoxin is essential in Pseudomonas aeruginosa. BMC Microbiol 2010; 10:271. [PMID: 21029451 PMCID: PMC2984482 DOI: 10.1186/1471-2180-10-271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 10/28/2010] [Indexed: 11/10/2022] Open
Abstract
Background Ferredoxins are small iron-sulfur proteins belonging to all domains of life. A sub-group binds two [4Fe-4S] clusters with unequal and extremely low values of the reduction potentials. These unusual properties are associated with two specific fragments of sequence. The functional importance of the very low potential ferredoxins is unknown. Results A bioinformatic screening of the sequence features defining very low potential 2[4Fe-4S] ferredoxins has revealed the almost exclusive presence of the corresponding fdx gene in the Proteobacteria phylum, without occurrence in Archaea and Eukaryota. The transcript was found to be monocistronic in Pseudomonas aeruginosa, and not part of an operon in most bacteria. Only fdx genes of bacteria which anaerobically degrade aromatic compounds belong to operons. As this pathway is not present in all bacteria having very low potential 2[4Fe-4S] ferredoxins, these proteins cannot exclusively be reductants of benzoyl CoA reductases. Expression of the ferredoxin gene did not change in response to varying growth conditions, including upon macrophage infection or aerobic growth with 4-hydroxy benzoate as carbon source. However, it increased along the growth curve in Pseudomonas aeruginosa and in Escherichia coli. The sequence immediately 5' upstream of the coding sequence contributed to the promotor activity. Deleting the fdx gene in Pseudomonas aeruginosa abolished growth, unless a plasmid copy of the gene was provided to the deleted strain. Conclusions The gene of the very low potential 2[4Fe-4S] ferredoxin displays characteristics of a housekeeping gene, and it belongs to the minority of genes that are essential in Pseudomonas aeruginosa. These data identify a new potential antimicrobial target in this and other pathogenic Proteobacteria.
Collapse
Affiliation(s)
- Sylvie Elsen
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, iRTSV, CEA, Grenoble, France
| | | | | | | | | | | |
Collapse
|
88
|
Mallick S, Chakraborty J, Dutta TK. Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol 2010; 37:64-90. [PMID: 20846026 DOI: 10.3109/1040841x.2010.512268] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Widespread environmental pollution by polycyclic aromatic hydrocarbons (PAHs) poses an immense risk to the environment. Bacteria-mediated attenuation has a great potential for the restoration of PAH-contaminated environment in an ecologically accepted manner. Bacterial degradation of PAHs has been extensively studied and mining of biodiversity is ever expanding the biodegradative potentials with intelligent manipulation of catabolic genes and adaptive evolution to generate multiple catabolic pathways. The present review of bacterial degradation of low-molecular-weight (LMW) PAHs describes the current knowledge about the diverse metabolic pathways depicting novel metabolites, enzyme-substrate/metabolite relationships, the role of oxygenases and their distribution in phylogenetically diverse bacterial species.
Collapse
Affiliation(s)
- Somnath Mallick
- Department of Chemistry, Saldiha College, Bankura, West Bengal, India
| | | | | |
Collapse
|
89
|
Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci U S A 2010; 107:14390-5. [PMID: 20660314 DOI: 10.1073/pnas.1005399107] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aromatic compounds constitute the second most abundant class of organic substrates and environmental pollutants, a substantial part of which (e.g., phenylalanine or styrene) is metabolized by bacteria via phenylacetate. Surprisingly, the bacterial catabolism of phenylalanine and phenylacetate remained an unsolved problem. Although a phenylacetate metabolic gene cluster had been identified, the underlying biochemistry remained largely unknown. Here we elucidate the catabolic pathway functioning in 16% of all bacteria whose genome has been sequenced, including Escherichia coli and Pseudomonas putida. This strategy is exceptional in several aspects. Intermediates are processed as CoA thioesters, and the aromatic ring of phenylacetyl-CoA becomes activated to a ring 1,2-epoxide by a distinct multicomponent oxygenase. The reactive nonaromatic epoxide is isomerized to a seven-member O-heterocyclic enol ether, an oxepin. This isomerization is followed by hydrolytic ring cleavage and beta-oxidation steps, leading to acetyl-CoA and succinyl-CoA. This widespread paradigm differs significantly from the established chemistry of aerobic aromatic catabolism, thus widening our view of how organisms exploit such inert substrates. It provides insight into the natural remediation of man-made environmental contaminants such as styrene. Furthermore, this pathway occurs in various pathogens, where its reactive early intermediates may contribute to virulence.
Collapse
|
90
|
Wischgoll S, Demmer U, Warkentin E, Günther R, Boll M, Ermler U. Structural basis for promoting and preventing decarboxylation in glutaryl-coenzyme a dehydrogenases. Biochemistry 2010; 49:5350-7. [PMID: 20486657 DOI: 10.1021/bi100317m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glutaryl-coenzyme A dehydrogenases (GDHs) involved in amino acid degradation were thought to catalyze both the dehydrogenation and decarboxylation of glutaryl-coenzyme A to crotonyl-coenzyme A and CO(2). Recently, a structurally related but nondecarboxylating, glutaconyl-coenzyme A-forming GDH was characterized in the obligately anaerobic bacteria Desulfococcus multivorans (GDH(Des)) which conserves the free energy of decarboxylation by a Na(+)-pumping glutaconyl-coenzyme A decarboxylase. To understand the distinct catalytic behavior of the two GDH types on an atomic basis, we determined the crystal structure of GDH(Des) with and without glutaconyl-coenzyme A bound at 2.05 and 2.1 A resolution, respectively. The decarboxylating and nondecarboxylating capabilities are provided by complex structural changes around the glutaconyl carboxylate group, the key factor being a Tyr --> Val exchange strictly conserved between the two GDH types. As a result, the interaction between the glutaconyl carboxylate and the guanidinium group of a conserved arginine is stronger in GDH(Des) (short and planar bidentate hydrogen bond) than in the decarboxylating human GDH (longer and monodentate hydrogen bond), which is corroborated by molecular dynamics studies. The identified structural changes prevent decarboxylation (i) by strengthening the C4-C5 bond of glutaconyl-coenzyme A, (ii) by reducing the leaving group potential of CO(2), and (iii) by increasing the distance between the C4 atom (negatively charged in the dienolate transition state) and the adjacent glutamic acid.
Collapse
Affiliation(s)
- Simon Wischgoll
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
91
|
Crosby HA, Heiniger EK, Harwood CS, Escalante-Semerena JC. Reversible N epsilon-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris. Mol Microbiol 2010; 76:874-88. [PMID: 20345662 DOI: 10.1111/j.1365-2958.2010.07127.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rhodopseudomonas palustris grows photoheterotrophically on aromatic compounds available in aquatic environments rich in plant-derived lignin. Benzoate degradation is regulated at the transcriptional level in R. palustris in response to anoxia and the presence of benzoate and/or benzoyl-CoA (Bz-CoA). Here, we report evidence that anaerobic benzoate catabolism in this bacterium is also regulated at the post-translational level. In this pathway, benzoate is activated to Bz-CoA by the AMP-forming Bz-CoA synthetase (BadA) enzyme. Mass spectrometry and mutational analysis data indicate that residue Lys512 is critical to BadA activity. Acetylation of Lys512 inactivated BadA; deacetylation reactivated BadA. Likewise, 4-hydroxybenzoyl-CoA (HbaA) and cyclohexanecarboxyl-CoA (AliA) synthetases were also reversibly acetylated. We identified one acetyltransferase that modified BadA, Hba and AliA in vitro. The acetyltransferase enzyme is homologous to the protein acetyltransferase (Pat) enzyme of Salmonella enterica sv Typhimurium LT2, thus we refer to it as RpPat. RpPat also modified acetyl-CoA (Ac-CoA) synthetase (Acs) from R. palustris. In vivo data indicate that at least two deacetylases reactivate BadA(Ac). One is SrtN (encoded by srtN, formerly rpa2524), a sirtuin-type NAD(+)-dependent deacetylase (O-acetyl-ADPribose-forming); the other deacetylase is LdaA (encoded by ldaA, for lysine deacetylase A; formerly rpa0954), an acetate-forming protein deacetylase. LdaA reactivated Hba(Ac) and AliA(Ac)in vitro.
Collapse
Affiliation(s)
- Heidi A Crosby
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
92
|
Modified 3-oxoadipate pathway for the biodegradation of methylaromatics in Pseudomonas reinekei MT1. J Bacteriol 2010; 192:1543-52. [PMID: 20061479 DOI: 10.1128/jb.01208-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Catechols are central intermediates in the metabolism of aromatic compounds. Degradation of 4-methylcatechol via intradiol cleavage usually leads to the formation of 4-methylmuconolactone (4-ML) as a dead-end metabolite. Only a few microorganisms are known to mineralize 4-ML. The mml gene cluster of Pseudomonas reinekei MT1, which encodes enzymes involved in the metabolism of 4-ML, is shown here to encode 10 genes found in a 9.4-kb chromosomal region. Reverse transcription assays revealed that these genes form a single operon, where their expression is controlled by two promoters. Promoter fusion assays identified 4-methyl-3-oxoadipate as an inducer. Mineralization of 4-ML is initiated by the 4-methylmuconolactone methylisomerase encoded by mmlI. This reaction produces 3-ML and is followed by a rearrangement of the double bond catalyzed by the methylmuconolactone isomerase encoded by mmlJ. Deletion of mmlL, encoding a protein of the metallo-beta-lactamase superfamily, resulted in a loss of the capability of the strain MT1 to open the lactone ring, suggesting its function as a 4-methyl-3-oxoadipate enol-lactone hydrolase. Further metabolism can be assumed to occur by analogy with reactions known from the 3-oxoadipate pathway. mmlF and mmlG probably encode a 4-methyl-3-oxoadipyl-coenzyme A (CoA) transferase, and the mmlC gene product functions as a thiolase, transforming 4-methyl-3-oxoadipyl-CoA into methylsuccinyl-CoA and acetyl-CoA, as indicated by the accumulation of 4-methyl-3-oxoadipate in the respective deletion mutant. Accumulation of methylsuccinate by an mmlK deletion mutant indicates that the encoded acetyl-CoA hydrolase/transferase is crucial for channeling methylsuccinate into the central metabolism.
Collapse
|
93
|
|
94
|
Schmeling S, Fuchs G. Anaerobic metabolism of phenol in proteobacteria and further studies of phenylphosphate carboxylase. Arch Microbiol 2009; 191:869-78. [DOI: 10.1007/s00203-009-0519-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/01/2009] [Accepted: 10/01/2009] [Indexed: 11/28/2022]
|
95
|
Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci U S A 2009; 106:17687-92. [PMID: 19815533 DOI: 10.1073/pnas.0905073106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aromatic compounds are widely distributed in nature and can only be biomineralized by microorganisms. In anaerobic bacteria, benzoyl-CoA (BCoA) is a central intermediate of aromatic degradation, and serves as substrate for dearomatizing BCoA reductases (BCRs). In facultative anaerobes, the mechanistically difficult reduction of BCoA to cyclohexa-1,5-dienoyl-1-carboxyl-CoA (dienoyl-CoA) is driven by a stoichiometric ATP hydrolysis, catalyzed by a soluble, three [4Fe-4S] cluster-containing BCR. In this work, an in vitro assay for BCR from the obligately anaerobic Geobacter metallireducens was established. It followed the reverse reaction, the formation of BCoA from dienoyl-CoA in the presence of various electron acceptors. The benzoate-induced activity was highly specific for dienoyl-CoA (K(m) = 24 +/- 4 microM). The corresponding oxygen-sensitive enzyme was purified by several chromatographic steps with a 115-fold enrichment and a yield of 18%. The 185-kDa enzyme comprised 73- and 20-kDa subunits, suggesting an alpha(2)beta(2)-composition. MS analysis revealed the subunits as products of the benzoate-induced bamBC genes. The alphabeta unit contained 0.9 W, 15 Fe, and 12.5 acid-labile sulfur. Results from EPR spectroscopy suggest the presence of one [3Fe-4S](0/+1) and three [4Fe-4S](+1/+2) clusters per alphabeta unit; oxidized BamBC exhibited an EPR signal typical for a W(V) species. The FeS clusters and the W- cofactor could only be fully reduced by dienoyl-CoA. BamBC represents the prototype of a previously undescribed class of dearomatizing BCRs that differ completely from the ATP-dependent enzymes from facultative anaerobes.
Collapse
|
96
|
Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens. BMC Genomics 2009; 10:447. [PMID: 19772637 PMCID: PMC2755013 DOI: 10.1186/1471-2164-10-447] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 09/22/2009] [Indexed: 11/13/2022] Open
Abstract
Background Rhodoferax ferrireducens is a metabolically versatile, Fe(III)-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about R. ferrireducens, the complete genome sequence of this organism was further annotated and then the physiology of R. ferrireducens was investigated with a constraint-based, genome-scale in silico metabolic model and laboratory studies. Results The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why R. ferrireducens is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that R. ferrireducens is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress. Conclusion This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms.
Collapse
|
97
|
Heintz D, Gallien S, Wischgoll S, Ullmann AK, Schaeffer C, Kretzschmar AK, van Dorsselaer A, Boll M. Differential membrane proteome analysis reveals novel proteins involved in the degradation of aromatic compounds in Geobacter metallireducens. Mol Cell Proteomics 2009; 8:2159-69. [PMID: 19497847 DOI: 10.1074/mcp.m900061-mcp200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aromatic compounds comprise a large class of natural and man-made compounds, many of which are of considerable concern for the environment and human health. In aromatic compound-degrading anaerobic bacteria the central intermediate of aromatic catabolism, benzoyl coenzyme A, is attacked by dearomatizing benzoyl-CoA reductases (BCRs). An ATP-dependent BCR has been characterized in facultative anaerobes. In contrast, a previous analysis of the soluble proteome from the obligately anaerobic model organism Geobacter metallireducens identified genes putatively coding for a completely different dearomatizing BCR. The corresponding BamBCDEFGHI complex is predicted to comprise soluble molybdenum or tungsten, selenocysteine, and FeS cluster-containing components. To elucidate key processes involved in the degradation of aromatic compounds in obligately anaerobic bacteria, differential membrane protein abundance levels from G. metallireducens grown on benzoate and acetate were determined by the MS-based spectral counting approach. A total of 931 proteins were identified by combining one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with liquid chromatography-tandem mass spectrometry. Several membrane-associated proteins involved in the degradation of aromatic compounds were newly identified including proteins with similarities to modules of NiFe/heme b-containing and energy-converting hydrogenases, cytochrome bd oxidases, dissimilatory nitrate reductases, and a tungstate ATP-binding cassette transporter system. The transcriptional regulation of differentially expressed genes was analyzed by quantitative reverse transcription-PCR; in addition benzoate-induced in vitro activities of hydrogenase and nitrate reductase were determined. The results obtained provide novel insights into the poorly understood degradation of aromatic compounds in obligately anaerobic bacteria.
Collapse
Affiliation(s)
- Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, Université Louis-Pasteur, 67083 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Camejo A, Buchrieser C, Couvé E, Carvalho F, Reis O, Ferreira P, Sousa S, Cossart P, Cabanes D. In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog 2009; 5:e1000449. [PMID: 19478867 PMCID: PMC2679221 DOI: 10.1371/journal.ppat.1000449] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 04/27/2009] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a human intracellular pathogen able to colonize host tissues after ingestion of contaminated food, causing severe invasive infections. In order to gain a better understanding of the nature of host-pathogen interactions, we studied the L. monocytogenes genome expression during mouse infection. In the spleen of infected mice, approximately 20% of the Listeria genome is differentially expressed, essentially through gene activation, as compared to exponential growth in rich broth medium. Data presented here show that, during infection, Listeria is in an active multiplication phase, as revealed by the high expression of genes involved in replication, cell division and multiplication. In vivo bacterial growth requires increased expression of genes involved in adaptation of the bacterial metabolism and stress responses, in particular to oxidative stress. Listeria interaction with its host induces cell wall metabolism and surface expression of virulence factors. During infection, L. monocytogenes also activates subversion mechanisms of host defenses, including resistance to cationic peptides, peptidoglycan modifications and release of muramyl peptides. We show that the in vivo differential expression of the Listeria genome is coordinated by a complex regulatory network, with a central role for the PrfA-SigB interplay. In particular, L. monocytogenes up regulates in vivo the two major virulence regulators, PrfA and VirR, and their downstream effectors. Mutagenesis of in vivo induced genes allowed the identification of novel L. monocytogenes virulence factors, including an LPXTG surface protein, suggesting a role for S-layer glycoproteins and for cadmium efflux system in Listeria virulence.
Collapse
Affiliation(s)
- Ana Camejo
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
| | - Carmen Buchrieser
- Institut Pasteur, UP Biologie des Bactéries Intracellulaires and CNRS URA 2171, Paris, France
| | - Elisabeth Couvé
- Institut Pasteur, Unité Génétique des Génomes Bactériens CNRS URA 2171, Paris, France
| | - Filipe Carvalho
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
| | - Olga Reis
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
| | - Pierre Ferreira
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
| | - Sandra Sousa
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
- Inserm U604, Paris, France
- INRA USC2020, Paris, France
| | - Didier Cabanes
- IBMC - Instituto de Biologia Molecular e Celular, Group of Molecular Microbiology, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
99
|
Decarboxylating and nondecarboxylating glutaryl-coenzyme A dehydrogenases in the aromatic metabolism of obligately anaerobic bacteria. J Bacteriol 2009; 191:4401-9. [PMID: 19395484 DOI: 10.1128/jb.00205-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In anaerobic bacteria using aromatic growth substrates, glutaryl-coenzyme A (CoA) dehydrogenases (GDHs) are involved in the catabolism of the central intermediate benzoyl-CoA to three acetyl-CoAs and CO(2). In this work, we studied GDHs from the strictly anaerobic, aromatic compound-degrading organisms Geobacter metallireducens (GDH(Geo)) (Fe[III] reducing) and Desulfococcus multivorans (GDH(Des)) (sulfate reducing). GDH(Geo) was purified from cells grown on benzoate and after the heterologous expression of the benzoate-induced bamM gene. The gene coding for GDH(Des) was identified after screening of a cosmid gene library. Reverse transcription-PCR revealed that its expression was induced by benzoate; the product was heterologously expressed and isolated. Both wild-type and recombinant GDH(Geo) catalyzed the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA at similar rates. In contrast, recombinant GDH(Des) catalyzed only the dehydrogenation to glutaconyl-CoA. The latter compound was decarboxylated subsequently to crotonyl-CoA by the addition of membrane extracts from cells grown on benzoate in the presence of 20 mM NaCl. All GDH enzymes were purified as homotetramers of a 43- to 44-kDa subunit and contained 0.6 to 0.7 flavin adenine dinucleotides (FADs)/monomer. The kinetic properties for glutaryl-CoA conversion were as follows: for GDH(Geo), the K(m) was 30 +/- 2 microM and the V(max) was 3.2 +/- 0.2 micromol min(-1) mg(-1), and for GDH(Des), the K(m) was 52 +/- 5 microM and the V(max) was 11 +/- 1 micromol min(-1) mg(-1). GDH(Des) but not GDH(Geo) was inhibited by glutaconyl-CoA. Highly conserved amino acid residues that were proposed to be specifically involved in the decarboxylation of the intermediate glutaconyl-CoA were identified in GDH(Geo) but are missing in GDH(Des). The differential use of energy-yielding/energy-demanding enzymatic processes in anaerobic bacteria that degrade aromatic compounds is discussed in view of phylogenetic relationships and constraints of overall energy metabolism.
Collapse
|
100
|
Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 2009; 73:71-133. [PMID: 19258534 PMCID: PMC2650882 DOI: 10.1128/mmbr.00021-08] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.
Collapse
Affiliation(s)
- Manuel Carmona
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|