51
|
Knox A, Wang T, Shackleton M, Ameratunga M. Symptomatic brain metastases in melanoma. Exp Dermatol 2024; 33:e15075. [PMID: 38610093 DOI: 10.1111/exd.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Although clinical outcomes in metastatic melanoma have improved in recent years, the morbidity and mortality of symptomatic brain metastases remain challenging. Response rates and survival outcomes of patients with symptomatic melanoma brain metastases (MBM) are significantly inferior to patients with asymptomatic disease. This review focusses upon the specific challenges associated with the management of symptomatic MBM, discussing current treatment paradigms, obstacles to improving clinical outcomes and directions for future research.
Collapse
Affiliation(s)
- Andrea Knox
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
| | - Tim Wang
- Department of Radiation Oncology, Westmead Hospital, Sydney, Australia
| | - Mark Shackleton
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Monash University, Melbourne, Australia
| | - Malaka Ameratunga
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
52
|
Mei J, Liu X, Tian H, Chen Y, Cao Y, Zeng J, Liu Y, Chen Y, Gao Y, Yin J, Wang P. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy. Clin Transl Med 2024; 14:e1656. [PMID: 38664597 PMCID: PMC11045561 DOI: 10.1002/ctm2.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.
Collapse
Affiliation(s)
- Jie Mei
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Hui‐Xiang Tian
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
| | - Yixuan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Cao
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Jun Zeng
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Yung‐Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yaping Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Gao
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Xiangya Lung Cancer Center, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Ji‐Ye Yin
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Peng‐Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| |
Collapse
|
53
|
Ullas S, Sinclair C. Applications of Flow Cytometry in Drug Discovery and Translational Research. Int J Mol Sci 2024; 25:3851. [PMID: 38612661 PMCID: PMC11011675 DOI: 10.3390/ijms25073851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Flow cytometry is a mainstay technique in cell biology research, where it is used for phenotypic analysis of mixed cell populations. Quantitative approaches have unlocked a deeper value of flow cytometry in drug discovery research. As the number of drug modalities and druggable mechanisms increases, there is an increasing drive to identify meaningful biomarkers, evaluate the relationship between pharmacokinetics and pharmacodynamics (PK/PD), and translate these insights into the evaluation of patients enrolled in early clinical trials. In this review, we discuss emerging roles for flow cytometry in the translational setting that supports the transition and evaluation of novel compounds in the clinic.
Collapse
Affiliation(s)
| | - Charles Sinclair
- Flagship Pioneering, 140 First Street, Cambridge, MA 02141, USA;
| |
Collapse
|
54
|
Albarrán V, San Román M, Pozas J, Chamorro J, Rosero DI, Guerrero P, Calvo JC, González C, García de Quevedo C, Pérez de Aguado P, Moreno J, Cortés A, Soria A. Adoptive T cell therapy for solid tumors: current landscape and future challenges. Front Immunol 2024; 15:1352805. [PMID: 38550594 PMCID: PMC10972864 DOI: 10.3389/fimmu.2024.1352805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Adoptive cell therapy (ACT) comprises different strategies to enhance the activity of T lymphocytes and other effector cells that orchestrate the antitumor immune response, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR) gene-modified T cells, and therapy with tumor-infiltrating lymphocytes (TILs). The outstanding results of CAR-T cells in some hematologic malignancies have launched the investigation of ACT in patients with refractory solid malignancies. However, certain characteristics of solid tumors, such as their antigenic heterogeneity and immunosuppressive microenvironment, hamper the efficacy of antigen-targeted treatments. Other ACT modalities, such as TIL therapy, have emerged as promising new strategies. TIL therapy has shown safety and promising activity in certain immunogenic cancers, mainly advanced melanoma, with an exciting rationale for its combination with immune checkpoint inhibitors. However, the implementation of TIL therapy in clinical practice is hindered by several biological, logistic, and economic challenges. In this review, we aim to summarize the current knowledge, available clinical results, and potential areas of future research regarding the use of T cell therapy in patients with solid tumors.
Collapse
Affiliation(s)
- Víctor Albarrán
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - María San Román
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Javier Pozas
- Department of Medical Oncology, The Royal Marsden Hospital, London, United Kingdom
| | - Jesús Chamorro
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Diana Isabel Rosero
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Patricia Guerrero
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Juan Carlos Calvo
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Carlos González
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | | | | | - Jaime Moreno
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Alfonso Cortés
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| | - Ainara Soria
- Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain
| |
Collapse
|
55
|
Albarrán Fernández V, Ballestín Martínez P, Stoltenborg Granhøj J, Borch TH, Donia M, Marie Svane I. Biomarkers for response to TIL therapy: a comprehensive review. J Immunother Cancer 2024; 12:e008640. [PMID: 38485186 PMCID: PMC10941183 DOI: 10.1136/jitc-2023-008640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) has demonstrated durable clinical responses in patients with metastatic melanoma, substantiated by recent positive results of the first phase III trial on TIL therapy. Being a demanding and logistically complex treatment, extensive preclinical and clinical effort is required to optimize patient selection by identifying predictive biomarkers of response. This review aims to comprehensively summarize the current evidence regarding the potential impact of tumor-related factors (such as mutational burden, neoantigen load, immune infiltration, status of oncogenic driver genes, and epigenetic modifications), patient characteristics (including disease burden and location, baseline cytokines and lactate dehydrogenase serum levels, human leucocyte antigen haplotype, or prior exposure to immune checkpoint inhibitors and other anticancer therapies), phenotypic features of the transferred T cells (mainly the total cell count, CD8:CD4 ratio, ex vivo culture time, expression of exhaustion markers, costimulatory signals, antitumor reactivity, and scope of target tumor-associated antigens), and other treatment-related factors (such as lymphodepleting chemotherapy and postinfusion administration of interleukin-2).
Collapse
Affiliation(s)
- Víctor Albarrán Fernández
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Ramón y Cajal University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Pablo Ballestín Martínez
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Clínico San Carlos University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Joachim Stoltenborg Granhøj
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Troels Holz Borch
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
56
|
Kim HJ, Kim YH. Molecular Frontiers in Melanoma: Pathogenesis, Diagnosis, and Therapeutic Advances. Int J Mol Sci 2024; 25:2984. [PMID: 38474231 DOI: 10.3390/ijms25052984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma, a highly aggressive skin cancer, is characterized by rapid progression and high mortality. Recent advances in molecular pathogenesis have shed light on genetic and epigenetic changes that drive melanoma development. This review provides an overview of these developments, focusing on molecular mechanisms in melanoma genesis. It highlights how mutations, particularly in the BRAF, NRAS, c-KIT, and GNAQ/GNA11 genes, affect critical signaling pathways. The evolution of diagnostic techniques, such as genomics, transcriptomics, liquid biopsies, and molecular biomarkers for early detection and prognosis, is also discussed. The therapeutic landscape has transformed with targeted therapies and immunotherapies, improving patient outcomes. This paper examines the efficacy, challenges, and prospects of these treatments, including recent clinical trials and emerging strategies. The potential of novel treatment strategies, including neoantigen vaccines, adoptive cell transfer, microbiome interactions, and nanoparticle-based combination therapy, is explored. These advances emphasize the challenges of therapy resistance and the importance of personalized medicine. This review underlines the necessity for evidence-based therapy selection in managing the increasing global incidence of melanoma.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
57
|
Fletcher KA, Johnson DB. Investigational Approaches for Treatment of Melanoma Patients Progressing After Standard of Care. Cancer J 2024; 30:126-131. [PMID: 38527267 DOI: 10.1097/ppo.0000000000000702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT The advent of effective immunotherapy, specifically cytotoxic T-lymphocyte associated protein 4 and programmed cell death 1 inhibitors, as well as targeted therapy including BRAF/MEK inhibitors, has dramatically changed the prognosis for metastatic melanoma patients. Up to 50% of patients may experience long-term survival currently. Despite these advances in melanoma treatment, many patients still progress and die of their disease. As such, there are many studies aimed at providing new treatment options for this population. Therapies currently under investigation include, but are not limited to, novel immunotherapies, targeted therapies, tumor-infiltrating lymphocytes and other cellular therapies, oncolytic viral therapy and other injectables, and fecal microbiota transplant. In this review, we discuss the emerging treatment options for metastatic melanoma patients who have progressed on standard of care treatments.
Collapse
Affiliation(s)
| | - Douglas B Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
58
|
Los C, Klobuch S, Haanen JBAG. Tumor-Infiltrating Lymphocyte and Other Cell Therapies for Metastatic Melanoma. Cancer J 2024; 30:113-119. [PMID: 38527265 DOI: 10.1097/ppo.0000000000000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Major progress in prolonging survival of patients with advanced melanoma has been made in the past decade because of the development and approval of immune checkpoint inhibitor and targeted therapies. However, for nonresponding or relapsing patients, their prognosis is still dismal. Based on clinical trial data, treatment with adoptive cell therapies holds great promise. In patients with metastatic melanoma progressing on or nonresponsive to single-agent anti-programmed cell death 1, infusion of tumor-infiltrating lymphocytes can produce responses in up to half of patients, with durable complete responses in up to 20%. Genetic modification of peripheral blood T cells with T-cell receptors derived from tumor-specific T cells, or with chimeric antigen receptors, has the potential to further improve treatment outcomes in this refractory population. In this review, we will discuss the historical development, current status, and future perspectives of adoptive T-cell therapies in melanoma.
Collapse
Affiliation(s)
- Christy Los
- From the Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute
| | - Sebastian Klobuch
- Department of Medical Oncology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
59
|
Klobuch S, Seijkens TTP, Schumacher TN, Haanen JBAG. Tumour-infiltrating lymphocyte therapy for patients with advanced-stage melanoma. Nat Rev Clin Oncol 2024; 21:173-184. [PMID: 38191921 DOI: 10.1038/s41571-023-00848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Immunotherapy with immune-checkpoint inhibitors (ICIs) and targeted therapy with BRAF and MEK inhibitors have revolutionized the treatment of melanoma over the past decade. Despite these breakthroughs, the 5-year survival rate of patients with advanced-stage melanoma is at most 50%, emphasizing the need for additional therapeutic strategies. Adoptive cell therapy with tumour-infiltrating lymphocytes (TILs) is a therapeutic modality that has, in the past few years, demonstrated long-term clinical benefit in phase II/III trials involving patients with advanced-stage melanoma, including those with disease progression on ICIs and/or BRAF/MEK inhibitors. In this Review, we summarize the current status of TIL therapies for patients with advanced-stage melanoma, including potential upcoming marketing authorization, the characteristics of TIL therapy products, as well as future strategies that are expected to increase the efficacy of this promising cellular immunotherapy.
Collapse
Affiliation(s)
- Sebastian Klobuch
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tom T P Seijkens
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - John B A G Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands.
- Melanoma Clinic, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
60
|
Betof Warner A, Hamid O, Komanduri K, Amaria R, Butler MO, Haanen J, Nikiforow S, Puzanov I, Sarnaik A, Bishop MR, Schoenfeld AJ. Expert consensus guidelines on management and best practices for tumor-infiltrating lymphocyte cell therapy. J Immunother Cancer 2024; 12:e008735. [PMID: 38423748 PMCID: PMC11005706 DOI: 10.1136/jitc-2023-008735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Adoptive cell therapy with autologous, ex vivo-expanded, tumor-infiltrating lymphocytes (TILs) is being investigated for treatment of solid tumors and has shown robust responses in clinical trials. Based on the encouraging efficacy, tolerable safety profile, and advancements in a central manufacturing process, lifileucel is now the first US Food and Drug Administration (FDA)-approved TIL cell therapy product. To this end, treatment management and delivery practice guidance is needed to ensure successful integration of this modality into clinical care. This review includes clinical and toxicity management guidelines pertaining to the TIL cell therapy regimen prepared by the TIL Working Group, composed of internationally recognized hematologists and oncologists with expertize in TIL cell therapy, and relates to patient care and operational aspects. Expert consensus recommendations for patient management, including patient eligibility, screening tests, and clinical and toxicity management with TIL cell therapy, including tumor tissue procurement surgery, non-myeloablative lymphodepletion, TIL infusion, and IL-2 administration, are discussed in the context of potential standard of care TIL use. These recommendations provide practical guidelines for optimal clinical management during administration of the TIL cell therapy regimen, and recognition of subsequent management of toxicities. These guidelines are focused on multidisciplinary teams of physicians, nurses, and stakeholders involved in the care of these patients.
Collapse
Affiliation(s)
| | - Omid Hamid
- The Angeles Clinic and Research Institute - West Los Angeles Office, Los Angeles, California, USA
| | - Krishna Komanduri
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Rodabe Amaria
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marcus O Butler
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - John Haanen
- Medical Oncology, Antoni van Leeuwenhoek Nederlands Kanker Instituut, Amsterdam, Netherlands
| | | | - Igor Puzanov
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Roswell Park Cancer Institute
| | | | - Michael R Bishop
- The David and Etta Jonas Center for Cellular Therapy, Chicago, Illinois, USA
| | - Adam J Schoenfeld
- Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
61
|
Memon D, Schoenfeld AJ, Ye D, Fromm G, Rizvi H, Zhang X, Keddar MR, Mathew D, Yoo KJ, Qiu J, Lihm J, Miriyala J, Sauter JL, Luo J, Chow A, Bhanot UK, McCarthy C, Vanderbilt CM, Liu C, Abu-Akeel M, Plodkowski AJ, McGranahan N, Łuksza M, Greenbaum BD, Merghoub T, Achour I, Barrett JC, Stewart R, Beltrao P, Schreiber TH, Minn AJ, Miller ML, Hellmann MD. Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lung cancer. Cancer Cell 2024; 42:209-224.e9. [PMID: 38215748 PMCID: PMC11249385 DOI: 10.1016/j.ccell.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/13/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Although immunotherapy with PD-(L)1 blockade is routine for lung cancer, little is known about acquired resistance. Among 1,201 patients with non-small cell lung cancer (NSCLC) treated with PD-(L)1 blockade, acquired resistance is common, occurring in >60% of initial responders. Acquired resistance shows differential expression of inflammation and interferon (IFN) signaling. Relapsed tumors can be separated by upregulated or stable expression of IFNγ response genes. Upregulation of IFNγ response genes is associated with putative routes of resistance characterized by signatures of persistent IFN signaling, immune dysfunction, and mutations in antigen presentation genes which can be recapitulated in multiple murine models of acquired resistance to PD-(L)1 blockade after in vitro IFNγ treatment. Acquired resistance to PD-(L)1 blockade in NSCLC is associated with an ongoing, but altered IFN response. The persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired resistance may inform therapeutic strategies to effectively reprogram and reverse acquired resistance.
Collapse
Affiliation(s)
- Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK; M:M Bio Limited, 99 Park Drive, Milton, Abingdon, UK
| | - Adam J Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Darwin Ye
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Hira Rizvi
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Early Clinical Development, Oncology R&D, AstraZeneca, New York, NY, USA
| | - Xiang Zhang
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Divij Mathew
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Jingya Qiu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayon Lihm
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jennifer L Sauter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jia Luo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Chow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Umesh K Bhanot
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline McCarthy
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chad M Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cailian Liu
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Mohsen Abu-Akeel
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Andrew J Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Marta Łuksza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA; Parker Institute for Cancer Immunotherapy, MSK, New York, NY, USA; Human Oncology and Pathogenesis Program, MSK, New York, NY, USA
| | - Ikbel Achour
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - J Carl Barrett
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ross Stewart
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Pedro Beltrao
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | | | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA.
| | - Martin L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK; Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK.
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Early Clinical Development, Oncology R&D, AstraZeneca, New York, NY, USA; Parker Institute for Cancer Immunotherapy, MSK, New York, NY, USA.
| |
Collapse
|
62
|
Natarelli N, Aleman SJ, Mark IM, Tran JT, Kwak S, Botto E, Aflatooni S, Diaz MJ, Lipner SR. A Review of Current and Pipeline Drugs for Treatment of Melanoma. Pharmaceuticals (Basel) 2024; 17:214. [PMID: 38399429 PMCID: PMC10892880 DOI: 10.3390/ph17020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Malignant melanoma is the most aggressive form of skin cancer. Standard treatment options include surgery, radiation therapy, systemic chemotherapy, targeted therapy, and immunotherapy. Combining these modalities often yields better responses. Surgery is suitable for localized cases, sometimes involving lymph node dissection and biopsy, to assess the spread of the disease. Radiation therapy may be sometimes used as a standalone treatment or following surgical excision. Systemic chemotherapy, while having low response rates, is utilized as part of combination treatments or when other methods fail. The development of resistance to systemic chemotherapies and associated side effects have prompted further research and clinical trials for novel approaches. In the case of advanced-stage melanoma, a comprehensive approach may be necessary, incorporating targeted therapies and immunotherapies that demonstrate significant antitumor activity. Targeted therapies, including inhibitors targeting BRAF, MEK, c-KIT, and NRAS, are designed to block the specific molecules responsible for tumor growth. These therapies show promise, particularly in patients with corresponding mutations. Combination therapy, including BRAF and MEK inhibitors, has been evidenced to improve progression-free survival; however, concerns about resistance and cutaneous toxicities highlight the need for close monitoring. Immunotherapies, leveraging tumor-infiltrating lymphocytes and CAR T cells, enhance immune responses. Lifileucel, an FDA-approved tumor-infiltrating lymphocyte therapy, has demonstrated improved response rates in advanced-stage melanoma. Ongoing trials continue to explore the efficacy of CAR T-cell therapy for advanced melanoma. Checkpoint inhibitors targeting CTLA-4 and PD-1 have enhanced outcomes. Emerging IL-2 therapies boost dendritic cells, enhancing anticancer immunity. Oncolytic virus therapy, approved for advanced melanoma, augments treatment efficacy in combination approaches. While immunotherapy has significantly advanced melanoma treatment, its success varies, prompting research into new drugs and factors influencing outcomes. This review provides insights into current melanoma treatments and recent therapeutic advances.
Collapse
Affiliation(s)
- Nicole Natarelli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Sarah J. Aleman
- School of Medicine, Louisiana State University, New Orleans, LA 70112, USA
| | - Isabella M. Mark
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jasmine T. Tran
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Sean Kwak
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Elizabeth Botto
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Shaliz Aflatooni
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Michael J. Diaz
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Shari R. Lipner
- Department of Dermatology, Weill Cornell Medicine, New York City, NY 10021, USA
| |
Collapse
|
63
|
Barras D, Ghisoni E, Chiffelle J, Orcurto A, Dagher J, Fahr N, Benedetti F, Crespo I, Grimm AJ, Morotti M, Zimmermann S, Duran R, Imbimbo M, de Olza MO, Navarro B, Homicsko K, Bobisse S, Labes D, Tsourti Z, Andriakopoulou C, Herrera F, Pétremand R, Dummer R, Berthod G, Kraemer AI, Huber F, Thevenet J, Bassani-Sternberg M, Schaefer N, Prior JO, Matter M, Aedo V, Dromain C, Corria-Osorio J, Tissot S, Kandalaft LE, Gottardo R, Pittet M, Sempoux C, Michielin O, Dafni U, Trueb L, Harari A, Laniti DD, Coukos G. Response to tumor-infiltrating lymphocyte adoptive therapy is associated with preexisting CD8 + T-myeloid cell networks in melanoma. Sci Immunol 2024; 9:eadg7995. [PMID: 38306416 DOI: 10.1126/sciimmunol.adg7995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
Adoptive cell therapy (ACT) using ex vivo-expanded tumor-infiltrating lymphocytes (TILs) can eliminate or shrink metastatic melanoma, but its long-term efficacy remains limited to a fraction of patients. Using longitudinal samples from 13 patients with metastatic melanoma treated with TIL-ACT in a phase 1 clinical study, we interrogated cellular states within the tumor microenvironment (TME) and their interactions. We performed bulk and single-cell RNA sequencing, whole-exome sequencing, and spatial proteomic analyses in pre- and post-ACT tumor tissues, finding that ACT responders exhibited higher basal tumor cell-intrinsic immunogenicity and mutational burden. Compared with nonresponders, CD8+ TILs exhibited increased cytotoxicity, exhaustion, and costimulation, whereas myeloid cells had increased type I interferon signaling in responders. Cell-cell interaction prediction analyses corroborated by spatial neighborhood analyses revealed that responders had rich baseline intratumoral and stromal tumor-reactive T cell networks with activated myeloid populations. Successful TIL-ACT therapy further reprogrammed the myeloid compartment and increased TIL-myeloid networks. Our systematic target discovery study identifies potential T-myeloid cell network-based biomarkers that could improve patient selection and guide the design of ACT clinical trials.
Collapse
Affiliation(s)
- David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Eleonora Ghisoni
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Angela Orcurto
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Julien Dagher
- Unit of Translational Oncopathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Noémie Fahr
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
| | - Alizée J Grimm
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
| | - Stefan Zimmermann
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Rafael Duran
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Martina Imbimbo
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Maria Ochoa de Olza
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Blanca Navarro
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Krisztian Homicsko
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Danny Labes
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, Epalinges, Switzerland
| | - Zoe Tsourti
- Scientific Research Consulting Hellas, Athens, Greece
| | | | - Fernanda Herrera
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Service of Radiation Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Rémy Pétremand
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Gregoire Berthod
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anne I Kraemer
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Jonathan Thevenet
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Department of Oncology, Center of Experimental Therapeutics, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Maurice Matter
- Department of Visceral Surgery, Lausanne University Hospital, and University of Lausanne, Lausannne, Switzerland
| | - Veronica Aedo
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Clarisse Dromain
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jesus Corria-Osorio
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Stéphanie Tissot
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Department of Oncology, Center of Experimental Therapeutics, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Department of Oncology, Center of Experimental Therapeutics, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Raphael Gottardo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Biomedical Data Science Center and Swiss Institute of Bioinformatics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mikaël Pittet
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Christine Sempoux
- Unit of Translational Oncopathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Michielin
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Urania Dafni
- Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - Lionel Trueb
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Service of Immuno-oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
64
|
Amaria R, Knisely A, Vining D, Kopetz S, Overman MJ, Javle M, Antonoff MB, Tzeng CWD, Wolff RA, Pant S, Lito K, Rangel K, Fellman B, Yuan Y, Lu KH, Sakellariou-Thompson D, Haymaker CL, Forget MA, Hwu P, Bernatchez C, Jazaeri AA. Efficacy and safety of autologous tumor-infiltrating lymphocytes in recurrent or refractory ovarian cancer, colorectal cancer, and pancreatic ductal adenocarcinoma. J Immunother Cancer 2024; 12:e006822. [PMID: 38309721 PMCID: PMC10840042 DOI: 10.1136/jitc-2023-006822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocyte (TIL) therapy has shown efficacy in metastatic melanoma, non-small cell lung cancer, and other solid tumors. Our preclinical work demonstrated more robust CD8 predominant TIL production when agonistic anti-4-1BB and CD3 antibodies were used in early ex vivo TIL culture. METHODS Patients with treatment-refractory metastatic colorectal (CRC), pancreatic (PDAC) and ovarian (OVCA) cancers were eligible. Lymphodepleting chemotherapy was followed by infusion of ex vivo expanded TIL, manufactured at MD Anderson Cancer Center with IL-2 and agonistic stimulation of CD3 and 4-1BB (urelumab). Patients received up to six doses of high-dose IL-2 after TIL infusion. Primary endpoint was evaluation of objective response rate at 12 weeks using Response Evaluation Criteria in Solid Tumors version 1.1 with secondary endpoints including disease control rate (DCR), duration of response, progression-free survival (PFS), overall survival (OS), and safety. RESULTS 17 patients underwent TIL harvest and 16 were treated on protocol (NCT03610490), including 8 CRC, 5 PDAC, and 3 OVCA patients. Median age was 57.5 (range 33-70) and 50% were females. Median number of lines of prior therapy was 2 (range 1-8). No responses were observed at 12 weeks. Ten subjects achieved at least one stable disease (SD) assessment for a DCR of 62.5% (95% CI 35.4% to 84.8%). Best response included prolonged SD in a patient with PDAC lasting 17 months. Median PFS and OS across cohorts were 2.53 months (95% CI 1.54 to 4.11) and 18.86 months (95% CI 4.86 to NR), respectively. Grade 3 or higher toxicities attributable to therapy were seen in 14 subjects (87.5%; 95% CI 61.7% to 98.4%). Infusion product analysis showed the presence of effector memory cells with high expression of CD39 irrespective of tumor type and low expression of checkpoint markers. CONCLUSIONS TIL manufactured with assistance of 4-1BB and CD3 agonism is feasible and treatment is associated with no new safety signals. While no responses were observed, a significant portion of patients achieved SD suggesting early/partial immunological effect. Further research is required to identify factors associated with resistance and functionally enhance T cells for a more effective therapy.
Collapse
Affiliation(s)
- Rodabe Amaria
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anne Knisely
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Vining
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kathryn Lito
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly Rangel
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bryan Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Cara L Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marie-Andrée Forget
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Chantale Bernatchez
- SVP Discovery & Platforms, Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
65
|
Weiss SA, Sznol M, Shaheen M, Berciano-Guerrero MÁ, Couselo EM, Rodríguez-Abreu D, Boni V, Schuchter LM, Gonzalez-Cao M, Arance A, Wei W, Ganti AK, Hauke RJ, Berrocal A, Iannotti NO, Hsu FJ, Kluger HM. A Phase II Trial of the CD40 Agonistic Antibody Sotigalimab (APX005M) in Combination with Nivolumab in Subjects with Metastatic Melanoma with Confirmed Disease Progression on Anti-PD-1 Therapy. Clin Cancer Res 2024; 30:74-81. [PMID: 37535056 PMCID: PMC10767304 DOI: 10.1158/1078-0432.ccr-23-0475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Disease progression during or after anti-PD-1-based treatment is common in advanced melanoma. Sotigalimab is a CD40 agonist antibody with a unique epitope specificity and Fc receptor binding profile optimized for activation of CD40-expressing antigen-presenting cells. Preclinical data indicated that CD40 agonists combined with anti-PD1 could overcome resistance to anti-PD-1. PATIENTS AND METHODS We conducted a multicenter, open-label, phase II trial to evaluate the combination of sotigalimab 0.3 mg/kg and nivolumab 360 mg every 3 weeks in patients with advanced melanoma following confirmed disease progression on a PD-1 inhibitor. The primary objective was to determine the objective response rate (ORR). RESULTS Thirty-eight subjects were enrolled and evaluable for safety. Thirty-three were evaluable for activity. Five confirmed partial responses (PR) were observed for an ORR of 15%. Two PRs are ongoing at 45.9+ and 26+ months, whereas the other three responders relapsed at 41.1, 18.7, and 18.4 months. The median duration of response was at least 26 months. Two additional patients had stable disease for >6 months. Thirty-four patients (89%) experienced at least one adverse event (AE), and 13% experienced a grade 3 AE related to sotigalimab. The most common AEs were pyrexia, chills, nausea, fatigue, pruritus, elevated liver function, rash, vomiting, headache, arthralgia, asthenia, myalgia, and diarrhea. There were no treatment-related SAEs, deaths, or discontinuation of sotigalimab due to AEs. CONCLUSIONS Sotigalimab plus nivolumab had a favorable safety profile consistent with the toxicity profiles of each agent. The combination resulted in durable and prolonged responses in a subset of patients with anti-PD-1-resistant melanoma, warranting further evaluation in this setting. See related commentary by Wu and Luke, p. 9.
Collapse
Affiliation(s)
- Sarah A. Weiss
- Yale University School of Medicine, New Haven, Connecticut
| | - Mario Sznol
- Yale University School of Medicine, New Haven, Connecticut
| | | | - Miguel-Ángel Berciano-Guerrero
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | | | - Valentina Boni
- START Madrid-CIOCC, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Lynn M. Schuchter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria Gonzalez-Cao
- Instituto Oncológico, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Ana Arance
- Hospital Clínic Barcelona, Barcelona, Spain
| | - Wei Wei
- Yale University School of Medicine, New Haven, Connecticut
| | - Apar Kishor Ganti
- VA Nebraska Western Iowa Healthcare System and University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | | |
Collapse
|
66
|
Wang Y, Bergman DR, Trujillo E, Pearson AT, Sweis RF, Jackson TL. Mathematical model predicts tumor control patterns induced by fast and slow cytotoxic T lymphocyte killing mechanisms. Sci Rep 2023; 13:22541. [PMID: 38110479 PMCID: PMC10728095 DOI: 10.1038/s41598-023-49467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Immunotherapy has dramatically transformed the cancer treatment landscape largely due to the efficacy of immune checkpoint inhibitors (ICIs). Although ICIs have shown promising results for many patients, the low response rates in many cancers highlight the ongoing challenges in cancer treatment. Cytotoxic T lymphocytes (CTLs) execute their cell-killing function via two distinct mechanisms: a fast-acting, perforin-mediated process and a slower, Fas ligand (FasL)-driven pathway. Evidence also suggests that the preferred killing mechanism of CTLs depends on the antigenicity of tumor cells. To determine the critical factors affecting responses to ICIs, we construct an ordinary differential equation model describing in vivo tumor-immune dynamics in the presence of active or blocked PD-1/PD-L1 immune checkpoint. Specifically, we identify important aspects of the tumor-immune landscape that affect tumor size and composition in the short and long term. We also generate a virtual cohort of mice with diverse tumor and immune attributes to simulate the outcomes of immune checkpoint blockade in a heterogeneous population. By identifying key tumor and immune characteristics associated with tumor elimination, dormancy, and escape, we predict which fraction of a population potentially responds well to ICIs and ways to enhance therapeutic outcomes with combination therapy.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel R Bergman
- Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Erica Trujillo
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | - Randy F Sweis
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Trachette L Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
67
|
Schlabach MR, Lin S, Collester ZR, Wrocklage C, Shenker S, Calnan C, Xu T, Gannon HS, Williams LJ, Thompson F, Dunbar PR, LaMothe RA, Garrett TE, Colletti N, Hohmann AF, Tubo NJ, Bullock CP, Le Mercier I, Sofjan K, Merkin JJ, Keegan S, Kryukov GV, Dugopolski C, Stegmeier F, Wong K, Sharp FA, Cadzow L, Benson MJ. Rational design of a SOCS1-edited tumor-infiltrating lymphocyte therapy using CRISPR/Cas9 screens. J Clin Invest 2023; 133:e163096. [PMID: 38099496 PMCID: PMC10721144 DOI: 10.1172/jci163096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
Cell therapies such as tumor-infiltrating lymphocyte (TIL) therapy have shown promise in the treatment of patients with refractory solid tumors, with improvement in response rates and durability of responses nevertheless sought. To identify targets capable of enhancing the antitumor activity of T cell therapies, large-scale in vitro and in vivo clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screens were performed, with the SOCS1 gene identified as a top T cell-enhancing target. In murine CD8+ T cell-therapy models, SOCS1 served as a critical checkpoint in restraining the accumulation of central memory T cells in lymphoid organs as well as intermediate (Texint) and effector (Texeff) exhausted T cell subsets derived from progenitor exhausted T cells (Texprog) in tumors. A comprehensive CRISPR tiling screen of the SOCS1-coding region identified sgRNAs targeting the SH2 domain of SOCS1 as the most potent, with an sgRNA with minimal off-target cut sites used to manufacture KSQ-001, an engineered TIL therapy with SOCS1 inactivated by CRISPR/Cas9. KSQ-001 possessed increased responsiveness to cytokine signals and enhanced in vivo antitumor function in mouse models. These data demonstrate the use of CRISPR/Cas9 screens in the rational design of T cell therapies.
Collapse
|
68
|
de Oliveira Filho RS, de Oliveira DA, Nisimoto MM, Marti LC. A Review of Advanced Cutaneous Melanoma Therapies and Their Mechanisms, from Immunotherapies to Lysine Histone Methyl Transferase Inhibitors. Cancers (Basel) 2023; 15:5751. [PMID: 38136297 PMCID: PMC10741407 DOI: 10.3390/cancers15245751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced cutaneous melanoma is considered to be the most aggressive type of skin cancer and has variable rates of treatment response. Currently, there are some classes of immunotherapy and target therapies for its treatment. Immunotherapy can inhibit tumor growth and its recurrence by triggering the host's immune system, whereas targeted therapy inhibits specific molecules or signaling pathways. However, melanoma responses to these treatments are highly heterogeneous, and patients can develop resistance. Epigenomics (DNA/histone modifications) contribute to cancer initiation and progression. Epigenetic alterations are divided into four levels of gene expression regulation: DNA methylation, histone modification, chromatin remodeling, and non-coding RNA regulation. Deregulation of lysine methyltransferase enzymes is associated with tumor initiation, invasion, development of metastases, changes in the immune microenvironment, and drug resistance. The study of lysine histone methyltransferase (KMT) and nicotinamide N-methyltransferase (NNMT) inhibitors is important for understanding cancer epigenetic mechanisms and biological processes. In addition to immunotherapy and target therapy, the research and development of KMT and NNMT inhibitors is ongoing. Many studies are exploring the therapeutic implications and possible side effects of these compounds, in addition to their adjuvant potential to the approved current therapies. Importantly, as with any drug development, safety, efficacy, and specificity are crucial considerations when developing methyltransferase inhibitors for clinical applications. Thus, this review article presents the recently available therapies and those in development for advanced cutaneous melanoma therapy.
Collapse
Affiliation(s)
- Renato Santos de Oliveira Filho
- Department of Plastic Surgery, Escola Paulista de Medicina–Universidade Federal de São Paulo–EPM-UNIFESP, São Paulo 04023-062, SP, Brazil
| | - Daniel Arcuschin de Oliveira
- Department of Plastic Surgery, Universidade Federal de São Paulo–UNIFESP-Skin Cancer and Melanoma Fellow, São Paulo 04023-900, SP, Brazil;
| | | | - Luciana Cavalheiro Marti
- Experimental Research Department, Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
69
|
Dallmann J, Freitag J, Jung C, Khinvasara K, Merz L, Peters D, Schork M, Beck J. CIMT 2023: report on the 20th Annual Meeting of the Association for Cancer Immunotherapy. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 20:100397. [PMID: 37876518 PMCID: PMC10590812 DOI: 10.1016/j.iotech.2023.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The Association for Cancer Immunotherapy (CIMT) celebrated the 20th anniversary of the CIMT Annual Meeting. CIMT2023 was held 3-5 May 2023 in Mainz, Germany. 1051 academic and clinical professionals from over 30 countries attended the meeting and discussed the latest advances in cancer immunology and immunotherapy research. This report summarizes the highlights of CIMT2023.
Collapse
Affiliation(s)
- J. Dallmann
- Immunotherapies & Preclinical Research, BioNTech SE, Mainz
| | - J. Freitag
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - C. Jung
- BioNTech Cell & Gene Therapies GmbH, Mainz
| | - K. Khinvasara
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - L. Merz
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - D. Peters
- Immunotherapies & Preclinical Research, BioNTech SE, Mainz
| | - M. Schork
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - J.D. Beck
- Immunotherapies & Preclinical Research, BioNTech SE, Mainz
| |
Collapse
|
70
|
Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov 2023; 22:996-1017. [PMID: 37891435 PMCID: PMC10947610 DOI: 10.1038/s41573-023-00809-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA.
| | - Smita S Chandran
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, ID, USA
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, ID, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Achilles Therapeutics, London, UK
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
71
|
Piroozkhah M, Gholinezhad Y, Piroozkhah M, Shams E, Nazemalhosseini-Mojarad E. The molecular mechanism of actions and clinical utilities of tumor infiltrating lymphocytes in gastrointestinal cancers: a comprehensive review and future prospects toward personalized medicine. Front Immunol 2023; 14:1298891. [PMID: 38077386 PMCID: PMC10704251 DOI: 10.3389/fimmu.2023.1298891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal (GI) cancers remain a significant global health burden, accounting for a substantial number of cases and deaths. Regrettably, the inadequacy of dependable biomarkers hinders the precise forecasting of patient prognosis and the selection of appropriate therapeutic sequencing for individuals with GI cancers, leading to suboptimal outcomes for numerous patients. The intricate interplay between tumor-infiltrating lymphocytes (TILs) and the tumor immune microenvironment (TIME) has been shown to be a pivotal determinant of response to anti-cancer therapy and consequential clinical outcomes across a multitude of cancer types. Therefore, the assessment of TILs has garnered global interest as a promising prognostic biomarker in oncology, with the potential to improve clinical decision-making substantially. Moreover, recent discoveries in immunotherapy have progressively changed the landscape of cancer treatment and significantly prolonged the survival of patients with advanced cancers. Nonetheless, the response rate remains constrained within solid tumor sufferers, even when TIL landscapes appear comparable, which calls for the development of our understanding of cellular and molecular cross-talk between TIME and tumor. Hence, this comprehensive review encapsulates the extant literature elucidating the TILs' underlying molecular pathogenesis, prognostic significance, and their relevance in the realm of immunotherapy for patients afflicted by GI tract cancers. Within this review, we demonstrate that the type, density, and spatial distribution of distinct TIL subpopulations carries pivotal implications for the prediction of anti-cancer treatment responses and patient survival. Furthermore, this review underscores the indispensable role of TILs in modulating therapeutic responses within distinct molecular subtypes, such as those characterized by microsatellite stability or programmed cell death ligand-1 expression in GI tract cancers. The review concludes by outlining future directions in TIL-based personalized medicine, including integrating TIL-based approaches into existing treatment regimens and developing novel therapeutic strategies that exploit the unique properties of TILs and their potential as a promising avenue for personalized cancer treatment.
Collapse
Affiliation(s)
- Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobin Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
72
|
Choi W, Lee Y, Choi BK, Park BM, Kim YH, Yun T, Lee WJ, Yoo H, Baek JY, Woo SM, Lim MC, Kwon BS. Phase 1 trial of 4-1BB-based adoptive T-cell therapy targeting human telomerase reverse transcriptase in patients with advanced refractory solid tumors. Cytotherapy 2023; 25:1236-1241. [PMID: 37632518 DOI: 10.1016/j.jcyt.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND AIMS Human telomerase reverse transcriptase (hTERT) is an attractive target for anti-cancer therapies. We developed an effective method for generating hTERT-specific CD8+ T cells (hTERT-induced natural T cells [TERTiNTs]) using peripheral blood mononuclear cells (PBMCs) from patients with solid cancers and investigated their feasibility and safety. METHODS This was a single-center phase 1 trial using a 3 + 3 dose escalation design to evaluate six dose levels of TERTiNTs. PBMCs from each patient were screened using an hTERT peptide panel to select those that stimulated CD8+ T cells. The four most stimulatory peptides were used to produce autologous CD8+ T cells from patients refractory or intolerant to standard therapies. Eligible patients received a single intravenous infusion of TERTiNTs at different dose levels (4 × 108 cells/m2, 8 × 108 cells/m2 and 16 × 108 cells/m2). Pre-conditioning chemotherapy, including cyclophosphamide alone or in combination with fludarabine, was administered to induce lymphodepletion. RESULTS From January 2014 to October 2019, a total of 24 patients with a median of three prior lines of therapy were enrolled. The most common adverse events were lymphopenia (79.2%), nausea (58.3%) and neutropenia (54.2%), mostly caused by pre-conditioning chemotherapy. The TERTiNT infusion was well tolerated, and dose-limiting toxicities were not observed. None of the patients showed objective responses. Seven patients (30.4%) achieved stable disease with a median progression-free survival of 3.9 months (range, 3.2-11.3). At the highest dose level (16 × 108 cells/m2), four of five patients showed disease stabilization. CONCLUSIONS The generation of TERTiNTs was feasible and safe and provided an interesting disease control rate in heavily pre-treated cancer patients.
Collapse
Affiliation(s)
- Wonyoung Choi
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Rare Cancers, National Cancer Center, Goyang, Republic of Korea
| | - Youngjoo Lee
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Beom K Choi
- Immuno-Oncology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Bo-Mi Park
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Young H Kim
- Eutilex Institute for Biomedical Research, Eutilex Co, Ltd, Seoul, Republic of Korea
| | - Tak Yun
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Rare Cancers, National Cancer Center, Goyang, Republic of Korea
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Heon Yoo
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Ji Yeon Baek
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Colorectal Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Myeong Cheol Lim
- Center for Gynecologic Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Byoung S Kwon
- Eutilex Institute for Biomedical Research, Eutilex Co, Ltd, Seoul, Republic of Korea.
| |
Collapse
|
73
|
van den Bulk J, Verdegaal EM, van der Ploeg M, Visser M, Nunes JB, de Ru AH, Tjokrodirijo RT, Ijsselsteijn ME, Janssen NI, van der Breggen R, de Bruin L, de Kok P, Janssen GM, Ruano D, Kapiteijn EH, van Veelen PA, de Miranda NF, van der Burg SH. Neoantigen Targetability in Progressive Advanced Melanoma. Clin Cancer Res 2023; 29:4278-4288. [PMID: 37540567 PMCID: PMC10570682 DOI: 10.1158/1078-0432.ccr-23-1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE The availability of (neo)antigens and the infiltration of tumors by (neo)antigen-specific T cells are crucial factors in cancer immunotherapy. In this study, we aimed to investigate the targetability of (neo)antigens in advanced progessive melanoma and explore the potential for continued T-cell-based immunotherapy. EXPERIMENTAL DESIGN We examined a cohort of eight patients with melanoma who had sequential metastases resected at early and later time points. Antigen-presenting capacity was assessed using IHC and flow cytometry. T-cell infiltration was quantified through multiplex immunofluorescence. Whole-exome and RNA sequencing were conducted to identify neoantigens and assess the expression of neoantigens and tumor-associated antigens. Mass spectrometry was used to evaluate antigen presentation. Tumor recognition by autologous T cells was assessed by coculture assays with cell lines derived from the metastatic lesions. RESULTS We observed similar T-cell infiltration in paired early and later metastatic (LM) lesions. Although elements of the antigen-presenting machinery were affected in some LM lesions, both the early and later metastasis-derived cell lines were recognized by autologous T cells. At the genomic level, the (neo)antigen landscape was dynamic, but the (neo)antigen load was stable between paired lesions. CONCLUSIONS Our findings indicate that subsequently isolated tumors from patients with late-stage melanoma retain sufficient antigen-presenting capacity, T-cell infiltration, and a stable (neo)antigen load, allowing recognition of tumor cells by T cells. This indicates a continuous availability of T-cell targets in metastases occurring at different time points and supports further exploration of (neo)antigen-specific T-cell-based therapeutic approaches for advanced melanoma.
Collapse
Affiliation(s)
- Jitske van den Bulk
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Els M.E. Verdegaal
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Manon van der Ploeg
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marten Visser
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Joana B. Nunes
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnoud H. de Ru
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Rayman T.N. Tjokrodirijo
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Natasja I. Janssen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ruud van der Breggen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda de Bruin
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Pita de Kok
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - George M.C. Janssen
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen H.W. Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A. van Veelen
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Sjoerd H. van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
74
|
Betof Warner A, Luke JJ. CD4+ TIL to the Rescue of Anti-PD-1 Failure by Targeting MHC-II. Clin Cancer Res 2023; 29:3829-3831. [PMID: 37534980 PMCID: PMC10592266 DOI: 10.1158/1078-0432.ccr-23-1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
In this CCR Translations, we discuss the potential for tumor-infiltrating lymphocyte therapy to overcome immune checkpoint inhibitor resistance through CD4+-mediated and MHC-II-dependent killing. Validating these results from human tumors has potential to improve the clinical application of adoptive cellular transfer in advanced cancers. See related article by Draghi et al., p. 3937.
Collapse
Affiliation(s)
| | - Jason J. Luke
- UPMC Hillman Cancer Center and the University of Pittsburgh Dept. of Medicine
| |
Collapse
|
75
|
Kanate AS, Majhail N, DeFilipp Z, Dhakal B, Dholaria B, Hamilton B, Herrera AF, Inamoto Y, Jain T, Perales MA, Carpenter PA, Hamadani M. Updated Indications for Immune Effector Cell Therapy: 2023 Guidelines from the American Society for Transplantation and Cellular Therapy. Transplant Cell Ther 2023; 29:594-597. [PMID: 37422194 DOI: 10.1016/j.jtct.2023.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The American Society for Transplantation and Cellular Therapy (ASTCT) published its guidelines on indications for autologous and allogeneic hematopoietic cell transplantation (HCT) and immune effector cell therapy (IECT) in 2020. Since then, we have witnessed rapid advancements in the field of IECT, resulting in several new chimeric antigen receptor T cell (CAR-T) products and disease indications being approved by the US Food and Drug Administration (FDA). To keep abreast of these practice changes, the ASTCT Committee on Practice Guidelines commissioned a focused update covering CAR-T therapy indications. Here we present updated ASTCT recommendations on indications for CAR-T therapy. Only FDA-approved indications for CAR-T were recommended and categorized as "standard of care," where the indication is well defined and supported by evidence. The ASTCT will continue to periodically review these guidelines and update them as new evidence becomes available.
Collapse
Affiliation(s)
| | - Navneet Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, Tennessee
| | - Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Binod Dhakal
- BMT & Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bhagirathbhai Dholaria
- Department of Hematology- Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Betty Hamilton
- Blood and Marrow Transplant Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alex F Herrera
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California
| | - Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, Washington
| | - Mehdi Hamadani
- BMT & Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
76
|
Davis L, Miller RE, Wong YNS. The Landscape of Adoptive Cellular Therapies in Ovarian Cancer. Cancers (Basel) 2023; 15:4814. [PMID: 37835509 PMCID: PMC10571827 DOI: 10.3390/cancers15194814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Ovarian cancers are typically poorly immunogenic and have demonstrated disappointing responses to immune checkpoint inhibitor (ICI) therapy. Adoptive cellular therapy (ACT) offers an alternative method of harnessing the immune system that has shown promise, especially with the success of chimeric antigen receptor T-cell (CAR-T) therapy in haematologic malignancies. So far, ACT has led to modest results in the treatment of solid organ malignancies. This review explores the possibility of ACT as an effective alternative or additional treatment to current standards of care in ovarian cancer. We will highlight the potential of ACTs, such as CAR-T, T-cell receptor therapy (TCR-T), tumour-infiltrating lymphocytes (TILs) and cell-based vaccines, whilst also discussing their challenges. We will present clinical studies for these approaches in the treatment of immunologically 'cold' ovarian cancer and consider the rationale for future research.
Collapse
Affiliation(s)
- Lucy Davis
- Royal Free Hospital, London NW3 2QG, UK;
| | - Rowan E Miller
- Department of Medical Oncology, University College London Hospital, London NW1 3PG, UK;
- Department of Medical Oncology, St Bartholomew’s Hospital, London EC1A 7BE, UK
| | - Yien Ning Sophia Wong
- Royal Free Hospital, London NW3 2QG, UK;
- Department of Medical Oncology, University College London Hospital, London NW1 3PG, UK;
| |
Collapse
|
77
|
Laddha K, Sobhia ME. Breaking the 'don't eat me' signal: in silico design of CD47-directed peptides for cancer immunotherapy. Mol Divers 2023:10.1007/s11030-023-10732-5. [PMID: 37759140 DOI: 10.1007/s11030-023-10732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
The leading cause of death worldwide is cancer. Although there are various therapies available to treat cancer, finding a successful one can be like searching for a needle in a haystack. Immunotherapy appears to be one of those needles in the haystack of cancer treatment. Immunotherapeutic agents enhance the immune response of the patient's body to tumor cells. One of the immunotherapeutic targets, Cluster of Differentiation 47 (CD47), releases the "don't eat me" signal when it binds to its receptor, Signal Regulatory Protein (SIRPα). Tumor cells use this signal to circumvent the immune system, rendering it ineffective. To stop tumor cells from releasing the "don't eat me" signal, the CD47-SIRPα interaction is specifically targeted in this study. To do so, in silico peptides were designed based on the structural analysis of the interaction between two proteins using point mutations on the interacting residues with the other amino acids. The peptide library was designed and docked on SIRPα using computational tools. Later on, after analyzing the docked complex, the best of them was selected for MD simulation studies of 100 ns. Further analysis after MD studies was carried out to determine the possible potential anti-SIRPα peptides.
Collapse
Affiliation(s)
- Kapil Laddha
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, 160062, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
78
|
Liu L, Wu M, Huang A, Gao C, Yang Y, Liu H, Jiang H, Yu L, Huang Y, Wang H. Establishment of a high-fidelity patient-derived xenograft model for cervical cancer enables the evaluation of patient's response to conventional and novel therapies. J Transl Med 2023; 21:611. [PMID: 37689699 PMCID: PMC10492358 DOI: 10.1186/s12967-023-04444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Recurrent or metastatic cervical cancer (r/m CC) often has poor prognosis owing to its limited treatment options. The development of novel therapeutic strategies has been hindered by the lack of preclinical models that accurately reflect the biological and genomic heterogeneity of cervical cancer (CC). Herein, we aimed to establish a large patient-derived xenograft (PDX) biobank for CC, evaluate the consistency of the biologic indicators between PDX and primary tumor tissues of patients, and explore its utility for assessing patient's response to conventional and novel therapies. METHODS Sixty-nine fresh CC tumor tissues were implanted directly into immunodeficient mice to establish PDX models. The concordance of the PDX models with their corresponding primary tumors (PTs) was compared based on the clinical pathological features, protein biomarker levels, and genomic features through hematoxylin & eosin staining, immunohistochemistry, and whole exome sequencing, respectively. Moreover, the clinical information of CC patients, RNA transcriptome and immune phenotyping of primary tumors were integrated to identify the potential parameters that could affect the success of xenograft engraftment. Subsequently, PDX model was evaluated for its capacity to mirror patient's response to chemotherapy. Finally, PDX model and PDX-derived organoid (PDXO) were utilized to evaluate the therapeutic efficacy of neratinib and adoptive cell therapy (ACT) combination strategy for CC patients with human epidermal growth factor receptor 2 (HER2) mutation. RESULTS We established a PDX biobank for CC with a success rate of 63.8% (44/69). The primary features of established PDX tumors, including clinicopathological features, the expression levels of protein biomarkers including Ki67, α-smooth muscle actin, and p16, and genomics, were highly consistent with their PTs. Furthermore, xenograft engraftment was likely influenced by the primary tumor size, the presence of follicular helper T cells and the expression of cell adhesion-related genes in primary tumor tissue. The CC derived PDX models were capable of recapitulating the patient's response to chemotherapy. In a PDX model, a novel therapeutic strategy, the combination of ACT and neratinib, was shown to effectively inhibit the growth of PDX tumors derived from CC patients with HER2-mutation. CONCLUSIONS We established by far the largest PDX biobank with a high engraftment rate for CC that preserves the histopathological and genetic characteristics of patient's biopsy samples, recapitulates patient's response to conventional therapy, and is capable of evaluating the efficacy of novel therapeutic modalities for CC.
Collapse
Affiliation(s)
- Liting Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anni Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Jiang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
79
|
Monberg TJ, Borch TH, Svane IM, Donia M. TIL Therapy: Facts and Hopes. Clin Cancer Res 2023; 29:3275-3283. [PMID: 37058256 DOI: 10.1158/1078-0432.ccr-22-2428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
After a positive phase III trial, it is evident that treatment with tumor-infiltrating lymphocytes (TIL) is a safe, feasible, and effective treatment modality for patients with metastatic melanoma. Further, the treatment is safe and feasible in diverse solid tumors, regardless of the histologic type. Still, TIL treatment has not obtained the regulatory approvals to be implemented on a larger scale. Therefore, its availability is currently restricted to a few centers worldwide. In this review, we present the current knowledge of TIL therapy and discuss the practical, logistic, and economic challenges associated with implementing TIL therapy on a larger scale. Finally, we suggest strategies to facilitate the widespread implementation of TIL therapy and approaches to develop the next generation of TILs.
Collapse
Affiliation(s)
- Tine J Monberg
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
| | - Troels H Borch
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
| | - Inge M Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
| | - Marco Donia
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
| |
Collapse
|
80
|
Thompson B, Strange A, Amato CM, Hester-McCullough J, Sarnaik AA, Weber JS, Woods DM. CD4 Phenotypes Are Associated with Reduced Expansion of Tumor-Infiltrating Lymphocytes in Melanoma Patients Treated with Adoptive Cell Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:735-742. [PMID: 37466381 PMCID: PMC10528290 DOI: 10.4049/jimmunol.2300250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
Tumor-infiltrating lymphocyte (TIL) adoptive cell therapy is effective in treating malignant melanoma, but its success relies on the adequate ex vivo expansion of TIL. To assess correlates of TIL expansion, CD4+ and CD8+ TIL were analyzed by RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing of acetylated histone 3. Patients were grouped into "TIL high" and "TIL low" based on division at the median number of TIL infused. Greater numbers of TIL infused correlated with longer overall survival, and increased frequencies of CD4+ cells infused were negatively correlated with the number of TIL infused. RNA-seq analysis of CD4+ TIL showed increases in Th2/Th17/regulatory T cell-related transcripts and pathways in the TIL-low group. Analysis of a public single-cell RNA-seq dataset validated findings that increased frequencies of CD4+ cells were negatively correlated with the number of TIL infused. TIL-low patients had significantly increased frequencies of CD4+ cells expressing ETS2 and OSM and trended toward increased expression of TNFRSF18.
Collapse
Affiliation(s)
- Brian Thompson
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO
| | - Ann Strange
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO
| | - Carol M. Amato
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO
| | | | - Amod A. Sarnaik
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Jeffrey S. Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - David M. Woods
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO
| |
Collapse
|
81
|
Qin Z, Zheng M. Advances in targeted therapy and immunotherapy for melanoma (Review). Exp Ther Med 2023; 26:416. [PMID: 37559935 PMCID: PMC10407994 DOI: 10.3892/etm.2023.12115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer and is known for its poor prognosis as soon as metastasis occurs. Since 2011, new and effective therapies for metastatic melanoma have emerged, with US Food and Drug Administration approval of multiple targeted agents, such as V-Raf murine sarcoma viral oncogene homolog B1/mitogen-activated protein kinase kinase inhibitors and multiple immunotherapy agents, such as cytotoxic T lymphocyte-associated protein 4 and anti-programmed cell death protein 1/ligand 1 blockade. Based on insight into the respective advantages of the above two strategies, the present article provided a review of clinical trials of the application of targeted therapy and immunotherapy, as well as novel approaches of their combinations for the treatment of metastatic melanoma in recent years, with a focus on upcoming initiatives to improve the efficacy of these treatment approaches for metastatic melanoma.
Collapse
Affiliation(s)
- Ziyao Qin
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| | - Mei Zheng
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| |
Collapse
|
82
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
83
|
Mooradian MJ, Sullivan RJ. Immunotherapy in Melanoma: Recent Advancements and Future Directions. Cancers (Basel) 2023; 15:4176. [PMID: 37627204 PMCID: PMC10452647 DOI: 10.3390/cancers15164176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibition has fundamentally altered the treatment paradigm of resectable and unresectable melanoma, resulting in dramatic improvements in patient outcomes. With these advances, the five-year overall survival in patients with newly diagnosed unresectable disease has eclipsed 50%. Ongoing research is focused on improving outcomes further, with a considerable emphasis on preventing de novo and acquired resistance and personalizing therapeutic options. Here, we review the ongoing advancements in the treatment of malignant melanoma, focusing on novel combination strategies that aim to build upon the successes of the last decade.
Collapse
|
84
|
Li B. Personalized Immunotherapy of Patients: Defining by Single-cell RNA-seq with Artificial Intelligence. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i8.4293. [PMID: 37736242 PMCID: PMC10512655 DOI: 10.18103/mra.v11i8.4293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Immunotherapy, including immune cell therapy and targeted therapy, is gradually developed through the ongoing discovery of molecular compounds or immune cells. Choosing the best one or the best combination of target compounds and immune-cell therapy is a challenge for clinical scientists and clinicians. We have found variable efficacy individually after tumor-infiltrating lymphocyte (TIL) therapy, and now TILs have been discovered in a group of heterogeneous immune cells. To select the best immunotherapy for each patient, we started to study TIL genomics, including single-cell mRNA differential display from TIL published in 2007 and single-cell RNA-seq from TIL published in 2013, set up TIL quantitative network in 2015, researched machine-learning model for immune therapy in 2022. These manual reports single-cell RNA-seq data combined with machine learning to evaluate the optimal compounds and immune cells for individual patients. The machine-learning model, one of artificial intelligence, can estimate targeting genomic variance from single-cell RNA-seq so that they can cover thirteen kinds of immune cell therapies and ongoing FDA-approved targeted therapies such as PD1 inhibitors, PDL1 inhibitors, and CTLA4 inhibitors, as well as other different treatments such as HDACI or DNMT1 inhibitors, FDA-approved drugs. Moreover, also cover Phase-1, Phase-2, Phase-3, and Phase-4 of clinical trials, such as TIL, CAR T-cells, TCR T-cells. Single-cell RNA-seq with an Artificial intelligence estimation system is much better than our published models from microarrays or just cell therapy. The medical goal is to address three issues in clinical immunotherapy: the increase of efficacy; the decrease of adverse effects and the decrease of the cost in clinical applications.
Collapse
Affiliation(s)
- Biaoru Li
- Georgia Cancer Center and Department of Pediatrics, Medical College at GA, Augusta, GA 30912, USA
| |
Collapse
|
85
|
Zlatareva I, Wu Y. Local γδ T cells: translating promise to practice in cancer immunotherapy. Br J Cancer 2023; 129:393-405. [PMID: 37311978 PMCID: PMC10403623 DOI: 10.1038/s41416-023-02303-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Rapid bench-to-bedside translation of basic immunology to cancer immunotherapy has revolutionised the clinical practice of oncology over the last decade. Immune checkpoint inhibitors targeting αβ T cells now offer durable remissions and even cures for some patients with hitherto treatment-refractory metastatic cancers. Unfortunately, these treatments only benefit a minority of patients and efforts to improve efficacy through combination therapies utilising αβ T cells have seen diminishing returns. Alongside αβ T cells and B cells, γδ T cells are a third lineage of adaptive lymphocytes. Less is known about these cells, and they remain relatively untested in cancer immunotherapy. Whilst preclinical evidence supports their utility, the few early-phase trials involving γδ T cells have failed to demonstrate convincing efficacy in solid cancers. Here we review recent progress in our understanding of how these cells are regulated, especially locally within tissues, and the potential for translation. In particular, we focus on the latest advances in the field of butyrophilin (BTN) and BTN-like (BTNL) regulation of γδ T cells and speculate on how these advances may address the limitations of historical approaches in utilising these cells, as well as how they may inform novel approaches in deploying these cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Iva Zlatareva
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - Yin Wu
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 9RT, UK.
- Department of Medical Oncology, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
86
|
Ascierto PA, Agarwala SS, Warner AB, Ernstoff MS, Fox BA, Gajewski TF, Galon J, Garbe C, Gastman BR, Gershenwald JE, Kalinski P, Krogsgaard M, Leidner RS, Lo RS, Menzies AM, Michielin O, Poulikakos PI, Weber JS, Caracò C, Osman I, Puzanov I, Thurin M. Perspectives in Melanoma: meeting report from the Melanoma Bridge (December 1st-3rd, 2022-Naples, Italy). J Transl Med 2023; 21:508. [PMID: 37507765 PMCID: PMC10375730 DOI: 10.1186/s12967-023-04325-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Outcomes for patients with melanoma have improved over the past decade with the clinical development and approval of immunotherapies targeting immune checkpoint receptors such as programmed death-1 (PD-1), programmed death ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen-4 (CTLA-4). Combinations of these checkpoint therapies with other agents are now being explored to improve outcomes and enhance benefit-risk profiles of treatment. Alternative inhibitory receptors have been identified that may be targeted for anti-tumor immune therapy, such as lymphocyte-activation gene-3 (LAG-3), as have several potential target oncogenes for molecularly targeted therapy, such as tyrosine kinase inhibitors. Unfortunately, many patients still progress and acquire resistance to immunotherapy and molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been shown to improve prognosis compared to monotherapy. The number of new combinations treatment under development for melanoma provides options for the number of patients to achieve a therapeutic benefit. Many diagnostic and prognostic assays have begun to show clinical applicability providing additional tools to optimize and individualize treatments. However, the question on the optimal algorithm of first- and later-line therapies and the search for biomarkers to guide these decisions are still under investigation. This year, the Melanoma Bridge Congress (Dec 1st-3rd, 2022, Naples, Italy) addressed the latest advances in melanoma research, focusing on themes of paramount importance for melanoma prevention, diagnosis and treatment. This included sessions dedicated to systems biology on immunotherapy, immunogenicity and gene expression profiling, biomarkers, and combination treatment strategies.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | | | | | - Marc S Ernstoff
- ImmunoOncology Branch (IOB), Developmental Therapeutics Program, Cancer Therapy and Diagnosis Division, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bernard A Fox
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Thomas F Gajewski
- Department of Pathology and Department of Medicine (Section of Hematology/Oncology), University of Chicago, Chicago, IL, USA
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, 75006, Paris, France
- Centre de Recherche Des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Brian R Gastman
- Department of Surgery, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rom S Leidner
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Roger S Lo
- Jonsson Comprehensive Cancer Center David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Olivier Michielin
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Poulikos I Poulikakos
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, a NCI-Funded Comprehensive Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Corrado Caracò
- Division of Surgery of Melanoma and Skin Cancer, Istituto Nazionale Tumori "Fondazione Pascale" IRCCS, Naples, Italy
| | - Iman Osman
- Rudolf L, Baer, New York University Langone Medical Center, New York, NY, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Magdalena Thurin
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
87
|
Perez MC, Depalo DK, Zager JS. A safety review of recently approved and late-stage trial treatments for metastatic melanoma: systemic and regional therapies. Expert Opin Drug Saf 2023; 22:789-797. [PMID: 37551723 DOI: 10.1080/14740338.2023.2245333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Advanced melanoma accounts for the majority of skin cancer-associated deaths. Over the past 15 years, there has been a dramatic change in the treatment options and prognosis for patients with advanced melanoma secondary to the development of novel systemic immunotherapies (IO) and targeted therapies. In addition to these novel systemic therapies, regional therapies (intralesional and perfusional) also continue to play a major role in the management of these patients. AREAS COVERED In this article, we review recent updates in the management of advanced melanoma via Medline (PubMed) and Google Scholar, including recently published trials in the metastatic, adjuvant, and neoadjuvant settings. We also review recently published trials for regional therapies and discuss future directions in the management of patients with advanced melanoma. EXPERT OPINION A significant portion of patients with advanced melanoma will develop recurrent or progressive disease following treatment with IO or targeted therapy. Therefore, identifying not only the appropriate therapeutic agent but also the sequence and duration of treatment is pivotal for these patients.
Collapse
Affiliation(s)
- Matthew C Perez
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa FL, United States of America
| | - Danielle K Depalo
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa FL, United States of America
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa FL, United States of America
| |
Collapse
|
88
|
Lee MH, Theodoropoulos J, Huuhtanen J, Bhattacharya D, Järvinen P, Tornberg S, Nísen H, Mirtti T, Uski I, Kumari A, Peltonen K, Draghi A, Donia M, Kreutzman A, Mustjoki S. Immunologic Characterization and T cell Receptor Repertoires of Expanded Tumor-infiltrating Lymphocytes in Patients with Renal Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1260-1276. [PMID: 37484198 PMCID: PMC10361538 DOI: 10.1158/2767-9764.crc-22-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
The successful use of expanded tumor-infiltrating lymphocytes (TIL) in adoptive TIL therapies has been reported, but the effects of the TIL expansion, immunophenotype, function, and T cell receptor (TCR) repertoire of the infused products relative to the tumor microenvironment (TME) are not well understood. In this study, we analyzed the tumor samples (n = 58) from treatment-naïve patients with renal cell carcinoma (RCC), "pre-rapidly expanded" TILs (pre-REP TIL, n = 15) and "rapidly expanded" TILs (REP TIL, n = 25) according to a clinical-grade TIL production protocol, with single-cell RNA (scRNA)+TCRαβ-seq (TCRαβ sequencing), TCRβ-sequencing (TCRβ-seq), and flow cytometry. REP TILs encompassed a greater abundance of CD4+ than CD8+ T cells, with increased LAG-3 and low PD-1 expressions in both CD4+ and CD8+ T cell compartments compared with the pre-REP TIL and tumor T cells. The REP protocol preferentially expanded small clones of the CD4+ phenotype (CD4, IL7R, KLRB1) in the TME, indicating that the largest exhausted T cell clones in the tumor do not expand during the expansion protocol. In addition, by generating a catalog of RCC-associated TCR motifs from >1,000 scRNA+TCRαβ-seq and TCRβ-seq RCC, healthy and other cancer sample cohorts, we quantified the RCC-associated TCRs from the expansion protocol. Unlike the low-remaining amount of anti-viral TCRs throughout the expansion, the quantity of the RCC-associated TCRs was high in the tumors and pre-REP TILs but decreased in the REP TILs. Our results provide an in-depth understanding of the origin, phenotype, and TCR specificity of RCC TIL products, paving the way for a more rationalized production of TILs. Significance TILs are a heterogenous group of immune cells that recognize and attack the tumor, thus are utilized in various clinical trials. In our study, we explored the TILs in patients with kidney cancer by expanding the TILs using a clinical-grade protocol, as well as observed their characteristics and ability to recognize the tumor using in-depth experimental and computational tools.
Collapse
Affiliation(s)
- Moon Hee Lee
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Jason Theodoropoulos
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Dipabarna Bhattacharya
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Petrus Järvinen
- Abdominal Center, Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Sara Tornberg
- Abdominal Center, Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Harry Nísen
- Abdominal Center, Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biomedical Engineering, School of Medicine, Emory University, Atlanta, Georgia
| | - Ilona Uski
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Anita Kumari
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Karita Peltonen
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Arianna Draghi
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anna Kreutzman
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
89
|
Hamid O, Hassel JC, Shoushtari AN, Meier F, Bauer TM, Salama AKS, Kirkwood JM, Ascierto PA, Lorigan PC, Mauch C, Orloff M, Evans TRJ, Holland C, Edukulla R, Abedin SE, Middleton MR. Tebentafusp in combination with durvalumab and/or tremelimumab in patients with metastatic cutaneous melanoma: a phase 1 study. J Immunother Cancer 2023; 11:e006747. [PMID: 37286303 PMCID: PMC10254987 DOI: 10.1136/jitc-2023-006747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have significantly improved outcomes in first line cutaneous melanoma. However, there is a high unmet need for patients who progress on these therapies and combination therapies are being explored to improve outcomes. Tebentafusp is a first-in-class gp100×CD3 ImmTAC bispecific that demonstrated overall survival (OS) benefit (HR 0.51) in metastatic uveal melanoma despite a modest overall response rate of 9%. This phase 1b trial evaluated the safety and initial efficacy of tebentafusp in combination with durvalumab (anti-programmed death ligand 1 (PDL1)) and/or tremelimumab (anti-cytotoxic T lymphocyte-associated antigen 4) in patients with metastatic cutaneous melanoma (mCM), the majority of whom progressed on prior checkpoint inhibitors. METHODS In this open-label, multicenter, phase 1b, dose-escalation trial, HLA-A*02:01-positive patients with mCM received weekly intravenous tebentafusp with increasing monthly doses of durvalumab and/or tremelimumab starting day 15 of each cycle. The primary objective was to identify the maximum tolerated dose (MTD) or recommended phase 2 dose for each combination. Efficacy analyses were performed in all tebentafusp with durvalumab±tremelimumab treated patients with a sensitivity analysis in those who progressed on prior anti-PD(L)1 therapy. RESULTS 85 patients were assigned to receive tebentafusp in combination with durvalumab (n=43), tremelimumab (n=13), or durvalumab and tremelimumab (n=29). Patients were heavily pretreated with a median of 3 prior lines of therapy, including 76 (89%) who received prior anti-PD(L)1. Maximum target doses of tebentafusp (68 mcg) alone or in combination with durvalumab (20 mg/kg) and tremelimumab (1 mg/kg) were tolerated; MTD was not formally identified for any arm. Adverse event profile was consistent with each individual therapy and there were no new safety signals nor treatment-related deaths. In the efficacy subset (n=72), the response rate was 14%, tumor shrinkage rate was 41% and 1-year OS rate was 76% (95% CI: 70% to 81%). The 1-year OS for triplet combination (79%; 95% CI: 71% to 86%) was similar to tebentafusp plus durvalumab (74%; 95% CI: 67% to 80%). CONCLUSION At maximum target doses, the safety of tebentafusp with checkpoint inhibitors was consistent with safety of each individual therapy. Tebentafusp with durvalumab demonstrated promising efficacy in heavily pretreated patients with mCM, including those who progressed on prior anti-PD(L)1. TRIAL REGISTRATION NUMBER NCT02535078.
Collapse
Affiliation(s)
- Omid Hamid
- The Angeles Clinic and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, California, USA
| | | | - Alexander N Shoushtari
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Friedegund Meier
- Skin Cancer Center at the National Center for Tumor Diseases and University Cancer Centre, Dresden, Germany
- Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | | | - John M Kirkwood
- University of Pittsburgh Medical Center Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Paolo A Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | | | | | - Marlana Orloff
- Sidney Kimmel Cancer Center, Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Mark R Middleton
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| |
Collapse
|
90
|
Ascierto PA, Lipson EJ, Dummer R, Larkin J, Long GV, Sanborn RE, Chiarion-Sileni V, Dréno B, Dalle S, Schadendorf D, Callahan MK, Nyakas M, Atkinson V, Gomez-Roca CA, Yamazaki N, Tawbi HA, Sarkis N, Warad D, Dolfi S, Mitra P, Suryawanshi S, Grob JJ. Nivolumab and Relatlimab in Patients With Advanced Melanoma That Had Progressed on Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy: Results From the Phase I/IIa RELATIVITY-020 Trial. J Clin Oncol 2023; 41:2724-2735. [PMID: 36780608 PMCID: PMC10431305 DOI: 10.1200/jco.22.02072] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023] Open
Abstract
PURPOSE Nivolumab and relatlimab activity in advanced melanoma with prior progression on anti-programmed death-1/programmed death ligand 1 (PD-(L)1)-containing regimens is under investigation. RELATIVITY-047 demonstrated significantly improved progression-free survival (PFS) for nivolumab and relatlimab over nivolumab in previously untreated advanced melanoma. METHODS The phase I/IIa, open-label RELATIVITY-020 trial part D assessed efficacy and safety of nivolumab and relatlimab in advanced melanoma with progression during, or within 3 months of, 1 (D1) or ≥ 1 (D2) anti-PD-(L)1-containing regimens. Safety was a primary end point. Objective response rate (coprimary end point) and PFS by blinded independent central review (BICR) were assessed. RESULTS Five hundred eighteen patients (D1 = 354; D2 = 164) received nivolumab and relatlimab. Among evaluable patients, the objective response rate by BICR was 12.0% (95% CI, 8.8 to 15.8) in D1 (n = 351) and 9.2% (95% CI, 5.2 to 14.7) in D2 (n = 163). Responses appeared to be enriched among patients with tumors expressing programmed death ligand 1 or lymphocyte activation gene 3; however, responses were observed regardless of programmed death ligand 1 and lymphocyte activation gene 3 expression (1%). The median duration of response was not reached (95% CI, 12.9 to not reached) in D1 and 12.8 months (95% CI, 6.9 to 12.9) in D2. The median PFS by BICR was 2.1 months (95% CI, 1.9 to 3.5) in D1 and 3.2 months (95% CI, 1.9 to 3.6) in D2; the 6-month PFS rate was 29.1% (95% CI, 24.2 to 34.1) and 27.7% (95% CI, 20.5 to 35.4), respectively. The grade 3-4 treatment-related adverse event incidence was 15.0% in D1 and 12.8% in D2. One case of grade 3 myocarditis and no treatment-related deaths occurred across part D. CONCLUSION Nivolumab and relatlimab had a manageable safety profile and demonstrated durable clinical activity in a proportion of patients with heavily pretreated advanced melanoma with prior progression on anti-PD-(L)1-containing regimens. [Media: see text].
Collapse
Affiliation(s)
- Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale,” Naples, Italy
| | - Evan J. Lipson
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - James Larkin
- Medical Oncology, The Institute of Cancer Research, London, London, UK
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Rachel E. Sanborn
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR
| | | | - Brigitte Dréno
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
| | - Stéphane Dalle
- Unit of Dermatology, Hospices Civils de Lyon, Cancer Research Center of Lyon, Pierre-Bénite, France
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, and the German Cancer Consortium, Essen, Germany
| | - Margaret K. Callahan
- Immunotherapeutics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marta Nyakas
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Victoria Atkinson
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Carlos Alberto Gomez-Roca
- Department of Medicine & Clinical Research Unit, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naomey Sarkis
- Relatlimab Clinical Development Melanoma, Bristol Myers Squibb, Princeton, NJ
| | - Deepti Warad
- Relatlimab Clinical Development Melanoma, Bristol Myers Squibb, Princeton, NJ
| | - Sonia Dolfi
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ
| | - Priyam Mitra
- Biometrics and Data Sciences, Bristol Myers Squibb, Princeton, NJ
| | | | - Jean-Jacques Grob
- Dermatology, Aix-Marseille University, CHU Timone, Marseille, France
| |
Collapse
|
91
|
Lu J, Huang C, He R, Xie R, Li Y, Guo X, Zhang Q, Xu Q. CD4 -/CD8 - double-negative tumor-infiltrating lymphocytes expanded from solid tumor tissue suppress the proliferation of tumor cells in an MHC-independent way. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04823-x. [PMID: 37165118 DOI: 10.1007/s00432-023-04823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Tumor-infiltrating lymphocytes (TILs) have shown remarkable clinical responses in some patients with advanced solid tumors. As a rare subset of TILs, CD4-/CD8- double-negative T cells (DNTs) were poorly known. This study aims to investigate the characteristics and function of CD3+CD4-CD8- TILs (double-negative TIL, DN-TILs) derived from solid tumor. METHODS DN-TILs were derived and expanded ex vivo from resected gastric carcinoma tissue and phenotyped by flow cytometry. The cytotoxicity of DN-TILs was determined against established tumor cell lines in vitro or through in vivo adoptive transfer into xenograft models. K562 cells were transferred with the HLA gene to verify whether the cytotoxicity of DN-TILs was MHC-independent. RESULTS Flow cytometric analysis revealed a high-purity population of DN-TILs (> 97%) within CD3+ TILs, which expanded more than 800-folds in 2 weeks, consisting of a mixture of alpha-beta (αβ) and gamma-delta (γδ) T-cell receptor (TCR)-expressing cells (with the majority being αβ-TCR, > 95%). Using single-cell RNA sequencing, the expanded DN-TILs were categorized into four main subsets, Natural Killer T cells (approximately 80%, 5563 in 7028), Progenitor cells, Germ cells and T helper2 cells. DN-TILs exhibited a broad anticancer cytotoxicity in a donor-unrestricted manner against various cancer cell lines derived from pancreatic cancer (Panc-1), gastric cancer (HGC-27), ovarian cancer (SKOV-3), malignant melanoma (A375). The cytotoxicity was MHC-independent, which was not altered in K562 transferring with HLA gene or not. DN-TILs significantly reduced tumor volume in xenograft models with superior tumor-homing ability and low off-target toxicity. CONCLUSION Gastric carcinoma derived DN-TIL can target tumor cells in vitro and in vivo. DN-TILs have the potential to be used as a adoptive cell therapy for solid cancers with both the advantages of DNT and TIL.
Collapse
Affiliation(s)
- Jingyi Lu
- Departmalet of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, 200072, China
- Tongji University Cancer Center, Shanghai, China
| | - Chen Huang
- Shanghai Juncell Biotechnology Co., LTD, Shanghai, China
| | - Rong He
- Departmalet of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, 200072, China
- Tongji University Cancer Center, Shanghai, China
| | - Rongjia Xie
- Departmalet of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, 200072, China
- Tongji University Cancer Center, Shanghai, China
| | - Yue Li
- Shanghai Tumor Cell Therapy Technology Innovation Center, Shanghai, China
| | - Xianling Guo
- Departmalet of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, 200072, China
- Tongji University Cancer Center, Shanghai, China
| | - Qian Zhang
- Department of Biotherapy, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qing Xu
- Departmalet of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, 200072, China.
- Tongji University Cancer Center, Shanghai, China.
| |
Collapse
|
92
|
Tian J, Cao ZJ, Zhang Y, Zhou JK, Yang L. Identification of anoikis-related subtypes and development of risk stratification system in skin cutaneous melanoma. Heliyon 2023; 9:e16153. [PMID: 37215879 PMCID: PMC10196614 DOI: 10.1016/j.heliyon.2023.e16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Anoikis, a form of apoptosis induced by cell detachment, plays a key role in cancer metastasis. However, the potential roles of anoikis-related genes (ARGs) in assessing the prognosis of skin cutaneous melanoma (SKCM) and the tumor microenvironment (TME) remain unclear. Methods The data from TCGA corresponding to transcriptomic expression patterns for patients with SKCM were downloaded and utilized to screen distinct molecular subtypes by a non-negative matrix factorization algorithm. The prognostic signature was constructed by least absolute shrinkage and selection operator (LASSO) Cox regression and was validated in SKCM patients from the GEO cohort. Moreover, the relationship of the ARG_score with prognosis, tumor-infiltrating immune cells, gene mutation, microsatellite instability (MSI), and immunotherapy efficacy. Results We screened 100 anoikis-related differentially expressed genes between SKCM tissues and normal skin tissues, which could divide all patients into three different subtypes with significantly distinct prognosis and immune cell infiltration. Then, an anoikis-related signature was developed based on subtype-related DEGs, which could classify all SKCM patients into low and high ARG_score groups with differing overall survival (OS) rates. ARG_score was confirmed to be a strong independent prognostic indicator for SKCM patients. By combining ARG_score with clinicopathological features, a nomogram was constructed, which could accurately predict the individual OS of patients with SKCM. Moreover, low ARG_score patients presented with higher levels of immune cell infiltration, TME score, higher tumor mutation burden, and better immunotherapy responses. Conclusions Our comprehensive analysis of ARGs in SKCM provides important insights into the immunological microenvironment within the tumor of SKCM patients and helps to forecast prognosis and the response to immunotherapy in SKCM patients, thereby making it easier to tailor more effective treatment strategies to individual patients.
Collapse
Affiliation(s)
- Jun Tian
- Department of Dermatology, Shaanxi Provincial People’s Hospital, Xi’an, 710068, China
| | - Zi-jian Cao
- Department of Dermatology, The 63600 Hospital of PLA, Lanzhou, 732750, China
| | - Yuan Zhang
- Department of Oncology, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Jin-ke Zhou
- Department of Dermatology, The 63600 Hospital of PLA, Lanzhou, 732750, China
| | - Li Yang
- Department of Dermatology, Shaanxi Provincial People’s Hospital, Xi’an, 710068, China
| |
Collapse
|
93
|
Jamal R, Messaoudene M, de Figuieredo M, Routy B. Future indications and clinical management for fecal microbiota transplantation (FMT) in immuno-oncology. Semin Immunol 2023; 67:101754. [PMID: 37003055 DOI: 10.1016/j.smim.2023.101754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 04/01/2023]
Abstract
The gut microbiota has rapidly emerged as one of the "hallmarks of cancers" and a key contributor to cancer immunotherapy. Metagenomics profiling has established the link between microbiota compositions and immune checkpoint inhibitors response and toxicity, while murine experiments demonstrating the synergistic benefits of microbiota modification with immune checkpoint inhibitors (ICIs) pave a clear path for translation. Fecal microbiota transplantation (FMT) is one of the most effective treatments for patients with Clostridioides difficile, but its utility in other disease contexts has been limited. Nonetheless, promising data from the first trials combining FMT with ICIs have provided strong clinical rationale to pursue this strategy as a novel therapeutic avenue. In addition to the safety considerations surrounding new and emerging pathogens potentially transmissible by FMT, several other challenges must be overcome in order to validate the use of FMT as a therapeutic option in oncology. In this review, we will explore how the lessons learned from FMT in other specialties will help shape the design and development of FMT in the immuno-oncology arena.
Collapse
|
94
|
Arima Y, Matsueda S, Saya H. Significance of Cancer-Associated Fibroblasts in the Interactions of Cancer Cells with the Tumor Microenvironment of Heterogeneous Tumor Tissue. Cancers (Basel) 2023; 15:cancers15092536. [PMID: 37174001 PMCID: PMC10177529 DOI: 10.3390/cancers15092536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor microenvironment (TME) plays a key role in cancer development and progression, as well as contributes to the therapeutic resistance and metastasis of cancer cells. The TME is heterogeneous and consists of multiple cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, and immune cells, as well as various extracellular components. Recent studies have revealed cross talk between cancer cells and CAFs as well as between CAFs and other TME cells, including immune cells. Signaling by transforming growth factor-β, derived from CAFs, has recently been shown to induce remodeling of tumor tissue, including the promotion of angiogenesis and immune cell recruitment. Immunocompetent mouse cancer models that recapitulate interactions of cancer cells with the TME have provided insight into the TME network and support the development of new anticancer therapeutic strategies. Recent studies based on such models have revealed that the antitumor action of molecularly targeted agents is mediated in part by effects on the tumor immune environment. In this review, we focus on cancer cell-TME interactions in heterogeneous tumor tissue, and we provide an overview of the basis for anticancer therapeutic strategies that target the TME, including immunotherapy.
Collapse
Affiliation(s)
- Yoshimi Arima
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| | - Satoko Matsueda
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| | - Hideyuki Saya
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
95
|
Ascierto PA, Brentjens R, Khleif SN, Odunsi K, Rezvani K, Ruella M, Sullivan RJ, Fox BA, Puzanov I. The "Great Debate" at Immunotherapy Bridge 2022, Naples, November 30th-December 1st, 2022. J Transl Med 2023; 21:275. [PMID: 37087493 PMCID: PMC10122806 DOI: 10.1186/s12967-023-04117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023] Open
Abstract
The 2022 Immunotherapy Bridge congress (November 30-December 1, Naples, Italy) featured a Great Debate session which addressed three contemporary topics in the field of immunotherapy. The debates included counterpoint views from leading experts and considered whether adoptive cell therapy (ACT) has a role in the treatment of solid tumors, the use of peripheral/blood biomarkers versus tumor microenvironment biomarkers for cancer immunotherapy and the role of chimeric antigen receptor T cell versus natural killer cell therapy. As is the tradition in the Immunotherapy Bridge Great Debates, speakers are invited by the meeting Chairs to express one side of the assigned debate and the opinions given may not fully reflect their own personal views. Audiences voted in favour of either side of the topic both before and after each debate.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | - Renier Brentjens
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Samir N Khleif
- The Loop Immuno Oncology Laboratory, Georgetown University Medical School, Washington, DC, USA
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies and Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan J Sullivan
- Melanoma Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Institute, Portland, OR, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
96
|
Venzel R, Campos MCP, de Oliveira LP, Dan Lins RV, Siena ÁDD, Mesquita KT, Moreira Dos Santos TP, Nohata N, Arruda LCM, Sales-Campos H, Neto MPC. Clinical and molecular overview of immunotherapeutic approaches for malignant skin melanoma: Past, present and future. Crit Rev Oncol Hematol 2023; 186:103988. [PMID: 37086955 DOI: 10.1016/j.critrevonc.2023.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
Traditional therapeutic approaches for malignant melanoma, have proved to be limited and/or ineffective, especially with respect to their role in improving patient survival and tumor recurrence. In this regard, immunotherapy has been demonstrated to be a promising therapeutic alternative, boosting antitumor responses through the modulation of cell signaling pathways involved in the effector mechanisms of the immune system, particularly, the so-called "immunological checkpoints". Clinical studies on the efficacy and safety of immunotherapeutic regimens, alone or in combination with other antitumor approaches, have increased dramatically in recent decades, with very encouraging results. Hence, this review will discuss the current immunotherapeutic regimens used to treat malignant melanoma, as well as the molecular and cellular mechanisms involved. In addition, current clinical studies that have investigated the use, efficacy, and adverse events of immunotherapy in melanoma will also be discussed.
Collapse
Affiliation(s)
- Raphaelly Venzel
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari, Brazil
| | | | | | | | | | | | - Tálita Pollyana Moreira Dos Santos
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nijiro Nohata
- Oncology Science Unit, MSD K.K, Chiyoda-ku, Tokyo, Japan
| | | | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, GO, Brazil
| | | |
Collapse
|
97
|
Augustin RC, Luke JJ. Top advances of the year: Melanoma. Cancer 2023; 129:822-828. [PMID: 36629350 PMCID: PMC11234509 DOI: 10.1002/cncr.34590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This commentary highlights the key, recent advances made in the field of melanoma. Although significant gains have been made, particularly for resectable disease, ongoing challenges remain in the PD1‐refractory setting.
Collapse
Affiliation(s)
- Ryan C Augustin
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
98
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
99
|
Knight A, Karapetyan L, Kirkwood JM. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers (Basel) 2023; 15:1106. [PMID: 36831449 PMCID: PMC9954703 DOI: 10.3390/cancers15041106] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The use of immunotherapy in the treatment of advanced and high-risk melanoma has led to a striking improvement in outcomes. Although the incidence of melanoma has continued to rise, median survival has improved from approximately 6 months to nearly 6 years for patients with advanced inoperable stage IV disease. Recent understanding of the tumor microenvironment and its interplay with the immune system has led to the explosive development of novel immunotherapy treatments. Since the approval of the therapeutic cytokines interleukin-2 and interferon alfa-2 in the 1990s, the development of novel immune checkpoint inhibitors (ICIs), oncolytic virus therapy, and modulators of the tumor microenvironment have given way to a new era in melanoma treatment. Monoclonal antibodies directed at programmed cell death protein 1 receptor (PD-1) and its ligand (PDL-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and lymphocyte-activation gene 3 (LAG-3) have provided robust activation of the adaptive immune system, restoring immune surveillance leading to host tumor recognition and destruction. Multiple other immunomodulatory therapeutics are under investigation to overcome resistance to ICI therapy, including the toll-like receptor-9 (TLR-9) and 7/8 (TLR-7/8) agonists, stimulator of interferon genes (STING) agonists, and fecal microbiota transplantation. In this review, we focus on the recent advances in immunotherapy for the treatment of melanoma and provide an update on novel therapies currently under investigation.
Collapse
Affiliation(s)
- Andrew Knight
- Department of Medicine, Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Kirkwood
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
100
|
Filin IY, Mayasin YP, Kharisova CB, Gorodilova AV, Kitaeva KV, Chulpanova DS, Solovyeva VV, Rizvanov AA. Cell Immunotherapy against Melanoma: Clinical Trials Review. Int J Mol Sci 2023; 24:2413. [PMID: 36768737 PMCID: PMC9916554 DOI: 10.3390/ijms24032413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Melanoma is one of the most aggressive and therapy-resistant types of cancer, the incidence rate of which grows every year. However, conventional methods of chemo- and radiotherapy do not allow for completely removing neoplasm, resulting in local, regional, and distant relapses. In this case, adjuvant therapy can be used to reduce the risk of recurrence. One of the types of maintenance cancer therapy is cell-based immunotherapy, in which immune cells, such as T-cells, NKT-cells, B cells, NK cells, macrophages, and dendritic cells are used to recognize and mobilize the immune system to kill cancer cells. These cells can be isolated from the patient's peripheral blood or biopsy material and genetically modified, cultured ex vivo, following infusion back into the patient for powerful induction of an anti-tumor immune response. In this review, the advantages and problems of the most relevant methods of cell-based therapy and ongoing clinical trials of adjuvant therapy of melanoma are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|