51
|
Moerkens M, Zhang Y, Wester L, van de Water B, Meerman JHN. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation. BMC Cancer 2014; 14:283. [PMID: 24758408 PMCID: PMC4021213 DOI: 10.1186/1471-2407-14-283] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Background Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER) α -positive breast cancer patients. Although the mechanisms behind tamoxifen resistance are still not completely understood, clinical data suggests that increased expression of receptor tyrosine kinases is involved. Here, we studied the estrogen and anti-estrogen sensitivity of human breast cancer MCF7 cells that have a moderate, retroviral-mediated, ectopic expression of epidermal growth factor receptor (MCF7-EGFR). Methods Proliferation of MCF7-EGFR and parental cells was induced by 17β-estradiol (E2), epidermal growth factor (EGF) or a combination of these. Inhibition of proliferation under these conditions was investigated with 4-hydroxy-tamoxifen (TAM) or fulvestrant at 10-12 to 10-6 M. Cells were lysed at different time points to determine the phosphorylation status of EGFR, MAPK1/3, AKT and the expression of ERα. Knockdown of target genes was established using smartpool siRNAs. Transcriptomics analysis was done 6 hr after stimulation with growth factors using Affymetrix HG-U133 PM array plates. Results While proliferation of parental MCF7 cells could only be induced by E2, proliferation of MCF7-EGFR cells could be induced by either E2 or EGF. Treatment with TAM or fulvestrant did significantly inhibit proliferation of MCF7-EGFR cells stimulated with E2 alone. EGF treatment of E2/TAM treated cells led to a marked cell proliferation thereby overruling the anti-estrogen-mediated inhibition of cell proliferation. Under these conditions, TAM however did still inhibit ERα- mediated transcription. While siRNA-mediated knock-down of EGFR inhibited the EGF- driven proliferation under TAM/E2/EGF condition, knock down of ERα did not. The TAM resistant cell proliferation mediated by the conditional EGFR-signaling may be dependent on the PI3K/Akt pathway but not the MEK/MAPK pathway, since a MEK inhibitor (U0126), did not block the proliferation. Transcriptomic analysis under the various E2/TAM/EGF conditions revealed that E2 and EGF dependent transcription have little overlap and rather operate in a parallel fashion. Conclusions Our data indicate that enhanced EGFR-driven signalling is sufficient to overrule the TAM- mediated inhibition of E2-driven cell proliferation. This may have profound implications for the anti-estrogen treatment of ER-positive breast cancers that have increased levels of EGFR.
Collapse
Affiliation(s)
| | | | | | | | - John H N Meerman
- Leiden Academic Centre for Drug Research (LACDR), Department of Toxicology, Leiden University, Einsteinweg 55, 2333 CC Leiden The Netherlands.
| |
Collapse
|
52
|
Co-targeting estrogen receptor and HER2 pathways in breast cancer. Breast 2014; 23:2-9. [DOI: 10.1016/j.breast.2013.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/14/2013] [Accepted: 09/21/2013] [Indexed: 11/22/2022] Open
|
53
|
Beelen K, Opdam M, Severson TM, Koornstra RHT, Vincent AD, Wesseling J, Muris JJ, Berns EMJJ, Vermorken JB, van Diest PJ, Linn SC. PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients. Breast Cancer Res 2014; 16:R13. [PMID: 24467828 PMCID: PMC3978618 DOI: 10.1186/bcr3606] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/18/2013] [Indexed: 12/01/2022] Open
Abstract
Introduction Inhibitors of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway can overcome endocrine resistance in estrogen receptor (ER) α-positive breast cancer, but companion diagnostics indicating PI3K/AKT/mTOR activation and consequently endocrine resistance are lacking. PIK3CA mutations frequently occur in ERα-positive breast cancer and result in PI3K/AKT/mTOR activation in vitro. Nevertheless, the prognostic and treatment-predictive value of these mutations in ERα-positive breast cancer is contradictive. We tested the clinical validity of PIK3CA mutations and other canonic pathway drivers to predict intrinsic resistance to adjuvant tamoxifen. In addition, we tested the association between these drivers and downstream activated proteins. Methods Primary tumors from 563 ERα-positive postmenopausal patients, randomized between adjuvant tamoxifen (1 to 3 years) versus observation were recollected. PIK3CA hotspot mutations in exon 9 and exon 20 were assessed with Sequenom Mass Spectometry. Immunohistochemistry was performed for human epidermal growth factor receptor 2 (HER2), phosphatase and tensin homolog (PTEN), and insulin-like growth factor 1 receptor (IGF-1R). We tested the association between these molecular alterations and downstream activated proteins (like phospho-protein kinase B (p-AKT), phospho-mammalian target of rapamycin (p-mTOR), p-ERK1/2, and p-p70S6K). Recurrence-free interval improvement with tamoxifen versus control was assessed according to the presence or absence of canonic pathway drivers, by using Cox proportional hazard models, including a test for interaction. Results PIK3CA mutations (both exon 9 and exon 20) were associated with low tumor grade. An enrichment of PIK3CA exon 20 mutations was observed in progesterone receptor- positive tumors. PIK3CA exon 20 mutations were not associated with downstream-activated proteins. No significant interaction between PIK3CA mutations or any of the other canonic pathway drivers and tamoxifen-treatment benefit was found. Conclusion PIK3CA mutations do not have clinical validity to predict intrinsic resistance to adjuvant tamoxifen and may therefore be unsuitable as companion diagnostic for PI3K/AKT/mTOR inhibitors in ERα- positive, postmenopausal, early breast cancer patients.
Collapse
|
54
|
Palmieri C, Patten DK, Januszewski A, Zucchini G, Howell SJ. Breast cancer: current and future endocrine therapies. Mol Cell Endocrinol 2014; 382:695-723. [PMID: 23933149 DOI: 10.1016/j.mce.2013.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 12/29/2022]
Abstract
Endocrine therapy forms a central modality in the treatment of estrogen receptor positive breast cancer. The routine use of 5 years of adjuvant tamoxifen has improved survival rates for early breast cancer, and more recently has evolved in the postmenopausal setting to include aromatase inhibitors. The optimal duration of adjuvant endocrine therapy remains an active area of clinical study with recent data supporting 10 years rather than 5 years of adjuvant tamoxifen. However, endocrine therapy is limited by the development of resistance, this can occur by a number of possible mechanisms and numerous studies have been performed which combine endocrine therapy with agents that modulate these mechanisms with the aim of preventing or delaying the emergence of resistance. Recent trial data regarding the combination of the mammalian target of rapamycin (mTOR) inhibitor, everolimus with endocrine therapy have resulted in a redefinition of the clinical treatment pathway in the metastatic setting. This review details the current endocrine therapy utilized in both early and advanced disease, as well as exploring potential new targets which modulate pathways of resistance, as well as agents which aim to modulate adrenal derived steroidogenic hormones.
Collapse
Affiliation(s)
- Carlo Palmieri
- The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, Liverpool L69 3GA, UK; Liverpool & Merseyside Breast Academic Unit, The Linda McCartney Centre, Royal Liverpool University Hospital, Liverpool L7 8XP, UK; Academic Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Wiral CH63 4JY, UK.
| | - Darren K Patten
- Department of Surgery, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, UK
| | - Adam Januszewski
- Department of Medical Oncology, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, UK
| | - Giorgia Zucchini
- The University of Manchester, Institute of Cancer Studies, Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Sacha J Howell
- The University of Manchester, Institute of Cancer Studies, Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
55
|
Jordan NJ, Dutkowski CM, Barrow D, Mottram HJ, Hutcheson IR, Nicholson RI, Guichard SM, Gee JMW. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Breast Cancer Res 2014; 16:R12. [PMID: 24457069 PMCID: PMC3978713 DOI: 10.1186/bcr3604] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 01/15/2014] [Indexed: 12/18/2022] Open
Abstract
Introduction Upregulation of PI3K/Akt/mTOR signalling in endocrine-resistant breast cancer (BC) has identified mTOR as an attractive target alongside anti-hormones to control resistance. RAD001 (everolimus/Afinitor®), an allosteric mTOR inhibitor, is proving valuable in this setting; however, some patients are inherently refractory or relapse during treatment requiring alternative strategies. Here we evaluate the potential for novel dual mTORC1/2 mTOR kinase inhibitors, exemplified by AZD8055, by comparison with RAD001 in ER + endocrine resistant BC cells. Methods In vitro models of tamoxifen (TamR) or oestrogen deprivation resistance (MCF7-X) were treated with RAD001 or AZD8055 alone or combined with anti-hormone fulvestrant. Endpoints included growth, cell proliferation (Ki67), viability and migration, with PI3K/AKT/mTOR signalling impact monitored by Western blotting. Potential ER cross-talk was investigated by immunocytochemistry and RT-PCR. Results RAD001 was a poor growth inhibitor of MCF7-derived TamR and MCF7-X cells (IC50 ≥1 μM), rapidly inhibiting mTORC1 but not mTORC2/AKT signalling. In contrast AZD8055, which rapidly inhibited both mTORC1 and mTORC2/AKT activity, was a highly effective (P <0.001) growth inhibitor of TamR (IC50 18 nM) and MCF7-X (IC50 24 nM), and of a further T47D-derived tamoxifen resistant model T47D-tamR (IC50 19 nM). AZD8055 significantly (P <0.05) inhibited resistant cell proliferation, increased cell death and reduced migration. Furthermore, dual treatment of TamR or MCF7-X cells with AZD8055 plus fulvestrant provided superior control of resistant growth versus either agent alone (P <0.05). Co-treating with AZD8055 alongside tamoxifen (P <0.01) or oestrogen deprivation (P <0.05) also effectively inhibited endocrine responsive MCF-7 cells. Although AZD8055 inhibited oestrogen receptor (ER) ser167 phosphorylation in TamR and MCF7-X, it had no effect on ER ser118 activity or expression of several ER-regulated genes, suggesting the mTOR kinase inhibitor impact was largely ER-independent. The capacity of AZD8055 for ER-independent activity was further evidenced by growth inhibition (IC5018 and 20 nM) of two acquired fulvestrant resistant models lacking ER. Conclusions This is the first report demonstrating dual mTORC1/2 mTOR kinase inhibitors have potential to control acquired endocrine resistant BC, even under conditions where everolimus fails. Such inhibitors may prove of particular benefit when used alongside anti-hormonal treatment as second-line therapy in endocrine resistant disease, and also potentially alongside anti-hormones during the earlier endocrine responsive phase to hinder development of resistance.
Collapse
|
56
|
Adams R, Maughan T. Predicting response to epidermal growth factor receptor-targeted therapy in colorectal cancer. Expert Rev Anticancer Ther 2014; 7:503-18. [PMID: 17428171 DOI: 10.1586/14737140.7.4.503] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The discovery over 20 years ago by the Nobel Laureate Stanley Cohen of epidermal growth factor and its receptor, followed by the recognition that this receptor is overexpressed in multiple cancer types, has been of phenomenal significance. From these events the 'Holy Grail' of targeted therapy has looked increasingly realistic. Over the last 5 years this work has come of age with the licensing of multiple agents targeting this important mitogenic pathway in multiple tumor types. However, these agents and the technology behind them, while impressive, have resulted in lower clinical response rates than anticipated. In this review we will focus on the epidermal growth factor receptor-targeted therapies in colorectal cancer, why our expectations from these therapies have not yet been fulfilled and how we may predict those cancers that are likely to respond or be resistant to these therapies through a greater appreciation of the intricacy, diversity and dynamism of cellular signaling mechanisms.
Collapse
Affiliation(s)
- Richard Adams
- Clinical Oncology, Velindre Hospital, South East Wales Cancer Centre, Whitchurch, Cardiff, South Glamorgan, UK.
| | | |
Collapse
|
57
|
Hawsawi Y, El-Gendy R, Twelves C, Speirs V, Beattie J. Insulin-like growth factor - oestradiol crosstalk and mammary gland tumourigenesis. Biochim Biophys Acta Rev Cancer 2013; 1836:345-53. [PMID: 24189571 DOI: 10.1016/j.bbcan.2013.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 12/22/2022]
Abstract
Development and differentiation of the mammary gland are dependent on the appropriate temporal expression of both systemically acting hormones and locally produced growth factors. A large body of evidence suggests that molecular crosstalk between these hormonal and growth factor axes is crucial for appropriate cell and tissue function. Two of the most important trophic factors involved in this process are the oestrogen (E) and insulin-like growth factor (IGF) molecular axes. The reciprocal crosstalk that exists between these pathways occurs at transcriptional/post-transcriptional and translational/post-translational levels regulate the expression and activity of genes involved in this process. In a clinical context an important consequence of such crosstalk in the mammary gland is the role which it may play in the aetiology, maintenance and development of breast tumours. Although oestradiol (E2) acting through oestrogen receptors α and β (ERα/β) is important for normal mammary gland function it can also provide a mitogenic drive to ER+ breast tumours. Therefore over several years anti-oestrogen therapeutic regimens in the form of selective oestrogen receptor modulators (SERMs - e.g. tamoxifen), aromatase inhibitors (AI e.g. anastrozole) or selective oestrogen receptor down regulators (SERDs - e.g. fulvestrant) have been used in an adjuvant setting to control tumour growth. Although initial response is usually encouraging, large cohorts of patients eventually develop resistance to these treatments leading to tumour recurrence and poor prognosis. There are potentially many routes by which breast cancer (BC) cells could escape anti-oestrogen based therapeutic strategies and one of the most studied is the possible growth factor mediated activation of ER(s). Because of this, growth factor modulation of ER activity has been an intensively studied route of molecular crosstalk in the mammary gland. The insulin-like growth factors (IGF-1 and -2) are amongst the most potent mitogens for mammary epithelial cells and there is accumulating evidence that they interact with the E2 axis to regulate mitogenesis, apoptosis, adhesion, migration and differentiation of mammary epithelial cells. Such interactions are bi-directional and E2 has been shown to regulate the expression and activity of IGF axis genes with the general effect of sensitising breast epithelial cells to the actions of IGFs and insulin. In this short review we discuss the evidence for the involvement of crosstalk between the insulin-like growth factor (IGF) and oestrogen axes in the mammary gland and comment on the relevance of such studies in the aetiology and treatment of BC.
Collapse
|
58
|
Skandalis SS, Afratis N, Smirlaki G, Nikitovic D, Theocharis AD, Tzanakakis GN, Karamanos NK. Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans. Matrix Biol 2013; 35:182-93. [PMID: 24063949 DOI: 10.1016/j.matbio.2013.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 02/07/2023]
Abstract
In hormone-dependent breast cancer, estrogen receptors are the principal signaling molecules that regulate several cell functions either by the genomic pathway acting directly as transcription factors in the nucleus or by the non-genomic pathway interacting with other receptors and their adjacent pathways like EGFR/IGFR. It is well established in literature that EGFR and IGFR signaling pathways promote cell proliferation and differentiation. Moreover, recent data indicate the cross-talk between ERs and EGFR/IGFR signaling pathways causing a transformation of cell functions as well as deregulation on normal expression pattern of matrix molecules. Specifically, proteoglycans, a major category of extracellular matrix (ECM) and cell surface macromolecules, are modified during malignancy and cause alterations in cancer cell signaling, affecting eventually functional cell properties such as proliferation, adhesion and migration. The on-going strategies to block only one of the above signaling effectors result cancer cells to overcome such inactivation using alternative signaling pathways. In this article, we therefore review the underlying mechanisms in respect to the role of ERs and the involvement of cross-talk between ERs, IGFR and EGFR in breast cancer cell properties and expression of extracellular secreted and cell bound proteoglycans involved in cancer progression. Understanding such signaling pathways may help to establish new potential pharmacological targets in terms of using ECM molecules to design novel anticancer therapies.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Nikolaos Afratis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dragana Nikitovic
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - George N Tzanakakis
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
59
|
Lappano R, De Marco P, De Francesco EM, Chimento A, Pezzi V, Maggiolini M. Cross-talk between GPER and growth factor signaling. J Steroid Biochem Mol Biol 2013; 137:50-6. [PMID: 23542661 DOI: 10.1016/j.jsbmb.2013.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/03/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) and growth factor receptors mediate multiple physio-pathological responses to a diverse array of extracellular stimuli. In this regard, it has been largely demonstrated that GPCRs and growth factor receptors generate a multifaceted signaling network, which triggers relevant biological effects in normal and cancer cells. For instance, some GPCRs transactivate the epidermal growth factor receptor (EGFR), which stimulates diverse transduction pathways leading to gene expression changes, cell migration, survival and proliferation. Moreover, it has been reported that a functional interaction between growth factor receptors and steroid hormones like estrogens is involved in the growth of many types of tumors as well as in the resistance to endocrine therapy. This review highlights recent findings on the cross-talk between a member of the GPCR family, the G protein-coupled estrogen receptor 1 (GPER, formerly known as GPR30) and two main growth factor receptors like EGFR and insulin-like growth factor-I receptor (IGF-IR). The biological implications of the functional interaction between these important mediators of cell responses particularly in cancer are discussed. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Dipartimento Farmaco-Biologico, Università della Calabria, via P. Bucci, 87036 Rende, Italy
| | | | | | | | | | | |
Collapse
|
60
|
Felice DL, El-Shennawy L, Zhao S, Lantvit DL, Shen Q, Unterman TG, Swanson SM, Frasor J. Growth hormone potentiates 17β-estradiol-dependent breast cancer cell proliferation independently of IGF-I receptor signaling. Endocrinology 2013; 154:3219-27. [PMID: 23782942 PMCID: PMC3749474 DOI: 10.1210/en.2012-2208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Estrogen action in mammary gland development and breast cancer progression is tightly linked to the GH/IGF-I axis. Although many of the effects of GH on mammary gland growth and development require IGF-I, the extent to which GH action in breast cancer depends on IGF-I is not known. We examined GH action in a panel of estrogen receptor-positive breast cancer cell lines and found that T47D cells express significant levels of GH receptor and that GH significantly enhances 17β-estradiol (E2)-stimulated proliferation in these cells. GH action in the T47D cells was independent of changes in IGF-I and IGF-I receptor (IGF-IR) expression and IGF-IR signaling, suggesting that GH can exert direct effects on breast cancer cells. Although E2-dependent proliferation required IGF-IR signaling, the combination of GH+E2 overcame inhibition of IGF-IR activity to restore proliferation. In contrast, GH required both Janus kinase 2 and epidermal growth factor receptor signaling for subsequent ERK activation and potentiation of E2-dependent proliferation. Downstream of these pathways, we identified a number of immediate early-response genes associated with proliferation that are rapidly and robustly up-regulated by GH. These findings demonstrate that GH can have important effects in breast cancer cells that are distinct from IGF-IR activity, suggesting that novel drugs or improved combination therapies targeting estrogen receptor and the GH/IGF axis may be beneficial for breast cancer patients.
Collapse
Affiliation(s)
- Dana L Felice
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, MC 901, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Kang Y, Park MA, Heo SW, Park SY, Kang KW, Park PH, Kim JA. The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells. Biochim Biophys Acta Gen Subj 2013; 1830:2638-48. [PMID: 23246576 DOI: 10.1016/j.bbagen.2012.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/20/2012] [Accepted: 12/06/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chemotherapeutic drug resistance remains a clinical obstacle in cancer management. Drug-resistant cancer cells usually exhibit cross-resistance to ionizing radiation, which has devastating consequences for patients. With a better understanding of the molecular mechanisms, it will be possible to develop strategies to overcome this cross-resistance and to increase therapeutic sensitivity. METHODS Natural and synthetic flavonoid compounds including xanthohumol, the principal flavonoid in hops, were investigated for its radio-sensitizing activity on human breast cancer MCF-7 and adriamycin-resistant MCF-7 (MCF-7/ADR) cells. Chemo-sensitizing or radio-sensitizing effect was analyzed by tetrazolium-based colorimetric assay and flow cytometry. Western blot analysis, confocal microscopy, gene silencing with siRNA transfection and luciferase reporter gene assay were performed to examine signaling molecule activation. RESULTS Among the tested flavonoid compounds, pretreatment of the cells with xanthohumol significantly sensitized MCF-7/ADR cells to the radiation treatment by inducing apoptosis. In MCF-7/ADR cells, treatment with xanthohumol alone or with gamma-rays significantly decreased levels of anti-apoptotic proteins. Multi-drug resistance 1 (MDR1), epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) expression levels in MCF-7/ADR cells were suppressed by xanthohumol treatment. In addition, xanthohumol treatment increased death receptor (DR)-4 and DR5 expression. The xanthohumol-induced changes of these resistance-related molecules in MCF-7/ADR cells were synergistically increased by gamma-ray treatment. CONCLUSIONS Xanthohumol restored sensitivity of MCF-7/ADR cells to doxorubicin and radiation therapies. GENERAL SIGNIFICANCE Our results suggest that xanthohumol may be a potent chemo- and radio-sensitizer, and its actions are mediated through STAT3 and EGFR inhibition.
Collapse
Affiliation(s)
- Youra Kang
- College of Pharmacy, Yeungnam University, Gyeongsang 712-749, South Korea
| | | | | | | | | | | | | |
Collapse
|
62
|
Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int J Mol Sci 2013; 14:10761-90. [PMID: 23702846 PMCID: PMC3709701 DOI: 10.3390/ijms140610761] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022] Open
Abstract
The Src gene product (Src) and the epidermal growth factor receptor (EGFR) are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845) in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases) or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase). A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.
Collapse
|
63
|
Droog M, Beelen K, Linn S, Zwart W. Tamoxifen resistance: from bench to bedside. Eur J Pharmacol 2013; 717:47-57. [PMID: 23545365 DOI: 10.1016/j.ejphar.2012.11.071] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 11/20/2012] [Accepted: 11/23/2012] [Indexed: 01/09/2023]
Abstract
Although tamoxifen is a classical example of a targeted drug, a substantial proportion of estrogen receptor alpha positive breast cancer patients does not benefit from the drug. Over the last few decades, many potential biomarkers have been discovered in cell biological studies that may aid in the prediction of tamoxifen sensitivity and guide in treatment selection. Nonetheless, the transition of such a biomarker from the scientific community towards a diagnostic test that can be used in daily clinical practice has been far from ideal, and such markers seldom face clinical introduction. From a large number of potential predictive biomarkers as described in cell biological literature, the clinical (translational) scientist has to make a decision which of these biomarkers should be tested in clinical material to determine their clinical validity. This problem is not trivial, since patient samples with clinical follow-up are a valuable asset that should therefore be cherished. In this review, we will describe a number of 'cell biological biomarkers' for tamoxifen resistance and their possible clinical implications. This may guide the clinical scientist in choosing what potential biomarkers to test on tumour samples, which may catalyse the translation of scientific discoveries into daily clinical practice of breast cancer medicine.
Collapse
Affiliation(s)
- Marjolein Droog
- Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
64
|
Robertson JF, Ferrero JM, Bourgeois H, Kennecke H, de Boer RH, Jacot W, McGreivy J, Suzuki S, Zhu M, McCaffery I, Loh E, Gansert JL, Kaufman PA. Ganitumab with either exemestane or fulvestrant for postmenopausal women with advanced, hormone-receptor-positive breast cancer: a randomised, controlled, double-blind, phase 2 trial. Lancet Oncol 2013; 14:228-35. [PMID: 23414585 DOI: 10.1016/s1470-2045(13)70026-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Insulin-like growth factors (IGF-1 and IGF-2) bind to the IGF-1 receptor (IGF-1R), increasing cell proliferation and survival. Ganitumab is a monoclonal IgG1 antibody that blocks IGF-1R. We tested the efficacy and safety of adding ganitumab to endocrine treatment for patients with hormone-receptor-positive breast cancer. METHODS We did this phase 2 trial in outpatient clinics and hospitals. We enrolled postmenopausal women with hormone-receptor-positive, locally advanced or metastatic breast cancer previously treated with endocrine treatment. They were randomly assigned (2:1) with a central randomisation schedule to receive intravenous ganitumab 12 mg per kg bodyweight or placebo in combination with open-label intramuscular fulvestrant (500 mg on day 1, then 250 mg on days 15, 29, and every 28 days) or oral exemestane (25 mg once daily) on a 28-day cycle. Patients, investigators, study monitors, and the sponsor staff were masked to treatment allocation. Response was assessed every 8 weeks. The primary endpoint was median progression-free survival in the intention-to-treat population. We analysed overall survival as one of our secondary endpoints. The study is registered at ClinicalTrials.gov, number NCT00626106. FINDINGS We screened 189 patients and enrolled 156 (106 in the ganitumab group and 50 in the placebo group). Median progression-free survival did not differ significantly between the ganitumab and placebo groups (3·9 months, 80% CI 3·6-5·3 vs 5·7 months, 4·4-7·4; hazard ratio [HR] 1·17, 80% CI 0·91-1·50; p=0·44). However, overall survival was worse in the the ganitumab group than in the placebo group (HR 1·78, 80% CI 1·27-2·50; p=0·025). With the exception of hyperglycaemia, adverse events were generally similar between groups. The most common grade 3 or higher adverse event was neutropenia-reported by six of 106 (6%) patients in the ganitumab group and one of 49 (2%) in the placebo group. Hyperglycaemia was reported by 12 of 106 (11%) patients in the ganitumab group (with six patients having grade 3 or 4 hyperglycaemia) and none of 49 in the placebo group. Serious adverse events were reported by 27 of 106 (25%) patients in the ganitumab group and nine of 49 (18%) patients in the placebo group. INTERPRETATION Addition of ganitumab to endocrine treatment in women with previously treated hormone-receptor-positive locally advanced or metastatic breast cancer did not improve outcomes. Our results do not support further study of ganitumab in this subgroup of patients. FUNDING Amgen.
Collapse
|
65
|
Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci 2012; 14:108-45. [PMID: 23344024 PMCID: PMC3565254 DOI: 10.3390/ijms14010108] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent malignancy diagnosed in women. Approximately 70% of breast tumors express the estrogen receptor (ER). Tamoxifen and aromatase inhibitors (AIs) are the most common and effective therapies for patients with ERα-positive breast cancer. Alone or combined with chemotherapy, tamoxifen significantly reduces disease progression and is associated with more favorable impact on survival in patients. Unfortunately, endocrine resistance occurs, either de novo or acquired during the course of the treatment. The mechanisms that contribute to hormonal resistance include loss or modification in the ERα expression, regulation of signal transduction pathways, altered expression of specific microRNAs, balance of co-regulatory proteins, and genetic polymorphisms involved in tamoxifen metabolic activity. Because of the clinical consequences of endocrine resistance, new treatment strategies are arising to make the cells sensitive to tamoxifen. Here, we will review the current knowledge on mechanisms of endocrine resistance in breast cancer cells. In addition, we will discuss novel therapeutic strategies to overcome such resistance. Undoubtedly, circumventing endocrine resistance should help to improve therapy for the benefit of breast cancer patients.
Collapse
|
66
|
Renoir JM. Estradiol receptors in breast cancer cells: associated co-factors as targets for new therapeutic approaches. Steroids 2012; 77:1249-61. [PMID: 22917634 DOI: 10.1016/j.steroids.2012.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
Abstract
Estrogen receptors α (ERα) and β (ERβ) are nuclear receptors which transduce estradiol (E2) response in many tissues including the mammary gland and breast cancers (BC). They activate or inhibit specific genes involved in cell cycle progression and cell survival through multiple enzyme activities leading to malignant transformation. Hormone therapy (antiestrogens (AEs) and aromatase inhibitors (AIs) have been widely used to block the mitogenic action of E2 in patients with ER-positive BC. ERs act in concert with numerous other proteins outside and inside the nucleus where co-activators such as histone modifying enzymes help reaching optimum gene activation. Moreover, E2-mediated gene regulation can occur through ERs located at the plasma membrane or G protein-coupled estrogen receptor (GPER), triggering protein kinase signaling cascades. Classical AEs as well as AIs are inefficient to block the cascades of events emanating from the membrane and from E2 binding to GPER, leading patients to escape anti-hormone treatments and hormone therapy resistance. Many pathways are involved in resistance, mostly resulting from over-expression of growth factor membrane receptors, in particular the HER2/ErbB2 which can be inhibited by specific antibodies or tyrosine kinases inhibitors. Together with the Hsp90 molecular chaperone machinery, a complex interplay between ERs, co-activators, co-repressors and growth factor-activated membrane pathways represents potent targets which warrant to be manipulated alone and in combination to designing novel therapies. The discovery of new potential targets arising from micro array studies gives the opportunity to activate or inhibit different new ER-modulating effectors for innovative therapeutic interventions.
Collapse
|
67
|
Roop RP, Ma CX. Endocrine resistance in breast cancer: molecular pathways and rational development of targeted therapies. Future Oncol 2012; 8:273-92. [PMID: 22409464 DOI: 10.2217/fon.12.8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endocrine resistance presents a major challenge in the management of estrogen receptor (ER)-positive breast cancer and is an area under intense investigation. Although the underlying mechanism is still poorly understood, many studies point towards the 'cross-talk' between ER and growth factor receptor signaling pathways as the key in the development of estrogen-independent growth in breast cancer. This review aims to provide the reader our current understanding of various molecular pathways that mediate endocrine resistance and that are being evaluated as therapeutic targets for ER-positive breast cancer. While most of the agents that target these pathways have only been tested in Phase I or small Phase II trials, some have shown encouraging results. A critical issue that remains is the development of research strategies and clinical trials that take into account the molecular heterogeneity of ER-positive breast cancer.
Collapse
Affiliation(s)
- Ryan P Roop
- Washington University School of Medicine in Saint Louis, Department of Medicine, Divisions of Hematology & Oncology, St Louis, MO, USA
| | | |
Collapse
|
68
|
Abstract
The IGF axis is a tightly controlled endocrine system that regulates cell growth and development, known to have an important function in cancer biology. IGF1 and IGF2 can promote cancer growth in a GH-independent manner both through paracrine and autocrine secretion and can also confer resistance to chemotherapy and radiation. Many alterations of this system have been found in neoplasias, including increased expression of ligands and receptors, loss of heterozygosity of the IGF2 locus and increased IGF1R gene copy number. The IGF1 network is an attractive candidate for targeted therapy, including receptor blockade with monoclonal antibodies and small molecule inhibitors of receptor downstream signaling. This article reviews the role of the IGF axis in the initiation and progression of cancer, and describes the recent advances in IGF inhibition as a therapeutic tool.
Collapse
Affiliation(s)
- Fernanda I Arnaldez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 CRC Room 1-3816, Bethesda, MD 20892, USA.
| | | |
Collapse
|
69
|
Bartella V, De Marco P, Malaguarnera R, Belfiore A, Maggiolini M. New advances on the functional cross-talk between insulin-like growth factor-I and estrogen signaling in cancer. Cell Signal 2012; 24:1515-21. [PMID: 22481093 DOI: 10.1016/j.cellsig.2012.03.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 03/20/2012] [Indexed: 01/07/2023]
Abstract
There is increasing awareness that estrogens may affect cell functions through the integration with a network of signaling pathways. The IGF system is a phylogenetically highly conserved axis that includes the insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) pathways, which are of crucial importance in the regulation of metabolism and cell growth in relationship to nutrient availability. Numerous studies nowadays document that estrogens cooperate with IGF system at multiple levels both in physiology and in disease. Several studies have focused on this bidirectional cross-talk in central nervous system, in mammary gland development and in cancer. Notably, cancer cells show frequent deregulation of the IGF system with overexpression of IR and/or IGF-IR and their ligands as well as frequent upregulation of the classical estrogen receptor (ER)α and the novel ER named GPER. Recent studies have, therefore, unraveled further mechanisms of cross-talk involving membrane initiated estrogen actions and the IGF system in cancer, that converge in the stimulation of pro-tumoral effects. These studies offer hope for new strategies aimed at the treatment of estrogen related cancers in order to prevent an estrogen-independent and more aggressive tumor progression.
Collapse
Affiliation(s)
- Viviana Bartella
- Department of Pharmaco-Biology, University of Calabria, 87030 Rende, Italy
| | | | | | | | | |
Collapse
|
70
|
Present and Future of EGFR Inhibitors for Head and Neck Squamous Cell Cancer. JOURNAL OF ONCOLOGY 2012; 2012:986725. [PMID: 22545054 PMCID: PMC3321461 DOI: 10.1155/2012/986725] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/22/2012] [Indexed: 12/11/2022]
Abstract
Although EGFR is expressed at high levels in head and neck squamous cell carcinomas (HNSCCs) and mutations are extremely rare, monotherapy with EGFR inhibitors has shown limited success. The PI3kinase/Akt pathway is responsible for cellular survival, and inhibition of phosphatidylinositol (PI) synthesis has antiproliferative, anti-invasive, and antiangiogenesis effects on HNSCC. Molecular crosstalk has been observed between EGFR and IGF1R signaling through the PI3kinase/Akt pathway in HNSCC, as has molecular crosstalk between the NFκB and STAT3 signaling pathways. Therefore, the combination of an EGFR antagonist with an agent that inhibits the activation of both Akt and NFκB may overcome resistance to EGFR antagonists in HNSCC.
Collapse
|
71
|
Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 2012; 5:ra11. [PMID: 22317921 PMCID: PMC3428905 DOI: 10.1126/scisignal.2002585] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP (ZRT1- and IRT1-like protein) family [also known as solute carrier family 39A (SLC39A)] transiently increase the cytosolic free zinc (Zn(2+)) concentration in response to extracellular signals. We show that phosphorylation of evolutionarily conserved residues in endoplasmic reticulum zinc channel ZIP7 is associated with the gated release of Zn(2+) from intracellular stores, leading to activation of tyrosine kinases and the phosphorylation of AKT and extracellular signal-regulated kinases 1 and 2. Through pharmacological manipulation, proximity ligation assay, and mutagenesis, we identified protein kinase CK2 as the kinase responsible for ZIP7 activation. Together, the present results show that transition element channels in eukaryotes can be activated posttranslationally by phosphorylation, as part of a cell signaling cascade. Our study links the regulated release of zinc from intracellular stores to phosphorylation of kinases involved in proliferative responses and cell migration, suggesting a functional role for ZIP7 and zinc signals in these events. The connection with proliferation and migration, as well as the activation of ZIP7 by CK2, a kinase that is antiapoptotic and promotes cell division, suggests that ZIP7 may provide a target for anticancer drug development.
Collapse
Affiliation(s)
- Kathryn M Taylor
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VIIth Avenue, Cardiff CF10 3NB, UK.
| | | | | | | | | |
Collapse
|
72
|
Huang F, Xu LA, Khambata-Ford S. Correlation between gene expression of IGF-1R pathway markers and cetuximab benefit in metastatic colorectal cancer. Clin Cancer Res 2012; 18:1156-66. [PMID: 22294722 DOI: 10.1158/1078-0432.ccr-11-1135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE This study examined potential correlations between markers related to the insulin-like growth factor-1 receptor (IGF-1R) pathway and clinical benefit from the anti-epidermal growth factor receptor (EGFR) monoclonal antibody cetuximab in metastatic colorectal cancer (mCRC). EXPERIMENTAL DESIGN Gene expression profiles for 70 pretreatment specimens from metastatic lesions of patients with chemorefractory mCRC receiving cetuximab monotherapy were analyzed using 74 predefined Gene-Chip probesets representing 33 unique IGF-1R pathway markers to determine correlations with progression-free survival (PFS) and disease control rate. RESULTS Higher IGF-1R, higher GRB(7), and lower INSIG(2) expression were associated with longer PFS with cetuximab in univariate analyses, particularly in patients with wild-type K-Ras tumors: median, 122 versus 60 days (P = 0.01), 122 versus 57 days (P = 0.011), and 57 versus 156 days (P < 0.0001), favoring higher IGF-1R, higher GRB(7), and lower INSIG(2) expression, respectively. Lower IGF-1 expression was associated with a PFS benefit with cetuximab, whereas lower IGFBP(3) and INSR expression levels showed trends for a PFS benefit. Lower INSIG(2) expression (vs. higher expression) was associated with greater PFS in the high epiregulin-expressing group (P = 0.001), but not in the low-expressing cohort suggesting an effect independent from the previously reported effect of epiregulin expression. Lower INSIG(2) expression was also associated with higher disease control rate in the overall population (51.4% vs. 11.4%; P = 0.001) and wild-type K-Ras subset (76.2% vs. 18.2%; P < 0.0001). CONCLUSIONS These results suggest that markers of the IGF-1R pathway may play a role in predicting benefit from cetuximab therapy in mCRC. Additional clinical studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Fei Huang
- Bristol-Myers Squibb Co., Route 206 and Province Line Rd., Room E1.293, Princeton, NJ 08453, USA.
| | | | | |
Collapse
|
73
|
Tognon CE, Sorensen PHB. Targeting the insulin-like growth factor 1 receptor (IGF1R) signaling pathway for cancer therapy. Expert Opin Ther Targets 2012; 16:33-48. [PMID: 22239439 DOI: 10.1517/14728222.2011.638626] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The IGF system controls growth, differentiation, and development at the cellular, organ and organismal levels. IGF1 receptor (IGF1R) signaling is dysregulated in many cancers. Numerous clinical trials are currently assessing therapies that inhibit either growth factor binding or IGF1R itself. Therapeutic benefit, often in the form of stable disease, has been reported for many different cancer types. AREAS COVERED Canonical IGF signaling and non-canonical pathways involved in carcinogenesis. Three recent insights into IGF1R signaling, namely hybrid receptor formation with insulin receptor (INSR), insulin receptor substrate 1 nuclear translocation, and evidence for IGF1R/INSR as dependence receptors. Different approaches to targeting IGF1R and mechanisms of acquired resistance. Possible mechanisms by which IGF1R signaling supports carcinogenesis and specific examples in different human tumors. EXPERT OPINION Pre-clinical data justifies IGF1R as a target and early clinical trials have shown modest efficacy in selected tumor types. Future work will focus upon assessing the usefulness or disadvantages of simultaneously targeting the IGF1R and INSR, biomarker development to identify potentially responsive patients, and the use of IGF1R inhibitors in combination therapies or as an adjunct to conventional chemotherapy.
Collapse
Affiliation(s)
- Cristina E Tognon
- British Columbia Cancer Research Centre , Department of Molecular Oncology, Vancouver, British Columbia, Canada
| | | |
Collapse
|
74
|
King ER, Wong KK. Insulin-like growth factor: current concepts and new developments in cancer therapy. Recent Pat Anticancer Drug Discov 2012; 7:14-30. [PMID: 21875414 PMCID: PMC3724215 DOI: 10.2174/157489212798357930] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/20/2011] [Accepted: 01/05/2011] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factor (IGF) family and the IGF-1 receptor (IGF-1R) play an important role in cancer. This intricate and complex signaling pathway provides many opportunities for therapeutic intervention, and several novel therapeutics aimed at the IGF-1R, particularly monoclonal antibodies and small molecule tyrosine kinase inhibitors, are under clinical investigation. This article provides a patent overview of the IGF signaling pathway and its complexity, addresses the justification for the use of IGF-1R-targeted therapy, and reviews the results of in vivo and in vitro novel therapeutics. Over the past year, the completion of several phase I, II, and III trials have provided interesting new information about the clinical activity of these novel compounds, particularly CP-751,871, IMC-A12, R1507, AMG-479, AVE-1642, MK-0646, XL-228, OSI-906, and BMS-754807. We review the important preliminary results from clinical trials with these compounds and conclude with a discussion about future therapeutic efforts.
Collapse
Affiliation(s)
- Erin R King
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| | | |
Collapse
|
75
|
Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev 2011; 25:2227-41. [PMID: 22056668 DOI: 10.1101/gad.176826.111] [Citation(s) in RCA: 1156] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcription factors are adaptor molecules that detect regulatory sequences in the DNA and target the assembly of protein complexes that control gene expression. Yet much of the DNA in the eukaryotic cell is in nucleosomes and thereby occluded by histones, and can be further occluded by higher-order chromatin structures and repressor complexes. Indeed, genome-wide location analyses have revealed that, for all transcription factors tested, the vast majority of potential DNA-binding sites are unoccupied, demonstrating the inaccessibility of most of the nuclear DNA. This raises the question of how target sites at silent genes become bound de novo by transcription factors, thereby initiating regulatory events in chromatin. Binding cooperativity can be sufficient for many kinds of factors to simultaneously engage a target site in chromatin and activate gene expression. However, in cases in which the binding of a series of factors is sequential in time and thus not initially cooperative, special "pioneer transcription factors" can be the first to engage target sites in chromatin. Such initial binding can passively enhance transcription by reducing the number of additional factors that are needed to bind the DNA, culminating in activation. In addition, pioneer factor binding can actively open up the local chromatin and directly make it competent for other factors to bind. Passive and active roles for the pioneer factor FoxA occur in embryonic development, steroid hormone induction, and human cancers. Herein we review the field and describe how pioneer factors may enable cellular reprogramming.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Epigenetics Program, Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, USA.
| | | |
Collapse
|
76
|
Drury SC, Detre S, Leary A, Salter J, Reis-Filho J, Barbashina V, Marchio C, Lopez-Knowles E, Ghazoui Z, Habben K, Arbogast S, Johnston S, Dowsett M. Changes in breast cancer biomarkers in the IGF1R/PI3K pathway in recurrent breast cancer after tamoxifen treatment. Endocr Relat Cancer 2011; 18:565-77. [PMID: 21734071 DOI: 10.1530/erc-10-0046] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of resistance to the antioestrogen tamoxifen occurs in a large proportion of patients with oestrogen receptor-positive (ER+) breast cancer and is an important clinical challenge. While loss of ER occurs in c.20% of tamoxifen-resistant tumours, this cannot be the sole explanation for tamoxifen treatment failure. PI3K pathway activation, including by insulin-like growth factor receptor 1 (IGF1R), has been implicated in some resistance models. The primary aim was to determine whether evidence exists in clinical breast cancer for a role of IGF1R and/or the PI3K pathway, in acquisition of resistance to tamoxifen. Invasive primary and recurrent tamoxifen-resistant tumours from the same patient (n=77) were assessed for changes in ER, progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), IGF1R, stathmin, PTEN expression and PIK3CA mutations where possible. ER and PgR levels were significantly reduced at recurrence with 22 and 45%, respectively, showing negative status at this time. Acquisition of HER2 overexpression occurred in 6% of cases. IGF1R expression was significantly reduced in both ER+ and ER- recurrences and stathmin levels increased. A positive association between stathmin and IGF1R emerged in recurrent samples, despite their opposing relationships with ER, suggesting some coalescence of their activities may be acquired. The data confirm loss of ER and PgR and gain of HER2 in some tamoxifen-resistant tumours. There is no evidence for IGF1R gain in tamoxifen resistance; increases in stathmin levels suggest that activation of the PI3K pathway may have contributed, but PTEN loss and PIK3CA hotspot mutations were relatively rare.
Collapse
Affiliation(s)
- S C Drury
- Translational Research, The Breakthrough Breast Cancer Research Centre, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Ozkan EE. Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: a review. Mol Cell Endocrinol 2011; 344:1-24. [PMID: 21782884 DOI: 10.1016/j.mce.2011.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 07/01/2011] [Indexed: 12/13/2022]
Abstract
Cancer database analysis indicates that prostate cancer is one of the most seen cancers in men meanwhile composing the leading cause of morbidity and mortality among developed countries. Current available therapies are surgery, radiotherapy and androgene ablation for prostate carcinoma. The response rate is as high nearly 90% however, most of these recur or become refractory and androgene independent (AI). Therefore recent studies intensified on molecular factors playing role on development of prostate carcinoma and novel treatment strategies targetting these factors and their receptors. Insulin-like growth factor-I (IGF-I) and its primary receptor insulin-like growth factor receptor-I (IGF-IR) are among these factors. Biologic functions and role in malign progression are primarily achieved via IGF-IR which is a type 2 tyrosine kinase receptor. IGF-IR plays an important role in mitogenesis, angiogenesis, transformation, apoptosis and cell motility. It also generates intensive proliferative signals leading to carcinogenesis in prostate tissue. So IGF-IR and its associated signalling system have provoked considerable interest over recent years as a novel therapeutic target in cancer. In this paper it is aimed to sum up the lately published literature searching the relation of IGF-IR and prostate cancer in terms of incidence, pathologic features, and prognosis. This is followed by a discussion of the different possible targets within the IGF-1R system, and drugs developed to interact at each target. A systems-based approach is then used to review the in vitro and in vivo data in the published literature of the following compounds targeting IGF-1R components using specific examples: growth hormone releasing hormone antagonists (e.g. JV-1-38), growth hormone receptor antagonists (e.g. pegvisomant), IGF-1R antibodies (e.g. CP-751,871, AVE1642/EM164, IMC-A12, SCH-717454, BIIB022, AMG 479, MK-0646/h7C10), and IGF-1R tyrosine kinase inhibitors (e.g. BMS-536942, BMS-554417, NVP-AEW541, NVP-ADW742, AG1024, potent quinolinyl-derived imidazo (1,5-a)pyrazine PQIP, picropodophyllin PPP, nordihydroguaiaretic acid Insm-18/NDGA). And the other end point is to yield an overview on the recent progress about usage of this receptor as a novel anticancer agent of targeted therapies in treatment of prostate carcinoma.
Collapse
Affiliation(s)
- Emine Elif Ozkan
- OSM Middle East Health Center, Department of Radiation Oncology, Sanliurfa 63000, Turkey.
| |
Collapse
|
78
|
Fox EM, Miller TW, Balko JM, Kuba MG, Sánchez V, Smith RA, Liu S, González-Angulo AM, Mills GB, Ye F, Shyr Y, Manning HC, Buck E, Arteaga CL. A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res 2011; 71:6773-84. [PMID: 21908557 DOI: 10.1158/0008-5472.can-11-1295] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen receptor α (ER)-positive breast cancers adapt to hormone deprivation and become resistant to antiestrogens. In this study, we sought to identify kinases essential for growth of ER(+) breast cancer cells resistant to long-term estrogen deprivation (LTED). A kinome-wide siRNA screen showed that the insulin receptor (InsR) is required for growth of MCF-7/LTED cells. Knockdown of InsR and/or insulin-like growth factor-I receptor (IGF-IR) inhibited growth of 3 of 4 LTED cell lines. Inhibition of InsR and IGF-IR with the dual tyrosine kinase inhibitor OSI-906 prevented the emergence of hormone-independent cells and tumors in vivo, inhibited parental and LTED cell growth and PI3K/AKT signaling, and suppressed growth of established MCF-7 xenografts in ovariectomized mice, whereas treatment with the neutralizing IGF-IR monoclonal antibody MAB391 was ineffective. Combined treatment with OSI-906 and the ER downregulator fulvestrant more effectively suppressed hormone-independent tumor growth than either drug alone. Finally, an insulin/IGF-I gene expression signature predicted recurrence-free survival in patients with ER(+) breast cancer treated with the antiestrogen tamoxifen. We conclude that therapeutic targeting of both InsR and IGF-IR should be more effective than targeting IGF-IR alone in abrogating resistance to endocrine therapy in breast cancer.
Collapse
Affiliation(s)
- Emily M Fox
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Burgos-Tiburcio A, Santos ES, Arango BA, Raez LE. Development of targeted therapy for squamous cell carcinomas of the head and neck. Expert Rev Anticancer Ther 2011; 11:373-86. [PMID: 21417852 DOI: 10.1586/era.10.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Targeted therapy is a very exciting era in the treatment of squamous cell carcinomas of the head and neck. After adding cetuximab to conventional chemotherapy and radiation therapy, we are strongly considering the role of induction chemotherapy with the addition of docetaxel. At the same time, other new treatments, especially targeted agents and novel combined regimens, are being evaluated in ongoing clinical trials. For example, several trials are attempting to combine docetaxel and cetuximab in chemoradiation or induction settings. However, in the near future we are likely to see a strong presence of targeted agents that have been found to be not only effective, but also less toxic than conventional chemotherapeutic agents. Their toxicity profiles make them eligible for addition to radiation treatment strategies, as well as other chemotherapy agents, or even for replacing these chemotherapy agents. In this article, we are going to review the indications and current role of cetuximab, tyrosine kinase inhibitors (gefitinib and erlotinib), dual inhibitors, IGF receptor inhibitors, as well as other agents that are in development for treatment of head and neck squamous cell carcinomas.
Collapse
Affiliation(s)
- Alberto Burgos-Tiburcio
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | |
Collapse
|
80
|
Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med Chem 2011; 1:1153-71. [PMID: 21425998 DOI: 10.4155/fmc.09.89] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The IGF-1 receptor (IGF-1R) has been implicated in the promotion of tumorigenesis, metastasis and resistance to cancer therapies. Therefore, this receptor has become a major focus for the development of anticancer agents. RESULTS Our lead optimization efforts that blended structure-based design and empirical medicinal chemistry led to the discovery of OSI-906, a novel small-molecule dual IGF-1R/insulin receptor (IR) kinase inhibitor. OSI-906 potently and selectively inhibits autophosphorylation of both human IGF-1R and IR, displays in vitro antiproliferative effects in a variety of tumor cell lines and shows robust in vivo anti-tumor efficacy in an IGF-1R-driven xenograft model when administered orally once daily. CONCLUSION OSI-906 is a novel, potent, selective and orally bioavailable dual IGF-1R/IR kinase inhibitor with favorable preclinical drug-like properties, which has demonstrated in vivo efficacy in tumor models and is currently in clinical testing.
Collapse
|
81
|
Al Saleh S, Al Mulla F, Luqmani YA. Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS One 2011; 6:e20610. [PMID: 21713035 PMCID: PMC3119661 DOI: 10.1371/journal.pone.0020610] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/05/2011] [Indexed: 12/15/2022] Open
Abstract
We propose the hypothesis that loss of estrogen receptor function which leads to endocrine resistance in breast cancer, also results in trans-differentiation from an epithelial to a mesenchymal phenotype that is responsible for increased aggressiveness and metastatic propensity. siRNA mediated silencing of the estrogen receptor in MCF7 breast cancer cells resulted in estrogen/tamoxifen resistant cells (pII) with altered morphology, increased motility with rearrangement and switch from a keratin/actin to a vimentin based cytoskeleton, and ability to invade simulated components of the extracellular matrix. Phenotypic profiling using an Affymetrix Human Genome U133 plus 2.0 GeneChip indicated geometric fold changes ≥ 3 in approximately 2500 identifiable unique sequences, with about 1270 of these being up-regulated in pII cells. Changes were associated with genes whose products are involved in cell motility, loss of cellular adhesion and interaction with the extracellular matrix. Selective analysis of the data also showed a shift from luminal to basal cell markers and increased expression of a wide spectrum of genes normally associated with mesenchymal characteristics, with consequent loss of epithelial specific markers. Over-expression of several peptide growth factors and their receptors are indicative of an increased contribution to the higher proliferative rates of pII cells as well as aiding their potential for metastatic activity. Signalling molecules that have been identified as key transcriptional drivers of epithelial to mesenchymal transition were also found to be elevated in pII cells. These data support our hypothesis that induced loss of estrogen receptor in previously estrogen/antiestrogen sensitive cells is a trigger for the concomitant loss of endocrine dependence and onset of a series of possibly parallel events that changes the cell from an epithelial to a mesenchymal type. Inhibition of this transition through targeting of specific mediators may offer a useful supplementary strategy to circumvent the effects of loss of endocrine sensitivity.
Collapse
Affiliation(s)
- Sanaa Al Saleh
- Faculty of Pharmacy, Kuwait University, Safat, Kuwait
- College of Graduate Studies, Kuwait University, Safat, Kuwait
| | - Fahd Al Mulla
- Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
82
|
The HOXB7 protein renders breast cancer cells resistant to tamoxifen through activation of the EGFR pathway. Proc Natl Acad Sci U S A 2011; 109:2736-41. [PMID: 21690342 DOI: 10.1073/pnas.1018859108] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Multiple factors including long-term treatment with tamoxifen are involved in the development of selective estrogen receptor (ER) modulator resistance in ERα-positive breast cancer. Many underlying molecular events that confer resistance are known but a unifying theme is yet to be revealed. In this report, we provide evidence that HOXB7 overexpression renders MCF-7 cells resistant to tamoxifen via cross-talk between receptor tyrosine kinases and ERα signaling. HOXB7 is an ERα-responsive gene. Extended treatment of MCF-7 cells with tamoxifen resulted in progressively increasing levels of HOXB7 expression, along with EGFR and EGFR ligands. Up-regulation of EGFR occurs through direct binding of HOXB7 to the EGFR promoter, enhancing transcriptional activity. Finally, higher expression levels of HOXB7 in the tumor significantly correlated with poorer disease-free survival in ERα-positive patients with breast cancer on adjuvant tamoxifen monotherapy. These studies suggest that HOXB7 acts as a key regulator, orchestrating a major group of target molecules in the oncogenic hierarchy. Functional antagonism of HOXB7 could circumvent tamoxifen resistance.
Collapse
|
83
|
Zhang Y, Moerkens M, Ramaiahgari S, de Bont H, Price L, Meerman J, van de Water B. Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes. Breast Cancer Res 2011; 13:R52. [PMID: 21595894 PMCID: PMC3218939 DOI: 10.1186/bcr2883] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/03/2011] [Accepted: 05/19/2011] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) is phosphorylated in all breast cancer subtypes. Past findings have shown that IGF-1R mediates antiestrogen resistance through cross-talk with estrogen receptor (ER) signaling and via its action upstream of the epidermal growth factor receptor and human epidermal growth factor receptor 2. Yet, the direct role of IGF-1R signaling itself in antiestrogen resistance remains obscure. In the present study, we sought to elucidate whether antiestrogen resistance is induced directly by IGF-1R signaling in response to its ligand IGF-1 stimulation. METHODS A breast cancer cell line ectopically expressing human wild-type IGF-1R, MCF7/IGF-1R, was established by retroviral transduction and colony selection. Cellular antiestrogen sensitivity was evaluated under estrogen-depleted two-dimensional (2D) and 3D culture conditions. Functional activities of the key IGF-1R signaling components in antiestrogen resistance were assessed by specific kinase inhibitor compounds and small interfering RNA. RESULTS Ectopic expression of IGF-1R in ER-positive MCF7 human breast cancer cells enhanced IGF-1R tyrosine kinase signaling in response to IGF-1 ligand stimulation. The elevated IGF-1R signaling rendered MCF7/IGF-1R cells highly resistant to the antiestrogens tamoxifen and fulvestrant. This antiestrogen-resistant phenotype involved mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase/protein kinase B pathways downstream of the IGF-1R signaling hub and was independent of ER signaling. Intriguingly, a MAPK/ERK-dependent agonistic behavior of tamoxifen at low doses was triggered in the presence of IGF-1, showing a mild promitogenic effect and increasing ER transcriptional activity. CONCLUSIONS Our data provide evidence that the IGF-1/IGF-1R signaling axis may play a causal role in antiestrogen resistance of breast cancer cells, despite continuous suppression of ER transcriptional function by antiestrogens.
Collapse
Affiliation(s)
- Yinghui Zhang
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
84
|
Dulak AM, Gubish CT, Stabile LP, Henry C, Siegfried JM. HGF-independent potentiation of EGFR action by c-Met. Oncogene 2011; 30:3625-35. [PMID: 21423210 PMCID: PMC3126872 DOI: 10.1038/onc.2011.84] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The c-Met receptor is a potential therapeutic target for non-small cell lung cancer (NSCLC). Signaling interactions between c-Met and the mutant Epidermal Growth Factor Receptor (EGFR) have been studied extensively, but signaling intermediates and biological consequences of lateral signaling to c-Met in EGFR wild-type tumors is minimally understood. Our observations indicate that delayed c-Met activation in NSCLC cell lines is initiated by wild-type EGFR, the receptor most often found in NSCLC tumors. EGFR ligands induce accumulation of activated c-Met which begins at 8 h continues for 48 h. This effect is accompanied by an increase in c-Met expression and phosphorylation of critical c-Met tyrosine residues without activation of MAPK or Akt. Gene transcription is required for delayed c-Met activation; however, phosphorylation of c-Met by EGFR occurs without production of HGF or another secreted factor, supporting a ligand-independent mechanism. Lateral signaling is blocked by two selective c-Met tyrosine kinase inhibitors (TKIs), PF2341066 and SU11274, or with gefitinib, an EGFR TKI, suggesting kinase activity of both receptors is required for this effect. Prolonged c-Src phosphorylation is observed, and c-Src pathway is essential for EGFR to c-Met communication. Pre-treatment with pan-SFK inhibitors, PP2 and dasatinib, abolishes delayed c-Met phosphorylation. A c-Src dominant-negative construct reduces EGF-induced c-Met phosphorylation compared to control, further, confirming a c-Src requirement. Inhibition of c-Met with PF2341066 and siRNA decreases EGF-induced phenotypes of invasion by ~86% and motility by ~81%, suggesting that a novel form of c-Met activation is utilized by EGFR to maximize these biological effects. Combined targeting of c-Met and EGFR leads to increased xenograft anti-tumor activity, demonstrating that inhibition of downstream and lateral signaling from the EGFR-c-Src-c-Met axis might be effective in treatment of NSCLC.
Collapse
Affiliation(s)
- A M Dulak
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
85
|
Approaches and limitations of phosphatidylinositol-3-kinase pathway activation status as a predictive biomarker in the clinical development of targeted therapy. Breast Cancer Res Treat 2010; 124:1-11. [PMID: 20803067 DOI: 10.1007/s10549-010-1108-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/29/2010] [Indexed: 02/06/2023]
Abstract
The central role played by the class I(A) phosphatidylinositol-3-kinase (PI3K) signaling node in human cancer is highlighted in the multiple mechanisms by which these signals become dysregulated. Many studies suggest that constitutive PI3K activation in human cancer contributes to drug resistance, including targeted agents and standard cytotoxic therapy. The combination of activation mechanisms and the multiple downstream cascades that emanate from the PI3K node contributes to the difficulty in measuring PI3K activation as a biomarker. Although many agents suppress the pathway in models, the challenge remains to translate this biology into a patient selection strategy (i.e., identify patients with "PI3K activated" tumors) and subsequently link this biomarker definition to drug responses in patients. The various genetic and epigenetic lesions resulting in pathway activation necessitate combined approaches using genetic, genomic, and protein biomarkers to accurately characterize "PI3K activated" tumors. Such a combined approach to pathway status can be assessed using a statistical stratification of patients in a randomized trial into "pathway on" and "pathway off" subsets to compare the treatment effect in each arm. Instead of considering individual biomarkers for their predictive ability, this strategy proposes the use of a collection of biomarkers to identify a specific "pathway on" patient population predicted to have clinical benefit from a pathway inhibitor. Here, we review the current understanding of the mechanisms of PI3K activation in breast cancer and discuss a pathway-based approach using PI3K as a predictive biomarker in clinical development, which is currently in use in a global phase 3 setting.
Collapse
|
86
|
The pro-metastatic protein anterior gradient-2 predicts poor prognosis in tamoxifen-treated breast cancers. Oncogene 2010; 29:4838-47. [PMID: 20531310 DOI: 10.1038/onc.2010.228] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcriptomic screens in breast cancer cell lines have identified a protein named anterior gradient-2 (AGR2) as a potentially novel oncogene overexpressed in estrogen receptor (ER) positive tumours. As targeting the ER is responsible for major improvements in cure rates and prevention of breast cancers, we have evaluated the pro-oncogenic function of AGR2 in anti-hormone therapeutic responses. We show that AGR2 expression promotes cancer cell survival in clonogenic assays and increases cell proliferation and viability in a range of cancer cell lines. Chromatin immunoprecipitation and reporter assays indicate that AGR2 is transcriptionally activated by estrogen through ERalpha. However, we also found that AGR2 expression is elevated rather than inhibited in response to tamoxifen, thus identifying a novel mechanism to account for an agonistic effect of the drug on a specific pro-oncogenic pathway. Consistent with these data, clinical analysis indicates that AGR2 expression is related to treatment failure in ERalpha-positive breast cancers treated with tamoxifen. In contrast, AGR2 is one of the most highly suppressed genes in cancers of responding patients treated with the anti-hormonal drug letrozole. These data indicate that the AGR2 pathway represents a novel pro-oncogenic pathway for evaluation as anti-cancer drug developments, especially therapies that by-pass the agonist effects of tamoxifen.
Collapse
|
87
|
Endocrine Therapy for Metastatic Disease: Reversing Resistance. CURRENT BREAST CANCER REPORTS 2010. [DOI: 10.1007/s12609-010-0002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
88
|
Kalla Singh S, Tan QW, Brito C, De León M, De León D. Insulin-like growth factors I and II receptors in the breast cancer survival disparity among African-American women. Growth Horm IGF Res 2010; 20:245-254. [PMID: 20347606 PMCID: PMC2875325 DOI: 10.1016/j.ghir.2010.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/02/2010] [Accepted: 03/02/2010] [Indexed: 12/14/2022]
Abstract
OBJECTIVE African-American (AA) women with breast cancer are more likely to have advanced disease at diagnosis, higher risk of recurrence and poorer prognosis than Caucasian (CA) women. We have recently shown higher insulin-like growth factor II (IGF-II) expression in paired breast tissue samples from AA women as compared to CA women. IGF-II is a potent mitogen that induces cell proliferation and survival signals through activation of the IGF-I and Insulin receptors (IGF-IR, IR) while IGF-II circulating levels are regulated by cellular uptake through the IGF2 receptor. We hypothesize that differential expression of the IGF1R and IGF2R among AA and CA women potentiates IGF-II mitogenic effects, thus contributing to the health disparity observed between these ethnic groups. DESIGN We examined IGF-IR and IGF2R mRNA, protein expression and IGF1R phosphorylation in paired breast tissue samples from AA and CA women by Real Time-PCR, Western blot analysis, immunohistochemistry and ELISA techniques. RESULTS Our results showed significantly increased expression of IGF1R in AA normal tissues as compared to CA normal tissues. IGF1R expression was similar between AA normal and malignant tissues, while IGF1R, IRS-1 and Shc phosphorylation was significantly higher in AA tumor samples. Significantly higher levels of IGF2R were found in CA tumor samples as compared to AA tumor samples. CONCLUSIONS We conclude that IGF1R and IGF2R differential expression may contribute to the increased risk of malignant transformation in young AA women and to the more aggressive breast cancer phenotype observed among AA breast cancer patients and represent, along with IGF-II, potential therapeutic targets in breast cancer.
Collapse
MESH Headings
- Adult
- Black or African American/genetics
- Aged
- Aged, 80 and over
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Carcinoma, Ductal, Breast/ethnology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Papillary/ethnology
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/mortality
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Health Status Disparities
- Humans
- Middle Aged
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 2/genetics
- White People/genetics
- Young Adult
Collapse
Affiliation(s)
- S Kalla Singh
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
89
|
Gutteridge E, Agrawal A, Nicholson R, Cheung KL, Robertson J, Gee J. The effects of gefitinib in tamoxifen-resistant and hormone-insensitive breast cancer: a phase II study. Int J Cancer 2010; 126:1806-1816. [PMID: 19739079 DOI: 10.1002/ijc.24884] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Estrogen receptor (ER)-positive acquired tamoxifen-resistant (TAM-R) MCF-7 breast cancer cell lines exhibit epidermal growth factor receptor (EGFR) expression/signaling and are growth-inhibited by gefitinib (IRESSA). We examined the effect of gefitinib on ER-positive TAM-R and ER-negative hormone-insensitive breast cancer in a Phase II study. Fifty-four patients with breast cancer [ER-positive/acquired TAM-R (n = 28); ER-negative (n = 26)] received oral gefitinib 500 mg/day. Tumor biopsies were taken pre- (n = 28) and 8 weeks post-treatment (n = 14 matched samples). Gefitinib was well tolerated and the clinical benefit rate (objective response or stable disease >24 weeks) was 33.3% overall (n = 18/54), and 53.6 and 11.5% in ER-positive/TAM-R and ER-negative patients, respectively. Pretreatment ER and progesterone receptor-positivity were associated with response (p < 0.001 and 0.016, respectively) and longer progression-free survival (PFS; p= 0.001 and 0.013, respectively). All patients expressed EGFR, but high pretreatment levels predicted poorer outcome (p = 0.005) and shorter PFS (p = 0.012) with gefitinib. In patients with clinical benefit, reduced Ki67 staining during treatment (p = 0.024) was commonly observed, and those with >10% decline in EGFR phosphorylation demonstrated parallel decreases in ERK1/2 MAPK phosphorylation. Acquired tamoxifen resistance appears in part mediated through EGFR signaling and can be blocked with gefitinib.
Collapse
Affiliation(s)
- Eleanor Gutteridge
- Professorial Unit of Surgery, Nottingham City Hospital, Nottingham, United Kingdom
| | - Amit Agrawal
- Professorial Unit of Surgery, Nottingham City Hospital, Nottingham, United Kingdom
| | - Robert Nicholson
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, Cardiff, United Kingdom
| | - Kwok Leung Cheung
- Professorial Unit of Surgery, Nottingham City Hospital, Nottingham, United Kingdom
| | - John Robertson
- Professorial Unit of Surgery, Nottingham City Hospital, Nottingham, United Kingdom
| | - Julia Gee
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
90
|
Artemin is estrogen regulated and mediates antiestrogen resistance in mammary carcinoma. Oncogene 2010; 29:3228-40. [PMID: 20305694 DOI: 10.1038/onc.2010.71] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have previously identified an oncogenic role of artemin (ARTN), a member of glial cell derived neurotrophic factor family of ligands, in mammary carcinoma. We herein report that ARTN is an estrogen-inducible gene. Meta-analysis of gene expression data sets showed that ARTN expression is positively correlated to estrogen receptor (ER) status in human mammary carcinoma. Furthermore, in patients with ER-positive mammary carcinoma treated with tamoxifen, high ARTN expression is significantly correlated with decreased survival. Forced expression of ARTN in ER-positive human mammary carcinoma cells increased ER transcriptional activity, promoted estrogen-independent growth and produced resistance to tamoxifen and fulvestrant in vitro and to tamoxifen in xenograft models. ARTN-stimulated resistance to tamoxifen and fulvestrant is mediated by increased BCL-2 expression. Conversely, depletion of endogenous ARTN by small-interfering RNA or functional antagonism of ARTN by antibody enhanced the efficacy of antiestrogens. Tamoxifen decreased ARTN expression in tamoxifen-sensitive mammary carcinoma cells whereas ARTN expression was increased in tamoxifen-resistant cells and not affected by tamoxifen treatment. Antibody inhibition of ARTN in tamoxifen-resistant cells improved tamoxifen sensitivity. Functional antagonism of ARTN therefore warrants consideration as an adjuvant therapy to enhance antiestrogen efficacy in ER-positive mammary carcinoma.
Collapse
|
91
|
Abstract
The IGF pathway plays a major role in cancer cell proliferation, survival and resistance to antineoplastic therapies in many human malignancies. As such, interference with this pathway is the target of many investigational pharmacologic agents. Cixutumumab, a monoclonal antibody to IGF-1R, utilizes this concept. In this review, we summarize preclinical, pharmacologic and early clinical data regarding this agent and discuss the impact this drug might have on the future treatment of human cancers.
Collapse
Affiliation(s)
- Kevin P McKian
- Mayo Clinic College of Medicine, Division of Medical Oncology, 200 First St. SW Rochester, MN 55905, USA
| | | |
Collapse
|
92
|
Xi G, Shen X, Clemmons DR. p66shc inhibits insulin-like growth factor-I signaling via direct binding to Src through its polyproline and Src homology 2 domains, resulting in impairment of Src kinase activation. J Biol Chem 2010; 285:6937-51. [PMID: 20048152 DOI: 10.1074/jbc.m109.069872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
p66(shc) is increased in response to cell stress, and these increases regulate growth factor actions. These studies were conducted to determine how p66(shc) alters IGF-I-stimulated Src activation, leading to decreased IGF-I actions. Our results show that p66(shc) binds to Src through a polyproline sequence motif contained in the CH2 domain, a unique domain in p66(shc), and IGF-I stimulates this interaction. Disruption of this interaction using a synthetic peptide containing the p66(shc) polyproline domain or expression of a p66(shc) mutant containing substitutions for the proline residues (P47A/P48A/P50A) resulted in enhanced Src kinase activity, p52(shc) phosphorylation, MAPK activation, and cell proliferation in response to IGF-I. To determine the mechanism of inhibition, the full-length CH2 domain and intact p66(shc) were tested for their ability to directly inhibit Src kinase activation in vitro. The CH2 domain peptide was clearly inhibitory, but full-length p66(shc) had a greater effect. Deletion of the C-terminal Src homology 2 domain in p66(shc) reduced its ability to inhibit Src kinase activation. These findings demonstrate that p66(shc) utilizes a novel mechanism for modulating Src kinase activation and that this interaction is mediated through both its collagen homologous region 2 and Src homology 2 domains.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
93
|
García MA, Peña D, Alvarez L, Cocca C, Pontillo C, Bergoc R, de Pisarev DK, Randi A. Hexachlorobenzene induces cell proliferation and IGF-I signaling pathway in an estrogen receptor alpha-dependent manner in MCF-7 breast cancer cell line. Toxicol Lett 2009; 192:195-205. [PMID: 19879930 DOI: 10.1016/j.toxlet.2009.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 11/18/2022]
Abstract
Hexachlorobenzene (HCB) is an organochlorine pesticide widely distributed in the biosphere. ERalpha regulates the expression of genes involved in growth and development, and plays an important role in breast cancer. The present study focuses attention on the effect of HCB (0.005, 0.05, 0.5, 5 microM) on cell proliferation in estrogen receptor alpha (ERalpha)(+) MCF-7, and ERalpha(-) MDA-MB-231 breast cancer cell lines. We also studied the insulin growth factor-I (IGF-I) signaling pathway in MCF-7 cells. HCB (0.005 and 0.05 microM) stimulated cell proliferation in MCF-7, but not in MDA-MB-231 cells. The pesticide increased apoptosis in MCF-7, at HCB (0.5 and 5 microM). At these doses, HCB induced the expression of the aryl hydrocarbon receptor (AhR)-regulated gene cytochrome P4501A1. MCF-7 cells exposed to HCB (0.005 and 0.05 microM) overexpressed IGF-IR and insulin receptor (IR). IRS-1-phosphotyrosine content was increased in a dose dependent manner. ICI 182,780 prevented HCB-induced cell proliferation and IGF-I signaling in MCF-7 cells incubated in phenol-red free media. In addition, HCB (0.005 microM) increased c-Src activation, Tyr537-ERalpha phosphorylation and ERalpha down-regulation. Taken together, our data indicate that HCB stimulation of cell proliferation and IGF-I signaling is ERalpha dependent in MCF-7 cells.
Collapse
Affiliation(s)
- María Alejandra García
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 2009; 30:586-623. [PMID: 19752219 DOI: 10.1210/er.2008-0047] [Citation(s) in RCA: 741] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammals, the insulin receptor (IR) gene has acquired an additional exon, exon 11. This exon may be skipped in a developmental and tissue-specific manner. The IR, therefore, occurs in two isoforms (exon 11 minus IR-A and exon 11 plus IR-B). The most relevant functional difference between these two isoforms is the high affinity of IR-A for IGF-II. IR-A is predominantly expressed during prenatal life. It enhances the effects of IGF-II during embryogenesis and fetal development. It is also significantly expressed in adult tissues, especially in the brain. Conversely, IR-B is predominantly expressed in adult, well-differentiated tissues, including the liver, where it enhances the metabolic effects of insulin. Dysregulation of IR splicing in insulin target tissues may occur in patients with insulin resistance; however, its role in type 2 diabetes is unclear. IR-A is often aberrantly expressed in cancer cells, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients. Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms. Finally, IR isoforms form heterodimers, IR-A/IR-B, and hybrid IR/IGF-IR receptors (HR-A and HR-B). The functional characteristics of such hybrid receptors and their role in physiology, in diabetes, and in malignant cells are not yet fully understood. These receptors seem to enhance cell responsiveness to IGFs.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Ospedale Garibaldi-Nesima, 95122 Catania, Italy.
| | | | | | | | | |
Collapse
|
95
|
Haluska P, Worden F, Olmos D, Yin D, Schteingart D, Batzel GN, Paccagnella ML, de Bono JS, Gualberto A, Hammer GD. Safety, tolerability, and pharmacokinetics of the anti-IGF-1R monoclonal antibody figitumumab in patients with refractory adrenocortical carcinoma. Cancer Chemother Pharmacol 2009; 65:765-73. [PMID: 19649631 DOI: 10.1007/s00280-009-1083-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/12/2009] [Indexed: 01/19/2023]
Abstract
PURPOSE Insulin-like growth factor 1 receptor signaling through upregulation of the stimulatory ligand IGF-II has been implicated in the pathogenesis of adrenocortical carcinoma. As there is a paucity of effective therapies, this dose expansion cohort of a phase 1 study was undertaken to determine the safety, tolerability, pharmacokinetics, and effects on endocrine markers of figitumumab in patients with adrenocortical carcinoma. METHODS Figitumumab was administered on day 1 of each 21-day cycle at the maximal feasible dose (20 mg/kg) to a cohort of patients with metastatic, refractory adrenocortical carcinoma. Serum glucose, insulin, and growth hormone were measured pre-study, at cycle 4 and study end. Pharmacokinetic evaluation was performed during cycles 1 and 4. RESULTS Fourteen patients with adrenocortical carcinoma received 50 cycles of figitumumab at the 20 mg/kg. Treatment-related toxicities were generally mild and included hyperglycemia, nausea, fatigue, and anorexia. Single episodes of grade 4 hyperuricemia, proteinuria, and elevated gamma-glutamyltransferase were observed. Pharmacokinetics of figitumumab was comparable to patients with solid tumors other than adrenocortical carcinoma. Treatment with figitumumab increased serum insulin and growth hormone levels. Eight of 14 patients (57%) had stable disease. CONCLUSIONS The side effect profile and pharmacokinetics of figitumumab were similar in patients with adrenocortical carcinoma in comparison to patients with other solid tumors. While hyperglycemia was the most common adverse event, no clear patterns predicting severity were observed. The majority of patients receiving protocol therapy with single agent figitumumab experienced stability of disease, warranting further evaluation.
Collapse
Affiliation(s)
- Paul Haluska
- Division of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Stadler ME, Patel MR, Couch ME, Hayes DN. Molecular biology of head and neck cancer: risks and pathways. Hematol Oncol Clin North Am 2009; 22:1099-124, vii. [PMID: 19010262 DOI: 10.1016/j.hoc.2008.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients present with a differential baseline risk of cancer based on normal and expected variations in genes associated with cancer. The baseline risk of developing cancer is acted on throughout life as the genome of different cells interacts with the environment in the form of exposures (eg, toxins, infections). As genetic damage is incurred throughout a lifetime (directly to DNA sequences or to the epigenome), events are set in motion to progressively disrupt normal cellular pathways toward tumorigenesis. This article attempts to characterize broad categories of genetic aberrations and pathways in a manner that might be useful for the clinician to understand the risk of developing cancer, the pathways that are disrupted, and the potential for molecular-based diagnostics.
Collapse
Affiliation(s)
- Michael E Stadler
- Department of Otolaryngology-Head & Neck Surgery, University of North Carolina at Chapel Hill, CB #7070, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
97
|
Abstract
Zinc, essential for normal cell growth, is tightly controlled in cells by two families of zinc transporters. The aberrant expression of zinc transporters from the LIV-1 family of ZIP (Zrt/Irt-like protein) transporters is increasingly being implicated in a variety of disease states. In the present paper, I describe a mechanism for the role of ZIP7 in the progression of breast cancer, identifying it as a new target in breast cancer. Furthermore, I document a link between another zinc transporter, LIV-1, and breast cancer metastasis, identifying it as a potential new prognostic indicator of breast cancer spread.
Collapse
|
98
|
Law JH, Habibi G, Hu K, Masoudi H, Wang MYC, Stratford AL, Park E, Gee JMW, Finlay P, Jones HE, Nicholson RI, Carboni J, Gottardis M, Pollak M, Dunn SE. Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res 2009; 68:10238-46. [PMID: 19074892 DOI: 10.1158/0008-5472.can-08-2755] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drugs that target the insulin-like growth factor-I receptor (IGF-IR) and/or insulin receptor (IR) are currently under investigation for a variety of malignancies including breast cancer. Although we have previously reported that IGF-IR expression in primary breast tumors is common, the activation status of this receptor has not been examined in relation to survival. Phosphorylated IGF-IR/IR (P-IGF-IR/IR) and its downstream signaling partner phospho-S6 (P-S6) were evaluated immunohistochemically in tumor tissue microarrays representing 438 cases of invasive breast cancer. P-IGF-IR/IR (n = 114; P = 0.046) and total levels of IR (n = 122; P = 0.009) were indicative of poor survival, whereas total IGF-IR (n = 112; P = 0.304) was not. P-IGF-IR/IR and P-S6 were coordinately expressed in primary breast tumors (likelihood ratio, 11.57; P = 6.70 x 10(-4)). Importantly, P-IGF-IR/IR was detected in all breast cancer subtypes (luminal, 48.1%; triple negative, 41.9%; and HER2, 64.3%). In vitro, the IGF-IR/IR inhibitor BMS-536924 decreased phospho-RSK and P-S6, and significantly suppressed the growth of breast cancer cell lines MCF-7, SUM149, and AU565 representing the luminal, triple negative, and HER2 subtypes, respectively, in monolayer and soft agar. BMS-536924 also inhibited growth in tamoxifen resistant MCF-7 Tam-R cells while having little effect on immortalized normal breast epithelial cells. Thus, we can determine which patients have the activated receptor and provide evidence that P-IGF-IR/IR is a prognostic factor for breast cancer. Beyond this, P-IGF-IR/IR could be a predictive marker for response to IGF-IR and/or IR-targeted therapies, as these inhibitors may be of benefit in all breast cancer subtypes including those with acquired resistance to tamoxifen.
Collapse
Affiliation(s)
- Jennifer H Law
- Department of Pediatrics, Laboratory for Oncogenomic Research, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Gee JMW, Eloranta JJ, Ibbitt JC, Robertson JFR, Ellis IO, Williams T, Nicholson RI, Hurst HC. Overexpression ofTFAP2Cin invasive breast cancer correlates with a poorer response to anti-hormone therapy and reduced patient survival. J Pathol 2009; 217:32-41. [DOI: 10.1002/path.2430] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
100
|
Fagan DH, Yee D. Crosstalk between IGF1R and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13:423-9. [PMID: 19003523 DOI: 10.1007/s10911-008-9098-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 10/30/2008] [Indexed: 12/25/2022] Open
Abstract
After the discovery that depriving certain breast tumors of estrogen promoted tumor regression, therapeutic strategies aimed at depriving tumors of this hormone were developed. The tumorigenic properties of estrogen are regulated through the estrogen receptor-alpha (ER), making understanding the mechanisms that activate this receptor highly relevant. In addition to estrogen activating the ER, other growth factor pathways, such as the insulin-like growth factors (IGFs), can activate the ER. This review will examine the interaction between these two pathways. Estrogen can activate the growth stimulatory properties of the IGF pathway via ER's genomic and non-genomic functions. Further, blockade of ER function can inhibit IGF-mediated mitogenesis and blocking IGF action can inhibit estrogen stimulation of breast cancer cells. Collectively, these observations suggest that the two growth regulatory pathways are tightly linked and a more thorough understanding of the mechanism of this crosstalk could lead to improved therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Dedra H Fagan
- Department of Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|