51
|
Gáspár E, Nguyen-Thi KT, Hardenbicker C, Tiede S, Plate C, Bodó E, Knuever J, Funk W, Bíró T, Paus R. Thyrotropin-releasing hormone selectively stimulates human hair follicle pigmentation. J Invest Dermatol 2011; 131:2368-77. [PMID: 21956127 DOI: 10.1038/jid.2011.221] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In amphibians, thyrotropin-releasing hormone (TRH) stimulates skin melanophores by inducing secretion of α-melanocyte-stimulating hormone in the pituitary gland. However, it is unknown whether this tripeptide neurohormone exerts any direct effects on pigment cells, namely, on human melanocytes, under physiological conditions. Therefore, we have investigated whether TRH stimulates pigment production in organ-cultured human hair follicles (HFs), the epithelium of which expresses both TRH and its receptor, and/or in full-thickness human skin in situ. TRH stimulated melanin synthesis, tyrosinase transcription and activity, melanosome formation, melanocyte dendricity, gp100 immunoreactivity, and microphthalmia-associated transcription factor expression in human HFs in a pituitary gland-independent manner. TRH also stimulated proliferation, gp100 expression, tyrosinase activity, and dendricity of isolated human HF melanocytes. However, intraepidermal melanogenesis was unaffected. As TRH upregulated the intrafollicular production of "pituitary" neurohormones (proopiomelanocortin transcription and ACTH immunoreactivity) and as agouti-signaling protein counteracted TRH-induced HF pigmentation, these pigmentary TRH effects may be mediated in part by locally generated melanocortins and/or by MC-1 signaling. Our study introduces TRH as a novel, potent, selective, and evolutionarily highly conserved neuroendocrine factor controlling human pigmentation in situ. This physiologically relevant and melanocyte sub-population-specific neuroendocrine control of human pigmentation deserves clinical exploration, e.g., for preventing or reversing hair graying.
Collapse
Affiliation(s)
- Erzsébet Gáspár
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Early onset obesity and adrenal insufficiency associated with a homozygous POMC mutation. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2011; 2011:5. [PMID: 21860632 PMCID: PMC3159139 DOI: 10.1186/1687-9856-2011-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/06/2011] [Indexed: 11/10/2022]
Abstract
Isolated hypocortisolism due to ACTH deficiency is a rare condition that can be caused by homozygous or compound heterozygous mutations in the gene encoding proopiomelanocortin (POMC). Loss of function mutations of POMC gene typically results in adrenal insufficiency, obesity and red hair. We describe an 18 month old Hispanic female with congenital adrenal insufficiency, a novel POMC mutation and atypical clinical features. The patient presented at the age of 9 months with hypoglycemia and the endocrine evaluation resulted in a diagnosis of ACTH deficiency. She developed extreme weight gain prompting sequence analysis of POMC, which revealed a homozygous c.231C > A change which is predicted to result in a premature termination codon. The case we report had obesity, hypocortisolism but lacked red hair which is typical for subjects with POMC mutations. Mutations of POMC should be considered in individuals with severe early onset obesity and adrenal insufficiency even when they lack the typical pigmentary phenotype.
Collapse
|
53
|
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Agouti-Related Protein/genetics
- Agouti-Related Protein/metabolism
- Agouti-Related Protein/pharmacology
- Animals
- Body Weight/drug effects
- Corticosterone/pharmacology
- Eating/drug effects
- Energy Metabolism
- Hypothalamus/metabolism
- Mice
- Mice, Knockout
- Pro-Opiomelanocortin/deficiency
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Protein Binding
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/metabolism
Collapse
Affiliation(s)
- Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Brehm Tower, Ann Arbor, Michigan 48105, USA.
| |
Collapse
|
54
|
Ito S, Wakamatsu K. Human hair melanins: what we have learned and have not learned from mouse coat color pigmentation. Pigment Cell Melanoma Res 2011; 24:63-74. [PMID: 20726950 DOI: 10.1111/j.1755-148x.2010.00755.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hair pigmentation is one of the most conspicuous phenotypes in humans. Melanocytes produce two distinct types of melanin pigment: brown to black, indolic eumelanin and yellow to reddish brown, sulfur-containing pheomelanin. Biochemically, the precursor tyrosine and the key enzyme tyrosinase and the tyrosinase-related proteins are involved in eumelanogenesis, while only the additional presence of cysteine is necessary for pheomelanogenesis. Other important proteins involved in melanogenesis include P protein, MATP protein, α-MSH, agouti signaling protein (ASIP), MC1R (the receptor for MSH and ASIP), and SLC7A11, a cystine transporter. Many studies have examined the effects of loss-of-function mutations of those proteins on mouse coat color pigmentation. In contrast, much less is known regarding the effects of mutations of the corresponding proteins on human hair pigmentation except for MC1R polymorphisms that lead to pheomelanogenesis. This perspective will discuss what we have/have not learned from mouse coat color pigmentation, with special emphasis on the significant roles of pH and the level of cysteine in melanosomes in controlling melanogenesis. Based on these data, a hypothesis is proposed to explain the diversity of human hair pigmentation.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan.
| | | |
Collapse
|
55
|
Salim S, Ali SA. Vertebrate melanophores as potential model for drug discovery and development: a review. Cell Mol Biol Lett 2011; 16:162-200. [PMID: 21225472 PMCID: PMC6275700 DOI: 10.2478/s11658-010-0044-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/20/2010] [Indexed: 11/21/2022] Open
Abstract
Drug discovery in skin pharmacotherapy is an enormous, continually expanding field. Researchers are developing novel and sensitive pharmaceutical products and drugs that target specific receptors to elicit concerted and appropriate responses. The pigment-bearing cells called melanophores have a significant contribution to make in this field. Melanophores, which contain the dark brown or black pigment melanin, constitute an important class of chromatophores. They are highly specialized in the bidirectional and coordinated translocation of pigment granules when given an appropriate stimulus. The pigment granules can be stimulated to undergo rapid dispersion throughout the melanophores, making the cell appear dark, or to aggregate at the center, making the cell appear light. The major signals involved in pigment transport within the melanophores are dependent on a special class of cell surface receptors called G-protein-coupled receptors (GPCRs). Many of these receptors of adrenaline, acetylcholine, histamine, serotonin, endothelin and melatonin have been found on melanophores. They are believed to have clinical relevance to skin-related ailments and therefore have become targets for high throughput screening projects. The selective screening of these receptors requires the recognition of particular ligands, agonists and antagonists and the characterization of their effects on pigment motility within the cells. The mechanism of skin pigmentation is incredibly intricate, but it would be a considerable step forward to unravel its underlying physiological mechanism. This would provide an experimental basis for new pharmacotherapies for dermatological anomalies. The discernible stimuli that can trigger a variety of intracellular signals affecting pigment granule movement primarily include neurotransmitters and hormones. This review focuses on the role of the hormone and neurotransmitter signals involved in pigment movement in terms of the pharmacology of the specific receptors.
Collapse
MESH Headings
- Animals
- Drug Discovery
- Hypothalamic Hormones/metabolism
- Melanins/metabolism
- Melanocortins/metabolism
- Melanocyte-Stimulating Hormones/metabolism
- Melanophores/metabolism
- Pituitary Hormones/metabolism
- Receptors, Adrenergic/chemistry
- Receptors, Adrenergic/metabolism
- Receptors, Cholinergic/chemistry
- Receptors, Cholinergic/metabolism
- Receptors, Endothelin/chemistry
- Receptors, Endothelin/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Histamine/chemistry
- Receptors, Histamine/metabolism
- Receptors, Melatonin/agonists
- Receptors, Melatonin/antagonists & inhibitors
- Receptors, Melatonin/metabolism
- Receptors, Serotonin/chemistry
- Receptors, Serotonin/metabolism
- Vertebrates
Collapse
Affiliation(s)
- Saima Salim
- Postgraduate Department of Biotechnology, Saifia College of Science Bhopal, Saifia, 462001 India
| | - Sharique A. Ali
- Postgraduate Department of Biotechnology, Saifia College of Science Bhopal, Saifia, 462001 India
| |
Collapse
|
56
|
Selective and Sensitive Determination of Pheomelanin in Biological Samples Using MEKC with Laser-Induced Fluorescence Detection Based on Intramolecular Excimer-Forming Fluorescence Derivatization. Chromatographia 2011. [DOI: 10.1007/s10337-010-1841-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
57
|
Gillbro JM, Olsson MJ. The melanogenesis and mechanisms of skin-lightening agents--existing and new approaches. Int J Cosmet Sci 2011; 33:210-21. [PMID: 21265866 DOI: 10.1111/j.1468-2494.2010.00616.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Skin-lightening products are commercially available for cosmetic purposes to obtain lighter skin complexion. Clinically, they are also used for treatment of hyperpigmentary disorders such as melasma, café au lait spot and solar lentigo. All of these target naturally melanin production, and many of the commonly used agents are known as competitive inhibitors of tyrosinase, one of the key enzymes in melanogenesis. In this review, we present an overview of commonly used skin-whitening ingredients that are commercialized, but we also hypothesize on other mechanisms that could be important targets to control skin pigmentation such as for example regulation of the adrenergic and glutaminergic signalling and also control of tetrahydrobiopterins in the human skin.
Collapse
Affiliation(s)
- J M Gillbro
- Oriflame Cosmetics Skin Research Institute, SE-101 39 Stockholm, Sweden
| | | |
Collapse
|
58
|
Schallreuter KU, Salem MMAEL, Hasse S, Rokos H. The redox--biochemistry of human hair pigmentation. Pigment Cell Melanoma Res 2010; 24:51-62. [PMID: 20958953 DOI: 10.1111/j.1755-148x.2010.00794.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The biochemistry of hair pigmentation is a complex field involving a plethora of protein and peptide mechanisms. The in loco factory for melanin formation is the hair follicle melanocyte, but it is common knowledge that melanogenesis results from a fine tuned concerted interaction between the cells of the entire dermal papilla in the anagen hair follicle. The key enzyme is tyrosinase to initiate the active pigmentation machinery. Hence, an intricate understanding from transcription of mRNA to enzyme activity, including enzyme kinetics, substrate supply, optimal pH, cAMP signaling, is a must. Moreover, the role of reactive oxygen species on enzyme regulation and functionality needs to be taken into account. So far our knowledge on the entire hair cycle relies on the murine model of the C57BL/6 mouse. Whether this data can be translated into humans still needs to be shown. This article aims to focus on the effect of H(2)O(2)-redox homeostasis on hair follicle pigmentation via tyrosinase, its substrate supply and signal transduction as well as the role of methionine sulfoxide repair via methionine sulfoxide reductases A and B (MSRA and B).
Collapse
Affiliation(s)
- Karin U Schallreuter
- Institute for Pigmentary Disorders in Association with EM Arndt University Greifswald, Biotechnikum, Greifswald, Germany.
| | | | | | | |
Collapse
|
59
|
Beta-catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching. Proc Natl Acad Sci U S A 2010; 107:21564-9. [PMID: 21098273 DOI: 10.1073/pnas.1007326107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The switch between black and yellow pigment is mediated by the interaction between Melanocortin receptor 1 (Mc1r) and its antagonist Agouti, but the genetic and developmental mechanisms that modify this interaction to obtain different coat color in distinct environments are poorly understood. Here, the role of Wnt/β-catenin signaling in the regulation of pigment-type switching was studied. Loss and gain of function of β-catenin in the dermal papilla (DP) of the hair follicle results in yellow and black animals, respectively. β-Catenin activity in the DP suppresses Agouti expression and activates Corin, a negative regulator of Agouti activity. In addition, β-catenin activity in the DP regulates melanocyte activity by a mechanism that is independent of both Agouti and Corin. The coordinate and inverse regulation of Agouti and Corin renders pelage pigmentation sensitive to changes in β-catenin activity in the DP that do not alter pelage structure. As a result, the signals that specify two biologically distinct quantitative traits are partially uncoupled despite their common regulation by the β-catenin pathway in the same cells.
Collapse
|
60
|
Ehrlich S, Weiss D, Burghardt R, Infante-Duarte C, Brockhaus S, Muschler MA, Bleich S, Lehmkuhl U, Frieling H. Promoter specific DNA methylation and gene expression of POMC in acutely underweight and recovered patients with anorexia nervosa. J Psychiatr Res 2010; 44:827-33. [PMID: 20176366 DOI: 10.1016/j.jpsychires.2010.01.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 01/08/2010] [Accepted: 01/26/2010] [Indexed: 12/01/2022]
Abstract
Proopiomelanocortin (POMC) and its derived peptides, in particular alpha-MSH, have been shown to play a crucial role in the regulation of hunger, satiety and energy homeostasis. Studies in patients with anorexia nervosa (AN) suggest an abnormal expression of appetite-regulating hormones. Hormone expression levels may be modulated by epigenetic mechanisms, which were recently shown to be implicated in the pathophysiology of eating disorders. We hypothesised that POMC promoter specific DNA methylation and gene expression will be affected by malnutrition and therefore differ in AN patients at distinct stages of the disorder. Promoter specific DNA methylation of the POMC gene and expression of POMC mRNA variants were determined in peripheral blood mononuclear cells (PBMC) of 30 healthy control women (HCW), 31 underweight (acAN) and 30 weight-recovered patients with AN (recAN). Malnutrition was characterized by plasma leptin. Expression of the functionally relevant long POMC mRNA transcript was significantly correlated with leptin levels and higher in acAN compared to recAN and HCW. Expression of the truncated form and mean promoter DNA methylation was similar in all three subgroups. Methylation of single CpG residues in the E2F binding site was inversely related to POMC expression. Our preliminary data on pattern of POMC regulation suggests an association with the underweight state rather than with persisting trait markers of AN. In contrast to POMC expression in the central nervous system, peripheral POMC mRNA expression decreased with malnutrition and hypoleptinemia. This may represent a counterregulatory mechanism as part of the crosstalk between the immune and neuroendocrine systems.
Collapse
Affiliation(s)
- Stefan Ehrlich
- Charité - Universitätsmedizin Berlin, CVK, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Pigmentation, Melanocyte Colonization, and p53 Status in Basal Cell Carcinoma. J Skin Cancer 2010; 2011:349726. [PMID: 21152129 PMCID: PMC2989759 DOI: 10.1155/2011/349726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/11/2010] [Indexed: 11/26/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common neoplasm in the Caucasian population. Only a fraction of BCC exhibits pigmentation. Lack of melanocyte colonization has been suggested to be due to p53-inactivating mutations in the BCC cells interfering with the p53-proopiomelanocortin pathway and the production of alpha melanocyte-stimulating hormone in the tumor. To evaluate this, we determined tumor pigmentation as well as expression of melan-A and of p53 in 49 BCC tissues by means of immunohistochemistry. As expected, we observed a positive relation between tumor pigmentation and melan-A positive intra-tumoral melanocytes. Melanocyte colonization and, to a lesser extent, p53 overexpression showed intraindividual heterogeneity in larger tumors. p53 overexpression, which is indicative of p53 mutations, was not correlated to melanocyte colonization of BCC. Sequencing of exon 5–8 of the p53 gene in selected BCC cases revealed that colonization by melanocytes and BCC pigmentation is neither ablated by p53 mutations nor generally present in BCCs with wild-type p53.
Collapse
|
62
|
Ito S, Wakamatsu K. Human hair melanins: what we have learned and have not learned from mouse coat color pigmentation. Pigment Cell Melanoma Res 2010. [DOI: 10.1111/j.1755-1471.2010.00755.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
63
|
Involvement of the melanocortin-1 receptor in acute pain and pain of inflammatory but not neuropathic origin. PLoS One 2010; 5:e12498. [PMID: 20856883 PMCID: PMC2938350 DOI: 10.1371/journal.pone.0012498] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/06/2010] [Indexed: 01/22/2023] Open
Abstract
Background Response to painful stimuli is susceptible to genetic variation. Numerous loci have been identified which contribute to this variation, one of which, MC1R, is better known as a gene involved in mammalian hair colour. MC1R is a G protein-coupled receptor expressed in melanocytes and elsewhere and mice lacking MC1R have yellow hair, whilst humans with variant MC1R protein have red hair. Previous work has found differences in acute pain perception, and response to analgesia in mice and humans with mutations or variants in MC1R. Methodology and Principal Findings We have tested responses to noxious and non-noxious stimuli in mutant mice which lack MC1R, or which overexpress an endogenous antagonist of the receptor, as well as controls. We have also examined the response of these mice to inflammatory pain, assessing the hyperalgesia and allodynia associated with persistent inflammation, and their response to neuropathic pain. Finally we tested by a paired preference paradigm their aversion to oral administration of capsaicin, which activates the noxious heat receptor TRPV1. Female mice lacking MC1R showed increased tolerance to noxious heat and no alteration in their response to non-noxious mechanical stimuli. MC1R mutant females, and females overexpressing the endogenous MC1R antagonist, agouti signalling protein, had a reduced formalin-induced inflammatory pain response, and a delayed development of inflammation-induced hyperalgesia and allodynia. In addition they had a decreased aversion to capsaicin at moderate concentrations. Male mutant mice showed no difference from their respective controls. Mice of either sex did not show any effect of mutant genotype on neuropathic pain. Conclusions We demonstrate a sex-specific role for MC1R in acute noxious thermal responses and pain of inflammatory origin.
Collapse
|
64
|
Hofreiter M, Schöneberg T. The genetic and evolutionary basis of colour variation in vertebrates. Cell Mol Life Sci 2010; 67:2591-603. [PMID: 20229234 PMCID: PMC11115542 DOI: 10.1007/s00018-010-0333-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/24/2010] [Indexed: 12/21/2022]
Abstract
Variation in pigmentation is one of the most conspicuous phenotypic traits in vertebrates. Although mammals show less variation in body pigmentation than other vertebrate groups, the genetics of colour determination and variation is best understood for them. More than 150 genes have been identified that influence pigmentation, and in many cases, the cause for variation in pigmentation has been identified down to the underlying nucleotide changes. These studies show that while some genes are often responsible for deviating pigmentation, similar or almost identical phenotypes even in the same species may be due to mutations in different genes. In this review we will first discuss the current knowledge about the genes and their functions underlying the biochemical pathways that determine pigmentation and then give examples where the mutations responsible for colour variation have been determined. Finally, we will discuss potential evolutionary causes for and consequences of differences in pigmentation between individuals.
Collapse
|
65
|
Walker WP, Gunn TM. Shades of meaning: the pigment-type switching system as a tool for discovery. Pigment Cell Melanoma Res 2010; 23:485-95. [PMID: 20465596 DOI: 10.1111/j.1755-148x.2010.00721.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The pigment-type switching system, which controls whether melanocytes produce black/brown eumelanin or yellow/red pheomelanin, is responsible for many familiar coat coloration patterns in both domestic and wild mammals. In conjunction with the accessory proteins attractin and mahogunin ring finger 1, endogenous agonists and antagonists modulate signaling by the melanocortin 1 receptor to determine pigment type. Mutations in pigment-type switching genes can cause a variety of pleiotropic phenotypes, and these are often similar between mutants at different loci because the proteins encoded by these genes act together as part of conserved molecular pathways that are deployed in multiple biological contexts. When this is the case, pigment-type switching provides a powerful model system for elucidating the shared molecular mechanisms underlying the pigmentary and non-pigmentary phenotypes. This review outlines the current understanding of the pigment-type switching pathway and discusses the opportunities that exist for exploring the molecular basis of pleiotropic phenotypes using this model system.
Collapse
|
66
|
Abstract
Named originally for their effects on peripheral end organs, the melanocortin system controls a diverse set of physiological processes through a series of five G-protein-coupled receptors and several sets of small peptide ligands. The central melanocortin system plays an essential role in homeostatic regulation of body weight, in which two alternative ligands, alpha-melanocyte-stimulating hormone and agouti-related protein, stimulate and inhibit receptor signaling in several key brain regions that ultimately affect food intake and energy expenditure. Much of what we know about the relationship between central melanocortin signaling and body weight regulation stems from genetic studies. Comparative genomic studies indicate that melanocortin receptors used for controlling pigmentation and body weight regulation existed more than 500 million years ago in primitive vertebrates, but that fine-grained control of melanocortin receptors through neuropeptides and endogenous antagonists developed more recently. Recent studies based on dog coat-color genetics revealed a new class of melanocortin ligands, the beta-defensins, which reveal the potential for cross talk between the melanocortin and the immune systems.
Collapse
|
67
|
Abstract
Electron paramagnetic resonance (EPR) spectroscopy and imaging (EPRI) are deeply rooted in the basic and quantum physics, but the spectrum of their applications in modern experimental and clinical dermatology and cosmetology is surprisingly wide. The main aim of this review was to show the physical foundation, technical limitations and versatility of this method in skin studies. Free radical and metal ion detection, EPR dosimetry, melanin study, spin trapping, spin labelling, oximetry and NO-metry, EPR imaging, new generation methods of EPR and EPR/NMR hybrid technology used under ex vivo and in vivo regime are portrayed in the context of clinical and experimental skin research to study problems such as oxidative and nitrosative stress generated by UV or inflammation, skin oxygenation, hydration of corneal layer of epidermis, transport and metabolism of drugs and cosmeceutics, skin carcinogenesis, skin tumors and many others. A part of the paper is devoted to hair and nail research. The review of dermatological applications of EPR is supplemented with a handful of advice concerning practical aspects of EPR experimentation and usage of EPR reagents.
Collapse
Affiliation(s)
- Przemyslaw M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
68
|
Thingnes J, Oyehaug L, Hovig E, Omholt SW. The mathematics of tanning. BMC SYSTEMS BIOLOGY 2009; 3:60. [PMID: 19505344 PMCID: PMC2714304 DOI: 10.1186/1752-0509-3-60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 06/09/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The pigment melanin is produced by specialized cells, called melanocytes. In healthy skin, melanocytes are sparsely spread among the other cell types in the basal layer of the epidermis. Sun tanning results from an UV-induced increase in the release of melanin to neighbouring keratinocytes, the major cell type component of the epidermis as well as redistribution of melanin among these cells. Here we provide a mathematical conceptualization of our current knowledge of the tanning response, in terms of a dynamic model. The resolution level of the model is tuned to available data, and its primary focus is to describe the tanning response following UV exposure. RESULTS The model appears capable of accounting for available experimental data on the tanning response in different skin and photo types. It predicts that the thickness of the epidermal layer and how far the melanocyte dendrites grow out in the epidermal layers after UV exposure influence the tanning response substantially. CONCLUSION Despite the paucity of experimental validation data the model is constrained enough to serve as a foundation for the establishment of a theoretical-experimental research programme aimed at elucidating the more fine-grained regulatory anatomy underlying the tanning response.
Collapse
Affiliation(s)
- Josef Thingnes
- Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (UMB), PO Box 5003, 1432 As, Norway.
| | | | | | | |
Collapse
|
69
|
Hida T, Wakamatsu K, Sviderskaya EV, Donkin AJ, Montoliu L, Lynn Lamoreux M, Yu B, Millhauser GL, Ito S, Barsh GS, Jimbow K, Bennett DC. Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: a cAMP-independent pathway. Pigment Cell Melanoma Res 2009; 22:623-34. [PMID: 19493315 PMCID: PMC2784899 DOI: 10.1111/j.1755-148x.2009.00582.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melanocortin-1 receptor (MC1R) and its ligands, α-melanocyte stimulating hormone (αMSH) and agouti signaling protein (ASIP), regulate switching between eumelanin and pheomelanin synthesis in melanocytes. Here we investigated biological effects and signaling pathways of ASIP. Melan-a non agouti (a/a) mouse melanocytes produce mainly eumelanin, but ASIP combined with phenylthiourea and extra cysteine could induce over 200-fold increases in the pheomelanin to eumelanin ratio, and a tan-yellow color in pelletted cells. Moreover, ASIP-treated cells showed reduced proliferation and a melanoblast-like appearance, seen also in melanocyte lines from yellow (Ay/a and Mc1re/ Mc1re) mice. However ASIP-YY, a C-terminal fragment of ASIP, induced neither biological nor pigmentary changes. As, like ASIP, ASIP-YY inhibited the cAMP rise induced by αMSH analog NDP-MSH, and reduced cAMP level without added MSH, the morphological changes and depigmentation seemed independent of cAMP signaling. Melanocytes genetically null for ASIP mediators attractin or mahogunin (Atrnmg-3J/mg-3J or Mgrn1md-nc/md-nc) also responded to both ASIP and ASIP-YY in cAMP level, while only ASIP altered their proliferation and (in part) shape. Thus, ASIP–MC1R signaling includes a cAMP-independent pathway through attractin and mahogunin, while the known cAMP-dependent component requires neither attractin nor mahogunin.
Collapse
Affiliation(s)
- Tokimasa Hida
- Division of Basic Medical Sciences, St. George's, University of London, Cranmer Terrace, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Robinson KC, Fisher DE. Specification and loss of melanocyte stem cells. Semin Cell Dev Biol 2009; 20:111-6. [DOI: 10.1016/j.semcdb.2008.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/21/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022]
|
71
|
Clément K, Dubern B, Mencarelli M, Czernichow P, Ito S, Wakamatsu K, Barsh GS, Vaisse C, Leger J. Unexpected endocrine features and normal pigmentation in a young adult patient carrying a novel homozygous mutation in the POMC gene. J Clin Endocrinol Metab 2008; 93:4955-62. [PMID: 18765507 PMCID: PMC2729235 DOI: 10.1210/jc.2008-1164] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Proopiomelanocortin (POMC) is the precursor to five biologically active peptides, including ACTH produced in the anterior pituitary and alpha-MSH produced in the hypothalamus. Mutations that inactivate the POMC gene have been described in children, causing a pleiotropic syndrome that includes secondary hypocortisolism, severe obesity, and variable changes in skin and hair pigmentation. OBJECTIVE We describe a female patient of North African ancestry, homozygous for a frameshift mutation in the POMC gene (6922InsC) that impairs the production of all melanocortin peptides, and that is associated with novel clinical features. Repeated clinical investigations from birth to age 18 yr are presented. RESULT ACTH deficiency was diagnosed at birth. Hyperphagia and obesity became apparent before 2 yr of age and rapidly progressed [body mass index (BMI) Z-score, +7 sd at 2 yr, +9.7 sd at 13 yr; BMI, 50 kg/m(2) at 18 yr). At puberty, the patient developed alterations in the somatotropic, gonadotropic, and thyroid axes necessitating hormonal replacement. Surprisingly, there were no obvious pigmentary features; neither the hair color nor measurements of skin reflectance distinguished between the patient and unaffected family members. However, chemical analysis of hair pigment revealed increased production of both pheomelanin and eumelanin. CONCLUSION Molecular genetic abnormalities of POMC should always be considered in patients with early onset adrenal insufficiency and obesity, even in the presence of normal pigmentation and multiple pituitary hormone anomalies.
Collapse
Affiliation(s)
- Karine Clément
- Center of Research on Human Nutrition Ile de France, Paris, 75013, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Cota CD, Liu RR, Sumberac TM, Jung S, Vencato D, Millet YH, Gunn TM. Genetic and phenotypic studies of the dark-like mutant mouse. Genesis 2008; 46:562-73. [DOI: 10.1002/dvg.20432] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
73
|
An epinephrine-dependent mechanism for the control of UV-induced pigmentation. J Invest Dermatol 2008; 129:784-7. [PMID: 18719605 DOI: 10.1038/jid.2008.262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
74
|
Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet 2008; 40:963-70. [PMID: 18641651 DOI: 10.1038/ng.188] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 05/07/2008] [Indexed: 11/09/2022]
Abstract
Mutations in genes encoding ribosomal proteins cause the Minute phenotype in Drosophila and mice, and Diamond-Blackfan syndrome in humans. Here we report two mouse dark skin (Dsk) loci caused by mutations in Rps19 (ribosomal protein S19) and Rps20 (ribosomal protein S20). We identify a common pathophysiologic program in which p53 stabilization stimulates Kit ligand expression, and, consequently, epidermal melanocytosis via a paracrine mechanism. Accumulation of p53 also causes reduced body size and erythrocyte count. These results provide a mechanistic explanation for the diverse collection of phenotypes that accompany reduced dosage of genes encoding ribosomal proteins, and have implications for understanding normal human variation and human disease.
Collapse
|
75
|
Impact of Homozygosity of R151C Variant of MC1r in Human Hair Follicle Melanocytes. J Invest Dermatol 2008; 128:1319-22. [DOI: 10.1038/sj.jid.5701181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
76
|
Schallreuter KU, Kothari S, Chavan B, Spencer JD. Regulation of melanogenesis--controversies and new concepts. Exp Dermatol 2008; 17:395-404. [PMID: 18177348 DOI: 10.1111/j.1600-0625.2007.00675.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite many efforts, regulation of skin and hair pigmentation is still not fully understood. This article focuses mainly on controversial aspects in pigment cell biology which have emerged over the last decade. The central role of tyrosinase as the key enzyme in initiation of melanogenesis has been closely associated with the 6BH4 dependent phenylalanine hydroxylase (PAH) and tyrosine hydroxylase isoform I (THI) providing evidence for an old concept of the three enzyme theory in the initiation of the pigmentation process. In this context, it is noteworthy that intracellular L-phenylalanine uptake and turnover to L-tyrosine via PAH is vital for substrate supply of THI and tyrosinase. While PAH acts in the cytosol of melanocytes, THI and tyrosinase are sitting side by side in the melanosomal membrane. THI at low pH provides L-3,4-hydroxyphenylalanine L-DOPA which in turn is required for activation of met-tyrosinase. After an intramelanosomal pH change, possibly by the p-protein, has taken place, tyrosinase is subject to control by 6/7BH4 and the proopiomelanocortin (POMC) peptides alpha-MSH melanocyte stimulating hormone and beta-MSH in a receptor independent manner. cAMP is required for the activation of microphthalmia-associated transcription factor to induce expression of tyrosinase, for transcription of THI and for activation of PAH. The redundancy of the cAMP signal is discussed. Finally, we propose a novel mechanism involving H2O2 in the regulation of tyrosinase via p53 through transcription of hepatocyte nuclear factor 1alpha which in turn can also affect the POMC response.
Collapse
Affiliation(s)
- Karin U Schallreuter
- Clinical and Experimental Dermatology/Department of Biomedical Sciences, University of Bradford, Bradford, UK.
| | | | | | | |
Collapse
|
77
|
Plonka PM, Michalczyk D, Popik M, Handjiski B, Paus R. Electron paramagnetic resonance (EPR) spectroscopy for investigating murine telogen skin after spontaneous or depilation-induced hair growth. J Dermatol Sci 2008; 49:227-40. [DOI: 10.1016/j.jdermsci.2007.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 09/23/2007] [Accepted: 09/25/2007] [Indexed: 01/28/2023]
|
78
|
Dubern B, Lubrano-Berthelier C, Mencarelli M, Ersoy B, Frelut ML, Bouglé D, Costes B, Simon C, Tounian P, Vaisse C, Clement K. Mutational analysis of the pro-opiomelanocortin gene in French obese children led to the identification of a novel deleterious heterozygous mutation located in the alpha-melanocyte stimulating hormone domain. Pediatr Res 2008; 63:211-6. [PMID: 18091355 DOI: 10.1203/pdr.0b013e31815ed62b] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The pro-opiomelanocotin (POMC) plays a key role in body weight regulation, where its derived peptides mediate leptin action via the hypothalamic melanocortin 4 receptor (MC4R). The pathogenic effects of POMC mutations have been challenged in obesity. Our aim was to assess the relevance of POMC mutations in a cohort of French obese and nonobese children. Direct sequencing of the POMC gene was performed in 322 obese and 363 control unrelated children. Functional studies for the novel Phe144Leu mutation included the response to alpha-melanocyte stimulating hormone (alphaMSH) and a competitive binding assay. POMC mutations were identified in 3.72% of obese [95% confidence interval (CI): 1.66-5.80] and 2.20% of control (95% CI: 0.69-3.71) subjects. The novel mutation located in the alphaMSH region of the POMC gene (Phe144Leu) was found in one obese child and was transmitted by the obese father. Functional studies showed that MC4R activation in response to Leu144alphaMSH was almost completely abolished due to a dramatically altered binding of Leu144alphaMSH to MC4R. The frequency of POMC mutations is not significantly different between obese and control children in our cohort. The novel heterozygous mutation Phe144Leu leading to the absence of melanocortin signaling was associated with early-onset obesity suggesting its pathogenic role.
Collapse
Affiliation(s)
- Beatrice Dubern
- Center of Research on Human Nutrition Ile de France, 75004 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
From suntan to skin cancers: molecular pathways and prevention strategies. Target Oncol 2007. [DOI: 10.1007/s11523-007-0066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
80
|
Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA, Nix MA, Kerns JA, Schmutz SM, Millhauser GL, Barsh GS. A -defensin mutation causes black coat color in domestic dogs. Science 2007; 318:1418-23. [PMID: 17947548 PMCID: PMC2906624 DOI: 10.1126/science.1147880] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genetic analysis of mammalian color variation has provided fundamental insight into human biology and disease. In most vertebrates, two key genes, Agouti and Melanocortin 1 receptor (Mc1r), encode a ligand-receptor system that controls pigment type-switching, but in domestic dogs, a third gene is implicated, the K locus, whose genetic characteristics predict a previously unrecognized component of the melanocortin pathway. We identify the K locus as beta-defensin 103 (CBD103) and show that its protein product binds with high affinity to the Mc1r and has a simple and strong effect on pigment type-switching in domestic dogs and transgenic mice. These results expand the functional role of beta-defensins, a protein family previously implicated in innate immunity, and identify an additional class of ligands for signaling through melanocortin receptors.
Collapse
Affiliation(s)
- Sophie I. Candille
- Departments of Genetics and Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Bruce M. Cattanach
- Medical Research Council (MRC) Mammalian Genetics Unit, Harwell, Oxfordshire, OX11 ORD, UK
| | - Bin Yu
- Departments of Chemistry and Biochemistry, University of California at Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Darren A. Thompson
- Departments of Chemistry and Biochemistry, University of California at Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Matthew A. Nix
- Departments of Chemistry and Biochemistry, University of California at Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Julie A. Kerns
- Departments of Genetics and Pediatrics, Stanford University, Stanford, CA, USA
| | - Sheila M. Schmutz
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon S7N 5A8, Canada
| | - Glenn L. Millhauser
- Departments of Chemistry and Biochemistry, University of California at Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Gregory S. Barsh
- Departments of Genetics and Pediatrics, Stanford University, Stanford, CA, USA
| |
Collapse
|
81
|
Slominski A, Tobin DJ, Paus R. Does p53 regulate skin pigmentation by controlling proopiomelanocortin gene transcription? ACTA ACUST UNITED AC 2007; 20:307-8; author reply 309-10. [PMID: 17630965 DOI: 10.1111/j.1600-0749.2007.00390.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
82
|
Lagunas-Muñoz VH, Cabrera-Valladares N, Bolívar F, Gosset G, Martínez A. Optimum melanin production using recombinant Escherichia coli. J Appl Microbiol 2007; 101:1002-8. [PMID: 17040223 DOI: 10.1111/j.1365-2672.2006.03013.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS A parametric study was conducted to define optimum conditions to achieve high yields in the conversion of tyrosine to eumelanin (EuMel) using recombinant Escherichia coli. METHODS AND RESULTS Escherichia coli W3110 (pTrcMutmelA) expressing the tyrosinase coding gene from Rhizobium etli and glucose-mineral media were used to transform tyrosine into EuMel. Batch aerobic fermentor cultures were performed to study the effect of temperature, pH and inducer concentration (isopropyl-D-thio-galactopyranoside) on melanin production. Under optimum conditions, 0.1 mmol l(-1) of isopropyl-D-thio-galactopyranoside, temperature of 30 degrees C, and changing pH from 7.0 to 7.5 during the production phase, a 100% conversion of tyrosine into EuMel is obtained. Furthermore, tyrosine feeding allowed us to obtain the highest level (6 g l(-1)) of EuMel produced by recombinant E. coli reported until now. CONCLUSIONS The most important factors affecting melanin formation and hence influencing the rate and efficiency in the conversion of tyrosine into EuMel in this system, are the temperature and pH. SIGNIFICANCE AND IMPACT OF THE STUDY Maximum theoretical yield was obtained using a simple culture process and mineral media to convert tyrosine (a medium value compound) into melanin, a high value compound. The process reported here avoids the use of purified tyrosinase, expensive chemical methods or the cumbersome extraction of this polymer from animal or plant tissues.
Collapse
Affiliation(s)
- V H Lagunas-Muñoz
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | | | |
Collapse
|
83
|
Abstract
This article focuses on recent advances in melanocyte biology and physiology. The major function of this neural crest-derived cell is the production of melanins. A "three enzyme theory" in the initiation of pigmentation is put forward and backed up by recent findings. A receptor-independent role for alpha-MSH and the cofactor (6R)-l-erythro-5,6,7,8-terahydrobiopterin (6BH(4)) in the control of tyrosinase is described. The importance of intramelanosomal pH for melanogenesis is covered. Finally, the redundancy of the cAMP and IP3/DAG/calcium signal in melanocytes together with the downstream events are highlighted. The main message of this article is that the intracellular H(2)O(2)- redox-equilibrium controls melanocyte function in a concentration-dependent manner.
Collapse
Affiliation(s)
- Karin U Schallreuter
- Clinical and Experimental Dermatology, Department of Biomedical Sciences, University of Bradford, Bradford BD7 1DP, West Yorkshire, UK.
| |
Collapse
|
84
|
Affiliation(s)
- Gregory Barsh
- Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
85
|
Abstract
Human skin expresses elements of the hypothalamo-pituitary-adrenal (HPA) axis including pro-opiomelanocortin (POMC), corticotropin releasing hormone (CRH), the CRH receptor-1 (CRH-R1), key enzymes of corticosteroid synthesis and synthesizes glucocorticoids. Expression of these elements is organized in functional, cell type-specific regulatory loops, which imitate the signaling hierarchy of the HPA axis. In melanocytes and fibroblasts CRH-induced CRH-R1 stimulation upregulates POMC expression and production of ACTH through activation of cAMP dependent pathway(s). Melanocytes respond with enhanced production of cortisol and corticosterone, which is dependent on POMC activity. Fibroblasts respond to CRH and ACTH with enhanced production of corticosterone, but not cortisol, which is produced constitutively. Organ-cultured human scalp hair follicles also show a fully functional HPA axis equivalent, including cortisol synthesis and secretion and negative feedback regulation by cortisol on CRH expression. Thus, differential, CRH-driven responses of defined cutaneous cell populations reproduce key features of the central HPA axis at the tissue/single cell levels.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee, HSC, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
86
|
Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. ACTA ACUST UNITED AC 2007; 19:550-71. [PMID: 17083484 DOI: 10.1111/j.1600-0749.2006.00334.x] [Citation(s) in RCA: 459] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An overview of agents causing hypopigmentation in human skin is presented. The review is organized to put forward groups of biological and chemical agents. Their mechanisms of action cover (i) tyrosinase inhibition, maturation and enhancement of its degradation; (ii) Mitf inhibition; (iii) downregulation of MC1R activity; (iv) interference with melanosome maturation and transfer; (v) melanocyte loss, desquamation and chemical peeling. Tyrosinase inhibition is the most common approach to achieve skin hypopigmentation as this enzyme catalyses the rate-limiting step of pigmentation. Despite the large number of tyrosinase inhibitors in vitro, only a few are able to induce effects in clinical trials. The gap between in-vitro and in-vivo studies suggests that innovative strategies are needed for validating their efficacy and safety. Successful treatments need the combination of two or more agents acting on different mechanisms to achieve a synergistic effect. In addition to tyrosinase inhibition, other parameters related to cytotoxicity, solubility, cutaneous absorption, penetration and stability of the agents should be considered. The screening test system is also very important as keratinocytes play an active role in modulating melanogenesis within melanocytes. Mammalian skin or at least keratinocytes/melanocytes co-cultures should be preferred rather than pure melanocyte cultures or soluble tyrosinase.
Collapse
Affiliation(s)
- Francisco Solano
- Department of Biochemistry and Molecular Biology B, University of Murcia, Murcia, Spain.
| | | | | | | |
Collapse
|
87
|
König S, Luger TA, Scholzen TE. Monitoring neuropeptide-specific proteases: processing of the proopiomelanocortin peptides adrenocorticotropin and alpha-melanocyte-stimulating hormone in the skin. Exp Dermatol 2006; 15:751-61. [PMID: 16984256 DOI: 10.1111/j.1600-0625.2006.00472.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neuroendocrine precursor protein proopiomelanocortin (POMC) and its derived neuropeptides are involved in a number of important regulatory processes in the central nervous system as well as in peripheral tissues. Despite its important role in controlling the local activation of melanocortin (MC) receptors, the extracellular proteolytic processing of POMC peptides has received little attention. The mechanisms relevant for controlling the bioavailability of adrenocorticotropin and melanocyte-stimulating hormones for the corresponding MC receptors in the skin by specific peptidases such as neprilysin (neutral endopeptidase; NEP) or angiotensin-converting enzyme (ACE) have been addressed in a number of recent investigations. This review summarizes the current body of knowledge concerning the qualitative and quantitative POMC peptide processing with respect to the action and specificity of NEP and ACE and discusses relevant recent analytical methodologies.
Collapse
Affiliation(s)
- Simone König
- Integrated Functional Genomics, Interdisciplinary Center for Clinical Research, University of Münster, Von-Esmarch-Strasse 58, 48149 Münster, Germany
| | | | | |
Collapse
|
88
|
Plonka PM, Handjiski B, Michalczyk D, Popik M, Paus R. Oral zinc sulphate causes murine hair hypopigmentation and is a potent inhibitor of eumelanogenesis in vivo. Br J Dermatol 2006; 155:39-49. [PMID: 16792750 DOI: 10.1111/j.1365-2133.2006.07376.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND C57BL/6 a/a mice have been widely used to study melanogenesis, including in electron paramagnetic resonance (EPR) studies. Zinc cations modulate melanogenesis, but the net effect of Zn2+ in vivo is unclear, as the reported effects of Zn2+ on melanogenesis are ambiguous: zinc inhibits tyrosinase and glutathione reductase in vitro, but also enhances the activity of dopachrome tautomerase (tyrosinase-related protein-2) and has agonistic effects on melanocortin receptor signalling. OBJECTIVES To determine in a C57BL/6 a/a murine pilot study whether excess zinc ions inhibit, enhance or in any other way alter hair follicle melanogenesis in vivo, and to test the usefulness of EPR for this study. METHODS ZnSO(4).7H2O was continuously administered orally to C57BL/6 a/a mice during spontaneous and depilation-induced hair follicle cycling (20 mg mL-1; in drinking water; mean+/-SD daily dose 1.2+/-0.53 mL), and hair pigmentation was examined macroscopically, by routine histology and by EPR. RESULTS Oral zinc cations induced a bright brown lightening of new hair shafts produced during anagen, but without inducing an EPR-detectable switch from eumelanogenesis to phaeomelanogenesis. The total content of melanin in the skin and hair shafts during the subsequent telogen phase, i.e. after completion of a full hair cycle, was significantly reduced in Zn-treated mice (P=0.0005). Compared with controls, melanin granules in precortical hair matrix keratinocytes, hair bulb melanocytes and hair shafts of zinc-treated animals were reduced and poorly pigmented. Over the course of several hair cycles, lasting hair shaft depigmentation was seen during long-term exposure to high-dose oral Zn2+. CONCLUSIONS High-dose oral Zn2+ is a potent downregulator of eumelanin content in murine hair shafts in vivo. The C57BL/6 mouse model offers an excellent tool for further dissecting the as yet unclear underlying molecular basis of this phenomenon, while EPR technology is well suited for the rapid, qualitative and quantitative monitoring of hair pigmentation changes.
Collapse
Affiliation(s)
- P M Plonka
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, ul. Gronostajowa 7, PL-30-387 Krakow, Poland, and Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany.
| | | | | | | | | |
Collapse
|
89
|
Maaser C, Kannengiesser K, Specht C, Lügering A, Brzoska T, Luger TA, Domschke W, Kucharzik T. Crucial role of the melanocortin receptor MC1R in experimental colitis. Gut 2006; 55:1415-22. [PMID: 16543288 PMCID: PMC1856418 DOI: 10.1136/gut.2005.083634] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS alpha-Melanocyte stimulating hormone (alpha MSH) is known to exert anti-inflammatory effects, for example in murine DSS (dextran sodium sulphate induced) colitis. The anti-inflammatory functions of alpha MSH are mediated by the melanocortin1-receptor (MC1R) in an autoregulatory loop. The aim of this study was therefore to determine whether a breakdown of the alpha MSH-MC1R pathway leads to worsening of disease. METHODS Experimental colitis was induced in mice with a frameshift mutation in the MC1R gene (MC1Re/e), C57BL/6 wild type mice, and MC1Re/e-C57BL/6 bone marrow chimeras. The course of inflammation was monitored by weight loss, histological changes in the colon, and myeloperoxidase activity. In addition, MC1R expression was analysed in intestinal epithelial cells. RESULTS While the colon of untreated MC1Re/e appeared normal, the course of DSS-colitis in MC1Re/e mice was dramatically aggravated, with a significantly higher weight loss and marked histological changes compared to C57BL/6WT. The inflammation eventually led to death in all MC1Re/e, while all C57BL/6WT survived. Similar observations were detected in a transmissible murine colitis model induced by Citrobacter rodentium. Infected MC1Re/e showed delayed clearance of infection. To determine whether missing haematopoietic cell expressed MC1R was responsible, DSS colitis was induced in MC1Re/e-C57BL/6 bone marrow chimeras. MC1Re/e mice receiving MC1R+ bone marrow showed a similar course of inflammation to non-transplanted MC1Re/e. Likewise, transplantation of MC1R bone marrow into C57BL/6WT mice did not lead to any worsening of disease. CONCLUSIONS This is the first study to show a functional role of MC1R in intestinal inflammation. The data suggest a pivotal role of non-haematopoietic cell expressed MC1R in the host's response to pathogenic stimuli.
Collapse
Affiliation(s)
- C Maaser
- Department of Medicine B, University of Münster, Albert-Schweitzer-Str 33, D-48129 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Böhm M, Luger TA, Tobin DJ, García-Borrón JC. Melanocortin Receptor Ligands: New Horizons for Skin Biology and Clinical Dermatology. J Invest Dermatol 2006; 126:1966-75. [PMID: 16912693 DOI: 10.1038/sj.jid.5700421] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The melanocortin (MC) system is probably the best characterized neuropeptide network of the skin. Most cutaneous cell types express MC receptors (MC-Rs) and synthesize MCs, such as alpha-melanocyte-stimulating hormone (alpha-MSH), that act in autocrine and paracrine fashion. In human skin cells, activation of adenylate cyclase by MCs occurs at 10(-6)-10(-9) M doses of the ligand, but effects are induced in some cell types at subnanomolar concentrations. In addition to the pigmentary action of MCs on epidermal melanocytes, the hair follicle is a source and target for MCs. MCs regulate lipogenesis in sebocytes expressing both MC-1R and MC-5R. In adipocytes, lipid metabolism is modulated by agouti signalling protein, a natural MC-1R/MC-4R antagonist. The anti-inflammatory activity of alpha-MSH includes immunomodulatory effects on several resident skin cells and antifibrogenic effects mediated via MC-1R expressed by dermal fibroblasts. In human mast cells, alpha-MSH appears to be proinflammatory due to histamine release. alpha-MSH exhibits cytoprotective activity against UVB-induced apoptosis and DNA damage, a finding that helps explain the increased risk of cutaneous melanoma in individuals with loss of function MC-1R mutations. These findings should improve our understanding of skin physiology and pathophysiology and may offer novel strategies with MCs as future therapeutics for skin diseases.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology and Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University of Münster, Germany.
| | | | | | | |
Collapse
|
91
|
Kauser S, Slominski† A, Wei ET, Tobin DJ. Modulation of the human hair follicle pigmentary unit by corticotropin-releasing hormone and urocortin peptides. FASEB J 2006; 20:882-95. [PMID: 16675846 PMCID: PMC1472637 DOI: 10.1096/fj.05-5257com] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human skin is a local source of corticotropin-releasing hormone (CRH) and expresses CRH and CRH receptors (CRH-R) at mRNA and protein levels. Epidermal melanocytes respond to CRH by induction of cAMP with up-regulation of pro-opiomelanocortin gene expression and subsequent production of adrenocorticotropin hormone. However, the role of CRH/CRH-R in melanocyte biology is complicated by the significant heterogeneity of cutaneous melanocyte subpopulations, from continuously active and UV-responsive melanocytes in epidermis to UV nonresponsive, hair growth cycle-coupled melanogenesis in hair follicles. In the present study we report that normal human scalp hair follicle melanocytes express CRH at the mRNA level. Furthermore, CRH, urocortin and CRH-R 1 and 2 were differentially expressed in follicular melanocytes, fibroblasts, and keratinocytes depending on anatomic location and differentiation status in situ and in vitro. Stimulation of follicular melanocytes with CRH and CRH peptides, modified for selectivity for CRH-R1 and/or CRH-R2, variably induced cell melanogenesis, dendricity, and proliferation. CRH-peptides also stimulated the expression and activity of Tyrosinase, and expression of Tyrosinase-related protein-1 and-2. However, a modified urocortin peptide highly selective for CRH-R2 down-regulated melanocyte differentiation phenotype. This study indicates that CRH peptides can differentially influence hair follicle melanocyte behavior not only via CRH-R1 signaling but also by complex cross-talk between CRH-R1 and CRH-R2.
Collapse
Affiliation(s)
- Sobia Kauser
- Department of Biomedical Sciences, University of Bradford, West Yorkshire, UK; Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, Tennessee, USA; and
| | | | - Edward T. Wei
- School of Public Health, University of California, Berkeley, California, USA
| | - Desmond J. Tobin
- Department of Biomedical Sciences, University of Bradford, West Yorkshire, UK; Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, Tennessee, USA; and
- Correspondence: Department of Biomedical Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK. E-mail:
| |
Collapse
|
92
|
Suto JI. Confirmation of sable QTL that modifies the effects of the A(y) allele on yellow coat color on mouse chromosome 1. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2006; 82:165-173. [PMID: 25792779 PMCID: PMC4323048 DOI: 10.2183/pjab.82.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 04/12/2006] [Indexed: 06/04/2023]
Abstract
F1-A(y) mice between RR (aabbCC) and C57BL/6J-A(y) (A(y)aBBCC) have a much darker yellow coat color than do C57BL/6J-A(y) . Quantitative trait locus (QTL) analysis was carried out to identify genes responsible for the darker modification of the yellow coat color (this has been traditionally termed "sable"). A significant sable QTL was identified on chromosome 1 (Dmyaq4, LOD score 15.5 for lightness, and 13.4 for color difference), in a chromosomal position similar to that of Dmyaq2, a sable QTL previously identified in C3H/HeJ. Another significant sable QTL was identified on chromosome 4 (Dmyaq5, LOD score 5.6 for lightness, and 4.3 for color difference) near the tyrosinase-related protein 1 (Tyrp1) locus. The effect of Dmyaq5 was significant only in the presence of the RR allele at Dmyaq4, suggesting that the Dmyaq4 (as well as Dmyaq2) is a novel coat color gene that may act up-stream of Tyrp1 signaling to increase eumelanin production.
Collapse
Affiliation(s)
- Jun-ichi Suto
- Department of Molecular Biology and Immunology, National Institute of Agrobiological Sciences, Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan ()
| |
Collapse
|
93
|
Adan RAH. Constitutive Receptor Activity series Endogenous inverse agonists and constitutive receptor activity in the melanocortin system. Trends Pharmacol Sci 2006; 27:183-6. [PMID: 16500715 DOI: 10.1016/j.tips.2006.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/04/2006] [Accepted: 02/09/2006] [Indexed: 11/25/2022]
Abstract
The recent discovery of melanocortin receptor mutations that selectively decrease constitutive receptor activity in obese individuals supports the physiological relevance of constitutive melanocortin receptor activity and its control by an endogenous inverse agonist. Furthermore, studies using mice that lack endogenous melanocortin receptor agonists show that differences in coat color are caused by different degrees of constitutive melanocortin receptor signaling regulated by an endogenous inverse agonist. Thus, the regulation of constitutive activity of melanocortin receptors is important for the normal control of pigmentation and body-weight homeostasis.
Collapse
Affiliation(s)
- Roger A H Adan
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, PO Box 85060, 3508 AB, Utrecht, The Netherlands.
| |
Collapse
|
94
|
Abstract
Evidence is accumulating that the skin can serve as a peripheral neuroendocrine organ. The skin neuroendocrine activities are predominantly independent of regulation from the central level (which controls classical hormone secretion) but are rather regulated by local cutaneous factors. These endocrine factors would represent an exquisite regulatory layer addressed at restricting maximally the effect of noxious agents in the skin to preserve local and consequently global homeostasis.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, 38163, USA.
| |
Collapse
|
95
|
Steingrímsson E, Copeland NG, Jenkins NA. Mouse coat color mutations: From fancy mice to functional genomics. Dev Dyn 2006; 235:2401-11. [PMID: 16691561 DOI: 10.1002/dvdy.20840] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mouse coat color mutations have a long history in biomedical research. The viable and visible phenotype of most coat color mutations has made the pigment cell, the melanocyte, an ideal system for genetic, molecular, and cellular analysis. Molecular cloning and analysis of many of the different coat color mutations have revealed the roles of a diverse range of genes, and today we know more about the pathways and proteins that regulate the development and function of pigment cells than we know about most other cell types in mammalian organisms. Coat color mutations have also provided novel insights into stem cell biology and human diseases, including melanoma. In the future, it will be important to build on this history and knowledge by taking advantage of the extensive repertoire of recently developed genome-wide methodologies, available genomic information, and the powerful methods that have been developed for modifying the mouse genome to systematically dissect the development and function of this important cell type. The usefulness of coat color mutations has just begun to emerge.
Collapse
Affiliation(s)
- Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland.
| | | | | |
Collapse
|
96
|
Tobin DJ, Kauser S. Hair melanocytes as neuro-endocrine sensors--pigments for our imagination. Mol Cell Endocrinol 2005; 243:1-11. [PMID: 16223562 DOI: 10.1016/j.mce.2005.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/02/2005] [Indexed: 02/08/2023]
Abstract
We are currently experiencing a spectacular surge in our knowledge of skin function both at the organ and organismal levels, much of this due to a flurry of cutaneous neuroendocrinologic data, that positions the skin as a major sensor of the periphery. As our body's largest organ, the skin incorporates all major support systems including blood, muscle and innervation as well as its role in immuno-competence, psycho-emotion, ultraviolet radiation sensing, endocrine function, etc. It is integral for maintenance of mammalian homeostasis and utilizes locally-produced melanocortins to neutralize noxious stimuli. In particular, the cutaneous pigmentary system is an important stress response element of the skin's sensing apparatus; where stimuli involving corticotrophin-releasing hormone (CRH) and proopiomelanocortin (POMC) peptides help regulate pigmentation in the hair follicle and the epidermis. These pigmentary units are organized into symmetrical functional pigmentary units composed of corticotropin-releasing hormone, and the melanocortin POMC peptides melanocyte stimulating hormone, adrenocorticotropic hormone and also the opiate beta-endorphin. These new findings have led to the concept of "self-similarity" of melanocortin systems based on their expression both at the local (skin) and systemic (CNS) levels, where the only major apparent difference appears to be one of scale. This review explores this concept and describes how the components of the CRH/POMC systems may help regulate the human hair follicle pigmentary unit.
Collapse
Affiliation(s)
- D J Tobin
- Cutaneous Biology Research Group, Medical Biosciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK.
| | | |
Collapse
|