51
|
Back SA, Riddle A, Dean J, Hohimer AR. The instrumented fetal sheep as a model of cerebral white matter injury in the premature infant. Neurotherapeutics 2012; 9:359-70. [PMID: 22399133 PMCID: PMC3337024 DOI: 10.1007/s13311-012-0108-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Despite advances in neonatal intensive care, survivors of premature birth remain highly susceptible to unique patterns of developmental brain injury that manifest as cerebral palsy and cognitive-learning disabilities. The developing brain is particularly susceptible to cerebral white matter injury related to hypoxia-ischemia. Cerebral white matter development in fetal sheep shares many anatomical and physiological similarities with humans. Thus, the fetal sheep has provided unique experimental access to the complex pathophysiological processes that contribute to injury to the human brain during successive periods in development. Recent refinements have resulted in models that replicate major features of acute and chronic human cerebral injury and have provided access to complex clinically relevant studies of cerebral blood flow and neuroimaging that are not feasible in smaller laboratory animals. Here, we focus on emerging insights and methodologies from studies in fetal sheep that have begun to define cellular and vascular factors that contribute to white matter injury. Recent advances include spatially defined measurements of cerebral blood flow in utero, the definition of cellular maturational factors that define the topography of injury and the application of high-field magnetic resonance imaging to define novel neuroimaging signatures for specific types of chronic white matter injury. Despite the higher costs and technical challenges of instrumented preterm fetal sheep models, they provide powerful access to clinically relevant studies that provide a more integrated analysis of the spectrum of insults that appear to contribute to cerebral injury in human preterm infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
52
|
EEG suppression associated with apneic episodes in a neonate. Case Rep Neurol Med 2012; 2012:250801. [PMID: 22953087 PMCID: PMC3420368 DOI: 10.1155/2012/250801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/17/2011] [Indexed: 11/18/2022] Open
Abstract
We describe the EEG findings from an ex-preterm neonate at term equivalent age who presented with intermittent but prolonged apneic episodes which were presumed to be seizures. A total of 8 apneic episodes were captured (duration 23–376 seconds) during EEG monitoring. The baseline EEG activity was appropriate for corrected gestational age and no electrographic seizure activity was recorded. The average baseline heart rate was 168 beats per minute (bpm) and the baseline oxygen saturation level was in the mid-nineties. Periods of complete EEG suppression lasting 68 and 179 seconds, respectively, were recorded during 2 of these 8 apneic episodes. Both episodes were accompanied by bradycardia less than 70 bpm and oxygen saturation levels of less than 20%. Short but severe episodes of apnea can cause complete EEG suppression in the neonate.
Collapse
|
53
|
Resuscitation with 100% oxygen increases injury and counteracts the neuroprotective effect of therapeutic hypothermia in the neonatal rat. Pediatr Res 2012; 71:247-52. [PMID: 22337259 DOI: 10.1038/pr.2011.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Mild therapeutic hypothermia (HT) reduces brain injury in survivors after perinatal asphyxia. Recent guidelines suggest that resuscitation of term infants should be started with air, but supplemental oxygen is still in use. It is not known whether supplemental oxygen during resuscitation affects the protection offered by subsequent HT. RESULTS Wilcoxon median (95% confidence interval) hippocampal injury scores (range 0.0-4.0; 0 to ≥90% injury) were 21% O(2) normothermia (NT): 2.00 (1.25-2.50), 21% O(2) HT: 1.00 (0.50-1.50), 100% O(2) NT: 2.50 (1.50-3.25), and 100% O(2) HT: 2.00 (1.25-2.50). Although HT significantly reduced hippocampal injury (B = -0.721, SEM = 0.297, P = 0.018), reoxygenation with 100% O(2) increased injury (B = +0.647, SEM = 0.297, P = 0.033). Regression constant B = 1.896, SEM = 0.257 and normally distributed residuals. DISCUSSION We confirm an ~50% neuroprotective effect of therapeutic HT in the neonatal rat. Reoxygenation with 100% O(2) increased injury and worsened reflex performance. HT was neuroprotective whether applied after reoxygenation with air or 100% O(2). However, HT after 100% O(2) gave no net neuroprotection. METHODS In an established neonatal rat model, hypoxia-ischemia (HI) was followed by 30-min reoxygenation in either 21% O(2) or 100% O(2) before 5 h of NT (37 °C) or HT (32 °C). The effects of HT and 100% O(2) on histopathologic injury in the hippocampus, basal ganglia, and cortex, and on postural reflex performance 7 d after the insult, were estimated by linear regression.
Collapse
|
54
|
Zhang D, Hou X, Liu Y, Zhou C, Luo Y, Ding H. The utility of amplitude-integrated EEG and NIRS measurements as indices of hypoxic ischaemia in the newborn pig. Clin Neurophysiol 2012; 123:1668-75. [PMID: 22277760 DOI: 10.1016/j.clinph.2011.10.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/12/2011] [Accepted: 10/06/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The early detection and stratification of potential hypoxic ischaemia (HI) injury in neonates are crucial for reducing the risk of neural disability. This study investigates early changes in brain function caused by acute HI of varying severities in the neonatal pig. METHODS Two non-invasive techniques, amplitude-integrated electroencephalogram (aEEG) and near-infrared spectroscopy (NIRS), were used to monitor electrocortical and cerebral haemodynamic function, respectively. The fraction of inspired oxygen (FiO(2)) was varied to produce different HI severities. The sensitivity and HI correlation of these methods were systematically analysed to assess their abilities to both detect injury early and assess HI severity accurately. RESULTS The tissue oxygen index measured via NIRS detected acute changes in cerebral oxygenation and was highly sensitive to HI (sensitivity=0.97), whereas aEEG was comparatively insensitive to HI. On the other hand, aEEG measurements correlated well with FiO(2) during the entire HI event as well as the 3-h recovery period (R=0.43-0.61). NIRS measurements did not correlate well with FiO(2). CONCLUSIONS Parameters measured via aEEG and NIRS displayed different time profiles during and following the HI event. SIGNIFICANCE These results highlight the potential advantage of using aEEG and NIRS in conjunction to monitor neonatal brain function, and provide an objective and rigorous method for the characterisation of cerebral function both during and following HI insults.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
55
|
Chakkarapani E, Thoresen M, Liu X, Walloe L, Dingley J. Xenon offers stable haemodynamics independent of induced hypothermia after hypoxia-ischaemia in newborn pigs. Intensive Care Med 2011; 38:316-23. [PMID: 22160201 DOI: 10.1007/s00134-011-2442-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
PURPOSE To assess the effect of 18 hour (h) 50% xenon (Xe) inhalation at normothermia (NT, 38.5°C) or hypothermia (HT, 33.5°C) on mean arterial blood pressure (MABP), inotropic support and heart rate (HR) following an induced perinatal global hypoxic-ischaemic insult (HI) in newborn pigs. METHODS Newborn pigs ventilated under inhalational anaesthesia, following a 45 min HI (inhaled oxygen fraction reduced until amplitude integrated electroencephalogram was less than 7 μV), were randomised to three Xe (n = 45) (50% Xe 18 h with NT, HT 12 h or HT 24 h) or three non-Xe groups (n = 53) (0% Xe with NT, HT 12 h or HT 24 h) under otherwise identical conditions. We measured MABP and HR every minute. Hypotension (MABP <40 mmHg) was treated sequentially with 2 × 10 mL/kg saline, dopamine, norepinephrine and hydrocortisone if required. RESULTS Xe maintained higher MABP during HT (5.1 mmHg, 95% CI 2.34, 7.89), rewarming (10.1 mmHg, 95% CI 6.26, 13.95) and after cessation (4.1 mmHg, 95% CI 0.37, 7.84) independent of HT, inotropic support and acidosis. Xe reduced the duration of inotropic support by 12.6 h (95% CI 5.5, 19.73). Inotropic support decreased the HR reduction induced by HT from 9 to 5 bpm/°C during cooling and from 10-7 to 4-3 bpm/°C during rewarming. There was no interaction between Xe, HT, inotropic support and acidosis. Xe during HT cleared lactate faster; 3 h post-HI median (IQR) values of (Xe HT) 2.8 mmol/L (0.9, 3.1) vs. (HT) 5.9 mmol/L (2.5, 7.9), p = 0.0004. CONCLUSION Xe maintained stable blood pressure, thereby reducing the inotropic support requirements during and after administration independently of induced HT-current neonatal encephalopathy treatment. Xe may offer haemodynamic benefits in clinical neuroprotection studies.
Collapse
Affiliation(s)
- Elavazhagan Chakkarapani
- Department of Child Health, School of Clinical Sciences, St Michael's Hospital, Level D, University of Bristol, Southwell Street, BS2 8EG Bristol, UK
| | | | | | | | | |
Collapse
|
56
|
Liu X, Tooley J, Løberg EM, Suleiman MS, Thoresen M. Immediate hypothermia reduces cardiac troponin I after hypoxic-ischemic encephalopathy in newborn pigs. Pediatr Res 2011; 70:352-6. [PMID: 21691250 PMCID: PMC3173864 DOI: 10.1203/pdr.0b013e31822941ee] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a clinically defined neurological condition after lack of oxygen and often associated with cardiac dysfunction in term infants. Therapeutic hypothermia (HT) after birth is neuroprotective in infants with HIE. However, it is not known whether HT is also cardioprotective. Four newborn pigs were used in the pilot study and a further 18 newborn pigs [randomly assigned to 72 h normothermia (NT) or 24 h HT followed by 48 h NT] were subjected to global HIE insults. Serum cTnI was measured before and post the HIE insult. Blood pressure, inotropic support, blood gases, and heart rate (HR) were recorded throughout. Cardiac pathology was assessed from histological sections. Cooling reduced serum cTnI levels significantly in HT pigs by 6 h (NT, 1.36 ± 0.67; HT, 0.34 ± 0.23 ng/mL; p = 0.0009). After rewarming, from 24 to 30 h postinsult, HR and cTnI increased in the HT group; from HR[24 h] = 117 ± 22 to HR[30 h] = 218 ± 32 beats/min (p = 0.0002) and from cTnI[24 h] = 0.23 ± 0.12 to cTnI[30 h] = 0.65 ± 0.53 ng/mL, (p = 0.05). There were fewer ischemic lesions on cardiac examination (37%) in the HT group compared with the NT group (70%). HT (24 h) pigs did not have the postinsult cTnI increase seen in NT-treated pigs. There was a trend that HT improved cardiac pathology in this 3-d survival model.
Collapse
Affiliation(s)
- Xun Liu
- Child Health, School of Clinical Sciences, University of Bristol, Bristol BS2 8EG, United Kingdom
| | | | | | | | | |
Collapse
|
57
|
Hypoxic-preconditioning induces neuroprotection against hypoxia–ischemia in newborn piglet brain. Neurobiol Dis 2011; 43:473-85. [DOI: 10.1016/j.nbd.2011.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 11/20/2022] Open
|
58
|
Beckham JD, Tuttle KD, Tyler KL. Caspase-3 activation is required for reovirus-induced encephalitis in vivo. J Neurovirol 2010; 16:306-17. [PMID: 20626234 DOI: 10.3109/13550284.2010.499890] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reovirus infection of neonatal mice provides a classic experimental system for understanding the molecular pathogenesis of central nervous system (CNS) viral infection. CNS tissue injury, caused by many human neurotropic viruses, including herpes viruses and West Nile virus, is associated with caspase-dependent apoptotic neuronal cell death. We have previously shown that reovirus-induced CNS tissue injury results from apoptosis and is associated with activation of both death-receptor and mitochondrial apoptotic pathways culminating in the activation of the downstream effector caspase, caspase-3. In order to directly investigate the role of caspase-3 in virus-induced neuronal death and CNS tissue injury during encephalitis, we have compared the pathogenesis of reovirus CNS infection in mice lacking the caspase-3 gene (caspase-3 (-/-)) to syngeneic wild-type mice. Prior studies of antiapoptotic treatments for reovirus-infected mice have indicated that protection from reovirus-induced neuronal injury can occur without altering the viral titer in the brains of infected mice. We now show that reovirus infection of caspase-3 (-/-) mice was associated with dramatic reduction in severity of CNS tissue injury, decreased viral antigen and titer in the brain, and enhanced survival of infected mice. Following intracerebral inoculation, the authors also show that virus spread from the brain to the eyes in reovirus-infected caspase-3 (-/-) mice, indicating that viral spread was intact in these mice. Examination of brains of long-term survivors of reovirus infection among caspase-3 (-/-) mice showed that these mice eventually clear their CNS viral infection, and do not manifest residual or delayed CNS tissue injury.
Collapse
Affiliation(s)
- J David Beckham
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
59
|
Chakkarapani E, Dingley J, Liu X, Hoque N, Aquilina K, Porter H, Thoresen M. Xenon enhances hypothermic neuroprotection in asphyxiated newborn pigs. Ann Neurol 2010; 68:330-41. [PMID: 20658563 DOI: 10.1002/ana.22016] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To investigate whether inhaling 50% xenon during hypothermia (HT) offers better neuroprotection than xenon or HT alone. METHODS Ninety-eight newborn pigs underwent a 45-minute global hypoxic-ischemic insult severe enough to cause permanent brain injury, and 12 pigs underwent sham protocol. Pigs then received intravenous anesthesia and were randomized to 6 treatment groups: (1) normothermia (NT; rectal temperature 38.5 degrees C, n = 18); (2) 18 hours 50% xenon with NT (n = 12); (3) 12 hours HT (rectal temperature 33.5 degrees C, n = 18); (4) 24 hours HT (rectal temperature 33.5 degrees C, n = 17); (5) 18 hours 50% xenon with 12 hours HT (n = 18); and (6) 18 hours 50% xenon with 24 hours HT (n = 17). Fifty percent xenon was administered via a closed circle with 30% oxygen and 20% nitrogen. After 10 hours rewarming, cooled pigs remained normothermic until terminal perfusion fixation at 72 hours. Global and regional brain neuropathology and clinical neurological scores were performed. RESULTS Xenon (p = 0.011) and 12 or 24 hours HT (p = 0.003) treatments offered significant histological global, and regional neuroprotection. Combining xenon with HT yielded an additive neuroprotective effect, as there was no interaction effect (p = 0.54). Combining Xenon with 24 hours HT offered 75% global histological neuroprotection with similarly improved regional neuroprotection: thalamus (100%), brainstem (100%), white matter (86%), basal ganglia (76%), cortical gray matter (74%), cerebellum (73%), and hippocampus (72%). Neurology scores improved in the 24-hour HT and combined xenon HT groups at 72 hours. INTERPRETATION Combining xenon with HT is a promising therapy for severely encephalopathic infants, doubling the neuroprotection offered by HT alone.
Collapse
Affiliation(s)
- Elavazhagan Chakkarapani
- Department of Clinical Sciences at South Bristol, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
60
|
Sahin S, Alkan T, Temel SG, Tureyen K, Tolunay S, Korfali E. Effects of citicoline used alone and in combination with mild hypothermia on apoptosis induced by focal cerebral ischemia in rats. J Clin Neurosci 2009; 17:227-31. [PMID: 20036128 DOI: 10.1016/j.jocn.2009.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 05/12/2009] [Accepted: 05/17/2009] [Indexed: 11/19/2022]
Abstract
The effects of citicoline used either alone or in combination with hypothermia on the suppression of apoptotic processes after transient focal cerebral ischemia were investigated. Middle cerebral artery occlusion (MCAo) was performed for 2 hours on Sprague-Dawley (SD) rats using intraluminal thread insertion. The treatment groups were as follows: Group 1, sham-operated; Group 2, saline; Group 3, citicoline (400mg/kg intraperitoneal.); Group 4, hypothermia (34+/-1 degrees C); Group 5, citicoline+hypothermia. All rats were reperfused for 24 hours, and after sacrifice and transcardiac perfusion, immunohistochemical studies were performed for markers of apoptosis. In Group 2, the Bcl-2 immunostaining score (mean+/-standard deviation, 0.71+/-0.75) was lower compared to Groups 3, 4 and 5 (2.33+/-0.81; 3.00+/-0.00; 2.20+/-0.83; p<0.05). There was higher expression of caspase-3 proteins in Group 2 (2.28+/-0.95) compared to Group 5 (1.50+/-0.83; p<0.05). Bax proteins were also increased in Group 2 (1.85+/-1.06) compared to Group 5 (0.40+/-0.54) and in Group 4 (2.00+/-0.00) compared to Group 5 (0.40+/-0.54; p<0.05). Significant differences in caspase-9 immunostaining scores were found in Group 2 (2.29+/-0.96) compared to Group 5 (0.20+/-0.44) (p<0.05); Group 3 (1.00+/-0.70) compared to Group 5 (0.20+/-0.44; p<0.05); and Group 4 (3.00+/-0.00; p<0.05) compared to Group 5 (0.40+/-0.54; p<0.05). Thus by suppressing apoptotic processes citicoline with hypothermia is more effective than either used alone in ameliorating cerebral damage after transient focal ischemia.
Collapse
Affiliation(s)
- S Sahin
- Department of Neurosurgery, Faculty of Medicine, Uludag University, Bursa, Turkey
| | | | | | | | | | | |
Collapse
|
61
|
Seizures are associated with brain injury severity in a neonatal model of hypoxia-ischemia. Neuroscience 2009; 166:157-67. [PMID: 20006975 DOI: 10.1016/j.neuroscience.2009.11.067] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/29/2009] [Accepted: 11/26/2009] [Indexed: 11/23/2022]
Abstract
Hypoxia-ischemia is a significant cause of brain damage in the human newborn and can result in long-term neurodevelopmental disability. The loss of oxygen and glucose supply to the developing brain leads to excitotoxic neuronal cell damage and death; such over-excitation of nerve cells can also manifest as seizures. The newborn brain is highly susceptible to seizures although it is unclear what role they have in hypoxic-ischemic (H/I) injury. The aim of this study was to determine an association between seizures and severity of brain injury in a piglet model of perinatal H/I and, whether injury severity was related to type of seizure, i.e. sub-clinical (electrographic seizures only) or clinical (electrographic seizures+physical signs). Hypoxia (4% O(2)) was induced in anaesthetised newborn piglets for 30 min with a final 10 min period of hypotension; animals were recovered and survived to 72 h. Animals were monitored daily for seizures both visually and with electroencephalogram (EEG) recordings. Brain injury was assessed with magnetic resonance imaging (MRI), (1)H-MR spectroscopy ((1)H-MRS), EEG and by histology (haematoxylin and eosin). EEG seizures were observed in 75% of all H/I animals, 46% displayed clinical seizures and 29% sub-clinical seizures. Seizure animals showed significantly lower background amplitude EEG across all post-insult days. Presence of seizures was associated with lower cortical apparent diffusion coefficient (ADC) scores and changes in (1)H-MRS metabolite ratios at both 24 and 72 h post-insult. On post-mortem examination animals with seizures showed the greatest degree of neuropathological injury compared to animals without seizures. Furthermore, clinical seizure animals had significantly greater histological injury compared with sub-clinical seizure animals; this difference was not apparent on MRI or (1)H-MRS measures. In conclusion we report that both sub-clinical and clinical seizures are associated with increased severity of H/I injury in a term model of neonatal H/I.
Collapse
|
62
|
Li H, Lu G, Shi W, Zheng S. Protective Effect of Moderate Hypothermia on Severe Traumatic Brain Injury in Children. J Neurotrauma 2009; 26:1905-9. [PMID: 19469686 DOI: 10.1089/neu.2008.0828] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hao Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Guoping Lu
- Department of PICU, Children's Hospital of Fudan University, Shanghai, China
- Maximilian Mehdorn, Neurochirurgie des Universitätsklinikums Schleswig-Holstein, Campus Kiel, Germany
| | - Wei Shi
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
63
|
A closed-circuit neonatal xenon delivery system: a technical and practical neuroprotection feasibility study in newborn pigs. Anesth Analg 2009; 109:451-60. [PMID: 19608817 DOI: 10.1213/ane.0b013e3181aa9550] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Asphyxia accounts for 23% of the 4 million annual global neonatal deaths. In developed countries, the incidence of death or severe disability after hypoxic-ischemic (HI) encephalopathy is 1-2/1000 infants born at term. Hypothermia (HT) benefits newborns post-HI and is rapidly entering clinical use. Xenon (Xe), a scarce and expensive anesthetic, combined with HT markedly increases neuroprotection in small animal HI models. The low-Xe uptake of the patient favors the use of closed-circuit breathing system for efficiency and economy. We developed a system for delivering Xe to mechanically ventilated neonates, then investigated its technical and practical feasibility in a previously described neonatal pig model approximating the clinical scenario of global HI injury, prolonged Xe delivery with and without HT as a potential therapy, subsequent neonatal intensive care unit management, and tracheal extubation. METHODS Sixteen newborn pigs underwent a global 45 min HI insult (4%-6% inspired oxygen reducing the electroencephalogram amplitude to <7 microV), then received 16 h 50% inspired Xe during normothermia (39.0 degrees C) or HT (33.5 degrees C). A conventional neonatal ventilator provided breaths of oxygen to a lower chamber compressing a hanging bag within. This bag communicated with the upper closed part of the breathing system containing soda lime, unidirectional valves, Xe/oxygen analyzers, and a tracheal tube connection. At each end-inspiration, this bag emptied fully and a bolus of oxygen, the driving gas, crossed from the lower to upper chamber via an additional valve. This mechanically substituted the gas uptake from the circle during the previous breath cycle (oxygen + small volume of Xe) with an equivalent volume of oxygen creating a slow-rising inspired oxygen concentration. This was offset by manual injection of Xe boluses, infrequently at steady state, due to the low-Xe uptake of the patient. RESULTS Total mean Xe usage was 0.18 (0.16-0.21) L/h with no differences between Xe-HT and Xe-NT groups, which had weights of 1767 (1657-1877) g and 1818 (1662-1974) g, respectively (95% CI). HT reduced heart rate in the cooled animals; 180 (165-195) vs 148 (142-155) bpm (P < 0.0001) with no differences in arterial blood pressure, oxygen saturation, arterial carbon dioxide tension, or weaning times between these groups. CONCLUSION We describe a closed-circuit Xe delivery system with automatic mechanical oxygen replenishment, which could be developed as a single use device. Gas exchange was maintained while Xe consumption was minimal (<$2/h at $10/L*). We have shown it is both feasible and cost-efficient to use this Xe delivery method in newborn pigs for up to 16 h with or without concurrent cooling after a severe HI insult.
Collapse
|
64
|
Andresen JH, Carlsen B, Solberg R, Mørkrid L, Goverud IL, Løberg EM, Saugstad OD. Newborn piglets exposed to hypoxia after nicotine or saline pretreatment: Long-term effects on brain and heart. J Matern Fetal Neonatal Med 2009; 22:161-8. [DOI: 10.1080/14767050802663186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
65
|
Harris TA, Healy GN, Colditz PB, Lingwood BE. Associations between serum cortisol, cardiovascular function and neurological outcome following acute global hypoxia in the newborn piglet. Stress 2009; 12:294-304. [PMID: 18951250 DOI: 10.1080/10253890802372414] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Perinatal asphyxia is a significant contributor to neonatal brain injury. However, there is significant variability in neurological outcome in neonates after global hypoxia-ischemia. The aims of this study were to identify which physiological response/s during global hypoxia-ischemia influence the severity of brain injury and to assess their relative importance. Hypoxia/hypercapnia was induced in 20 anaesthetized piglets by reducing the inspired oxygen fraction to 10% and the ventilation rate from 30 to 10 breaths per minute for 45 min. Neurological outcome was assessed using functional markers including cerebral function amplitude (via electroencephalography) and cerebral impedance, and the structural marker microtubule associated protein-2 by immunohistochemistry at 6 h post hypoxia. Significant variability in neurological outcome was observed following the constant hypoxia/hypercapnia insult. There was a high degree of variability in cardiovascular function (mean arterial blood pressure and heart rate) and serum cortisol concentrations in response to hypoxia. More effective maintenance of cardiovascular function and higher serum cortisol concentrations were associated with a better outcome. These two variables were strongly associated with neurological outcome, and together explained 68% of the variation in the severity of neurological outcome. The variability in the cardiovascular and cortisol responses to hypoxia may be a more important determinant of neurological outcome then previously recognized.
Collapse
Affiliation(s)
- Thomas A Harris
- Perinatal Research Centre, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | | | | | | |
Collapse
|
66
|
Tichauer KM, Elliott JT, Hadway JA, Lee TY, St. Lawrence K. Cerebral metabolic rate of oxygen and amplitude-integrated electroencephalography during early reperfusion after hypoxia-ischemia in piglets. J Appl Physiol (1985) 2009; 106:1506-12. [DOI: 10.1152/japplphysiol.91156.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The therapeutic window following perinatal hypoxia-ischemia is brief, and early clinical signs of injury can be subtle. Electroencephalography (EEG) represents the most promising early diagnostic of hypoxia-ischemia; however, some studies have questioned the sensitivity and specificity of EEG. The present study investigated the use of both near-infrared spectroscopy (NIRS) measurements of the cerebral metabolic rate of oxygen (CMRO2) and amplitude-integrated EEG (aEEG) to detect the severity of hypoxia-ischemia after 1 h of reperfusion in newborn piglets (10 insult, 3 control). The CMRO2 was measured before and after 1 h of reperfusion from hypoxia-ischemia, the duration of which was varied from piglet to piglet with a range of 3–24 min, under fentanyl/nitrous oxide anesthesia to mimic awake-like levels of cerebral metabolism. EEG data were collected throughout the study. On average, the CMRO2 and mean aEEG background signals were significantly depressed following the insult ( P < 0.05). Mean CMRO2 and mean aEEG background were 2.61 ± 0.11 ml O2·min−1·100 g−1 and 20.4 ± 2.7 μV before the insult and 1.58 ± 0.09 ml O2·min−1·100 g−1 and 11.8 ± 2.9 μV after 1 h of reperfusion, respectively. Both CMRO2 and aEEG displayed statistically significant correlations with duration of ischemia ( P < 0.05; r = 0.71 and r = 0.89, respectively); however, only CMRO2 was sensitive to milder injuries (<5 min). This study highlights the potential for combining NIRS measures of CMRO2 with EEG in the neonatal intensive care unit to improve early detection of perinatal hypoxia-ischemia.
Collapse
|
67
|
Thoresen M, Hobbs CE, Wood T, Chakkarapani E, Dingley J. Cooling combined with immediate or delayed xenon inhalation provides equivalent long-term neuroprotection after neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2009; 29:707-14. [PMID: 19142190 DOI: 10.1038/jcbfm.2008.163] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypothermia (HT) improves outcome after neonatal hypoxia-ischemia. Combination therapy may extend neuroprotection. The noble anesthetic gas xenon (Xe) has an excellent safety profile. We have shown earlier that 3 h of 50% Xe plus HT (32 degrees C) additively gives more protection (72%) than either alone (HT=31.1%, Xe=10.2%). Factors limiting clinical use include high-cost and specialist administration requirements. Thus, combinations of 1 h of 50% Xe were administered concurrently for either the first (1 h(Immediate)Xe) or last (1 h(Delayed)Xe) of 3 h of posthypoxic-ischemic HT as compared with 3 h of 50%Xe/HT to investigate how brief Xe exposure with a delay would affect efficacy. An established neonatal rat hypoxia-ischemia model was used. Serial functional neurologic testing into adulthood was performed, followed by neuropathological examination. Xenon with HT was more effective with longer Xe duration (3 h versus 1 h) (P=0.015). However, 1 h Xe/3 h HT resulted in better neuroprotection than 3 h HT alone (P=0.03), this significant effect was also present with 1 h Xe after a 2-h delay. One (immediate or with a delay) or 3 h Xe also significantly improved motor function (P=0.024). Females had significantly better motor scores than males, but no sex-dependent difference in pathology results. The neuroprotection of short, delayed Xe treatment would allow transport to specialist facilities to receive Xe.
Collapse
Affiliation(s)
- Marianne Thoresen
- Department of Clinical Sciences at South Bristol, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
68
|
Kusaka T, Ueno M, Miki T, Kuboi T, Nakamura S, Koyano K, Ijichi S, Yasuda S, Okubo K, Kawada K, Namba M, Nishida T, Imai T, Isobe K, Itoh S. Relationship between cerebral oxygenation and phosphorylation potential during secondary energy failure in hypoxic-ischemic newborn piglets. Pediatr Res 2009; 65:317-22. [PMID: 19033884 DOI: 10.1203/pdr.0b013e318194fa73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this study was to evaluate the hypothesis that cerebral hemoglobin (Hb) oxygenation is related to phosphorylation potential during primary and secondary cerebral energy failure in newborn infants who have experienced birth asphyxia. We subjected newborn piglets to severe transient cerebral hypoxic-ischemia followed by resuscitation and examined cerebral energy metabolism by 31P-magnetic resonance spectroscopy and evaluated changes in cerebral Hb oxygen saturation (ScO2) using full-spectrum near-infrared spectroscopy before, during, and up to 54 h after the hypoxic-ischemic insult. ScO2 was significantly decreased during the hypoxic-ischemic insult compared with baseline values. During secondary energy failure, piglets were separated based on the relationship between the ratio of phosphocreatine to inorganic phosphate and ScO2; those with a negative correlation were less injured than those with a positive correlation. These results indicate that changes in ScO2 as measured by near-infrared spectroscopy are related to phosphorylation potential during secondary energy failure in asphyxiated infants.
Collapse
Affiliation(s)
- Takashi Kusaka
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Aquilina K, Hobbs C, Cherian S, Tucker A, Porter H, Whitelaw A, Thoresen M. A neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg 2009; 107:126-36. [PMID: 18459884 DOI: 10.3171/ped-07/08/126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The combination of intraventricular hemorrhage (IVH) and posthemorrhagic ventricular dilation (PHVD) remains an important cause of disability in children surviving prematurity. Currently, there is no clear agreement on the management of neonatal IVH, apart from the eventual insertion of a shunt to control PHVD. Cerebrospinal fluid (CSF) shunts are associated with a relatively high complication rate in this population. The development of new treatment options requires greater understanding of the pathophysiological mechanisms of IVH and PHVD, as well as an opportunity to monitor closely their effects on the immature brain. The authors have developed a neonatal large animal model of IVH with long-term survival, allowing the full development of PHVD. METHODS Fourteen piglets that were 3 to 24 hours old were randomized to receive slow injections of autologous blood, autologous blood with elevated hematocrit, or artificial CSF after induction of general anesthesia. A fourth group served as controls. All animals underwent surgery to form an artificial fontanelle at the bregma. Physiological parameters, including intracranial pressure and electroencephalography, were monitored during injection. RESULTS Serial cranial ultrasonography studies performed during the 23- to 44-day survival period demonstrated progressive ventricular dilation in the animals injected with blood. Ventricular volumes, measured with image analysis software, confirmed the highest dilation after injection of blood with an elevated hematocrit. Histological evaluation showed fibrosis in the basal subarachnoid space of hydrocephalic piglets. CONCLUSIONS This piglet model closely replicates human neonatal IVH and PHVD. It allows detailed physiological and ultrasonographic monitoring over a prolonged survival period. It is suitable for evaluation of noninvasive as well as surgical options in the management of IVH and PHVD.
Collapse
Affiliation(s)
- Kristian Aquilina
- Department of Child Health, University of Bristol, Clinical Sciences at South Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
70
|
Winter JD, Tichauer KM, Gelman N, Thompson RT, Lee TY, St Lawrence K. Changes in cerebral oxygen consumption and high-energy phosphates during early recovery in hypoxic-ischemic piglets: a combined near-infrared and magnetic resonance spectroscopy study. Pediatr Res 2009; 65:181-7. [PMID: 18852691 DOI: 10.1203/pdr.0b013e31818f06fb] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Near-infrared spectroscopy (NIRS) offers the ability to assess brain function at the bedside of critically ill neonates. Our group previously demonstrated a persistent reduction in the cerebral metabolic rate of oxygen (CMRO(2)) after hypoxia-ischemia (HI) in newborn piglets. The purpose of this current study was to determine the causes of this reduction by combining NIRS with magnetic resonance spectroscopy (MRS) to measure high-energy metabolites and diffusion-weighted imaging to measure cellular edema. Nine piglets were exposed to 30 min of HI and nine piglets served as controls. Proton and phosphorous MRS spectra, apparent diffusion coefficient (ADC) maps, and CMRO(2) measurements were collected periodically before and for 5.5 h after HI. A significant decrease in CMRO(2) (26 +/- 7%) was observed after HI. Incomplete recovery of nucleotide triphosphate concentration (8 +/- 3% <controls) and reduced ADC (16 +/- 5%) suggested mitochondrial dysfunction. However, CMRO(2) did not correlate with any metabolite concentration during the last 3 h of the recovery period, and no significant changes were found in phosphocreatine and lactate levels. Therefore, the CMRO(2) decrease is likely a combination of impaired mitochondrial function and reduced energy demands during the acute phase, which has been previously observed in the mature brain.
Collapse
Affiliation(s)
- Jeff D Winter
- Imaging Division, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
| | | | | | | | | | | |
Collapse
|
71
|
Munkeby BH, De Lange C, Emblem KE, Bjørnerud A, Kro GAB, Andresen J, Winther-Larssen EH, Løberg EM, Hald JK. A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol 2008; 49:1049-57. [PMID: 18720081 PMCID: PMC2582156 DOI: 10.1080/02841850802334224] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Munkeby BH, de Lange C, Emblem KE, Bjørnerud A, Kro GAB, Andresen J, Winther-Larssen EH, Løberg EM, Hald JK. A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol 2008;49:1049–1057.
Collapse
Affiliation(s)
- B. H. Munkeby
- Department of Paediatric Research, Institute for Surgical Research, Department of Radiology, Department of Medical Physics, Intervention Center, and Department of Gynecology and Obstetrics, Rikshospitalet University Hospital, Oslo, Norway, Institute of Physics, University of Oslo, Oslo, Norway and Department of Pathology, Ullevål University Hospital, Oslo, Norway
| | - C. De Lange
- Department of Paediatric Research, Institute for Surgical Research, Department of Radiology, Department of Medical Physics, Intervention Center, and Department of Gynecology and Obstetrics, Rikshospitalet University Hospital, Oslo, Norway, Institute of Physics, University of Oslo, Oslo, Norway and Department of Pathology, Ullevål University Hospital, Oslo, Norway
| | - K. E. Emblem
- Department of Paediatric Research, Institute for Surgical Research, Department of Radiology, Department of Medical Physics, Intervention Center, and Department of Gynecology and Obstetrics, Rikshospitalet University Hospital, Oslo, Norway, Institute of Physics, University of Oslo, Oslo, Norway and Department of Pathology, Ullevål University Hospital, Oslo, Norway
| | - A. Bjørnerud
- Department of Paediatric Research, Institute for Surgical Research, Department of Radiology, Department of Medical Physics, Intervention Center, and Department of Gynecology and Obstetrics, Rikshospitalet University Hospital, Oslo, Norway, Institute of Physics, University of Oslo, Oslo, Norway and Department of Pathology, Ullevål University Hospital, Oslo, Norway
| | - G. A. B. Kro
- Department of Paediatric Research, Institute for Surgical Research, Department of Radiology, Department of Medical Physics, Intervention Center, and Department of Gynecology and Obstetrics, Rikshospitalet University Hospital, Oslo, Norway, Institute of Physics, University of Oslo, Oslo, Norway and Department of Pathology, Ullevål University Hospital, Oslo, Norway
| | - J. Andresen
- Department of Paediatric Research, Institute for Surgical Research, Department of Radiology, Department of Medical Physics, Intervention Center, and Department of Gynecology and Obstetrics, Rikshospitalet University Hospital, Oslo, Norway, Institute of Physics, University of Oslo, Oslo, Norway and Department of Pathology, Ullevål University Hospital, Oslo, Norway
| | - E. H. Winther-Larssen
- Department of Paediatric Research, Institute for Surgical Research, Department of Radiology, Department of Medical Physics, Intervention Center, and Department of Gynecology and Obstetrics, Rikshospitalet University Hospital, Oslo, Norway, Institute of Physics, University of Oslo, Oslo, Norway and Department of Pathology, Ullevål University Hospital, Oslo, Norway
| | - E. M. Løberg
- Department of Paediatric Research, Institute for Surgical Research, Department of Radiology, Department of Medical Physics, Intervention Center, and Department of Gynecology and Obstetrics, Rikshospitalet University Hospital, Oslo, Norway, Institute of Physics, University of Oslo, Oslo, Norway and Department of Pathology, Ullevål University Hospital, Oslo, Norway
| | - J. K. Hald
- Department of Paediatric Research, Institute for Surgical Research, Department of Radiology, Department of Medical Physics, Intervention Center, and Department of Gynecology and Obstetrics, Rikshospitalet University Hospital, Oslo, Norway, Institute of Physics, University of Oslo, Oslo, Norway and Department of Pathology, Ullevål University Hospital, Oslo, Norway
| |
Collapse
|
72
|
van Dijk A, van Loon J, Taverne M, Jonker F. Umbilical cord clamping in term piglets: A useful model to study perinatal asphyxia? Theriogenology 2008; 70:662-74. [DOI: 10.1016/j.theriogenology.2008.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 04/06/2008] [Accepted: 04/21/2008] [Indexed: 10/21/2022]
|
73
|
Karlsson M, Tooley JR, Satas S, Hobbs CE, Chakkarapani E, Stone J, Porter H, Thoresen M. Delayed hypothermia as selective head cooling or whole body cooling does not protect brain or body in newborn pig subjected to hypoxia-ischemia. Pediatr Res 2008; 64:74-8. [PMID: 18391848 DOI: 10.1203/pdr.0b013e318174efdd] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neuroprotective efficacy of hypothermia (HT) after hypoxia-ischemia (HI) falls dramatically the longer the delay in initiating HT. Knowledge is scarce regarding protective or adverse effects of HT in organs beyond the brain. In addition, the relative effectiveness of selective head cooling (SHC) and whole body cooling (WBC) has not been studied. We aimed to examine whether 24 h HT, initiated 3 h after global HI is brain- and/or organ-protective using pathology, neurology, and biochemical markers. Fifty, <or=1-d-old pigs were subjected to global HI causing permanent brain injury. Animals were randomized to normothermia (NT), (Trectal) 39.0 degrees C, SHCTrectal 34.5 degrees C, or WBCTrectal 34.5 degrees C for 24 h, all followed by 48 h NT. There was no difference in injury to the brain or organs between groups. There was no gender difference in brain injury but females had significantly more organs injured [2.3 (+/- 1.3) [mean +/- SD] vs. 1.4 +/- (1.0)]. The postinsult decline in lactate was temperature independent. However, HT animals normalized their plasma-calcium, magnesium, and potassium significantly faster than NT. Delayed SHC or WBC, initiated 3 h after HI, does not reduce pathology in the brain nor in organs. Delayed HT improves postinsult recovery of plasma-calcium, magnesium, and potassium. There were no differences in adverse effects across groups.
Collapse
Affiliation(s)
- Mathias Karlsson
- Clinical Science at South Bristol (Child Health), University of Bristol, Bristol, BS2 8EG, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Dingley J, Hobbs C, Ferguson J, Stone J, Thoresen M. Xenon/hypothermia neuroprotection regimes in spontaneously breathing neonatal rats after hypoxic-ischemic insult: the respiratory and sedative effects. Anesth Analg 2008; 106:916-23, table of contents. [PMID: 18292440 DOI: 10.1213/ane.0b013e3181618669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Hypothermia (HT) reduces neuronal injury after perinatal asphyxia. The anesthetic gas xenon (XE) may enhance this effect. We investigated the sedative and respiratory effects of variable XE concentrations at 37 degrees C normothermia (NT) or 32 degrees C HT after a hypoxic-ischemic (HI) insult to determine the concentration at which XE was a respiratory depressant in spontaneously breathing 7-day-old rat pups. METHODS (I) In three control groups, the effects of fasting at NT and HT were investigated. (II) Six groups were subjected to a HI insult (left carotid ligation then 90 min breathing 8% oxygen); three then breathed Air, 50%Xe or 70%Xe for 5 h at NT (NT(Air), NT(50%Xe), NT(70%Xe)), while three breathed identical mixtures during HT (HT(Air), HT(50%Xe), or HT(70%Xe)), in addition to a control group. Blood gases, glucose, and lactate were measured. Sedation (spontaneous movement/respiratory rate) was recorded. RESULTS Blood chemistry data were successfully obtained from 70 pups. (I) Pups maintained normal blood gas, glucose, and lactate values after 9 h fasting at NT or HT. (II) After HI insult, in comparison with control and NT(Air) groups, 70%Xe at both NT and HT produced higher PCO2 and lower pH values while the HT(Air) and HT(50%Xe) groups only had lower pH values. The HT(70%Xe) combination produced the highest PCO2 and lowest pH values (56.8 mm Hg, 7.35, respectively) and the greatest sedative effect. CONCLUSION After HI insult, 70%Xe at both NT and HT induced sedation, respiratory depression, CO2 retention, and a decrease in pH relative to air and control groups. The effects were largely avoided with 50%Xe.
Collapse
Affiliation(s)
- John Dingley
- Clinical Science at South Bristol, Child Health, University of Bristol, St. Michael's Hospital, Bristol, UK.
| | | | | | | | | |
Collapse
|
75
|
Lingwood BE, Healy GN, Sullivan SM, Pow DV, Colditz PB. MAP2 provides reliable early assessment of neural injury in the newborn piglet model of birth asphyxia. J Neurosci Methods 2008; 171:140-6. [PMID: 18400305 DOI: 10.1016/j.jneumeth.2008.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 10/22/2022]
Abstract
Reduction in microtubule-associated-protein-2 (MAP2) immunoreactivity is a sensitive and quantifiable early marker of neural injury in rats. This study assessed the reliability of MAP2 as an early marker of neural injury following hypoxia/ischaemia in neonatal piglets, and compared the effects of perfusion and immersion fixation on MAP2 immunoreactivity. Hypoxia was induced in newborn piglets (n=23) by reducing the FiO2 to 4% for 0, 25, 35 or 50 min. Six hours after the end of hypoxia piglets were killed, and the brain removed and immunolabelled for MAP2. Significant reductions in MAP2 immunoreactivity were seen in cortex, hippocampus, basal ganglia and thalamus. Reductions correlated with duration of hypoxia, pH at the end of hypoxia, cerebral function monitor amplitude and cerebral impedance 6h after hypoxia, and with early histological evidence of ischaemic changes. Regions with reduced immunoreactivity correlated with areas where damage is present in later histological examination in this model. Immersion fixation with postmortem delays up to 30 min did not affect MAP2 immunoreactivity compared to perfusion-fixed tissue. Results indicate that MAP2 immunoreactivity 6h after hypoxia/ischaemia is a reliable marker of neural injury in the neonatal piglet.
Collapse
Affiliation(s)
- Barbara E Lingwood
- Perinatal Research Centre, University of Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia.
| | | | | | | | | |
Collapse
|
76
|
Hobbs C, Thoresen M, Tucker A, Aquilina K, Chakkarapani E, Dingley J. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 2008; 39:1307-13. [PMID: 18309163 DOI: 10.1161/strokeaha.107.499822] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Hypoxic/ischemic (HI) brain injury affects 1 to 6 per 1000 live human births, with a mortality of 15% to 20%. A quarter of survivors have permanent disabilities. Hypothermia is the only intervention that improves outcome; however, further improvements might be obtained by combining hypothermia with additional treatments. Xenon is a noble anesthetic gas with an excellent safety profile, showing great promise in vitro and in vivo as a neuroprotectant. We investigated combinations of 50% xenon (Xe(50%)) and hypothermia of 32 degrees C (HT(32 degrees C)) as a post-HI therapy. METHODS An established neonatal rat HI model was used. Serial functional neurologic testing into adulthood 10 weeks after injury was performed, followed by global and regional brain histopathology evaluation. RESULTS In the combination Xe(50%)HT(32 degrees C) group, complete restoration of long-term functional outcomes was seen. Hypothermia produced improvement on short- (P<0.001) and long- (P<0.001) term functional testing, whereas Xe(50%) alone predominantly improved long-term function (P<0.05), suggesting that short-term testing does not always predict eventual outcome. Similarly, the Xe(50%)HT(32 degrees C) combination produced the greatest (71%) improvement in global histopathology scores, a pattern mirrored in the regional scores, whereas Xe(50%) and HT(32 degrees C) individually produced smaller improvements (P<0.05 and P<0.001, respectively). The interaction between the 2 treatments was additive. CONCLUSIONS The xenon/hypothermia combination additively confers greater protection after HI than either treatment alone. The functional improvement is almost complete, is sustained long term, and is accompanied by greatly improved histopathology. The unique safety profile differentiates xenon as an attractive combination therapy with hypothermia to improve the otherwise bleak outcome from neonatal HI.
Collapse
Affiliation(s)
- Catherine Hobbs
- Department of Clinical Sciences at South Bristol, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
77
|
Davidson JO, Fraser M, Naylor AS, Roelfsema V, Gunn AJ, Bennet L. Effect of cerebral hypothermia on cortisol and adrenocorticotropic hormone responses after umbilical cord occlusion in preterm fetal sheep. Pediatr Res 2008; 63:51-5. [PMID: 18043499 DOI: 10.1203/pdr.0b013e31815b8eb4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is essential for adaptation to stress. In the present study, we examined the hypothesis that head cooling with mild systemic hypothermia would adversely affect fetal adrenocorticotropic hormone (ACTH) and cortisol responses to an asphyxial insult. Chronically instrumented preterm fetal sheep (104 d of gestation, term is 147 d) were allocated to sham occlusion (n = 7), 25 min of complete umbilical cord occlusion (n = 7), or occlusion and head cooling with mild systemic hypothermia (n = 7, mean +/- SEM esophageal temperature 37.6 +/- 0.3 degrees C vs 39.0 +/- 0.2 degrees C; p < 0.05) from 90 min to 70 h after occlusion, followed by spontaneous rewarming. During umbilical cord occlusion, there was a rapid rise in ACTH and cortisol levels, with further increases after release of cord occlusion. ACTH levels returned to sham control values after 10 h in both occlusion groups. In contrast, plasma cortisol levels remained elevated after 48 h in both occlusion groups and were still significantly elevated in the hypothermia-occlusion group 2 h after rewarming, at 72 h, compared with the normothermia-occlusion and sham groups. In conclusion, hypothermia does not affect the overall HPA responses to severe asphyxia in the preterm fetus but does prolong the cortisol response.
Collapse
Affiliation(s)
- Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland 1023, New Zealand
| | | | | | | | | | | |
Collapse
|
78
|
Andresen JH, Solberg R, Løberg EM, Munkeby BH, Stray-Pedersen B, Saugstad OD. Resuscitation with 21 or 100% oxygen in hypoxic nicotine-pretreated newborn piglets: possible neuroprotective effects of nicotine. Neonatology 2008; 93:36-44. [PMID: 17630496 DOI: 10.1159/000105523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 04/16/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Perinatal asphyxia is a major concern in perinatal medicine. Resuscitation and ways to prevent and minimize adverse outcomes after perinatal asphyxia are subject to extensive research. OBJECTIVES In this study we hypothesized that, prior to hypoxia, intravenously administered nicotine might have an effect on how newborn piglets tolerate hypoxia, with regard to the time and degree of damage inflicted, due to its suggested neuroprotective abilities, and further that resuscitation with 21 compared with 100% oxygen in nicotine-pretreated animals would cause less cerebral damage. METHODS Thirty anesthetized newborn piglets were randomized to either hypoxia or control groups, and pretreatment with either saline or nicotine. In addition, the nicotine/hypoxia group was randomized to resuscitation with either 21 or 100% oxygen for 15 min following hypoxia. RESULTS We found significantly more necrosis in the striatum and cortex combined (p = 0.036), and in the striatum alone (p = 0.026), in the animals pretreated with nicotine and resuscitated with 100% when compared to 21% oxygen. There was no significant difference in the cerebellum. We also found significantly increased tolerance to hypoxia as measured by the time interval that the animals endured hypoxia: 103.8 +/- 28.2 min in the nicotine-pretreated animals vs. 66.5 +/- 19.5 min in the saline-pretreated animals (p = 0.035). CONCLUSION Nicotine enhances newborn piglets' ability to endure hypoxia, and resuscitation with 21% oxygen inflicts less necrosis than 100% oxygen. The potential neuroprotective effects of nicotine in the newborn brain should be further investigated.
Collapse
Affiliation(s)
- Jannicke H Andresen
- Department of Pediatric Research, Medical Faculty, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
79
|
Gressens P, Dingley J, Plaisant F, Porter H, Schwendimann L, Verney C, Tooley J, Thoresen M. Analysis of neuronal, glial, endothelial, axonal and apoptotic markers following moderate therapeutic hypothermia and anesthesia in the developing piglet brain. Brain Pathol 2007; 18:10-20. [PMID: 17924981 DOI: 10.1111/j.1750-3639.2007.00095.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hypothermia (HT) by whole body (WBC) or selective head cooling (SHC) reduces hypoxic-ischemic (HI) brain injury; however, whether prolonged hypothermia and/or anesthesia disrupts immature brain development, eg, increases apoptosis, is unknown. Anesthesia increases apoptosis in immature animals. We investigated whether neuroprotective hypothermia and anesthesia disrupts normal brain development. Thirty-eight pigs <24 h old were randomized between five groups and were killed after 72 h: eighteen received a global hypoxic-ischemic insult under anesthesia, eight subsequently cooled by SHC with WBC to T(rectal) 34.5 degrees C for 24 h, followed by 48 h normothermia (NT) at T(rectal) 39.0 degrees C, while 10 remained normothermic. Sixteen underwent anesthetized sham hypoxic-ischemic, six then following normothermia and 10 following hypothermia protocols. There were four normothermic controls. The hypothermia groups demonstrated significant brain hypothermia. In the hypoxic-ischemic groups this conferred approximately 60% neuroprotection reducing histological injury scores in all brain areas. Immunohistochemical/histochemical analyses of neuronal, glial, endothelial, axonal, transcriptional apoptotic markers in areas devoid of histological lesions revealed no hypothermia/normothermia group and differences whether exposed to hypoxic-ischemic or not. Neither 36-h anesthesia nor 24-h hypothermia produced adverse effects at 4-day survival on a panel of brain maturation/neural death markers in newborn pigs. Longer survival studies are necessary to verify the safety of hypothermia in the developing brain.
Collapse
|
80
|
Beckham JD, Goody RJ, Clarke P, Bonny C, Tyler KL. Novel strategy for treatment of viral central nervous system infection by using a cell-permeating inhibitor of c-Jun N-terminal kinase. J Virol 2007; 81:6984-92. [PMID: 17475657 PMCID: PMC1933289 DOI: 10.1128/jvi.00467-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral encephalitis is a major cause of morbidity and mortality worldwide, yet there is no proven efficacious therapy for most viral infections of the central nervous system (CNS). Many of the viruses that cause encephalitis induce apoptosis and activate c-Jun N-terminal kinase (JNK) following infection. We have previously shown that reovirus infection of epithelial cell lines activates JNK-dependent apoptosis. We now show that reovirus infection resulted in activation of JNK and caspase-3 in the CNS. Treatment of reovirus-infected mice with a cell-permeating peptide that competitively inhibits JNK activity resulted in significantly prolonged survival of intracerebrally infected mice following an otherwise lethal challenge with T3D (100 x 50% lethal dose). Protection correlated with reduced CNS injury, reduced neuronal apoptosis, and reduced c-Jun activation without altering the viral titer or viral antigen distribution. Given the efficacy of the inhibitor in protecting mice from viral encephalitis, JNK inhibition represents a promising and novel treatment strategy for viral encephalitis.
Collapse
Affiliation(s)
- J David Beckham
- Department of Medicine, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
81
|
Björkman ST, Foster KA, O'driscoll SM, Healy GN, Lingwood BE, Burke C, Colditz PB. Hypoxic/Ischemic models in newborn piglet: Comparison of constant FiO2 versus variable FiO2 delivery. Brain Res 2006; 1100:110-7. [PMID: 16765329 DOI: 10.1016/j.brainres.2006.04.119] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 04/27/2006] [Accepted: 04/29/2006] [Indexed: 10/24/2022]
Abstract
A comparison of a constant (continuous delivery of 4% FiO2) and a variable (initial 5% FiO2 with adjustments to induce low amplitude EEG (LAEEG) and hypotension) hypoxic/ischemic insult was performed to determine which insult was more effective in producing a consistent degree of survivable neuropathological damage in a newborn piglet model of perinatal asphyxia. We also examined which physiological responses contributed to this outcome. Thirty-nine 1-day-old piglets were subjected to either a constant hypoxic/ischemic insult of 30- to 37-min duration or a variable hypoxic/ischemic insult of 30-min low peak amplitude EEG (LAEEG <5 microV) including 10 min of low mean arterial blood pressure (MABP <70% of baseline). Control animals (n = 6) received 21% FiO2 for the duration of the experiment. At 72 h, the piglets were euthanased, their brains removed and fixed in 4% paraformaldehyde and assessed for hypoxic/ischemic injury by histological analysis. Based on neuropathology scores, piglets were grouped as undamaged or damaged; piglets that did not survive to 72 h were grouped separately as dead. The variable insult resulted in a greater number of piglets with neuropathological damage (undamaged = 12.5%, damaged = 68.75%, dead = 18.75%) while the constant insult resulted in a large proportion of undamaged piglets (undamaged = 50%, damaged = 22.2%, dead = 27.8%). A hypoxic insult varied to maintain peak amplitude EEG <5 microV results in a greater number of survivors with a consistent degree of neuropathological damage than a constant hypoxic insult. Physiological variables MABP, LAEEG, pH and arterial base excess were found to be significantly associated with neuropathological outcome.
Collapse
Affiliation(s)
- S Tracey Björkman
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane 4029, Australia.
| | | | | | | | | | | | | |
Collapse
|
82
|
Vexler ZS, Sharp FR, Feuerstein GZ, Ashwal S, Thoresen M, Yager JY, Ferriero DM. Translational stroke research in the developing brain. Pediatr Neurol 2006; 34:459-63. [PMID: 16765824 DOI: 10.1016/j.pediatrneurol.2005.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/15/2005] [Accepted: 10/06/2005] [Indexed: 11/26/2022]
Abstract
Preclinical animal models can help guide the development of clinical pediatric and newborn stroke trials. Data obtained using currently available models of hypoxia-ischemia and focal stroke have demonstrated the need for age-appropriate models. There are age-related differences in susceptibility of the immature brain to oxidative stress and inflammation, as well as in the rate and degree of apoptotic neuronal death. These issues need to be carefully addressed in designing future clinical trials.
Collapse
Affiliation(s)
- Zinaida S Vexler
- Department of Neurology, University of California San Francisco, San Francisco, California 94143-0663, USA.
| | | | | | | | | | | | | |
Collapse
|
83
|
Nedelcu J, Klein MA, Aguzzi A, Martin E. Resuscitative hypothermia protects the neonatal rat brain from hypoxic-ischemic injury. Brain Pathol 2006; 10:61-71. [PMID: 10668896 PMCID: PMC8098239 DOI: 10.1111/j.1750-3639.2000.tb00243.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The effect of 24 h of hypothermic recovery on moderate hypoxic-ischemic brain damage in P7-rats was investigated for 42 d after the insult, using magnetic resonance and histopathology. Occlusion of right common carotid artery and 90 min exposure to 8% O2 at 37 degrees C body temperature produced cytotoxic edema of 51(+/-11)% brain volume (BV) and depression of brain energy metabolism (PCr/Pi) from 1.43(+/-0.21) to 0.14(+/-0.11). During recovery, the body temperature was reduced to 30 degrees C for 24 h in 36 animals, but was kept at 37 degrees C in 34 animals. The edema waned upon reoxygenation leaving only the core lesion at 2 h, but reappeared reaching a maximal extent of 11+/-8% BV under hypothermia compared to 45(+/-10)% under normothermia at around 24 h. PCr/Pi recovered transiently within 13 h and declined again to 1.07(+/-0.19) under hypothermia and to 0.48(+/-0.22) under normothermia at around 24 h. Hypothermia led to significant long term brain protection, leaving permanent tissue damage of 12(+/-6)% BV compared to 35(+/-12)% BV under normothermia. However, animals with severe initial injury developed large infarctions, despite hypothermic treatment. Even then, the time to develop infarction was significantly prolonged, leaving the opportunity for additional therapeutic intervention.
Collapse
Affiliation(s)
- J Nedelcu
- Department of Magnetic Resonance, University Children's Hospital Zurich, Switzerland.
| | | | | | | |
Collapse
|
84
|
Affiliation(s)
- Michael V Johnston
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
85
|
Abstract
Perinatal asphyxia is an important cause of neonatal morbidity and mortality. There is the potential to halt cerebral damage if neural rescue strategies are applied within a short period of time after an insult. It is therefore important to be able to accurately identify neonates who may benefit from neural rescue therapies. Recent studies in asphyxiated neonates have correlated S100B and NSE with outcome; however, interpretation of these studies were difficult, as the timing of the measurements were not consistent. We measured NSE and S100 in 1-d-old piglets after a mild or severe hypoxic insult. Measurements were performed at 6-72 h after the insult and correlated with histologic outcome. There were no differences of the NSE or S100 concentrations between controls and the mild hypoxia group. After 24 h, there was a significant difference of NSE between the control/mild insult group and severe insult group. After 48 h, the S100 concentrations were significantly different between the control/mild insult group and the severe insult group. Both proteins showed good correlation at these time points with outcome as measured by histology score at 72 h. In conclusion, NSE and S100B measured in the serum of piglets after hypoxia increased significantly and correlated with outcome. This increase occurs too late to be used within the first 24 h but might be helpful for the clinician in determining the timing of an insult.
Collapse
Affiliation(s)
- Zsuzsoka Kecskes
- Royal Children's Hospital, Herston Road, Herston, Queensland, 4029, Australia.
| | | | | |
Collapse
|
86
|
Sävman K, Nilsson UA, Thoresen M, Kjellmer I. Non-protein-bound iron in brain interstitium of newborn pigs after hypoxia. Dev Neurosci 2005; 27:176-84. [PMID: 16046852 DOI: 10.1159/000085990] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 11/21/2004] [Indexed: 11/19/2022] Open
Abstract
Oxidative damage is implied in perinatal hypoxic-ischemic brain injury, most importantly in white matter. Nonprotein-bound iron (NPBI) catalyzes the formation of toxic hydroxyl radicals. We measured the extracellular level of NPBI through microdialysis in the cortex, striatum, and periventricular white matter before, during and after severe hypoxia in newborn pigs. NPBI was analyzed by a new spectrophotometric method in which ferrous iron is chelated by bathophenanthroline. NPBI was present in all brain areas under baseline conditions and increased in white matter from 0.97 (0.69) to 2.75 (1.85) micromol/l (not corrected for recovery rate) during early reoxygenation. NPBI may contribute to oxidative injury after perinatal hypoxic insults.
Collapse
Affiliation(s)
- Karin Sävman
- Department of Pediatrics, Perinatal Center, Goteborg University, The Queen Silvia Children's Hospital, Goteborg, Sweden.
| | | | | | | |
Collapse
|
87
|
Tooley JR, Eagle RC, Satas S, Thoresen M. Significant head cooling can be achieved while maintaining normothermia in the newborn piglet. Arch Dis Child Fetal Neonatal Ed 2005; 90:F262-6. [PMID: 15846020 PMCID: PMC1721873 DOI: 10.1136/adc.2003.044305] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypothermia has been shown to be neuroprotective in animal models of hypoxia-ischaemia. It is currently being evaluated as a potentially therapeutic option in the management of neonatal hypoxic-ischaemic encephalopathy. However, significant hypothermia has adverse systemic effects. It has also recently been found that the stress of being cold can abolish the neuroprotective effects of hypothermia. It is hypothesised that selective head cooling (SHC) while maintaining normal core temperature would enable local hypothermic neuroprotection while limiting the stress and side effects of hypothermia. OBJECTIVE To determine whether it is possible to induce moderate cerebral hypothermia in the deep brain of the piglet while maintaining the body at normothermia (39 degrees C). METHODS Six piglets (<48 hours old) were anaesthetised, and temperature probes inserted into the brain. Temperature was measured at different depths from the brain surface (21 mm (T(deep brain)) to 7 mm (T(superficial brain))). After a 45 minute global hypoxic-ischaemic insult, each piglet was head cooled for seven hours using a cap circulated with cold water (median 8.9 degrees C (interquartile range 7.5-14)) wrapped around the head. Radiant overhead heating was used to warm the body during cooling. RESULTS During SHC it was possible to cool the brain while maintaining a normal core temperature. The mean (SD) T(deep brain) during the seven hour cooling period was 31.1 (4.9) degrees C while T(rectal) remained stable at 38.8 (0.4) degrees C. The mean T(rectal)-T(deep brain) difference throughout the cooling period was 9.8 (6.1) degrees C. The mean T(skin) required was 40.8 (1.1) degrees C. There was no evidence of skin damage secondary to these skin temperatures. During cooling only one piglet shivered. CONCLUSIONS It is possible to maintain systemic normothermia in piglets while significantly cooling the deeper structures of the brain. This method of cooling may further limit the side effects associated with systemic hypothermia and be feasible for premature infants.
Collapse
Affiliation(s)
- J R Tooley
- Department of Child Health, St Michael's Hospital, Southwell Street, Bristol BS2 8EG, UK
| | | | | | | |
Collapse
|
88
|
Thoresen M, Whitelaw A. Therapeutic hypothermia for hypoxic–ischaemic encephalopathy in the newborn infant: review. Curr Opin Neurol 2005; 18:111-6. [PMID: 15791139 DOI: 10.1097/01.wco.0000162850.44897.c6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review examines recent findings from experimental models and clinical trials of induced hypothermia as treatment after cerebral hypoxia-ischaemia in term newborn infants. RECENT FINDINGS Experimental hypothermia inhibits many steps in the biochemical cascade that produces severe brain injury after hypoxia-ischaemia. This is in contrast to pharmacological agents, which tend to target only one step in the process that leads to brain injury. In adult humans hypothermia initiated immediately after cardiac arrest has improved outcomes. Delayed cooling after brain trauma has also been effective in a subgroup of adult patients. Seventy-two hours of selective head cooling with mild systemic hypothermia (rectal temperature 34.5 degrees C) in term infants with hypoxic-ischaemic encephalopathy (HIE) reduced death or disability in the infants with less severe electroencephalographic changes at entry (no benefit in those with advanced electroencephalographic changes). Cooling had no apparent adverse effects. A smaller randomized clinical trial of 48 h whole body cooling (rectal T 33 degrees C) found a reduction in death and neurological impairment. SUMMARY In term infants with HIE there is emerging evidence that both selective head cooling and whole body cooling are neuroprotective and safe. This is consistent with a wealth of experimental animal data and adult trials. Neuroprotection seems to be lost if cooling is started after 6 h. The challenge now is to complete ongoing trials. If meta-analysis confirms a therapeutic effect, then this may lead to selection criteria and treatment protocols for very early hypothermia in HIE at term.
Collapse
|
89
|
Hoyt CC, Richardson-Burns SM, Goody RJ, Robinson BA, Debiasi RL, Tyler KL. Nonstructural protein sigma1s is a determinant of reovirus virulence and influences the kinetics and severity of apoptosis induction in the heart and central nervous system. J Virol 2005; 79:2743-53. [PMID: 15708993 PMCID: PMC548430 DOI: 10.1128/jvi.79.5.2743-2753.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 10/11/2004] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which viruses kill susceptible cells in target organs and ultimately produce disease in the infected host remain poorly understood. Dependent upon the site of inoculation and strain of virus, experimental infection of neonatal mice with reoviruses can induce fatal encephalitis or myocarditis. Reovirus-induced apoptosis is a major mechanism of tissue injury, leading to disease development in both the brain and heart. In cultured cells, differences in the capacity of reovirus strains to induce apoptosis are determined by the S1 gene segment, which also plays a major role as a determinant of viral pathogenesis in both the heart and the central nervous system (CNS) in vivo. The S1 gene is bicistronic, encoding both the viral attachment protein sigma-1 and the nonstructural protein sigma-1-small (sigma1s). Although sigma1s is dispensable for viral replication in vitro, we wished to investigate the expression of sigma1s in the infected heart and brain and its potential role in reovirus pathogenesis in vivo. Two-day-old mice were inoculated intramuscularly or intracerebrally with either sigma1s(-) or sigma1s(+) reovirus strains. While viral replication in target organs did not differ between sigma1s(-) and sigma1s(+) viral strains, virus-induced caspase-3 activation and resultant histological tissue injury in both the heart and brain were significantly reduced in sigma1s(-) reovirus-infected animals. These results demonstrate that sigma1s is a determinant of the magnitude and extent of reovirus-induced apoptosis in both the heart and CNS and thereby contributes to reovirus pathogenesis and virulence.
Collapse
Affiliation(s)
- Cristen C Hoyt
- Department of Neurology (B-182), University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
90
|
Anttila V, Hagino I, Zurakowski D, Lidov HGW, Jonas RA. Higher bypass temperature correlates with increased white cell activation in the cerebral microcirculation. J Thorac Cardiovasc Surg 2004; 127:1781-8. [PMID: 15173737 DOI: 10.1016/j.jtcvs.2004.01.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Cardiopulmonary bypass induces a systemic inflammatory response, which in turn promotes a cascade of leukocyte and endothelial cell activity. We investigated whether differences in bypass temperature and flow rate affect endothelial cell and leukocyte adhesion in the cerebral microcirculation. METHODS Thirty-six piglets (13.0 +/- 1.1 kg) had a cranial window placed over the parietal cortex to evaluate the microcirculation by means of intravital microscopy. Animals were cooled to a temperature of 15 degrees C, 25 degrees C, or 34 degrees C on cardiopulmonary bypass with hematocrit levels of 20% or 30% by using pH-stat management, followed by 60 minutes of reduced flow (10, 25, or 50 mL.kg(-1).min(-1)). Rhodamine staining was used to observe adherent and rolling leukocytes in postcapillary venules. RESULTS Higher bypass temperature correlated with significantly more adherent and rolling leukocytes during the full 60 minutes of low-flow bypass (P <.05). Poisson regression revealed more adherent leukocytes at 34 degrees C than at 15 degrees C and at a flow rate of 10 mL.kg(-1).min(-1) compared with a flow rate of 50 mL.kg(-1).min(-1). There was an inverse correlation between flow rate and the number of adherent and rolling leukocytes at 30, 45, and 60 minutes of low-flow bypass (P <.05). Temperature was a multivariable predictor of histologic score, with greater neurologic damage found after bypass at 34 degrees C (P <.01). CONCLUSIONS Leukocyte activation in cerebral microcirculation is increased with higher temperature and lower flow rate, suggesting that these variables influence the inflammatory response during cardiopulmonary bypass.
Collapse
Affiliation(s)
- Vesa Anttila
- Department of Cardiovascular Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Mass, USA
| | | | | | | | | |
Collapse
|
91
|
Iwata O, Iwata S, Tamura M, Nakamura T, Sugiura M, Ogiso Y, Takashima S. Early head cooling in newborn piglets is neuroprotective even in the absence of profound systemic hypothermia. Pediatr Int 2003; 45:522-9. [PMID: 14521525 DOI: 10.1046/j.1442-200x.2003.01784.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Selective head cooling in the newborn infant has been proposed as a neuroprotective treatment with a lower level of systemic adverse effect than that of systemic hypothermia. However, the efficacy is not confirmed as well as that of systemic hypothermia. In order to analyze the safety and efficacy of selective head cooling, 25 newborn piglets were randomly selected for either normothermic or hypothermic treatment. METHODS Global hypoxic insult was induced by lowering the oxygen concentration to the maximal level to maintain the background electroencephalogram (EEG) voltage under 7 microV for 45 min. The core temperature of normothermic piglets was maintained between 38.5 degrees C and 39 degrees C, while prophylactic cooling was applied to the hypothermic piglets at the same time of the insult. Very mild systemic hypothermia by 1 degrees C was induced in addition to selective head cooling with 10 degrees C coolant temperature. Animals were killed for histopathological examination seven hours after the end of the insult. RESULTS Two normothermic piglets died while all hypothermic piglets survived. Neuropathological findings were significantly severer in the normothermic group than in the hypothermic group. Intracranial pressure was significantly lower, and EEG recovery was significantly better in the hypothermic piglets. There was no significant difference in the lowest oxygen concentration, degrees of acidosis, blood lactate, and blood pressure between the groups, although heart rate was significantly lower in the hypothermic group. CONCLUSIONS We have demonstrated that early head cooling was effective in preventing some of the earliest brain damage due to hypoxic insult even in the absence of profound systemic hypothermia.
Collapse
Affiliation(s)
- Osuke Iwata
- Division of Neonatology, Perinatal Center, Nagano Children's Hospital, Toyoshina, Nagano, Japan.
| | | | | | | | | | | | | |
Collapse
|
92
|
Agnew DM, Koehler RC, Guerguerian AM, Shaffner DH, Traystman RJ, Martin LJ, Ichord RN. Hypothermia for 24 hours after asphyxic cardiac arrest in piglets provides striatal neuroprotection that is sustained 10 days after rewarming. Pediatr Res 2003; 54:253-62. [PMID: 12736390 DOI: 10.1203/01.pdr.0000072783.22373.ff] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neuroprotective effect of hypothermia instituted after resuscitation from asphyxic cardiac arrest has not been studied in immature brain, particularly in a large animal model with recovery periods greater than 4 d. Moreover, protection from severe hypoxia seen with 3 h of hypothermia was reported to be lost when hypothermic duration was extended to 24 h in unsedated piglets, in contrast to the neuroprotection reported by 72 h of intrauterine head cooling in fetal sheep. Piglets (5-7 postnatal days) were subjected to asphyxic cardiac arrest followed by 24 h of either hypothermia (34 degrees C) or normothermia (38.5-39 degrees C). Comparisons were made with normothermic and hypothermic surgical sham animals without asphyxia. All of these groups were sedated, paralyzed, and mechanically ventilated for the first 24 h to prevent shivering and possible depletion of glucose stores. Hypothermia per se did not cause remarkable structural abnormalities. Ischemic damage was evaluated in putamen at 1 d of recovery without rewarming and at 11 d (10 d +/- SD after rewarming). Ischemic cytopathology affected 60 +/- 12% of neurons in putamen of normothermic animals compared with 9 +/- 6% in hypothermic animals at 1 d of recovery without rewarming. At 11 d of recovery from hypoxia-ischemia, the density of viable neurons (neuron profiles/mm2) in putamen was markedly reduced in normothermic animals (81 +/- 40) compared with hypothermic animals (287 +/- 22), which was the same as in sham normothermic (271 +/- 21), sham hypothermic (288 +/- 46) and naïve animals (307 +/- 51). These data demonstrate that 24 h of hypothermia at 34 degrees C with sedation and muscle relaxation after asphyxic cardiac arrest prevents necrotic striatal neuronal cell death in immature brain before rewarming, and that the effect is sustained at 11 d after injury without deleterious side effects.
Collapse
Affiliation(s)
- Dawn M Agnew
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Blalock 1404, 600 N. Wolfe Street, Baltimore, MD 21287 U.S.A.
| | | | | | | | | | | | | |
Collapse
|
93
|
Lingwood BE, Dunster KR, Healy GN, Ward LC, Colditz PB. Cerebral impedance and neurological outcome following a mild or severe hypoxic/ischemic episode in neonatal piglets. Brain Res 2003; 969:160-7. [PMID: 12676376 DOI: 10.1016/s0006-8993(03)02295-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multi-frequency bio-impedance has the potential to identify infants at risk of poor neurodevelopmental outcome following hypoxia by detecting cerebral edema. This study investigated the relationship between the severity of an hypoxic/ischemic episode, neurological outcome following the hypoxia and non-invasively measured cerebral bioelectrical impedance in piglets. One-day-old piglets were anaesthetised and ventilated. Hypoxia was induced by reducing the inspired oxygen concentration to 3-5%. Severe hypoxia was defined as hypoxia resulting in at least 30 min of low amplitude EEG (<5 microV) as well as hypotension and acidosis. Cerebral bio-impedance was measured before, during and for up to 6 h post-hypoxia. Neurological outcome was determined by a neurology score at 24 and 48 h after hypoxia, and by histological examination of the brain at 72 h. There was no increase in cerebral impedance in control animals. Following mild hypoxia cerebral impedance increased transiently. Following severe hypoxia, cerebral impedance increased and remained elevated. Cerebral impedance following severe hypoxia was significantly higher than after mild hypoxia at 10 min and from 2 to 6 h after resuscitation. Cerebral impedance measurements made up to 1 h and between 3 and 6 h after resuscitation were significantly correlated with neurological outcome. Results indicate that non-invasive cerebral impedance measurements are able to discriminate early between those individuals who have suffered a mild, acute hypoxic episode, and those who have suffered a severe hypoxic episode. The technique has the potential to predict which individuals will have a poor neurological outcome.
Collapse
Affiliation(s)
- Barbara E Lingwood
- Perinatal Research Centre, University of Queensland, Royal Women's Hospital, Herston, 4029, Queensland, Australia.
| | | | | | | | | |
Collapse
|
94
|
Tooley JR, Satas S, Porter H, Silver IA, Thoresen M. Head cooling with mild systemic hypothermia in anesthetized piglets is neuroprotective. Ann Neurol 2003; 53:65-72. [PMID: 12509849 DOI: 10.1002/ana.10402] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hypothermia is potentially therapeutic in the management of neonatal hypoxic-ischemic brain injury. However, not all studies have shown a neuroprotective effect. It is suggested that the stress of unsedated hypothermia may interfere with neuroprotection. We propose that selective head cooling (SHC) combined with mild total-body hypothermia during anesthesia enhances local neuroprotection while minimizing the occurrence of systemic side effects and stress associated with unsedated whole-body cooling. Our objective was to determine whether SHC combined with mild total-body hypothermia while anesthetized for a period of 24 hours reduces cerebral damage in our piglet survival model of global hypoxia-ischemia. Eighteen anesthetized piglets received a 45-minute global hypoxic-ischemic insult. The pigs were randomized either to remain normothermic or to receive SHC. We found that the severity of the hypoxic-ischemic insult was similar in the SHC versus the normothermic group, and that the mean neurology scores at 30 and 48 hours and neuropathology scores were significantly better in the SHC group versus the normothermic group. We conclude that selective head cooling combined with mild systemic hypothermia and anesthesia is neuroprotective when started immediately after the insult in our piglet model of hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- James R Tooley
- Department of Child Health, St. Michael's Hospital, University of Bristol, United Kingdom
| | | | | | | | | |
Collapse
|
95
|
Tooley J, Satas S, Eagle R, Silver IA, Thoresen M. Significant selective head cooling can be maintained long-term after global hypoxia ischemia in newborn piglets. Pediatrics 2002; 109:643-9. [PMID: 11927709 DOI: 10.1542/peds.109.4.643] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Selective head cooling (SHC) combined with mild body cooling is currently being evaluated as a potentially therapeutic option in the management of neonatal hypoxic-ischemic encephalopathy. It is proposed that SHC enables local hypothermic neuroprotection while minimizing the deleterious side effects of systemic hypothermia. However, there is little evidence that it is possible to cool the brain more than the body for a prolonged period of time. The aim of this study was to examine whether the brain (T(deep brain)) could be cooled to below the rectal temperature (T(rectal)) in our piglet hypoxia ischemia (HI) model for a period of 24 hours, using a head-cooling cap. METHODS Eight anesthetized piglets (median age: 15 hours) had subdural and intracerebral basal ganglia temperature probes inserted. After a 45-minute global HI insult (known to produce permanent brain damage), SHC using a cap perfused with cold water (5 degrees C-24 degrees C) combined with overhead body heating to maintain T(rectal) at 34 to 35 degrees C was performed for 24 hours. RESULTS The piglets were cooled to a median T(rectal) of 35.0 degrees C (interquartile range [IQR]: 34.7-35.3) for 24 hours. During this time, the median T(deep brain) was 31.4 degrees C (IQR: 30 degrees C-32.2 degrees C), with a median T(rectal) to T(deep brain) gradient of 3.4 degrees C (IQR: 2.7 degrees C-4.8 degrees C). At the end of the cooling period, this gradient was still maintained at a median of 3.3 degrees C (IQR: 2.9 degrees C-3.7 degrees C). The ability to obtain the gradient was not influenced by the size of the piglet (1300-1840 g). Cap cooling lowered scalp temperature (T(scalp)) to a median of 24.9 degrees C (IQR: 22.2 degrees C-29.2 degrees C) and subdural temperature to a median of 28.1 degrees C (IQR: 25.8 degrees C-29.5 degrees C) but did not result in either skin injury or superficial brain hemorrhage. There was no clinically useful correlation between T(scalp) and T(deep brain) or between T(scalp) and T(subdural). CONCLUSIONS This study using our piglet HI model shows that it is possible by means of a head-cooling cap to cool the brain more than the body for a 24-hour period while keeping the core temperature mildly hypothermic. However, we were unable to predict temperatures inside the brain using surface temperature probes on the head.
Collapse
Affiliation(s)
- James Tooley
- Department of Child Health, St Michael's Hospital, University of Bristol, Bristol, United Kingdom
| | | | | | | | | |
Collapse
|
96
|
Foster KA, Colditz PB, Lingwood BE, Burke C, Dunster KR, Roberts MS. An improved survival model of hypoxia/ischaemia in the piglet suitable for neuroprotection studies. Brain Res 2001; 919:122-31. [PMID: 11689169 DOI: 10.1016/s0006-8993(01)03011-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this study was to develop a newborn piglet model of hypoxia/ischaemia which would better emulate the clinical situation in the asphyxiated human neonate and produce a consistent degree of histopathological injury following the insult. One-day-old piglets (n=18) were anaesthetised with a mixture of propofol (10 mg/kg/h) and alfentinal (55.5 microg/kg/h) i.v. The piglets were intubated and ventilated. Physiological variables were monitored continuously. Hypoxia was induced by decreasing the inspired oxygen (FiO(2)) to 3-4% and adjusting FiO(2) to maintain the cerebral function monitor peak amplitude at < or =5 microV. The duration of the mild insult was 20 min while the severe insult was 30 min which included 10 min where the blood pressure was allowed to fall below 70% of baseline. Control piglets (n=4 of 18) were subjected to the same protocol except for the hypoxic/ischaemic insult. The piglets were allowed to recover from anaesthesia then euthanased 72 h after the insult. The brains were perfusion-fixed, removed and embedded in paraffin. Coronal sections were stained by haematoxylin/eosin. A blinded observer examined the frontal and parietal cortex, hippocampus, basal ganglia, thalamus and cerebellum for the degree of damage. The total mean histology score for the five areas of the brain for the severe insult was 15.6+/-4.4 (mean +/-S.D., n=7), whereas no damage was seen in either the mild insult (n=4) or control groups. This 'severe damage' model produces a consistent level of damage and will prove useful for examining potential neuroprotective therapies in the neonatal brain.
Collapse
Affiliation(s)
- K A Foster
- Perinatal Research Centre, University of Queensland, Royal Women's Hospital, Queensland 4029, Herston, Australia.
| | | | | | | | | | | |
Collapse
|
97
|
Thoresen M, Satas S, Løberg EM, Whitelaw A, Acolet D, Lindgren C, Penrice J, Robertson N, Haug E, Steen PA. Twenty-four hours of mild hypothermia in unsedated newborn pigs starting after a severe global hypoxic-ischemic insult is not neuroprotective. Pediatr Res 2001; 50:405-11. [PMID: 11518829 DOI: 10.1203/00006450-200109000-00017] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three to 12 h of mild hypothermia (HT) starting after hypoxia-ischemia is neuroprotective in piglets that are anesthetized during HT. Newborn infants suffering from neonatal encephalopathy often ventilate spontaneously and are not necessarily sedated. We aimed to test whether mild posthypoxic HT lasting 24 h was neuroprotective if the animals were not sedated. Thirty-nine piglets (median weight 1.6 kg, range 0.8-2.2 kg; median age 24 h, range 7-48 h) were anesthetized and ventilated and subjected to a 45-min hypoxic (FiO(2) approximately 6%) global insult (n = 36) or sham hypoxia (n = 3). On reoxygenation, 18 were maintained normothermic (NT, 39.0 degrees C) for 72 h, and 21 were cooled from 39 (NT) to 35 degrees C (HT) for the first 24 h before NT was resumed (18 experimental, three sham hypoxia). Cardiovascular parameters and intermittent EEG were documented throughout. The brain was perfusion fixed for neuropathology and five main areas examined using light microscopy. The insult severity (duration in minutes of EEG amplitude < 7 microV) was similar in the NT and HT groups, mean +/- SD (28 +/- 7.2 versus 27 +/- 8.6 min), as was the mean FiO(2) (5.9 +/- 0.7 versus 5.8 +/- 0.8%) during the insult. Six NT and seven HT piglets developed posthypoxic seizures that lasted 29 and 30% of the time, respectively. The distribution and degree of injury (0.0-4.0, normal-maximal damage) within the brain (hippocampus, cortex/white matter, cerebellum, basal ganglia, thalamus) were similar in the NT and HT groups (overall score, mean +/- SD, 2.3 +/- 1.5 versus 2.4 +/- 1.3) as was the EEG background amplitude at 3 h (13 +/- 3.5 versus 10 +/- 3.3 microV). The HT animals shivered and were more active. The sham control group (n = 3) shivered but had normal physiology and neuropathology. Plasma cortisol was significantly higher in the HT group during the HT period, 766 +/- 277 versus 244 +/- 144 microM at 24 h. Mild postinsult HT for 24 h was not neuroprotective in unsedated piglets and did not reduce the number of animals that developed posthypoxic seizures. Cortisol reached 3 times the NT value at the end of HT. We speculate that the stress of shivering and feeling cold interfered with the previously shown neuroprotective effect of HT. Research on the appropriateness of sedation during clinical HT is urgent.
Collapse
Affiliation(s)
- M Thoresen
- Department of Experimental Medicine, Ullevål Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Volpe JJ. Perinatal brain injury: from pathogenesis to neuroprotection. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2001; 7:56-64. [PMID: 11241883 DOI: 10.1002/1098-2779(200102)7:1<56::aid-mrdd1008>3.0.co;2-a] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain injury secondary to hypoxic-ischemic disease is the predominant form of all brain injury encountered in the perinatal period. The focus of this article is the most recent research developments in this field and especially those developments that should lead to the most profound effects on interventions in the first years of the new millennium. Neuronal injury is the predominant form of cellular injury in the term infant. The principal mechanisms leading to neuronal death after hypoxia-ischemia/reperfusion are initiated by energy depletion, accumulation of extracellular glutamate, and activation of glutamate receptors. The cascade of events that follows involves accumulation of cytosolic calcium and activation of a variety of calcium-mediated deleterious events. Notably this deleterious cascade, which evolves over many hours, may be interrupted even if interventions are instituted after termination of the insult, an important clinical point. Of the potential interventions, the leading candidates for application to the human infant in the relative short-term are mild hypothermia, inhibitors of free radical production, and free radical scavengers. Promising clinical data are available for the use of mild hypothermia.
Collapse
Affiliation(s)
- J J Volpe
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
99
|
Abstract
Hypoxic ischemia is a common cause of damage to the fetal and neonatal brain. Although systemic and cerebrovascular physiologic factors play an important role in the initial phases of hypoxic-ischemic injuries, the intrinsic vulnerability of specific cell types and systems in the developing brain may be more important in determining the final pattern of damage and functional disability. Excitotoxicity, a term applied to the death of neurons and certain other cells caused by overstimulation of excitatory, mainly glutamate, neurotransmitter receptors, plays a critical role in these processes. Selected neuronal circuits as well as certain populations of glia such as immature periventricular oligodendroglia may die from excitotoxicity triggered by hypoxic ischemia. These patterns of neuropathologic vulnerability are associated with clinical syndromes of neurologic disability such as the extrapyramidal and spastic diplegia forms of cerebral palsy. The cascade of biochemical and histopathologic events triggered by hypoxic ischemia can extend for days to weeks after the insult is triggered, creating the potential for therapeutic interventions.
Collapse
Affiliation(s)
- M V Johnston
- Division of Neurology and Developmental Medicine and Neuroscience Laboratory, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
100
|
Temesvári P, Karg E, Bódi I, Németh I, Pintér S, Lazics K, Domoki F, Bari F. Impaired early neurologic outcome in newborn piglets reoxygenated with 100% oxygen compared with room air after pneumothorax-induced asphyxia. Pediatr Res 2001; 49:812-9. [PMID: 11385143 DOI: 10.1203/00006450-200106000-00017] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Birth asphyxia is a serious problem worldwide, resulting in 1 million deaths and an equal number of neurologic sequelae annually. It is therefore important to develop new and better ways to treat asphyxia. In the present study we tested the effects of reoxygenation with room air or with 100% oxygen (O2) after experimental pneumothorax-induced asphyxia on the blood oxidative stress indicators, early neurologic outcome, and cerebral histopathology of newborn piglets. Twenty-six animals were studied in three experimental groups: 1) sham-operated animals (SHAM, n = 6), 2) animals reoxygenated with room air after pneumothorax (R21, n = 10), and 3) animals reoxygenated with 100% O2 after pneumothorax (R100, n = 10). In groups R21 and R100, asphyxia was induced under anesthesia with bilateral intrapleural room air insufflation. Gasping, bradyarrhythmia, arterial hypotension, hypoxemia, hypercarbia, and combined acidosis occurred 62 +/- 6 min (R21) or 65 +/- 7 min (R100; mean +/- SD) after the start of the experiments; then pneumothorax was relieved, and a 10-min reoxygenation period was started with mechanical ventilation with room air (R21) or with 100% O2 (R100). The newborn piglets then breathed room air spontaneously during the next 3 h. Blood oxidative stress indicators (oxidized and reduced glutathione, plasma Hb, and malondialdehyde concentrations) were measured at different stages of the experiments. Early neurologic outcome examinations (neurologic score of 20 indicates normal, 5 indicates brain-dead) were performed at the end of the study. The brains were next fixed, and various regions were stained for cerebral histopathology. In the SHAM group, the blood gas and acid-base status differed significantly from those measured in groups R21 and R100. In group R100, arterial PO2 was significantly higher after 5 (13.8 +/- 5.6 kPa) and 10 min (13.2 +/- 6.3 kPa) of reoxygenation than in group R21 (8.7 +/- 2.8 kPa and 9.2 +/- 3.1 kPa). The levels of all oxidative stress indicators remained unchanged in the study groups (SHAM, R21, and R100). The neurologic examination score in the SHAM group was 18 +/- 0, in group R21 it was 13.5 +/- 3.1, and in group R100 it was 9.5 +/- 4.1 (significant differences between SHAM and R21 or R100, and between R21 and R100). Cerebral histopathology revealed marked damage of similar severity in both asphyxiated groups. We conclude that the blood oxidative stress indicators and cerebral histopathology did not differ significantly after a 10-min period of reoxygenation with room air or with 100% O2 after pneumothorax-induced asphyxia, but reoxygenation with 100% O2 might impair the early neurologic outcome of newborn piglets.
Collapse
Affiliation(s)
- P Temesvári
- Department of Pediatrics, University Teaching Hospital, Kecskemét, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|