51
|
Dutta D, Kalra S, Sharma M. Adenosine monophosphate-activated protein kinase-based classification of diabetes pharmacotherapy. J Postgrad Med 2019; 63:114-121. [PMID: 27652986 PMCID: PMC5414421 DOI: 10.4103/0022-3859.191007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The current classification of both diabetes and antidiabetes medication is complex, preventing a treating physician from choosing the most appropriate treatment for an individual patient, sometimes resulting in patient-drug mismatch. We propose a novel, simple systematic classification of drugs, based on their effect on adenosine monophosphate-activated protein kinase (AMPK). AMPK is the master regular of energy metabolism, an energy sensor, activated when cellular energy levels are low, resulting in activation of catabolic process, and inactivation of anabolic process, having a beneficial effect on glycemia in diabetes. This listing of drugs makes it easier for students and practitioners to analyze drug profiles and match them with patient requirements. It also facilitates choice of rational combinations, with complementary modes of action. Drugs are classified as stimulators, inhibitors, mixed action, possible action, and no action on AMPK activity. Metformin and glitazones are pure stimulators of AMPK. Incretin-based therapies have a mixed action on AMPK. Sulfonylureas either inhibit AMPK or have no effect on AMPK. Glycemic efficacy of alpha-glucosidase inhibitors, sodium glucose co-transporter-2 inhibitor, colesevelam, and bromocriptine may also involve AMPK activation, which warrants further evaluation. Berberine, salicylates, and resveratrol are newer promising agents in the management of diabetes, having well-documented evidence of AMPK stimulation medicated glycemic efficacy. Hence, AMPK-based classification of antidiabetes medications provides a holistic unifying understanding of pharmacotherapy in diabetes. This classification is flexible with a scope for inclusion of promising agents of future.
Collapse
Affiliation(s)
- D Dutta
- Department of Endocrinology, Post-graduate Institute of Medical Education and Research and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - S Kalra
- Department of Endocrinology, Bharti Hospital and BRIDE, Karnal, Haryana, India
| | - M Sharma
- Department of Rheumatology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
52
|
Barros LSDA, Nunes CDC. A influência do exercício físico na captação de glicose independente de insulina. HU REVISTA 2019. [DOI: 10.34019/1982-8047.2019.v45.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
O diabetes melito é uma desordem metabólica de múltipla etiologia, que se caracteriza por hiperglicemia crônica decorrente de defeitos na secreção e/ou ação da insulina e captação reduzida de glicose nos tecidos periféricos, resultando em resistência à insulina. A partir disso, este artigo aborda aspectos fisiopatológicos do diabetes melito tipo 2 (DM2), tendo como objetivo elucidar as vias de sinalização da insulina no tecido muscular esquelético e como a captação de glicose pode ser prejudicada em um indivíduo resistente à insulina, apontando a prática de exercício físico como recurso não farmacológico e/ou terapia adjacente para a melhora da sensibilidade à insulina e captação de glicose no tecido muscular esquelético. Para tal, foi realizada uma pesquisa de revisão da literatura de materiais já publicados sobre o tema e uma análise qualitativa. A sinalização da proteína quinase ativada por adenosina monofosfato (AMPK), mediada pelo exercício físico pode otimizar a captação de glicose no músculo independente de insulina. Assim, o exercício físico serve como recurso não farmacológico e/ou terapia adjacente para restaurar a sensibilidade da via de sinalização receptor de insulina/substrato do receptor de insulina/fosfatidilinositol-3-quinase/Akt e aumento da atividade da proteína quinase ativada de AMP, para translocação e exocitose de transportadores de glicose tipo 4 (GLUT-4) independente de insulina.
Collapse
|
53
|
Grice BA, Barton KJ, Covert JD, Kreilach AM, Tackett L, Brozinick JT, Elmendorf JS. Excess membrane cholesterol is an early contributing reversible aspect of skeletal muscle insulin resistance in C57BL/6NJ mice fed a Western-style high-fat diet. Am J Physiol Endocrinol Metab 2019; 317:E362-E373. [PMID: 31237447 PMCID: PMC6732462 DOI: 10.1152/ajpendo.00396.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Skeletal muscle insulin resistance manifests shortly after high-fat feeding, yet mechanisms are not known. Here we set out to determine whether excess skeletal muscle membrane cholesterol and cytoskeletal derangement known to compromise glucose transporter (GLUT)4 regulation occurs early after high-fat feeding. We fed 6-wk-old male C57BL/6NJ mice either a low-fat (LF, 10% kcal) or a high-fat (HF, 45% kcal) diet for 1 wk. This HF feeding challenge was associated with an increase, albeit slight, in body mass, glucose intolerance, and hyperinsulinemia. Liver analyses did not reveal signs of hepatic insulin resistance; however, skeletal muscle immunoblots of triad-enriched regions containing transverse tubule membrane showed a marked loss of stimulated GLUT4 recruitment. An increase in cholesterol was also found in these fractions from HF-fed mice. These derangements were associated with a marked loss of cortical filamentous actin (F-actin) that is essential for GLUT4 regulation and known to be compromised by increases in membrane cholesterol. Both the withdrawal of the HF diet and two subcutaneous injections of the cholesterol-lowering agent methyl-β-cyclodextrin at 3 and 6 days during the 1-wk HF feeding intervention completely mitigated cholesterol accumulation, cortical F-actin loss, and GLUT4 dysregulation. Moreover, these beneficial membrane/cytoskeletal changes occurred concomitant with a full restoration of metabolic responses. These results identify skeletal muscle membrane cholesterol accumulation as an early, reversible, feature of insulin resistance and suggest cortical F-actin loss as an early derangement of skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- Brian A Grice
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kelly J Barton
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jacob D Covert
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alec M Kreilach
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lixuan Tackett
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph T Brozinick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Eli Lilly and Company, Indianapolis, Indiana
| | - Jeffrey S Elmendorf
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
54
|
Cholesterol and the Safety Factor for Neuromuscular Transmission. Int J Mol Sci 2019; 20:ijms20051046. [PMID: 30823359 PMCID: PMC6429197 DOI: 10.3390/ijms20051046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
A present review is devoted to the analysis of literature data and results of own research. Skeletal muscle neuromuscular junction is specialized to trigger the striated muscle fiber contraction in response to motor neuron activity. The safety factor at the neuromuscular junction strongly depends on a variety of pre- and postsynaptic factors. The review focuses on the crucial role of membrane cholesterol to maintain a high efficiency of neuromuscular transmission. Cholesterol metabolism in the neuromuscular junction, its role in the synaptic vesicle cycle and neurotransmitter release, endplate electrogenesis, as well as contribution of cholesterol to the synaptogenesis, synaptic integrity, and motor disorders are discussed.
Collapse
|
55
|
Omer K, Gelkopf MJ, Newton G. Effectiveness of royal jelly supplementation in glycemic regulation: A systematic review. World J Diabetes 2019; 10:96-113. [PMID: 30788047 PMCID: PMC6379731 DOI: 10.4239/wjd.v10.i2.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Royal jelly (RJ) has been observed to have therapeutic properties in diabetic individuals, including the reduction of high blood sugar. This systematic review synthesized existing evidence to investigate the effectiveness of RJ supplementation in managing measures of blood glucose.
AIM To determine the effectiveness of RJ supplementation on glycemic responses in healthy and non-insulin dependent diabetic adults, as well as animal models of diabetes.
METHODS This was a systematic review employing the PRISMA strategy. Peer-reviewed, published articles were extracted from several databases using key words related to target population, intervention and outcome and hand-selected for inclusion. Included articles proceeded to data extraction phase, where information on target parameters and effectiveness of treatment was summarized. Following this, the risk of bias for each included study was evaluated. Then, the long-term and immediate effectiveness of RJ supplementation in glycemic control were assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) tool, which rates the quality of evidence.
RESULTS Of 168 articles extracted from database searching, eighteen were included for analysis in this systematic review. Across the studies, studied populations, intervention styles and outcome measures were largely heterogeneous. Despite this, the results in studies indicate a general trend of positive effect of RJ in glycemic regulation in vitro and in vivo. Additionally, some dose-dependent glycemic effects were observed, along with some large effect sizes. The risk of bias for human and animal studies is generally low-unclear risk, although lack of blinding is a serious concern in both categories. Overall, as per the GRADE tool, the quality of evidence is low, and very low for long-term and immediate effectiveness of RJ, respectively. A major limitation affecting evidence quality is the heterogeneity among included studies. Fasting blood glucose and glucose clearance appear to be most affected by RJ supplementation.
CONCLUSION Quality of evidence suggesting that RJ is an effective modulator of glycemic regulation is low for long-term effects of RJ, and very low for immediate effects.
Collapse
Affiliation(s)
- Kamel Omer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Maxwell J Gelkopf
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Genevieve Newton
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
56
|
Vilchinskaya NA, Krivoi II, Shenkman BS. AMP-Activated Protein Kinase as a Key Trigger for the Disuse-Induced Skeletal Muscle Remodeling. Int J Mol Sci 2018; 19:ijms19113558. [PMID: 30424476 PMCID: PMC6274864 DOI: 10.3390/ijms19113558] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/25/2022] Open
Abstract
Molecular mechanisms that trigger disuse-induced postural muscle atrophy as well as myosin phenotype transformations are poorly studied. This review will summarize the impact of 5′ adenosine monophosphate -activated protein kinase (AMPK) activity on mammalian target of rapamycin complex 1 (mTORC1)-signaling, nuclear-cytoplasmic traffic of class IIa histone deacetylases (HDAC), and myosin heavy chain gene expression in mammalian postural muscles (mainly, soleus muscle) under disuse conditions, i.e., withdrawal of weight-bearing from ankle extensors. Based on the current literature and the authors’ own experimental data, the present review points out that AMPK plays a key role in the regulation of signaling pathways that determine metabolic, structural, and functional alternations in skeletal muscle fibers under disuse.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia.
| |
Collapse
|
57
|
In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflugers Arch 2018; 471:413-429. [PMID: 30291430 DOI: 10.1007/s00424-018-2210-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Exercise provides a cornerstone in the prevention and treatment of several chronic diseases. The use of in vivo exercise models alone cannot fully establish the skeletal muscle-specific mechanisms involved in such health-promoting effects. As such, models that replicate exercise-like effects in vitro provide useful tools to allow investigations that are not otherwise possible in vivo. In this review, we provide an overview of experimental models currently used to induce exercise-like effects in skeletal muscle in vitro. In particular, the appropriateness of electrical pulse stimulation and several pharmacological compounds to resemble exercise, as well as important technical considerations, are addressed. Each model covered herein provides a useful tool to investigate different aspects of exercise with a level of abstraction not possible in vivo. That said, none of these models are perfect under all circumstances, and the choice of model (and terminology) used should be informed by the specific research question whilst accounting for the several inherent limitations of each model. Further work is required to develop and optimise the current experimental models used, such as combination with complementary techniques during treatment, and thereby improve their overall utility and impact within muscle biology research.
Collapse
|
58
|
Sánchez-Aguilera P, Diaz-Vegas A, Campos C, Quinteros-Waltemath O, Cerda-Kohler H, Barrientos G, Contreras-Ferrat A, Llanos P. Role of ABCA1 on membrane cholesterol content, insulin-dependent Akt phosphorylation and glucose uptake in adult skeletal muscle fibers from mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1469-1477. [PMID: 30254016 DOI: 10.1016/j.bbalip.2018.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
The ATP-binding cassette transporter A1 (ABCA1) promotes cellular cholesterol efflux, leading to cholesterol binding to the extracellular lipid-free apolipoprotein A-I. ABCA1 regulates lipid content, glucose tolerance and insulin sensitivity in adipose tissue. In skeletal muscle, most GLUT4-mediated glucose transport occurs in the transverse tubule, a system composed by specialized cholesterol-enriched invaginations of the plasma membrane. We have reported that insulin resistant mice have higher cholesterol levels in transverse tubule from adult skeletal muscle. These high levels correlate with decreased GLUT4 trafficking and glucose uptake; however, the role of ABCA1 on skeletal muscle insulin-dependent glucose metabolism remains largely unexplored. Here, we evaluated the functional role of the ABCA1 on insulin-dependent signaling pathways, glucose uptake and cellular cholesterol content in adult skeletal muscle. Male mice were fed for 8 weeks with normal chow diet (NCD) or high fat diet (HFD). Compared to NCD-fed mice, ABCA1 mRNA levels and protein content were lower in muscle homogenates from HFD-fed mice. In Flexor digitorum brevis muscle from NCD-fed mice, shABCA1-RFP in vivo electroporation resulted in 65% reduction of ABCA1 protein content, 1.6-fold increased fiber cholesterol levels, 74% reduction in insulin-dependent Akt (Ser473) phosphorylation, total suppression of insulin-dependent GLUT4 translocation and decreased 2-NBDG uptake compared to fibers electroporated with the scrambled plasmid. Pre-incubation with methyl-β cyclodextrin reestablished both GLUT4 translocation and 2-NBDG transport. Based on the present results, we suggest that decreased ABCA1 contributes to the anomalous cholesterol accumulation and decreased glucose transport displayed by skeletal muscle membranes in the insulin resistant condition.
Collapse
Affiliation(s)
- Pablo Sánchez-Aguilera
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Chile
| | - Alexis Diaz-Vegas
- Departamento Ciencias Biológicas, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | | | - Hugo Cerda-Kohler
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Chile
| | | | - Ariel Contreras-Ferrat
- ACCDiS, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Chile; CEMC, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
59
|
Chibalin AV, Benziane B, Zakyrjanova GF, Kravtsova VV, Krivoi II. Early endplate remodeling and skeletal muscle signaling events following rat hindlimb suspension. J Cell Physiol 2018; 233:6329-6336. [PMID: 29719042 DOI: 10.1002/jcp.26594] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/12/2018] [Indexed: 12/30/2022]
Abstract
Motor endplates naturally undergo continual morphological changes that are altered in response to changes in neuromuscular activity. This study examines the consequences of acute (6-12 hr) disuse following hindlimb suspension on rat soleus muscle endplate structural stability. We identify early changes in several key signaling events including markers of protein kinase activation, AMPK phosphorylation and autophagy markers which may play a role in endplate remodeling. Acute disuse does not change endplate fragmentation, however, it decreases both the individual fragments and the total endplate area. This decrease was accompanied by an increase in the mean fluorescence intensity from the nicotinic acetylcholine receptors which compensate the endplate area loss. Muscle disuse decreased phosphorylation of AMPK and its substrate ACC, and stimulated mTOR controlled protein synthesis pathway and stimulated autophagy. Our findings provide evidence that changes in endplate stability are accompanied by reduced AMPK phosphorylation and an increase in autophagy markers, and these changes are evident within hours of onset of skeletal muscle disuse.
Collapse
Affiliation(s)
- Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Boubacar Benziane
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Guzalija F Zakyrjanova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia.,Department of Normal Physiology, Kazan State Medical University, Kazan, Russia
| | - Violetta V Kravtsova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
60
|
Ambery AG, Tackett L, Penque BA, Brozinick JT, Elmendorf JS. Exercise training prevents skeletal muscle plasma membrane cholesterol accumulation, cortical actin filament loss, and insulin resistance in C57BL/6J mice fed a western-style high-fat diet. Physiol Rep 2018; 5:5/16/e13363. [PMID: 28811359 PMCID: PMC5582260 DOI: 10.14814/phy2.13363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
Insulin action and glucose disposal are enhanced by exercise, yet the mechanisms involved remain imperfectly understood. While the causes of skeletal muscle insulin resistance also remain poorly understood, new evidence suggest excess plasma membrane (PM) cholesterol may contribute by damaging the cortical filamentous actin (F-actin) structure essential for GLUT4 glucose transporter redistribution to the PM upon insulin stimulation. Here, we investigated whether PM cholesterol toxicity was mitigated by exercise. Male C57BL/6J mice were placed on low-fat (LF, 10% kCal) or high-fat (HF, 45% kCal) diets for a total of 8 weeks. During the last 3 weeks of this LF/HF diet intervention, all mice were familiarized with a treadmill for 1 week and then either sham-exercised (0 m/min, 10% grade, 50 min) or exercised (13.5 m/min, 10% grade, 50 min) daily for 2 weeks. HF-feeding induced a significant gain in body mass by 3 weeks. Sham or chronic exercise did not affect food consumption, water intake, or body mass gain. Prior to sham and chronic exercise, "pre-intervention" glucose tolerance tests were performed on all animals and demonstrated that HF-fed mice were glucose intolerant. While sham exercise did not affect glucose tolerance in the LF or HF mice, exercised mice showed an improvement in glucose tolerance. Muscle from sham-exercised HF-fed mice showed a significant increase in PM cholesterol, loss of cortical F-actin, and decrease in insulin-stimulated glucose transport compared to sham-exercised LF-fed mice. These HF-fed skeletal muscle membrane/cytoskeletal abnormalities and insulin resistance were improved in exercised mice. These data reveal a new therapeutic aspect of exercise being regulation of skeletal muscle PM cholesterol homeostasis. Further studies on this mechanism of insulin resistance and the benefits of exercise on its prevention are needed.
Collapse
Affiliation(s)
- Ashley G Ambery
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Diabetes Metabolic Disease Indiana University School of Medicine, Indianapolis, Indiana
| | - Lixuan Tackett
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Diabetes Metabolic Disease Indiana University School of Medicine, Indianapolis, Indiana
| | - Brent A Penque
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Diabetes Metabolic Disease Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph T Brozinick
- Department Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Eli Lilly and Company, Indianapolis, Indiana
| | - Jeffrey S Elmendorf
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana .,Center for Diabetes Metabolic Disease Indiana University School of Medicine, Indianapolis, Indiana.,Department Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
61
|
The Effect of Methyl-β-cyclodextrin on Apoptosis, Proliferative Activity, and Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells of Horses Suffering from Metabolic Syndrome (EMS). Molecules 2018; 23:molecules23020287. [PMID: 29385746 PMCID: PMC6017619 DOI: 10.3390/molecules23020287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 11/29/2022] Open
Abstract
Methyl-β-cyclodextrin (MβCD) is a cyclic oligosaccharide, commonly used as a pharmacological agent to deplete membrane cholesterol. In this study, we examined the effect of MβCD on adipose-derived mesenchymal stromal cells (ASCs) isolated form healthy horses (ASCCTRL) and from horses suffering from metabolic syndrome (ASCEMS). We investigated the changes in the mRNA levels of the glucose transporter 4 (GLUT4) and found that MβCD application may lead to a significant improvement in glucose transport in ASCEMS. We also showed that MβCD treatment affected GLUT4 upregulation in an insulin-independent manner via an NO-dependent signaling pathway. Furthermore, the analysis of superoxide dismutase activity (SOD) and reactive oxygen species (ROS) levels showed that MβCD treatment was associated with an increased antioxidant capacity in ASCEMS. Moreover, we indicated that methyl-β-cyclodextrin treatment did not cause a dysfunction of the endoplasmic reticulum and lysosomes. Thereby, we propose the possibility of improving the functionality of ASCEMS by increasing their metabolic stability.
Collapse
|
62
|
Ke R, Xu Q, Li C, Luo L, Huang D. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int 2018; 42:384-392. [PMID: 29205673 DOI: 10.1002/cbin.10915] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) is a conserved sensor of cellular energy change and is activated by increased AMP/ATP and/or ADP/ATP ratios. AMPK maintains the energy balance by decreasing the ATP-consuming processes such as transcription of synthetic fat genes and rRNA, the translation of ribosomal proteins, synthesis of cholesterol and fatty acid, while the metabolic pathways such as glucose and fatty transport, fatty acid oxidation, autophagy, mitochondrial synthesis and oxidative metabolism are increased to preserve ATP during energy deficiency. Recent advance has demonstrated that AMPK activity has a close association with the initiation and progression in various cancers. Here we review the mechanisms that AMPK controls energy metabolism through regulating ATP synthesis and consumption, and further discuss the deregulation of AMPK in cancers.
Collapse
Affiliation(s)
- Rong Ke
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng St., Nanchang, Jiangxi, 330006, China
| | - Qicao Xu
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng St., Nanchang, Jiangxi, 330006, China
| | - Cong Li
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng St., Nanchang, Jiangxi, 330006, China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng St., Nanchang, Jiangxi, 330006, China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng St., Nanchang, Jiangxi, 330006, China
| |
Collapse
|
63
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
64
|
Mast N, Lin JB, Anderson KW, Bjorkhem I, Pikuleva IA. Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1). PLoS One 2017; 12:e0187168. [PMID: 29073233 PMCID: PMC5658173 DOI: 10.1371/journal.pone.0187168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) converts cholesterol to 24-hydroxycholesterol and thereby controls the major pathways of cholesterol removal from the brain. Cyp46a1-/- mice have a reduction in the rate of cholesterol biosynthesis in the brain and significant impairments to memory and learning. To gain insights into the mechanisms underlying Cyp46a1-/- phenotype, we used Cyp46a1-/- mice and quantified their brain sterol levels and the expression of the genes pertinent to cholesterol homeostasis. We also compared the Cyp46a1-/- and wild type brains for protein phosphorylation and ubiquitination. The data obtained enable the following inferences. First, there seems to be a compensatory upregulation in the Cyp46a1-/- brain of the pathways of cholesterol storage and CYP46A1-independent removal. Second, transcriptional regulation of the brain cholesterol biosynthesis via sterol regulatory element binding transcription factors is not significantly activated in the Cyp46a1-/- brain to explain a compensatory decrease in cholesterol biosynthesis. Third, some of the liver X receptor target genes (Abca1) are paradoxically upregulated in the Cyp46a1-/- brain, possibly due to a reduced activation of the small GTPases RAB8, CDC42, and RAC as a result of a reduced phosphorylation of RAB3IP and PAK1. Fourth, the phosphorylation of many other proteins (a total of 146) is altered in the Cyp46a1-/- brain, including microtubule associated and neurofilament proteins (the MAP and NEF families) along with proteins related to synaptic vesicles and synaptic neurotransmission (e.g., SLCs, SHANKs, and BSN). Fifth, the extent of protein ubiquitination is increased in the Cyp46a1-/- brain, and the affected proteins pertain to ubiquitination (UBE2N), cognition (STX1B and ATP1A2), cytoskeleton function (TUBA1A and YWHAZ), and energy production (ATP1A2 and ALDOA). The present study demonstrates the diverse potential effects of CYP46A1 deficiency on brain functions and identifies important proteins that could be affected by this deficiency.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Joseph B. Lin
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kyle W. Anderson
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
| | - Ingemar Bjorkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Huddinge, Sweden
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
65
|
Yasuda M, Kawabata J, Akieda-Asai S, Nasu T, Date Y. Guanylyl cyclase C and guanylin reduce fat droplet accumulation in cattle mesenteric adipose tissue. J Vet Sci 2017; 18:341-348. [PMID: 27586464 PMCID: PMC5639087 DOI: 10.4142/jvs.2017.18.3.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/28/2016] [Accepted: 08/26/2016] [Indexed: 11/20/2022] Open
Abstract
Guanylyl cyclase C (GC-C) is a member of a family of enzymes that metabolize GTP to cGMP and was first identified as a receptor for heat-stable enterotoxin. Guanylin (GNY) has since been identified as an endogenous ligand for GC-C in the intestine of several mammalian species. The GNY/GC-C system regulates ion transportation and pH in the mucosa. Recently, it was reported that GC-C and GNY are involved in lipid metabolism in rat mesenteric adipose tissue macrophages. To examine the role of GC-C and GNY in lipid metabolism in cattle, we used a bovine mesenteric adipocyte primary culture system and a coculture system for bovine adipocytes and GNY-/GC-C-expressing macrophages. Fat droplets were observed to accumulate in bovine mesenteric adipocytes cultured alone, whereas few fat droplets accumulated in adipocytes indirectly cocultured with macrophages. We also observed that GC-C was present in bovine mesenteric adipose tissue, and that fat droplet accumulation decreased after in vitro GNY administration. Expressions of mRNAs encoding lipogenic factors decreased significantly in adipocytes after either coculture or GNY administration. These results suggest that the GNY/GC-C system is part of the control system for lipid accumulation in bovine mesenteric adipose tissue.
Collapse
Affiliation(s)
- Masahiro Yasuda
- Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Jyunya Kawabata
- Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Sayaka Akieda-Asai
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Tetsuo Nasu
- Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yukari Date
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
66
|
Dai S, Dulcey AE, Hu X, Wassif CA, Porter FD, Austin CP, Ory DS, Marugan J, Zheng W. Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK. Autophagy 2017; 13:1435-1451. [PMID: 28613987 PMCID: PMC5584846 DOI: 10.1080/15548627.2017.1329081] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The drug 2-hydroxypropyl-β-cyclodextrin (HPβCD) reduces lysosomal cholesterol accumulation in Niemann-Pick disease, type C (NPC) and has been advanced to human clinical trials. However, its mechanism of action for reducing cholesterol accumulation in NPC cells is uncertain and its molecular target is unknown. We found that methyl-β-cyclodextrin (MβCD), a potent analog of HPβCD, restored impaired macroautophagy/autophagy flux in Niemann-Pick disease, type C1 (NPC1) cells. This effect was mediated by a direct activation of AMP-activated protein kinase (AMPK), an upstream kinase in the autophagy pathway, through MβCD binding to its β-subunits. Knockdown of PRKAB1 or PRKAB2 (encoding the AMPK β1 or β2 subunit) expression and an AMPK inhibitor abolished MβCD-mediated reduction of cholesterol storage in NPC1 cells. The results demonstrate that AMPK is the molecular target of MβCD and its activation enhances autophagy flux, thereby mitigating cholesterol accumulation in NPC1 cells. The results identify AMPK as an attractive target for drug development to treat NPC.
Collapse
Affiliation(s)
- Sheng Dai
- a National Center for Advancing Translational Sciences (NCATS), NIH , Bethesda , MD , USA.,b Sir Run Run Shaw Hospital , Zhejiang University School of Medicine , Hangzhou , China
| | - Andrés E Dulcey
- a National Center for Advancing Translational Sciences (NCATS), NIH , Bethesda , MD , USA
| | - Xin Hu
- a National Center for Advancing Translational Sciences (NCATS), NIH , Bethesda , MD , USA
| | - Christopher A Wassif
- c National Institute of Child Health and Human Development, NIH , Bethesda , MD , USA
| | - Forbes D Porter
- c National Institute of Child Health and Human Development, NIH , Bethesda , MD , USA
| | - Christopher P Austin
- a National Center for Advancing Translational Sciences (NCATS), NIH , Bethesda , MD , USA
| | - Daniel S Ory
- d Diabetic Cardiovascular Disease Center , Washington University School of Medicine , St. Louis , MO USA
| | - Juan Marugan
- a National Center for Advancing Translational Sciences (NCATS), NIH , Bethesda , MD , USA
| | - Wei Zheng
- a National Center for Advancing Translational Sciences (NCATS), NIH , Bethesda , MD , USA
| |
Collapse
|
67
|
Kido K, Yokokawa T, Ato S, Sato K, Fujita S. Effect of resistance exercise under conditions of reduced blood insulin on AMPKα Ser485/491 inhibitory phosphorylation and AMPK pathway activation. Am J Physiol Regul Integr Comp Physiol 2017; 313:R110-R119. [PMID: 28515080 DOI: 10.1152/ajpregu.00063.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/02/2017] [Accepted: 05/15/2017] [Indexed: 11/22/2022]
Abstract
Insulin stimulates skeletal muscle glucose uptake via activation of the protein kinase B/Akt (Akt) pathway. Recent studies suggest that insulin downregulates AMP-activated protein kinase (AMPK) activity via Ser485/491 phosphorylation of the AMPK α-subunit. Thus lower blood insulin concentrations may induce AMPK signal activation. Acute exercise is one method to stimulate AMPK activation; however, no study has examined the relationship between blood insulin levels and acute resistance exercise-induced AMPK pathway activation. Based on previous findings, we hypothesized that the acute resistance exercise-induced AMPK pathway activation would be augmented by disruptions in insulin secretion through a decrease in AMPKα Ser485/491 inhibitory phosphorylation. To test the hypothesis, 10-wk-old male Sprague-Dawley rats were administered the toxin streptozotocin (STZ; 55 mg/kg) to destroy the insulin secreting β-cells. Three days postinjection, the right gastrocnemius muscle from STZ and control rats was subjected to resistance exercise by percutaneous electrical stimulation. Animals were killed 0, 1, or 3 h later; activation of the Akt/AMPK and downstream pathways in the muscle tissue was analyzed by Western blotting and real-time PCR. Notably, STZ rats showed a significant decrease in basal Akt and AMPKα Ser485/491 phosphorylation, but substantial exercise-induced increases in both AMPKα Thr172 and acetyl-CoA carboxylase (ACC) Ser79 phosphorylation were observed. Although no significant impact on resistance exercise-induced Akt pathway activation or glucose uptake was found, resistance exercise-induced peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 α (PGC-1α) gene expression was augmented by STZ treatment. Collectively, these data suggest that circulating insulin levels may regulate acute resistance exercise-induced AMPK pathway activation and AMPK-dependent gene expression relating to basal AMPKα Ser485/491 phosphorylation.
Collapse
Affiliation(s)
- Kohei Kido
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takumi Yokokawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan; and
| | - Satoru Ato
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Koji Sato
- Graduate School of Human Development and Environment, Kobe University, Kobe, Hyogo, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan;
| |
Collapse
|
68
|
Barrientos G, Sánchez-Aguilera P, Jaimovich E, Hidalgo C, Llanos P. Membrane Cholesterol in Skeletal Muscle: A Novel Player in Excitation-Contraction Coupling and Insulin Resistance. J Diabetes Res 2017; 2017:3941898. [PMID: 28367451 PMCID: PMC5358446 DOI: 10.1155/2017/3941898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/06/2017] [Indexed: 11/17/2022] Open
Abstract
Membrane cholesterol is critical for signaling processes in a variety of tissues. We will address here current evidence supporting an emerging role of cholesterol on excitation-contraction coupling and glucose transport in skeletal muscle. We have centered our review on the transverse tubule system, a complex network of narrow plasma membrane invaginations that propagate membrane depolarization into the fiber interior and allow nutrient delivery into the fibers. We will discuss current evidence showing that transverse tubule membranes have remarkably high cholesterol levels and we will address how modifications of cholesterol content influence excitation-contraction coupling. In addition, we will discuss how membrane cholesterol levels affect glucose transport by modulating the insertion into the membrane of the main insulin-sensitive glucose transporter GLUT4. Finally, we will address how the increased membrane cholesterol levels displayed by obese animals, which also present insulin resistance, affect these two particular skeletal muscle functions.
Collapse
Affiliation(s)
- G. Barrientos
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Physiology and Biophysics Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - P. Sánchez-Aguilera
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - E. Jaimovich
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Cell and Molecular Biology Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C. Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Physiology and Biophysics Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - P. Llanos
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
- *P. Llanos:
| |
Collapse
|
69
|
Sylow L, Møller LLV, D'Hulst G, Schjerling P, Jensen TE, Richter EA. Rac1 in Muscle Is Dispensable for Improved Insulin Action After Exercise in Mice. Endocrinology 2016; 157:3009-15. [PMID: 27285860 DOI: 10.1210/en.2016-1220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exercise has a potent insulin-sensitivity enhancing effect on skeletal muscle, but the intracellular mechanisms that mediate this effect are not well understood. In muscle, Ras-related C3 botulinum toxin substrate 1 (Rac1) regulates both insulin- and contraction-stimulated glucose transport and is dysregulated in insulin resistant muscle. However, whether Rac1 is involved in mediating enhanced insulin sensitivity after an acute bout of exercise is unresolved. To address this question, we investigated after exercise whole-body (insulin tolerance test) as well as muscle (insulin-stimulated 2-deoxyglucose transport in isolated soleus muscle) insulin sensitivity in inducible muscle-specific Rac1 knockout (mKO) and wild-type (WT) littermate mice. Previous exercise enhanced whole-body insulin sensitivity by 40% in WT mice and rescued the insulin intolerance in Rac1 mKO mice by improving whole-body insulin sensitivity by 230%. In agreement, previous exercise significantly improved insulin sensitivity by 20% in WT and by 40% in Rac1 mKO soleus muscles. These findings suggest that muscle Rac1 is dispensable for the insulin sensitizing effect of exercise. Moreover, insulin resistance in Rac1 mKO mice can be completely normalized by previous exercise explaining why insulin resistant patients can increase insulin action with exercise despite dysfunctional Rac1 activity in muscle.
Collapse
Affiliation(s)
- Lykke Sylow
- Section of Molecular Physiology (L.S., L.L.V.M., T.E.J., E.A.R.), Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark; Department of Kinesiology (G.D.), Exercise Physiology Research Group, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium; and Institute of Sports Medicine (P.S.), Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen Oe, Denmark
| | - Lisbeth L V Møller
- Section of Molecular Physiology (L.S., L.L.V.M., T.E.J., E.A.R.), Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark; Department of Kinesiology (G.D.), Exercise Physiology Research Group, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium; and Institute of Sports Medicine (P.S.), Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen Oe, Denmark
| | - Gommaar D'Hulst
- Section of Molecular Physiology (L.S., L.L.V.M., T.E.J., E.A.R.), Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark; Department of Kinesiology (G.D.), Exercise Physiology Research Group, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium; and Institute of Sports Medicine (P.S.), Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen Oe, Denmark
| | - Peter Schjerling
- Section of Molecular Physiology (L.S., L.L.V.M., T.E.J., E.A.R.), Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark; Department of Kinesiology (G.D.), Exercise Physiology Research Group, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium; and Institute of Sports Medicine (P.S.), Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen Oe, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology (L.S., L.L.V.M., T.E.J., E.A.R.), Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark; Department of Kinesiology (G.D.), Exercise Physiology Research Group, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium; and Institute of Sports Medicine (P.S.), Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen Oe, Denmark
| | - Erik A Richter
- Section of Molecular Physiology (L.S., L.L.V.M., T.E.J., E.A.R.), Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark; Department of Kinesiology (G.D.), Exercise Physiology Research Group, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium; and Institute of Sports Medicine (P.S.), Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen Oe, Denmark
| |
Collapse
|
70
|
Teich T, Riddell MC. The Enhancement of Muscle Insulin Sensitivity After Exercise: A Rac1-Independent Handoff to Some Other Player? Endocrinology 2016; 157:2999-3001. [PMID: 27477862 DOI: 10.1210/en.2016-1453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Trevor Teich
- School of Kinesiology and Health Science (T.T., M.C.R.), Muscle Health Research Centre, York University, Toronto, Ontario, Canada M3J 1P3; and LMC Diabetes and Endocrinology (M.C.R.), Toronto, Ontario, Canada M4G 3E8
| | - Michael C Riddell
- School of Kinesiology and Health Science (T.T., M.C.R.), Muscle Health Research Centre, York University, Toronto, Ontario, Canada M3J 1P3; and LMC Diabetes and Endocrinology (M.C.R.), Toronto, Ontario, Canada M4G 3E8
| |
Collapse
|
71
|
Abstract
AMP-activated protein kinase (AMPK) is an important mediator in maintaining cellular energy homeostasis. AMPK is activated in response to a shortage of energy. Once activated, AMPK can promote ATP production and regulate metabolic energy. AMPK is a known target for treating metabolic syndrome and type-2 diabetes; however, recently AMPK is emerging as a possible metabolic tumor suppressor and target for cancer prevention and treatment. Recent epidemiological studies indicate that treatment with metformin, an AMPK activator reduces the incidence of cancer. In this article we review the role of AMPK in regulating inflammation, metabolism, and other regulatory processes with an emphasis on cancer, as well as, discuss the potential for targeting AMPK to treat various types of cancer. Activation of AMPK has been found to oppose tumor progression in several cancer types and offers a promising cancer therapy. This review evaluates the evidence linking AMPK with tumor suppressor function and analyzes the molecular mechanisms involved. AMPK activity opposes tumor development and progression in part by regulating inflammation and metabolism.
Collapse
|
72
|
Jin H, Gao S, Guo H, Ren S, Ji F, Liu Z, Chen X. Re-sensitization of radiation resistant colorectal cancer cells to radiation through inhibition of AMPK pathway. Oncol Lett 2016; 11:3197-3201. [PMID: 27123089 DOI: 10.3892/ol.2016.4339] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/01/2016] [Indexed: 11/05/2022] Open
Abstract
Radiotherapy (RT) is commonly used to treat multi-tumors to attenuate the risk of recurrence. Despite impressive initial clinical responses, a large proportion of patients experience resistance to RT. Therefore, identification of functionally relevant biomarkers would be beneficial for radioresistant patients. Adenosine monophosphate-activated kinase (AMPK) is recognized as a mediator of tumor suppressor gene function. In the present study, radio-sensitive and -resistant colon cancer patient samples were compared and the AMPK pathway was observed to be highly activated in radioresistant patients. In addition, the protein and mRNA levels of AMPK were upregulated in radioresistant colon cancer cells in comparison to radiosensitive colon cancer cells. The present study provides evidence that activation of AMPK by metformin contributes to radioresistance. Inhibition of AMPK by either small interfering RNA or Compound C, which is a specific inhibitor of AMPK, re-sensitized radiation resistant cells. The data presented indicates a synergistic effect on radiation resistant cancer cells by the combination of Compound C and radiation. In summary, the present study proposes that inhibition of the AMPK pathway is a potential strategy for reversing radiation resistance and may contribute to the development of therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Hongyong Jin
- Department of General Surgery, China Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Sujie Gao
- Department of Anesthesia, China Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Huiling Guo
- Department of General Surgery, China Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Shengnan Ren
- Department of General Surgery, China Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fujian Ji
- Department of General Surgery, China Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhuo Liu
- Department of General Surgery, China Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xuebo Chen
- Department of General Surgery, China Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
73
|
Abstract
The AMP-protein kinase (AMPK) pathway is very versatile as it regulates cellular energetic homeostasis in many different tissue types. An appreciation for the importance of AMPK signalling and regulation in cardiovascular and tumor biology is increasing. Recently, a link has been established between anti-cancer therapy and susceptibility to cardiac disease. It has been shown that some anti-cancer drugs lead to an increased risk of cardiac disease, underlined by de-regulation of AMPK signalling. This review explores the AMPK signalling axis in both cardiac and tumor metabolism. We then examine off-target AMPK inhibition by cancer drugs and how this may translate into increased risk of cardiovascular disease. Finally, we discuss the implication of deregulated AMPK signalling during different stages of cardiac hypertrophy. Better understanding of the molecular pathways behind pathological processes will lead to the development of more effective therapeutics for cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Yulia Lipovka
- Department of Physiology, University of Arizona, Sarver Molecular Cardiovascular Research Program, USA
| | - John P Konhilas
- Department of Physiology, University of Arizona, Sarver Molecular Cardiovascular Research Program, USA
| |
Collapse
|
74
|
Yao F, Zhang M, Chen L. 5'-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications. Acta Pharm Sin B 2016; 6:20-5. [PMID: 26904395 PMCID: PMC4724658 DOI: 10.1016/j.apsb.2015.07.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 01/04/2023] Open
Abstract
Diabetes mellitus (DM), an endocrine disorder, will be one of the leading causes of death world-wide in about two decades. Cellular injuries and disorders of energy metabolism are two key factors in the pathogenesis of diabetes, which also become the important causes for the process of diabetic complications. AMPK is a key enzyme in maintaining metabolic homeostasis and has been implicated in the activation of autophagy in distinct tissues. An increasing number of researchers have confirmed that autophagy is a potential factor to affect or induce diabetes and its complications nowadays, which could remove cytotoxic proteins and dysfunctional organelles. This review will summarize the regulation of autophagy and AMPK in diabetes and its complications, and explore how AMPK stimulates autophagy in different diabetic syndromes. A deeper understanding of the regulation and activity of AMPK in autophagy would enhance its development as a promising therapeutic target for diabetes treatment.
Collapse
Key Words
- ACC, carboxylase
- ADP, adenosine diphosphate
- AMP, adenosine monophosphate
- AMP-activated protein kinases
- AMPK, 5′-monophosphate-activated protein kinase
- ATP, adenosine triphosphate
- AdipoR, adiponectin receptors
- Autophagy
- CaMKK, Ca2+ calmodulin-dependent protein kinase kinase
- DEPTOR, DEP domain-containing mTOR-interacting protein
- DM, Diabetes mellitus
- DN, Diabetic nephropathy
- Diabetes
- Diabetic complications
- ERK, extracellular signal-regulated kinase
- FoxO, forkhead box class O
- GFRs, glomerular filtration rates
- IKK, IκB kinase
- JLDG, Jinlida granule
- JNK, janus kinase
- LC3, light chain 3
- LKB1, liver kinase B1
- PKC, protein kinase C
- PRAS40, proline-rich Akt substrate 40 kDa
- RAPTOR, regulator associated protein of mTOR
- SOGA, suppressor of glucose form autophagy
- SQSTM1, sequestosome 1
- STZ, streptozotocin
- TSC, tuberous sclerosis complex
- ULK1, Unc-51-like kinase 1
- VPS34, vacuolar protein-sorting 34
- mTOR, mammalian target of rapamycin
- mTORC1, mammalian target of rapamycin (mTOR) complex 1
Collapse
|
75
|
ElAzzouny MA, Evans CR, Burant CF, Kennedy RT. Metabolomics Analysis Reveals that AICAR Affects Glycerolipid, Ceramide and Nucleotide Synthesis Pathways in INS-1 Cells. PLoS One 2015; 10:e0129029. [PMID: 26107620 PMCID: PMC4480354 DOI: 10.1371/journal.pone.0129029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/03/2015] [Indexed: 12/31/2022] Open
Abstract
AMPK regulates many metabolic pathways including fatty acid and glucose metabolism, both of which are closely associated with insulin secretion in pancreatic β-cells. Insulin secretion is regulated by metabolic coupling factors such as ATP/ADP ratio and other metabolites generated by the metabolism of nutrients such as glucose, fatty acid and amino acids. However, the connection between AMPK activation and insulin secretion in β-cells has not yet been fully elucidated at a metabolic level. To study the effect of AMPK activation on glucose stimulated insulin secretion, we applied the pharmacological activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to an INS-1 (832/13) β-cell line. We measured the change in 66 metabolites in the presence or absence of AICAR using different stable isotopic labeled nutrients to probe selected pathways. AMPK activation by AICAR increased basal insulin secretion and reduced the glucose stimulation index. Although ATP/ADP ratios were not strongly affected by AICAR, several other metabolites and pathways important for insulin secretion were affected by AICAR treatment including long-chain CoAs, malonyl-CoA, 3-hydroxy-3 methylglutaryl CoA, diacylglycerol, and farnesyl pyrophosphate. Tracer studies using 13C-glucose revealed lower glucose flux in the purine and pyrimidine pathway and in the glycerolipid synthesis pathway. Untargeted metabolomics revealed reduction in ceramides caused by AICAR that may explain the beneficial role of AMPK in protecting β-cells from lipotoxicity. Taken together, the results provide an overall picture of the metabolic changes associated with AICAR treatment and how it modulates insulin secretion and β-cell survival.
Collapse
Affiliation(s)
- Mahmoud A. ElAzzouny
- The Department of Chemistry, University of Michigan, Ann Arbor, United States of America
- The Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Charles R. Evans
- The Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Charles F Burant
- The Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Robert T. Kennedy
- The Department of Chemistry, University of Michigan, Ann Arbor, United States of America
- The Department of Pharmacology, University of Michigan, Ann Arbor, United States of America
- * E-mail:
| |
Collapse
|
76
|
Kjøbsted R, Treebak JT, Fentz J, Lantier L, Viollet B, Birk JB, Schjerling P, Björnholm M, Zierath JR, Wojtaszewski JFP. Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner. Diabetes 2015; 64:2042-55. [PMID: 25552597 DOI: 10.2337/db14-1402] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/20/2014] [Indexed: 11/13/2022]
Abstract
An acute bout of exercise increases glucose uptake in skeletal muscle by an insulin-independent mechanism. In the period after exercise, insulin sensitivity to increased glucose uptake is enhanced. The molecular mechanisms underpinning this phenomenon are poorly understood but appear to involve an increased cell surface abundance of GLUT4. While increased proximal insulin signaling does not seem to mediate this effect, elevated phosphorylation of TBC1D4, a downstream target of both insulin (Akt) and exercise (AMPK) signaling, appears to play a role. The main purpose of this study was to determine whether AMPK activation increases skeletal muscle insulin sensitivity. We found that prior AICAR stimulation of wild-type mouse muscle increases insulin sensitivity to stimulate glucose uptake. However, this was not observed in mice with reduced or ablated AMPK activity in skeletal muscle. Furthermore, prior AICAR stimulation enhanced insulin-stimulated phosphorylation of TBC1D4 at Thr(649) and Ser(711) in wild-type muscle only. These phosphorylation events were positively correlated with glucose uptake. Our results provide evidence to support that AMPK activation is sufficient to increase skeletal muscle insulin sensitivity. Moreover, TBC1D4 phosphorylation may facilitate the effect of prior AMPK activation to enhance glucose uptake in response to insulin.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Louise Lantier
- INSERM, U1016, Institut Cochin, Paris, France CNRS, UMR8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France CNRS, UMR8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jesper B Birk
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Björnholm
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, University of Copenhagen, Copenhagen, Denmark Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
77
|
Glade MJ, Smith K. A glance at … exercise and glucose uptake. Nutrition 2015; 31:893-7. [PMID: 25933500 DOI: 10.1016/j.nut.2014.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Affiliation(s)
| | - Kyl Smith
- Progressive Laboratories Inc., Irving, Texas
| |
Collapse
|
78
|
Baumgarner BL, Nagle AM, Quinn MR, Farmer AE, Kinsey ST. Dietary supplementation of β-guanidinopropionic acid (βGPA) reduces whole-body and skeletal muscle growth in young CD-1 mice. Mol Cell Biochem 2015; 403:277-85. [PMID: 25701355 DOI: 10.1007/s11010-015-2357-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/14/2015] [Indexed: 12/25/2022]
Abstract
Increased AMP-activated protein kinase (AMPK) activity leads to enhanced fatty acid utilization, while also promoting increased ubiquitin-dependent proteolysis (UDP) in mammalian skeletal muscle. β-guanidinopropionic acid (βGPA) is a commercially available dietary supplement that has been shown to promote an AMPK-dependent increase in fatty acid utilization and aerobic capacity in mammals by compromising creatine kinase function. However, it remains unknown if continuous βGPA supplementation can negatively impact skeletal muscle growth in a rapidly growing juvenile. The current study was conducted to examine the effect of βGPA supplementation on whole-body and skeletal muscle growth in juvenile and young adult mice. Three-week old, post weanling CD-1 mice were fed a standard rodent chow that was supplemented with either 2% (w/w) α-cellulose (control) or βGPA. Control and βGPA-fed mice (n = 6) were sampled after 2, 4, and 8 weeks. Whole-body and hindlimb muscle masses were significantly (P < 0.05) reduced in βGPA-fed mice by 2 weeks. The level of AMPK (T172) phosphorylation increased significantly (P < 0.05) in the gastrocnemius of βGPA-fed versus control mice at 2 weeks, but was not significantly different at the 4- and 8-week time points. Further analysis revealed a significant (P < 0.05) increase in the skeletal muscle-specific ubiquitin ligase MAFbx/Atrogin-1 protein and total protein ubiquitination in the gastrocnemius of βGPA versus control mice at the 8-week time point. Our data indicate that feeding juvenile mice a βGPA-supplemented diet significantly reduced whole-body and skeletal muscle growth that was due, at least in part, to an AMPK-independent increase in UDP.
Collapse
Affiliation(s)
- Bradley L Baumgarner
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, 800 University Way, Spartanburg, SC, 29316, USA,
| | | | | | | | | |
Collapse
|
79
|
Llanos P, Contreras-Ferrat A, Georgiev T, Osorio-Fuentealba C, Espinosa A, Hidalgo J, Hidalgo C, Jaimovich E. The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. Am J Physiol Endocrinol Metab 2015; 308:E294-305. [PMID: 25491723 DOI: 10.1152/ajpendo.00189.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin stimulates glucose uptake in adult skeletal muscle by promoting the translocation of GLUT4 glucose transporters to the transverse tubule (T-tubule) membranes, which have particularly high cholesterol levels. We investigated whether T-tubule cholesterol content affects insulin-induced glucose transport. Feeding mice a high-fat diet (HFD) for 8 wk increased by 30% the T-tubule cholesterol content of triad-enriched vesicular fractions from muscle tissue compared with triads from control mice. Additionally, isolated muscle fibers (flexor digitorum brevis) from HFD-fed mice showed a 40% decrease in insulin-stimulated glucose uptake rates compared with fibers from control mice. In HFD-fed mice, four subcutaneous injections of MβCD, an agent reported to extract membrane cholesterol, improved their defective glucose tolerance test and normalized their high fasting glucose levels. The preincubation of isolated muscle fibers with relatively low concentrations of MβCD increased both basal and insulin-induced glucose uptake in fibers from controls or HFD-fed mice and decreased Akt phosphorylation without altering AMPK-mediated signaling. In fibers from HFD-fed mice, MβCD improved insulin sensitivity even after Akt or CaMK II inhibition and increased membrane GLUT4 content. Indinavir, a GLUT4 antagonist, prevented the stimulatory effects of MβCD on glucose uptake. Addition of MβCD elicited ryanodine receptor-mediated calcium signals in isolated fibers, which were essential for glucose uptake. Our findings suggest that T-tubule cholesterol content exerts a critical regulatory role on insulin-stimulated GLUT4 translocation and glucose transport and that partial cholesterol removal from muscle fibers may represent a useful strategy to counteract insulin resistance.
Collapse
Affiliation(s)
- Paola Llanos
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile;
| | - Ariel Contreras-Ferrat
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Tihomir Georgiev
- Medical Biophysics, Institute of Physiology und Pathophysiology, Ruprecht Karls Universität, Heidelberg, Germany
| | | | - Alejandra Espinosa
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | - Enrique Jaimovich
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Cell and Molecular Biology Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
80
|
Krishan S, Richardson DR, Sahni S. Adenosine Monophosphate–Activated Kinase and Its Key Role in Catabolism: Structure, Regulation, Biological Activity, and Pharmacological Activation. Mol Pharmacol 2014; 87:363-77. [DOI: 10.1124/mol.114.095810] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
81
|
Abstract
The PRKAA1 gene encodes the catalytic α-subunit of 5′ AMP-activated protein kinase (AMPK). AMPK is a cellular energy sensor that maintains energy homeostasis within the cell and is activated when the AMP/ATP ratio increases. When activated, AMPK increases catabolic processes that increase ATP synthesis and inhibit anabolic processes that require ATP. Additionally, AMPK also plays a role in activating autophagy and inhibiting energy consuming processes, such as cellular growth and proliferation. Due to its role in energy metabolism, it could act as a potential target of many therapeutic drugs that could be useful in the treatment of several diseases, for example, diabetes. Moreover, AMPK has been shown to be involved in inhibiting tumour growth and metastasis, and has also been implicated in the pathology of neurodegenerative and cardiac disorders. Hence, a better understanding of AMPK and its role in various pathological conditions could enable the development of strategies to use it as a therapeutic target.
Collapse
|
82
|
Repeated sense of hunger leads to the development of visceral obesity and metabolic syndrome in a mouse model. PLoS One 2014; 9:e98276. [PMID: 24879081 PMCID: PMC4039491 DOI: 10.1371/journal.pone.0098276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/30/2014] [Indexed: 01/29/2023] Open
Abstract
Obesity-related disorders, especially metabolic syndrome, contribute to 2.8 million deaths each year worldwide, with significantly increasing morbidity. Eating at regular times and proper food quantity are crucial for maintaining a healthy status. However, many people in developed countries do not follow a regular eating schedule due to a busy lifestyle. Herein, we show that a repeated sense of hunger leads to a high risk of developing visceral obesity and metabolic syndrome in a mouse model (both 3-week and 6-week-old age, 10 mice in each group). The ad libitum (AL) group (normal eating pattern) and the food restriction (FR) group (alternate-day partially food restriction by given only 1/3 of average amount) were compared after 8-week experimental period. The total food consumption in the FR group was lower than in the AL group, however, the FR group showed a metabolic syndrome-like condition with significant fat accumulation in adipose tissues. Consequently, the repeated sense of hunger induced the typical characteristics of metabolic syndrome in an animal model; a distinct visceral obesity, hyperlipidemia, hyperglycemia and hepatic steatosis. Furthermore, we found that specifically leptin, a major metabolic hormone, played a major role in the development of these pathological disorders. Our study indicated the importance of regular eating habits besides controlling calorie intake.
Collapse
|
83
|
Kristensen JM, Treebak JT, Schjerling P, Goodyear L, Wojtaszewski JFP. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle. Am J Physiol Endocrinol Metab 2014; 306:E1099-109. [PMID: 24644243 PMCID: PMC4971810 DOI: 10.1152/ajpendo.00417.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metformin-induced activation of the 5'-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P < 0.01) but not of AMPK KD mice. Insulin signaling at the level of Akt protein expression or Thr(308) and Ser(473) phosphorylation was not changed by metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr(308)/Ser(473) and TBC1D4 Thr(642)/Ser(711) phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment.
Collapse
Affiliation(s)
- Jonas Møller Kristensen
- Molecular Physiology Group, August Krogh Centre, Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Molecular Physiology Group, August Krogh Centre, Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Laurie Goodyear
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jørgen F P Wojtaszewski
- Molecular Physiology Group, August Krogh Centre, Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
84
|
Timmermans AD, Balteau M, Gélinas R, Renguet E, Ginion A, de Meester C, Sakamoto K, Balligand JL, Bontemps F, Vanoverschelde JL, Horman S, Beauloye C, Bertrand L. A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake. Am J Physiol Heart Circ Physiol 2014; 306:H1619-30. [PMID: 24748590 DOI: 10.1152/ajpheart.00965.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP-activated protein kinase (AMPK), a key cellular sensor of energy, regulates metabolic homeostasis and plays a protective role in the ischemic or diabetic heart. Stimulation of cardiac glucose uptake contributes to this AMPK-mediated protection. The small-molecule AMPK activator A-769662, which binds and directly activates AMPK, has recently been characterized. A-769662-dependent AMPK activation protects the heart against an ischemia-reperfusion episode but is unable to stimulate skeletal muscle glucose uptake. Here, we tried to reconcile these conflicting findings by investigating the impact of A-769662 on cardiac AMPK signaling and glucose uptake. We showed that A-769662 promoted AMPK activation, resulting in the phosphorylation of several downstream targets, but was incapable of stimulating glucose uptake in cultured cardiomyocytes and the perfused heart. The lack of glucose uptake stimulation can be explained by A-769662's narrow specificity, since it selectively activates cardiac AMPK heterotrimeric complexes containing α2/β1-subunits, the others being presumably required for this metabolic outcome. However, when combined with classical AMPK activators, such as metformin, phenformin, oligomycin, or hypoxia, which impact AMPK heterotrimers more broadly via elevation of cellular AMP levels, A-769662 induced more profound AMPK phosphorylation and subsequent glucose uptake stimulation. The synergistic effect of A-769662 under such ischemia-mimetic conditions protected cardiomyocytes against ROS production and cell death. In conclusion, despite the fact that A-769662 activates AMPK, it alone does not significantly stimulate glucose uptake. However, strikingly, its ability of potentiating the action on other AMPK activators makes it a potentially useful participant in the protective role of AMPK in the heart.
Collapse
Affiliation(s)
- Aurélie D Timmermans
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
| | - Magali Balteau
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
| | - Roselle Gélinas
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
| | - Edith Renguet
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
| | - Audrey Ginion
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
| | - Carole de Meester
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
| | - Kei Sakamoto
- Medical Research Council Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jean-Luc Balligand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Pharmacology and Therapeutics, Brussels, Belgium; and
| | | | - Jean-Louis Vanoverschelde
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
| | - Sandrine Horman
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
| | - Christophe Beauloye
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Brussels, Belgium;
| |
Collapse
|
85
|
McCarty MF. AMPK activation--protean potential for boosting healthspan. AGE (DORDRECHT, NETHERLANDS) 2014; 36:641-663. [PMID: 24248330 PMCID: PMC4039279 DOI: 10.1007/s11357-013-9595-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/22/2013] [Indexed: 06/01/2023]
Abstract
AMP-activated kinase (AMPK) is activated when the cellular (AMP+ADP)/ATP ratio rises; it therefore serves as a detector of cellular "fuel deficiency." AMPK activation is suspected to mediate some of the health-protective effects of long-term calorie restriction. Several drugs and nutraceuticals which slightly and safely impede the efficiency of mitochondrial ATP generation-most notably metformin and berberine-can be employed as clinical AMPK activators and, hence, may have potential as calorie restriction mimetics for extending healthspan. Indeed, current evidence indicates that AMPK activators may reduce risk for atherosclerosis, heart attack, and stroke; help to prevent ventricular hypertrophy and manage congestive failure; ameliorate metabolic syndrome, reduce risk for type 2 diabetes, and aid glycemic control in diabetics; reduce risk for weight gain; decrease risk for a number of common cancers while improving prognosis in cancer therapy; decrease risk for dementia and possibly other neurodegenerative disorders; help to preserve the proper structure of bone and cartilage; and possibly aid in the prevention and control of autoimmunity. While metformin and berberine appear to have the greatest utility as clinical AMPK activators-as reflected by their efficacy in diabetes management-regular ingestion of vinegar, as well as moderate alcohol consumption, may also achieve a modest degree of health-protective AMPK activation. The activation of AMPK achievable with any of these measures may be potentiated by clinical doses of the drug salicylate, which can bind to AMPK and activate it allosterically.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 7831 Rush Rose Dr., Apt. 316, Carlsbad, CA, 92009, USA,
| |
Collapse
|
86
|
Hoffman NJ, Penque BA, Habegger KM, Sealls W, Tackett L, Elmendorf JS. Chromium enhances insulin responsiveness via AMPK. J Nutr Biochem 2014; 25:565-72. [PMID: 24725432 DOI: 10.1016/j.jnutbio.2014.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/02/2014] [Accepted: 01/24/2014] [Indexed: 12/19/2022]
Abstract
Trivalent chromium (Cr(3+)) is known to improve glucose homeostasis. Cr(3+) has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5' AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr(3+) improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr(3+) protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr(3+) on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr(3+) in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr(3+), via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation.
Collapse
Affiliation(s)
- Nolan J Hoffman
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brent A Penque
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kirk M Habegger
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medicine - Endocrinology, Diabetes & Metabolism University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Whitney Sealls
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lixuan Tackett
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jeffrey S Elmendorf
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
87
|
Sylow L, Kleinert M, Pehmøller C, Prats C, Chiu TT, Klip A, Richter EA, Jensen TE. Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell Signal 2014; 26:323-31. [DOI: 10.1016/j.cellsig.2013.11.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/01/2013] [Indexed: 11/16/2022]
|
88
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
89
|
Chiu TT, Sun Y, Koshkina A, Klip A. Rac-1 superactivation triggers insulin-independent glucose transporter 4 (GLUT4) translocation that bypasses signaling defects exerted by c-Jun N-terminal kinase (JNK)- and ceramide-induced insulin resistance. J Biol Chem 2013; 288:17520-31. [PMID: 23640896 DOI: 10.1074/jbc.m113.467647] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Insulin activates a cascade of signaling molecules, including Rac-1, Akt, and AS160, to promote the net gain of glucose transporter 4 (GLUT4) at the plasma membrane of muscle cells. Interestingly, constitutively active Rac-1 expression results in a hormone-independent increase in surface GLUT4; however, the molecular mechanism and significance behind this effect remain unresolved. Using L6 myoblasts stably expressing myc-tagged GLUT4, we found that overexpression of constitutively active but not wild-type Rac-1 sufficed to drive GLUT4 translocation to the membrane of comparable magnitude with that elicited by insulin. Stimulation of endogenous Rac-1 by Tiam1 overexpression elicited a similar hormone-independent gain in surface GLUT4. This effect on GLUT4 traffic could also be reproduced by acutely activating a Rac-1 construct via rapamycin-mediated heterodimerization. Strategies triggering Rac-1 "superactivation" (i.e. to levels above those attained by insulin alone) produced a modest gain in plasma membrane phosphatidylinositol 3,4,5-trisphosphate, moderate Akt activation, and substantial AS160 phosphorylation, which translated into GLUT4 translocation and negated the requirement for IRS-1. This unique signaling capacity exerted by Rac-1 superactivation bypassed the defects imposed by JNK- and ceramide-induced insulin resistance and allowed full and partial restoration of the GLUT4 translocation response, respectively. We propose that potent elevation of Rac-1 activation alone suffices to drive insulin-independent GLUT4 translocation in muscle cells, and such a strategy might be exploited to bypass signaling defects during insulin resistance.
Collapse
Affiliation(s)
- Tim Ting Chiu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
90
|
Zhang X, Wu C, Wu H, Sheng L, Su Y, Zhang X, Luan H, Sun G, Sun X, Tian Y, Ji Y, Guo P, Xu X. Anti-hyperlipidemic effects and potential mechanisms of action of the caffeoylquinic acid-rich Pandanus tectorius fruit extract in hamsters fed a high fat-diet. PLoS One 2013; 8:e61922. [PMID: 23613974 PMCID: PMC3628350 DOI: 10.1371/journal.pone.0061922] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 03/15/2013] [Indexed: 12/20/2022] Open
Abstract
Hyperlipidemia is considered to be one of the greatest risk factors contributing to the prevalence and severity of cardiovascular diseases. In this work, we investigated the anti-hyperlipidemic effect and potential mechanism of action of the Pandanus tectorius fruit extract in hamsters fed a high fat-diet (HFD). The n-butanol fraction of the P. tectorius fruit ethanol extract (PTF-b) was rich in caffeoylquinic acids (CQAs). Administration of PTF-b for 4 weeks effectively decreased retroperitoneal fat and the serum levels of total cholesterol (TC), triglycerides (TG) and low density lipoprotein-cholesterol (LDL-c) and hepatic TC and TG. The lipid signals (fatty acids, and cholesterol) in the liver as determined by nuclear magnetic resonance (NMR) were correspondingly reduced. Realtime quantitative PCR showed that the mRNA levels of PPARα and PPARα-regulated genes such as ACO, CPT1, LPL and HSL were largely enhanced by PTF-b. The transcription of LDLR, CYP7A1, and PPARγ was also upregulated. Treatment with PTF-b significantly stimulated the activation of AMP-activated protein kinase (AMPK) as well as the activity of serum and hepatic lipoprotein lipase (LPL). Together, these results suggest that administration of the PTF-b enriched in CQAs moderates hyperlipidemia and improves the liver lipid profile. These effects may be caused, at least in part, by increasing the expression of PPARα and its downstream genes and by upregulation of LPL and AMPK activities.
Collapse
Affiliation(s)
- Xiaopo Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haifeng Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | - Yan Su
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Xue Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Hong Luan
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Guibo Sun
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaobo Sun
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Tian
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yubin Ji
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Peng Guo
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- * E-mail: (PG); (XX)
| | - Xudong Xu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- * E-mail: (PG); (XX)
| |
Collapse
|
91
|
Penque BA, Tackett L, Elmendorf JS. Trivalent Chromium Modulates Hexosamine Biosynthesis Pathway Transcriptional Activation of Cholesterol Synthesis and Insulin Resistance. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojemd.2013.34a1001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
92
|
Cytotoxicity of bacterial metabolic products, including listeriolysin O, on leukocyte targets. J Biomed Biotechnol 2012; 2012:954375. [PMID: 23091365 PMCID: PMC3471067 DOI: 10.1155/2012/954375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/24/2012] [Indexed: 11/17/2022] Open
Abstract
Bacterial toxins can exhibit anticancer activities. Here we investigated the anticancer effects of the listeriolysin O toxin produced by Listeria monocytogenes. We found that supernatants of Listeria monocytogenes strains (wild type, 1189, and 1190) were cytotoxic to the Jurkat cell line and human peripheral blood mononuclear cells (PBMC) in a concentration-dependent manner. The supernatant of strain 1044, not producing listeriolysin O, was inactive. The supernatants of Listeria strains were also cytotoxic toward B cells of chronic leukemia patients, with no significant differences in activities between strains. We also tested supernatants of Bacillus subtilis strains BR1-90, BR1-S, and BR1-89 producing listeriolysin O. BR1-S and BR1-89 were cytotoxic to PBMC and to Jurkat cells, the latter being more sensitive to the supernatants. BR1-90 was not hemolytic or cytotoxic to PBMC, but was cytotoxic to Jurkat cells in the concentration range of 10–30%, suggesting that listeriolysin O is selectively effective against T cells. Overall, the response of human peripheral blood mononuclear and human leukemia cell lines to bacteria supernatants containing listeriolysin O depended on the bacteria strain, target cell type, and supernatant concentration.
Collapse
|
93
|
Horman S, Beauloye C, Vanoverschelde JL, Bertrand L. AMP-activated Protein Kinase in the Control of Cardiac Metabolism and Remodeling. Curr Heart Fail Rep 2012; 9:164-73. [DOI: 10.1007/s11897-012-0102-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|