51
|
Valente TS, Baldi F, Sant’Anna AC, Albuquerque LG, Paranhos da Costa MJR. Genome-Wide Association Study between Single Nucleotide Polymorphisms and Flight Speed in Nellore Cattle. PLoS One 2016; 11:e0156956. [PMID: 27300296 PMCID: PMC4907449 DOI: 10.1371/journal.pone.0156956] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
Introduction Cattle temperament is an important factor that affects the profitability of beef cattle enterprises, due to its relationship with productivity traits, animal welfare and labor safety. Temperament is a complex phenotype often assessed by measuring a series of behavioral traits, which result from the effects of multiple environmental and genetic factors, and their interactions. The aims of this study were to perform a genome-wide association study and detect genomic regions, potential candidate genes and their biological mechanisms underlying temperament, measured by flight speed (FS) test in Nellore cattle. Materials and Methods The genome-wide association study (GWAS) was performed using a single-step procedure (ssGBLUP) which combined simultaneously all 16,600 phenotypes from genotyped and non-genotyped animals, full pedigree information of 162,645 animals and 1,384 genotyped animals in one step. The animals were genotyped with High Density Bovine SNP BeadChip which contains 777,962 SNP markers. After quality control (QC) a total of 455,374 SNPs remained. Results Heritability estimated for FS was 0.21 ± 0.02. Consecutive SNPs explaining 1% or more of the total additive genetic variance were considered as windows associated with FS. Nine candidate regions located on eight different Bos taurus chromosomes (BTA) (1 at 73 Mb, 2 at 65 Mb, 5 at 22 Mb and 119 Mb, 9 at 98 Mb, 11 at 67 Mb, 15 at 16 Mb, 17 at 63 Kb, and 26 at 47 Mb) were identified. The candidate genes identified in these regions were NCKAP5 (BTA2), PARK2 (BTA9), ANTXR1 (BTA11), GUCY1A2 (BTA15), CPE (BTA17) and DOCK1 (BTA26). Among these genes PARK2, GUCY1A2, CPE and DOCK1 are related to dopaminergic system, memory formation, biosynthesis of peptide hormone and neurotransmitter and brain development, respectively. Conclusions Our findings allowed us to identify nine genomic regions (SNP windows) associated with beef cattle temperament, measured by FS test. Within these windows, six promising candidate genes and their biological functions were identified. These results may contribute to a better comprehension into the genetic control of temperament expression in Nellore cattle.
Collapse
Affiliation(s)
- Tiago Silva Valente
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Fernando Baldi
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Aline Cristina Sant’Anna
- Universidade Federal de Juiz de Fora (UFJF), Instituto de Ciências Biológicas, Departamento de Zoologia, Rua José Lourenço Kelmer, Juiz de Fora, MG 36.036-900, Brazil
| | - Lucia Galvão Albuquerque
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Mateus José Rodrigues Paranhos da Costa
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
- * E-mail:
| |
Collapse
|
52
|
Fan S, Li X, Li L, Wang L, Du Z, Yang Y, Zhao J, Li Y. Silencing of carboxypeptidase E inhibits cell proliferation, tumorigenicity, and metastasis of osteosarcoma cells. Onco Targets Ther 2016; 9:2795-803. [PMID: 27274275 PMCID: PMC4869623 DOI: 10.2147/ott.s98991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Carboxypeptidase E (CPE), a prohormone processing enzyme, has been implicated in the progression of multiple malignancies. However, the biological role and molecular mechanisms of CPE in osteosarcoma remain elusive. In this study, we assessed the effects of CPE on cell proliferation, tumorigenicity, migration, and invasion in osteosarcoma. Our results showed that silencing of CPE significantly inhibited cell proliferation, caused cell cycle arrest at G0/G1 phase, decreased the expression levels of cell cycle protein, cyclin D1, and inhibited tumorigenicity in vivo. Additionally, CPE downregulation repressed the migratory and invasive capacities of osteosarcoma cells in vitro. Furthermore, overexpression of CPE-ΔN (a splice variant of CPE) enhanced the cell growth, migration, and invasion of osteosarcoma cells. It is possible that both CPE forms are involved in the tumorigenesis and development of osteosarcoma, and therefore CPE may provide a promising biological target for osteosarcoma therapy.
Collapse
Affiliation(s)
- Shuli Fan
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xu Li
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Leiming Li
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Liguo Wang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhangzhen Du
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Yang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jiansong Zhao
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
53
|
Cawley NX, Li Z, Loh YP. 60 YEARS OF POMC: Biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides. J Mol Endocrinol 2016; 56:T77-97. [PMID: 26880796 PMCID: PMC4899099 DOI: 10.1530/jme-15-0323] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Abstract
Pro-opiomelanocortin (POMC) is a prohormone that encodes multiple smaller peptide hormones within its structure. These peptide hormones can be generated by cleavage of POMC at basic residue cleavage sites by prohormone-converting enzymes in the regulated secretory pathway (RSP) of POMC-synthesizing endocrine cells and neurons. The peptides are stored inside the cells in dense-core secretory granules until released in a stimulus-dependent manner. The complexity of the regulation of the biosynthesis, trafficking, and secretion of POMC and its peptides reflects an impressive level of control over many factors involved in the ultimate role of POMC-expressing cells, that is, to produce a range of different biologically active peptide hormones ready for action when signaled by the body. From the discovery of POMC as the precursor to adrenocorticotropic hormone (ACTH) and β-lipotropin in the late 1970s to our current knowledge, the understanding of POMC physiology remains a monumental body of work that has provided insight into many aspects of molecular endocrinology. In this article, we describe the intracellular trafficking of POMC in endocrine cells, its sorting into dense-core secretory granules and transport of these granules to the RSP. Additionally, we review the enzymes involved in the maturation of POMC to its various peptides and the mechanisms involved in the differential processing of POMC in different cell types. Finally, we highlight studies pertaining to the regulation of ACTH secretion in the anterior and intermediate pituitary and POMC neurons of the hypothalamus.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhaojin Li
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Y Peng Loh
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
54
|
Huang SF, Wu HDI, Chen YT, Murthy SRK, Chiu YT, Chang Y, Chang IC, Yang X, Loh YP. Carboxypeptidase E is a prediction marker for tumor recurrence in early-stage hepatocellular carcinoma. Tumour Biol 2016; 37:9745-53. [PMID: 26803519 DOI: 10.1007/s13277-016-4814-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/06/2016] [Indexed: 11/28/2022] Open
Abstract
Tumor recurrence and metastasis are the major causes of death for hepatocellular carcinoma (HCC) patients who are able to receive curative resection. Identifying the predicting biomarkers for tumor recurrence would improve their survival. RNA extracted from fresh frozen tumors and adjacent non-tumor liver tissues of 120 HCC patients were obtained from Taiwan Liver Cancer Network (TLCN) in year 2010 for determination of the carboxypeptidase E (CPE) expression level (including its splicing mutant CPE-ΔN) in the tumor tissue (T) and paired non-tumor liver tissue (N) by real-time quantitative polymerase chain reaction. All patients were male, had chronic hepatitis B virus infection, were in the early pathology stage, and received curative resection. The T/N ratio of the CPE expression level was correlated with the updated survival data from TLCN in 2015. The CPE expression level in the 120 HCC patients was divided into three groups according to the T/N ratio: <1, ≥1 and ≤2, and >2, respectively. By multivariate analyses, the recurrence-free survival (RFS) was only significantly associated with the pathology stage and the CPE expression level. For overall survival (OS), only the CPE expression level was the significant prognostic factor. The CPE expression level was also significantly correlated with the tumor recurrence for both stage I (p = 0.0106) and stage II patients (p = 0.0006). The CPE mRNA expression level in HCC can be a useful biomarker for predicting tumor recurrence in HCC patients who are in the early pathology stage and able to receive curative resection.
Collapse
Affiliation(s)
- Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhuna, Miaoli, 350, Taiwan. .,Department of Anatomical Pathology, Chung-Shan Medical University Hospital, Taichung, Taiwan.
| | - Hong-Dar Isaac Wu
- Department of Applied Mathematics and Institute of Statistics, National Chung-Hsing University, Taichung, Taiwan
| | - Ya-Ting Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhuna, Miaoli, 350, Taiwan
| | - Saravana R K Murthy
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 49, Rm. 6A-10, 49, Convent Drive, Bethesda, MD, 20892, USA
| | - Yu-Ting Chiu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhuna, Miaoli, 350, Taiwan
| | - Yu Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhuna, Miaoli, 350, Taiwan
| | - Il-Chi Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhuna, Miaoli, 350, Taiwan
| | - Xuyu Yang
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 49, Rm. 6A-10, 49, Convent Drive, Bethesda, MD, 20892, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 49, Rm. 6A-10, 49, Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
55
|
CPE overexpression is correlated with pelvic lymph node metastasis and poor prognosis in patients with early-stage cervical cancer. Arch Gynecol Obstet 2015; 294:333-42. [PMID: 26695643 DOI: 10.1007/s00404-015-3985-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Elevated carboxypeptidase E (CPE) levels play crucial roles in tumorigenesis and metastasis. This study investigated the expression and clinicopathological significance of CPE in early-stage cervical cancer. METHODS Elevated carboxypeptidase E expression was analyzed using quantitative polymerase chain reaction and western blotting in normal cervical tissue, cervical cancer cell lines, and in cervical cancer tissues and adjacent noncancerous tissues (ANTs) from the same patient. Immunohistochemistry (IHC) was used to examine CPE expression in tissue samples from 112 patients with early-stage cervical cancer (FIGO stages Ia2-IIa2), 60 patients with cervical intraepithelial neoplasia, and 19 patients with normal cervical tissues (NCTs). Associations between CPE expression and prognostic and diagnostic factors were evaluated statistically. RESULTS CPE expression was significantly higher in cervical cancer cell lines and tissues than in normal tissues and ANTs. Semi-quantitative analysis of IHC indicated that CPE gradually increased from CIN I to cervical cancer, but was absent in NCTs. CPE expression was seen in 40.2 % (45/112) of the cervical cancer samples. CPE expression was significantly associated with FIGO stage (P = 0.003), tumor size (P = 0.012), stromal invasion (P < 0.001), lymphovascular space invasion (P = 0.016), parametrial infiltration (P = 0.027), vaginal involvement (P = 0.007), postoperative adjuvant therapy (P = 0.024), recurrence (P < 0.001), survival (P < 0.001), and pelvic lymph node metastasis (PLNM) (P < 0.001), and it was significantly higher in tissues from patients with PLNM than without PLNM. Logistic regression analysis identified high-level CPE expression as an independent risk factor for PLNM (P = 0.001). Patients with higher CPE expression had shorter overall survival duration than patients with lower CPE expression. Univariate and multivariate Cox-regression analyses suggested that high-level CPE expression is an independent prognostic factor for overall survival in early-stage cervical cancer. CONCLUSIONS High-level CPE expression was associated with a poor prognosis in early-stage cervical cancer. CPE may serve as a biomarker for predicting PLNM and survival in these patients.
Collapse
|
56
|
Proteomic analysis of the rare Uracoan rattlesnake Crotalus vegrandis venom: Evidence of a broad arsenal of toxins. Toxicon 2015; 107:234-51. [DOI: 10.1016/j.toxicon.2015.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 01/30/2023]
|
57
|
Genome wide microarray based expression profiles associated with BmNPV resistance and susceptibility in Indian silkworm races of Bombyx mori. Genomics 2015; 106:393-403. [PMID: 26376410 DOI: 10.1016/j.ygeno.2015.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/19/2015] [Accepted: 09/09/2015] [Indexed: 11/23/2022]
Abstract
The molecular mechanism involved in BmNPV resistance was investigated using a genome wide microarray in midgut tissue of Indian silkworm Bombyx mori. In resistant race (Sarupat), 735 genes up-regulated and 589 genes down-regulated at 12 h post BmNPV infection. Similarly, in case of susceptible race (CSR-2), 2183 genes up-regulated and 2115 genes down-regulated. Among these, nine up-regulated and eight down-regulated genes were validated using real-time qPCR analysis. In Sarupat, vacuolar protein sorting associated, Xfin-like protein and carboxypeptidase E-like protein genes significantly up-regulated in infected midgut; prominently down-regulated genes were glutamate receptor ionotropic kainite 2-like, BTB/POZ domain and transferrin. Considerably up-regulated genes in the CSR-2 were peptidoglycan recognition protein S6 precursor and rapamycin while the conspicuous down-regulated genes were facilitated trehalose transporter and zinc transporter ZIP1-like gene. The up-regulation of genes in resistant race after BmNPV infection indicates their possible role in antiviral immune response.
Collapse
|
58
|
Selvaraj P, Huang JSW, Chen A, Skalka N, Rosin-Arbesfeld R, Loh YP. Neurotrophic factor-α1 modulates NGF-induced neurite outgrowth through interaction with Wnt-3a and Wnt-5a in PC12 cells and cortical neurons. Mol Cell Neurosci 2015; 68:222-33. [PMID: 26276171 DOI: 10.1016/j.mcn.2015.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
Wnt-3a and Wnt-5a signaling activities inhibit and promote neurite outgrowth, respectively, to regulate dendritic and axonal genesis during neurodevelopment. NF-α1, a neurotrophic factor, has been shown to modulate dendritic remodeling and negatively regulate the canonical Wnt-3a pathway. Here, we investigated whether NF-α1 could modify nerve growth factor (NGF)-induced neurite outgrowth through interaction with Wnt-3a and Wnt-5a in PC12 cells and mouse primary cortical neurons. We showed that NGF-induced neurite outgrowth was inhibited by Wnt-3a, and this inhibition was prevented by NF-α1. Western blot analysis revealed that NF-α1 reduced the expression of both β-catenin in the canonical Wnt-3a pathway and Rho, a downstream effector of Wnt-3a's non-canonical signaling pathway. Treatment of PC12 cells with a ROCK inhibitor prevented the inhibition of NGF-induced neurite outgrowth by Wnt-3a, suggesting that NF-α1 promotes neurite outgrowth in the presence of Wnt-3a by down-regulating its canonical and non-canonical activities. Interestingly, treatment of PC12 cells with Wnt-5a, which formed a complex with NF-α1, induced neurite outgrowth that was enhanced by treatment with the combination of Wnt-5a, NGF, and NF-α1. These effects of NF-α1 on Wnt 3a's and Wnt 5a's regulation of neurite outgrowth in PC12 cells were also demonstrated in primary cultures of mouse cortical neurons. In addition, we showed in PC12 cells that NF-α1 acts by upregulating adenomatous polyposis coli (APC) accumulation at neurite tips, thereby providing positive and negative Wnt-3a/Wnt-5a mediated cues to modulate neurite outgrowth, a process important during neurodevelopment.
Collapse
Affiliation(s)
- Prabhuanand Selvaraj
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jane S W Huang
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Chen
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nir Skalka
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Y Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
59
|
Sun J, Zhang G, Wang H, Shen H. [Screening of Highly Expressed CPEΔN Lung Cancer H1299 Cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:340-4. [PMID: 26104889 PMCID: PMC5999908 DOI: 10.3779/j.issn.1009-3419.2015.06.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
背景与目的 N端截短的羧肽酶E(N-terminal truncated carboxypeptidase E, CPEΔN)是一个新的肿瘤转移相关蛋白。本研究旨在筛选高表达CPEΔN的H1299肺癌细胞株,为完成小鼠活体成像实验创造条件。 方法 构建CPEΔN的慢病毒表达载体。分别用CPEΔN慢病毒表达载体或对照慢病毒空载体转染H1299细胞,2 μg/mL的嘌呤霉素加压筛选。Western blot分析CPEΔN蛋白的表达,荧光素酶报告基因实验分析荧光素酶对底物的分解作用。 结果 当感染倍数(multiple of infection, MOI)是20时,慢病毒对H1299细胞的转染效率可以达到80%。CPEΔN高表达H1299细胞株(H1299-CPEΔN)和对照慢病毒载体表达H1299细胞株(H1299-control)中CPEΔN蛋白的表达量为4:1。H1299-CPEΔN和H1299-control均能够有效分解荧光素酶底物,可以满足活体成像实验的需求。 结论 筛选出高表达CPEΔN的H1299肺癌细胞株,为活体成像实验的开展创造了条件,也为进一步解释CPEΔN促进肿瘤转移的分子机制奠定了基础。
Collapse
Affiliation(s)
- Jing Sun
- Biotherapy Research Center, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Guirong Zhang
- Biotherapy Research Center, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Hongyue Wang
- Biotherapy Research Center, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Hui Shen
- Biotherapy Research Center, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| |
Collapse
|
60
|
Thouennon E, Cheng Y, Falahatian V, Cawley NX, Loh YP. Rosiglitazone-activated PPARγ induces neurotrophic factor-α1 transcription contributing to neuroprotection. J Neurochem 2015; 134:463-70. [PMID: 25940785 DOI: 10.1111/jnc.13152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/04/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Brain peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear receptor superfamily of ligand-dependent transcription factors, is involved in neuroprotection. It is activated by the drug rosiglitazone, which then can increase the pro-survival protein B-cell lymphoma 2 (BCL-2), to mediate neuroprotection. However, the mechanism underlying this molecular cascade remains unknown. Here, we show that the neuroprotective protein neurotrophic factor-α1 (NF-α1), which also induces the expression of BCL-2, has a promoter that contains PPARγ-binding sites that are activated by rosiglitazone. Treatment of Neuro2a cells and primary hippocampal neurons with rosiglitazone increased endogenous NF-α1 expression and prevented H2 O2 -induced cytotoxicity. Concomitant with the increase in NF-α1, BCL-2 was also increased in these cells. When siRNA against NF-α1 was used, the induction of BCL-2 by rosiglitazone was prevented, and the neuroprotective effect of rosiglitazone was reduced. These results demonstrate that rosiglitazone-activated PPARγ directly induces the transcription of NF-α1, contributing to neuroprotection in neurons. We proposed the following cascade for neuroprotection against oxidative stress by rosiglitazone: Rosiglitazone enters the neuron and binds to peroxisome proliferator-activated receptor gamma (PPARγ) in the nucleus. The PPARγ-rosiglitazone complex binds to the neurotrophic factor-α1 (NF-α1) promoter and activates the transcription of NF-α1 mRNA which is then translated to the protein. NF-α1 is the secreted, binds to a cognate receptor and activates the extracellular signal-regulated kinases (ERK) pathway. This in turn enhances the expression of the pro-survival protein, B-cell lymphoma 2 (BCL-2) and inhibition of caspase 3 (Csp-3) to mediate neuroprotection under oxidative stress. Akt, protein kinase B (PKB).
Collapse
Affiliation(s)
- Erwan Thouennon
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Vida Falahatian
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Niamh X Cawley
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoke Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
61
|
Cheng Y, Rodriguiz RM, Murthy SRK, Senatorov V, Thouennon E, Cawley NX, Aryal DK, Ahn S, Lecka-Czernik B, Wetsel WC, Loh YP. Neurotrophic factor-α1 prevents stress-induced depression through enhancement of neurogenesis and is activated by rosiglitazone. Mol Psychiatry 2015; 20:744-54. [PMID: 25330741 PMCID: PMC4405386 DOI: 10.1038/mp.2014.136] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/14/2014] [Accepted: 09/04/2014] [Indexed: 12/24/2022]
Abstract
Major depressive disorder is often linked to stress. Although short-term stress is without effect in mice, prolonged stress leads to depressive-like behavior, indicating that an allostatic mechanism exists in this difference. Here we demonstrate that mice after short-term (1 h per day for 7 days) chronic restraint stress (CRS), do not display depressive-like behavior. Analysis of the hippocampus of these mice showed increased levels of neurotrophic factor-α1 (NF-α1; also known as carboxypeptidase E, CPE), concomitant with enhanced fibroblast growth factor 2 (FGF2) expression, and an increase in neurogenesis in the dentate gyrus. In contrast, after prolonged (6 h per day for 21 days) CRS, mice show decreased hippocampal NF-α1 and FGF2 levels and depressive-like responses. In NF-α1-knockout mice, hippocampal FGF2 levels and neurogenesis are reduced. These mice exhibit depressive-like behavior that is reversed by FGF2 administration. Indeed, studies in cultured hippocampal neurons reveal that NF-α1 treatment directly upregulates FGF2 expression through extracellular signal-regulated kinase-Sp1 signaling. Thus, during short-term CRS, hippocampal NF-α1 expression is upregulated and has a key role in preventing the onset of depressive-like behavior through enhanced FGF2-mediated neurogenesis. To evaluate the therapeutic potential of this pathway, we examined, rosiglitazone (Rosi), a PPARγ agonist, which has been shown to have antidepressant activity in rodents and humans. Rosi upregulates FGF2 expression in a NF-α1-dependent manner in hippocampal neurons. Mice fed Rosi show increased hippocampal NF-α1 levels and neurogenesis compared with controls, thereby indicating the antidepressant action of this drug. Development of drugs that activate the NF-α1/FGF2/neurogenesis pathway can offer a new approach to depression therapy.
Collapse
Affiliation(s)
- Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Saravana R. K. Murthy
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir Senatorov
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erwan Thouennon
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niamh X. Cawley
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dipendra K. Aryal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Sohyun Ahn
- Program in Genomics Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beata Lecka-Czernik
- Departments of Orthopaedic Surgery and Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, Ohio 43614, USA
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA,Departments of Neurobiology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA,Correspondence should be addressed to: Dr. Y. Peng Loh, 49 Convent Drive, Bldg. 49, Room 6C80, National Institutes of Health, Bethesda, MD 20892, USA. , Tel: 301-496-3239, Fax: 301-496-9938
| |
Collapse
|
62
|
carboxypeptidase E-ΔN, a neuroprotein transiently expressed during development protects embryonic neurons against glutamate neurotoxicity. PLoS One 2014; 9:e112996. [PMID: 25426952 PMCID: PMC4245097 DOI: 10.1371/journal.pone.0112996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/17/2014] [Indexed: 12/04/2022] Open
Abstract
Neuroprotective proteins expressed in the fetus play a critical role during early embryonic neurodevelopment, especially during maternal exposure to alcohol and drugs that cause stress, glutamate neuroexcitotoxicity, and damage to the fetal brain, if prolonged. We have identified a novel protein, carboxypeptidase E-ΔN (CPE-ΔN), which is a splice variant of CPE that has neuroprotective effects on embryonic neurons. CPE-ΔN is transiently expressed in mouse embryos from embryonic day 5.5 to postnatal day 1. It is expressed in embryonic neurons, but not in 3 week or older mouse brains, suggesting a function primarily in utero. CPE-ΔN expression was up-regulated in embryonic hippocampal neurons in response to dexamethasone treatment. CPE-ΔN transduced into rat embryonic cortical and hippocampal neurons protected them from glutamate- and H2O2-induced cell death. When transduced into embryonic cortical neurons, CPE-ΔN was found in the nucleus and enhanced the transcription of FGF2 mRNA. Embryonic cortical neurons challenged with glutamate resulted in attenuated FGF2 levels and cell death, but CPE-ΔN transduced neurons treated in the same manner showed increased FGF2 expression and normal viability. This neuroprotective effect of CPE-ΔN was mediated by secreted FGF2. Through receptor signaling, FGF2 activated the AKT and ERK signaling pathways, which in turn increased BCL-2 expression. This led to inhibition of caspase-3 activity and cell survival.
Collapse
|
63
|
Liu A, Shao C, Jin G, Liu R, Hao J, Shao Z, Liu Q, Hu X. Downregulation of CPE regulates cell proliferation and chemosensitivity in pancreatic cancer. Tumour Biol 2014; 35:12459-65. [PMID: 25374060 DOI: 10.1007/s13277-014-2564-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common cancers worldwide and a leading cause of cancer-related death. Discovering novel targets is a key for its therapy. Carboxypeptidase E (CPE), a subtype of the pro-protein convertases, has been shown to be upregulated in many types of cancer, yet its function in PC remains elusive. The expressions of CPE in PC cell lines and cancer patients were investigated by Western blot and qRT-PCR. In PC cell line BX-pc-3, CPE was downregulated and its effect on cancer cell proliferation, migration, cisplatin chemosensitivity, and in vivo tumor growth was analyzed by Western blot, proliferation assay, invasion assay, and in vivo transplantation, respectively. The expression of nuclear factor-kappaB (NF-κB), a possible downstream target of CPE was examined by Western blot upon CPE regulation in PC cells, and the effects of inhibiting NF-κB on PC cell invasion and proliferation were examined. CPE was significantly upregulated in PC cell lines and tumor tissues. Proliferation and invasion assays indicated that downregulation of CPE inhibited cancer cell growth and migration and increased chemosensitivity to cisplatin. Inoculation of small interfering RNA (siRNA) transfected BX-pc-3 cells into null mice demonstrated that downregulation of CPE prevented tumor growth in vivo. NF-κB was directly regulated by CPE in pancreatic cancer, and siRNA-mediated inhibition of NF-κB exerted similar anti-tumor effect as downregulating CPE. Taken together, our results demonstrate that CPE plays an important role in pancreatic cancer. Inhibition of CPE may serve as a potential target for PC therapeutics.
Collapse
Affiliation(s)
- Anan Liu
- Department of Pancreatic Surgery, Changhai Hospital of Second Military Medical University, Shanghai, 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Mancuso P, O′Brien E, Prano J, Goel D, Aronoff DM. No Impairment in host defense against Streptococcus pneumoniae in obese CPEfat/fat mice. PLoS One 2014; 9:e106420. [PMID: 25203099 PMCID: PMC4159279 DOI: 10.1371/journal.pone.0106420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/06/2014] [Indexed: 12/16/2022] Open
Abstract
In the US and globally, dramatic increases in the prevalence of adult and childhood obesity have been reported during the last 30 years. In addition to cardiovascular disease, type II diabetes, and liver disease, obesity has recently been recognized as an important risk factor for influenza pneumonia. During the influenza pandemic of 2009, obese individuals experienced a greater severity of illness from the H1N1 virus. In addition, obese mice have also been shown to exhibit increased lethality and aberrant pulmonary inflammatory responses following influenza infection. In contrast to influenza, the impact of obesity on bacterial pneumonia in human patients is controversial. In this report, we compared the responses of lean WT and obese CPEfat/fat mice following an intratracheal infection with Streptococcus pneumoniae, the leading cause of community-acquired pneumonia. At 16 weeks of age, CPEfat/fat mice develop severe obesity, hyperglycemia, elevated serum triglycerides and leptin, and increased blood neutrophil counts. There were no differences between lean WT and obese CPEfat/fat mice in survival or lung and spleen bacterial burdens following intratracheal infection with S. pneumoniae. Besides a modest increase in TNF-α levels and increased peripheral blood neutrophil counts in CPEfat/fat mice, there were not differences in lung or serum cytokines after infection. These results suggest that obesity, accompanied by hyperglycemia and modestly elevated triglycerides, at least in the case of CPEfat/fat mice, does not impair innate immunity against pneumococcal pneumonia.
Collapse
Affiliation(s)
- Peter Mancuso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Edmund O′Brien
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joseph Prano
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Deepti Goel
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David M. Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
65
|
Kim HJ, Hong J, Yoon HJ, Yoon YR, Kim SY. Carboxypeptidase E is a novel modulator of RANKL-induced osteoclast differentiation. Mol Cells 2014; 37:685-90. [PMID: 25220258 PMCID: PMC4179137 DOI: 10.14348/molcells.2014.0179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 12/03/2022] Open
Abstract
Osteoclasts are large polykaryons that have the unique capacity to degrade bone and are generated by the differentiation of myeloid lineage progenitors. To identify the genes involved in osteoclast development, we performed microarray analysis, and we found that carboxypeptidase E (CPE), a prohormone processing enzyme, was highly upregulated in osteoclasts compared with their precursors, bone marrow-derived macrophages (BMMs). Here, we demonstrate a novel role for CPE in receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. The overexpression of CPE in BMMs increases the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts and the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are key regulators in osteoclastogenesis. Furthermore, employing CPE knockout mice, we show that CPE deficiency attenuates osteoclast formation. Together, our data suggest that CPE might be an important modulator of RANKL-induced osteoclast differentiation.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, School of Medicine, Kyungpook National University, Daegu 700-422, Korea
- Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu 700-412, Korea
| | - JungMin Hong
- Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu 700-412, Korea
| | - Hye-Jin Yoon
- Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu 700-412, Korea
| | - Young-Ran Yoon
- Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, School of Medicine, Kyungpook National University, Daegu 700-422, Korea
| | - Shin-Yoon Kim
- Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu 700-412, Korea
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Daegu 700-422, Korea
| |
Collapse
|
66
|
Dahm PH, Richards JB, Karmouty-Quintana H, Cromar KR, Sur S, Price RE, Malik F, Spencer CY, Barreno RX, Hashmi SS, Blackburn MR, Haque IU, Johnston RA. Effect of antigen sensitization and challenge on oscillatory mechanics of the lung and pulmonary inflammation in obese carboxypeptidase E-deficient mice. Am J Physiol Regul Integr Comp Physiol 2014; 307:R621-33. [PMID: 25009214 DOI: 10.1152/ajpregu.00205.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atopic, obese asthmatics exhibit airway obstruction with variable degrees of eosinophilic airway inflammation. We previously reported that mice obese as a result of a genetic deficiency in either leptin (ob/ob mice) or the long isoform of the leptin receptor (db/db mice) exhibit enhanced airway obstruction in the presence of decreased numbers of bronchoalveolar lavage fluid (BALF) eosinophils compared with lean, wild-type mice following antigen (ovalbumin; OVA) sensitization and challenge. To determine whether the genetic modality of obesity induction influences the development of OVA-induced airway obstruction and OVA-induced pulmonary inflammation, we examined indices of these sequelae in mice obese as a result of a genetic deficiency in carboxypeptidase E, an enzyme that processes prohormones and proneuropeptides involved in satiety and energy expenditure (Cpe(fat) mice). Accordingly, Cpe(fat) and lean, wild-type (C57BL/6) mice were sensitized to OVA and then challenged with either aerosolized PBS or OVA. Compared with genotype-matched, OVA-sensitized and PBS-challenged mice, OVA sensitization and challenge elicited airway obstruction and increased BALF eosinophils, macrophages, neutrophils, IL-4, IL-13, IL-18, and chemerin. However, OVA challenge enhanced airway obstruction and pulmonary inflammation in Cpe(fat) compared with wild-type mice. These results demonstrate that OVA sensitization and challenge enhance airway obstruction in obese mice regardless of the genetic basis of obesity, whereas the degree of OVA-induced pulmonary inflammation is dependent on the genetic modality of obesity induction. These results have important implications for animal models of asthma, as modeling the pulmonary phenotypes for subpopulations of atopic, obese asthmatics critically depends on selecting the appropriate mouse model.
Collapse
Affiliation(s)
- Paul H Dahm
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Jeremy B Richards
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Kevin R Cromar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Sanjiv Sur
- Division of Allergy and Immunology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston School of Medicine, Galveston, Texas
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Chantal Y Spencer
- Pediatric Pulmonary Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Ramon X Barreno
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Syed S Hashmi
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
67
|
Insulin regulates carboxypeptidase E by modulating translation initiation scaffolding protein eIF4G1 in pancreatic β cells. Proc Natl Acad Sci U S A 2014; 111:E2319-28. [PMID: 24843127 DOI: 10.1073/pnas.1323066111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Insulin resistance, hyperinsulinemia, and hyperproinsulinemia occur early in the pathogenesis of type 2 diabetes (T2D). Elevated levels of proinsulin and proinsulin intermediates are markers of β-cell dysfunction and are strongly associated with development of T2D in humans. However, the mechanism(s) underlying β-cell dysfunction leading to hyperproinsulinemia is poorly understood. Here, we show that disruption of insulin receptor (IR) expression in β cells has a direct impact on the expression of the convertase enzyme carboxypeptidase E (CPE) by inhibition of the eukaryotic translation initiation factor 4 gamma 1 translation initiation complex scaffolding protein that is mediated by the key transcription factors pancreatic and duodenal homeobox 1 and sterol regulatory element-binding protein 1, together leading to poor proinsulin processing. Reexpression of IR or restoring CPE expression each independently reverses the phenotype. Our results reveal the identity of key players that establish a previously unknown link between insulin signaling, translation initiation, and proinsulin processing, and provide previously unidentified mechanistic insight into the development of hyperproinsulinemia in insulin-resistant states.
Collapse
|
68
|
Mehta R, Birerdinc A, Wang L, Younoszai Z, Moazzez A, Elariny H, Goodman Z, Chandhoke V, Baranova A, Younossi ZM. Expression of energy metabolism related genes in the gastric tissue of obese individuals with non-alcoholic fatty liver disease. BMC Gastroenterol 2014; 14:72. [PMID: 24716593 PMCID: PMC4021272 DOI: 10.1186/1471-230x-14-72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 04/02/2014] [Indexed: 12/18/2022] Open
Abstract
Background Stomach is an integral part of the energy balance regulating circuit. Studies exploring the effects of cross-system changes in the energy homeostasis in stomach tissue are scarce. The proximity of the stomach to liver - the most common secondary target affected by obesity – suggests that these two organs are exposed to each other’s local secretion. Therefore, we aimed at expression profiling of energy metabolism associated genes in the gastric tissue of obese non-alcoholic fatty liver disease (NAFLD) patients. Methods A total of 24 patients with histologically-proven NAFLD were included. In the gastric tissue, gene expression profiling of 84 energy metabolism associated genes was carried out. Results The accumulation of the fat in the liver parenchyma is accompanied by downregulation of genes encoding for carboxypeptidase E (CPE) and Interleukin 1B (IL1B) in the gastric mucosa of same patient. In patients with high grade hepatic steatosis, Interleukin 1 beta encoding gene with anorexigenic function, IL1B was downregulated. The levels expression of 21 genes, including ADRA2B, CNR1 and LEP were significantly altered in the gastric tissue of NAFLD patients with hepatic inflammation. There were also indications of an increase in the opioid signaling within gastric mucosa that may results in a shift to proinflammatory environment within this organ and contribute to systemic inflammation and the pathogenic processes in hepatic parenchyma. Conclusions We have shown differential expression of energy metabolism associated genes in the gastric tissue of obese NAFLD patients. Importantly, these gene expression profiles are associated with changes in the hepatic parenchyma as reflected in increased scores for hepatic steatosis, inflammation, fibrosis and NASH. This study suggests the complex interplay of multiple organs in the pathogenesis of obesity-related complications such as NAFLD and provides further evidence supporting an important role for gastric tissue in promoting obesity-related complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ancha Baranova
- Betty and Guy Beatty Obesity and Liver Program, Inova Health System, Falls Church, VA, USA.
| | | |
Collapse
|
69
|
Cheng Y, Cawley NX, Loh YP. Carboxypeptidase E (NF-α1): a new trophic factor in neuroprotection. Neurosci Bull 2014; 30:692-6. [PMID: 24691800 DOI: 10.1007/s12264-013-1430-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 12/15/2022] Open
Abstract
Carboxypeptidase E (CPE) is a prohormone-processing enzyme and sorting receptor that functions intracellularly. However, recent studies have demonstrated that CPE acts as a trophic factor extracellularly to up-regulate the expression of a pro-survival gene. This mini-review summarizes the roles of CPE in neuroprotection and the implications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
70
|
Kumar S, Tomar AK, Singh S, Gill K, Dey S, Singh S, Yadav S. Heparin binding carboxypeptidase E protein exhibits antibacterial activity in human semen. Int J Biol Macromol 2014; 64:319-27. [PMID: 24365672 DOI: 10.1016/j.ijbiomac.2013.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 02/07/2023]
Abstract
Carboxypeptidase E (CPE) cleaves basic amino acid residues at the C-terminal end and involves in the biosynthesis of numerous peptide hormones and neurotransmitters. It was purified from human seminal plasma by ion exchange, heparin affinity and gel filtration chromatography followed by identification through SDS-PAGE and MALDI-TOF/MS analysis, which was further confirmed by western blotting. CPE was characterized as glycoprotein by Periodic Acid Schiff (PAS) staining and treating with deglycosylating enzyme N-glycosidase F. The interaction of CPE with heparin was illustrated by surface plasmon resonance (SPR) and in silico interaction analysis. The association constant (KA) and dissociation constant (KD) of CPE with heparin was determined by SPR and found to be 1.06 × 10(5)M and 9.46 × 10(-6)M, respectively. It was detected in human spermatozoa also by western blotting using mouse anti-CPE primary antibody. 20-100 μg/ml concentration of CPE was observed as highly effective in killing Escherichia coli by colony forming unit (CFU) assay. We suggest that CPE might act not only in the innate immunity of male reproductive tract but also regulate sperm fertilization process by interacting heparin.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sudhuman Singh
- School of Life Sciences, Jawaharlal Nehru University (JNU), New Delhi, India
| | - Kamaldeep Gill
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sarman Singh
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
71
|
Liu M, Wright J, Guo H, Xiong Y, Arvan P. Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. VITAMINS AND HORMONES 2014; 95:35-62. [PMID: 24559913 DOI: 10.1016/b978-0-12-800174-5.00002-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin is an essential hormone for maintaining metabolic homeostasis in the body. To make fully bioactive insulin, pancreatic beta cells initiate synthesis of the insulin precursor, preproinsulin, at the cytosolic side of the endoplasmic reticulum (ER), whereupon it undergoes co- and post-translational translocation across the ER membrane. Preproinsulin is cleaved by signal peptidase to form proinsulin that folds on the luminal side of the ER, forming three evolutionarily conserved disulfide bonds. Properly folded proinsulin forms dimers and exits from the ER, trafficking through Golgi complex into immature secretory granules wherein C-peptide is endoproteolytically excised, allowing fully bioactive two-chain insulin to ultimately be stored in mature granules for insulin secretion. Although insulin biosynthesis has been intensely studied in recent decades, the earliest events, including proinsulin entry and exit from the ER, have been relatively understudied. However, over the past 5 years, more than 20 new insulin gene mutations have been reported to cause a new syndrome termed Mutant INS-gene-induced Diabetes of Youth (MIDY). Although these mutants have not been completely characterized, most of them affect proinsulin entry and exit from the ER. Here, we summarize our current knowledge about the early events of insulin biosynthesis and review recent advances in understanding how defects in these events may lead to pancreatic beta cell failure.
Collapse
Affiliation(s)
- Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Metabolism, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Jordan Wright
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yi Xiong
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
72
|
Makani V, Sultana R, Sie KS, Orjiako D, Tatangelo M, Dowling A, Cai J, Pierce W, Butterfield DA, Hill J, Park J. Annexin A1 complex mediates oxytocin vesicle transport. J Neuroendocrinol 2013; 25:1241-1254. [PMID: 24118254 PMCID: PMC3975805 DOI: 10.1111/jne.12112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 09/24/2013] [Accepted: 09/29/2013] [Indexed: 12/20/2022]
Abstract
Oxytocin is a major neuropeptide that modulates the brain functions involved in social behaviour and interaction. Despite of the importance of oxytocin for the neural control of social behaviour, little is known about the molecular mechanism(s) by which oxytocin secretion in the brain is regulated. Pro-oxytocin is synthesised in the cell bodies of hypothalamic neurones in the supraoptic and paraventricular nuclei and processed to a 9-amino-acid mature form during post-Golgi transport to the secretion sites at the axon terminals and somatodendritic regions. Oxytocin secreted from the somatodendritic regions diffuses throughout the hypothalamus and its neighbouring brain regions. Some oxytocin-positive axons innervate and secrete oxytocin to the brain regions distal to the hypothalamus. Brain oxytocin binds to its receptors in the brain regions involved in social behaviour. Oxytocin is also secreted from the axon terminal at the posterior pituitary gland into the blood circulation. We have discovered a new molecular complex consisting of annexin A1 (ANXA1), A-kinase anchor protein 150 (AKAP150) and microtubule motor that controls the distribution of oxytocin vesicles between the axon and the cell body in a protein kinase A (PKA)- and protein kinase C (PKC)-sensitive manner. ANXA1 showed significant co-localisation with oxytocin vesicles. Activation of PKA enhanced the association of kinesin-2 with ANXA1, thus increasing the axon-localisation of oxytocin vesicles. Conversely, activation of PKC decreased the binding of kinesin-2 to ANXA1, thus attenuating the axon-localisation of oxytocin vesicles. The result of the present study suggest that ANXA1 complex coordinates the actions of PKA and PKC to control the distribution of oxytocin vesicles between the axon and the cell body.
Collapse
Affiliation(s)
- Vishruti Makani
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506
| | - Khin Sander Sie
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Doris Orjiako
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Marco Tatangelo
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Abigail Dowling
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Jian Cai
- Department of Pharmacology, University of Louisville, Louisville, KY 40292
| | - William Pierce
- Department of Pharmacology, University of Louisville, Louisville, KY 40292
| | | | - Jennifer Hill
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Joshua Park
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
- To whom correspondence should be addressed. Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, , Phone: (419) 383-4085, Fax: (419) 383-3008
| |
Collapse
|
73
|
Zhang JH, Zhou D, You J, Tang BS, Li PY, Tang SS. Differential processing of neuropeptide proprotein in human breast adenocarcinoma. J Endocrinol Invest 2013; 36:745-52. [PMID: 23580127 DOI: 10.3275/8935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The processing of proprotein convertase (PC)-mediated neuropeptide plays a very important role in carcinogenesis and tumor proliferation. AIM To investigate proneuropeptide processing mechanism in tumorigenesis and tumor proliferation. MATERIALS AND METHODS The expression and processing profiles of PC1, carboxypeptidase E (CPE), PC2, GHRH, or neuropeptide Y (NPY) gene and protein level were investigated between 42 human breast tumor tissues and 21 tumor-adjacent normal tissues. RESULTS Gene analyses indicated that the proPC1, CPE, or preproNPY gene had higher expression in the breast tumor tissues, whereas the proPC2 or preproGHRH gene showed lower expression in the tissues. Protein analyses showed that the proPC1, PC1, CPE, GHRH, and preproNPY proteins were upregulated in the tumor tissues, whereas the proPC2, PC2, preproGHRH, and NPY proteins were down-regulated in them. The tissue results were highly corroborated with the serum data from the tumor patients and healthy women. CONCLUSIONS The higher PC1 and CPE expressions as well as the transformation of more proGHRH into active GHRH peptide suggest stronger PC1/CPE-mediated neuropeptide processing in the tumor, whereas the lower PC2 expression as well as the transformation of less proNPY into active NPY peptide suggests a weak PC2-mediated processing in it. The alterations of the convertase expressions and processing show that there is a differential proprotein processing system in the tumor, which leads to the abnormal distributions of species, ratio, and concentration of (pro)peptide(s) in the microenvironment of cells. The latter may contribute to cancer progression.
Collapse
Affiliation(s)
- J H Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
74
|
Murthy SRK, Thouennon E, Li WS, Cheng Y, Bhupatkar J, Cawley NX, Lane M, Merchenthaler I, Loh YP. Carboxypeptidase E protects hippocampal neurons during stress in male mice by up-regulating prosurvival BCL2 protein expression. Endocrinology 2013; 154:3284-93. [PMID: 23825125 PMCID: PMC3749481 DOI: 10.1210/en.2013-1118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prolonged chronic stress causing elevated plasma glucocorticoids leads to neurodegeneration. Adaptation to stress (allostasis) through neuroprotective mechanisms can delay this process. Studies on hippocampal neurons have identified carboxypeptidase E (CPE) as a novel neuroprotective protein that acts extracellularly, independent of its enzymatic activity, although the mechanism of action is unclear. Here, we aim to determine if CPE plays a neuroprotective role in allostasis in mouse hippocampus during chronic restraint stress (CRS), and the molecular mechanisms involved. Quantitative RT-PCR/in situ hybridization and Western blots were used to assay for mRNA and protein. After mild CRS (1 h/d for 7 d), CPE protein and mRNA were significantly elevated in the hippocampal CA3 region, compared to naïve littermates. In addition, luciferase reporter assays identified a functional glucocorticoid regulatory element within the cpe promoter that mediated the up-regulation of CPE expression in primary hippocampal neurons following dexamethasone treatment, suggesting that circulating plasma glucocorticoids could evoke a similar effect on CPE in the hippocampus in vivo. Overexpression of CPE in hippocampal neurons, or CRS in mice, resulted in elevated prosurvival BCL2 protein/mRNA and p-AKT levels in the hippocampus; however, CPE(-/-) mice showed a decrease. Thus, during mild CRS, CPE expression is up-regulated, possibly contributed by glucocorticoids, to mediate neuroprotection of the hippocampus by enhancing BCL2 expression through AKT signaling, and thereby maintaining allostasis.
Collapse
MESH Headings
- Allostasis
- Animals
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/pathology
- Carboxypeptidase H/biosynthesis
- Carboxypeptidase H/genetics
- Carboxypeptidase H/metabolism
- Cells, Cultured
- Embryo, Mammalian/cytology
- Genes, Reporter/drug effects
- Glucocorticoids/metabolism
- Glucocorticoids/pharmacology
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Promoter Regions, Genetic/drug effects
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- Restraint, Physical
- Severity of Illness Index
- Stress, Physiological
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- S R K Murthy
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Cheng Y, Cawley NX, Loh YP. Carboxypeptidase E/NFα1: a new neurotrophic factor against oxidative stress-induced apoptotic cell death mediated by ERK and PI3-K/AKT pathways. PLoS One 2013; 8:e71578. [PMID: 23977080 PMCID: PMC3744492 DOI: 10.1371/journal.pone.0071578] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/07/2013] [Indexed: 12/23/2022] Open
Abstract
Mice lacking Carboxypeptidase E (CPE) exhibit degeneration of hippocampal neurons caused by stress at weaning while over-expression of CPE in hippocampal neurons protect them against hydrogen peroxide-induced cell death. Here we demonstrate that CPE acts as an extracellular trophic factor to protect neurons. Rat hippocampal neurons pretreated with purified CPE protected the cells against hydrogen peroxide-, staurosporine- and glutamate-induced cell death. This protection was observed even when hippocampal neurons were treated with an enzymatically inactive mutant CPE or with CPE in the presence of its inhibitor, GEMSA. Purified CPE added to the culture medium rescued CPE knock-out hippocampal neurons from cell death. Both ERK and AKT were phosphorylated within 15 min after CPE treatment of hippocampal neurons and, using specific inhibitors, both signaling pathways were shown to be required for the neuroprotective effect. The expression of the anti-apoptotic protein, B-cell lymphoma 2 (BCL-2), was up-regulated after hippocampal neurons were treated with CPE. Furthermore, hydrogen peroxide induced down-regulation of BCL-2 protein and subsequent activation of caspase-3 were inhibited by CPE treatment. Thus, this study has identified CPE as a new neurotrophic factor that can protect neurons against degeneration through the activation of ERK and AKT signaling pathways to up-regulate expression of BCL-2.
Collapse
Affiliation(s)
- Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Niamh X. Cawley
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
76
|
Murthy SRK, Dupart E, Al-Sweel N, Chen A, Cawley NX, Loh YP. Carboxypeptidase E promotes cancer cell survival, but inhibits migration and invasion. Cancer Lett 2013; 341:204-13. [PMID: 23941827 DOI: 10.1016/j.canlet.2013.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 01/30/2023]
Abstract
Carboxypeptidase E (CPE), a prohormone processing enzyme is highly expressed and secreted from (neuro)endocrine tumors and gliomas, and has been implicated in cancer progression by promoting tumor growth. Our study demonstrates that secreted or exogenously applied CPE promotes survival of pheochromocytoma (PC12) and hepatocellular carcinoma (MHCC97H) cells under nutrient starvation and hypoxic conditions, but had no effect on their proliferation. CPE also reduced migration and invasion of fibrosarcoma (HT1080) cells. We show that CPE treatment mediates survival of MHCC97H cells during metabolic stress by up-regulating the expression of anti-apoptotic protein BCL-2, and other pro-survival genes, via activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Saravana R K Murthy
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| | - Evan Dupart
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| | - Najla Al-Sweel
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| | - Alexander Chen
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| | - Niamh X Cawley
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| |
Collapse
|
77
|
Overexpression of CPE-ΔN predicts poor prognosis in colorectal cancer patients. Tumour Biol 2013; 34:3691-9. [PMID: 23852859 DOI: 10.1007/s13277-013-0952-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022] Open
Abstract
Carboxypeptidase E (CPE) is one of the most important carboxypeptidases involved in biosynthesis of numerous peptide hormones and neurotransmitters and has an important role in endocrine regulation. A splice variant of CPE (CPE-ΔN) has been detected and the mechanism of CPE-ΔN action in tumorigenesis has been studied in many different cancers. The aim of this study was to examine CPE-ΔN expression in human colorectal cancer (CRC) and to evaluate its possible use as a potential prognostic marker. Two hundred nineteen primary colorectal tumors and corresponding normal tissues were included in the study. We have analyzed CPE-ΔN isoform expression by qRT-PCR and Western blot in 219 CRC patients. Correlations between CPE-ΔN mRNA expression and clinicopathological variables were determined with chi-square tests. Survival probabilities were determined using Kaplan-Meier analysis, and univariate and multivariate analyses of the prognostic factors were performed with a Cox regression model. Our results show that CPE-ΔN is overexpressed in colorectal tumor tissue and that high CPE-ΔN mRNA expression is closely correlated with tumor differentiation, pT classification, pN classification, tumor recurrence, and lymph node metastasis (P = 0.042, 0.036, 0.031, 0.006, and 0.008, respectively). However, no correlation was observed between CPE-ΔN expression and age, gender, tumor localization, gross features, and the tumor size. In addition, patients with high CPE-ΔN expression had a significantly shorter survival (P < 0.001, logrank test). Tumor differentiation, gross feature, pT classification, pN classification, tumor recurrence, lymph node metastasis, and CPE-ΔN status were significantly associated with poor prognosis after performing a univariate Cox survival analysis. High CPE-ΔN expression was also identified as an independent prognostic factor using a multivariate analysis (P = 0.011). Based on these results, we can conclude that CPE-ΔN expression might be a potential prognostic marker for colorectal cancer patients.
Collapse
|
78
|
Coulon M, Wellman CL, Marjara IS, Janczak AM, Zanella AJ. Early adverse experience alters dendritic spine density and gene expression in prefrontal cortex and hippocampus in lambs. Psychoneuroendocrinology 2013; 38:1112-21. [PMID: 23265310 DOI: 10.1016/j.psyneuen.2012.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/22/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023]
Abstract
In the laboratory, prenatal stress produces alterations in the structure and function of corticolimbic neurons. Here we report changes in gene expression and corticolimbic dendritic spine morphology in the offspring of pregnant ewes subjected to aversive interactions with human handlers during the last five weeks of pregnancy (AVS) compared to control dams that received gentle handling (GEN). AVS lambs had higher spine density on pyramidal neurons in area CA1 of the hippocampus and in medial prefrontal cortex compared to GEN lambs, as well as a lower ratio of mushroom spines to stubby and thin spines in area CA1. Expression of genes involved in brain development and spine morphogenesis was decreased in hippocampus and prefrontal cortex in AVS compared to GEN lambs. This study is the first demonstration that an ecologically relevant aversive experience in a field setting alters neuronal structure similarly to previous reports from laboratory settings and that even for animals domesticated over 12,000 years ago, an apparently mild stressor, resulting from human-animal interactions, can have similarly profound impacts on corticolimbic morphology.
Collapse
Affiliation(s)
- Marjorie Coulon
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | |
Collapse
|
79
|
Skalka N, Caspi M, Caspi E, Loh YP, Rosin-Arbesfeld R. Carboxypeptidase E: a negative regulator of the canonical Wnt signaling pathway. Oncogene 2013; 32:2836-47. [PMID: 22824791 PMCID: PMC3676431 DOI: 10.1038/onc.2012.308] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 06/08/2012] [Accepted: 06/10/2012] [Indexed: 12/26/2022]
Abstract
Aberrant activation of the canonical Wnt signal transduction pathway is involved in many diseases including cancer and is especially implicated in the development and progression of colorectal cancer. The key effector protein of the canonical Wnt pathway is β-catenin, which functions with T-cell factor/lymphoid enhancer factor to activate expression of Wnt target genes. In this study, we used a new functional screen based on cell survival in the presence of cDNAs encoding proteins that activate the Wnt pathway thus identifying novel Wnt signaling components. Here we identify carboxypeptidase E (|CPE) and its splice variant, ΔN-CPE, as novel regulators of the Wnt pathway. We show that whereas ΔN-CPE activates the Wnt signal, the full-length CPE (F-CPE) protein is an inhibitor of Wnt/β-catenin signaling. F-CPE forms a complex with the Wnt3a ligand and the Frizzled receptor. Moreover, F-CPE disrupts disheveled-induced signalosomes that are important for transducing the Wnt signal and reduces β-catenin protein levels and activity. Taken together, our data indicate that F-CPE and ΔN-CPE regulate the canonical Wnt signaling pathway negatively and positively, respectively, and demonstrate that this screening approach can be a rapid means for isolation of novel Wnt signaling components.
Collapse
Affiliation(s)
- N Skalka
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - M Caspi
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - E Caspi
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - YP Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - R Rosin-Arbesfeld
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
80
|
Tanco S, Lorenzo J, Garcia-Pardo J, Degroeve S, Martens L, Aviles FX, Gevaert K, Van Damme P. Proteome-derived peptide libraries to study the substrate specificity profiles of carboxypeptidases. Mol Cell Proteomics 2013; 12:2096-110. [PMID: 23620545 DOI: 10.1074/mcp.m112.023234] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Through processing peptide and protein C termini, carboxypeptidases participate in the regulation of various biological processes. Few tools are however available to study the substrate specificity profiles of these enzymes. We developed a proteome-derived peptide library approach to study the substrate preferences of carboxypeptidases. Our COFRADIC-based approach takes advantage of the distinct chromatographic behavior of intact peptides and the proteolytic products generated by the action of carboxypeptidases, to enrich the latter and facilitate its MS-based identification. Two different peptide libraries, generated either by chymotrypsin or by metalloendopeptidase Lys-N, were used to determine the substrate preferences of human metallocarboxypeptidases A1 (hCPA1), A2 (hCPA2), and A4 (hCPA4). In addition, our approach allowed us to delineate the substrate specificity profile of mouse mast cell carboxypeptidase (MC-CPA or mCPA3), a carboxypeptidase suggested to function in innate immune responses regulation and mast cell granule homeostasis, but which thus far lacked a detailed analysis of its substrate preferences. mCPA3 was here shown to preferentially remove bulky aromatic amino acids, similar to hCPA2. This was also shown by a hierarchical cluster analysis, grouping hCPA1 close to hCPA4 in terms of its P1 primed substrate specificity, whereas hCPA2 and mCPA3 cluster separately. The specificity profile of mCPA3 may further aid to elucidate the function of this mast cell carboxypeptidase and its biological substrate repertoire. Finally, we used this approach to evaluate the substrate preferences of prolylcarboxypeptidase, a serine carboxypeptidase shown to cleave C-terminal amino acids linked to proline and alanine.
Collapse
Affiliation(s)
- Sebastian Tanco
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Rowzee AM, Perez-Riveros PJ, Zheng C, Krygowski S, Baum BJ, Cawley NX. Expression and secretion of human proinsulin-B10 from mouse salivary glands: implications for the treatment of type I diabetes mellitus. PLoS One 2013; 8:e59222. [PMID: 23554999 PMCID: PMC3598661 DOI: 10.1371/journal.pone.0059222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/12/2013] [Indexed: 12/29/2022] Open
Abstract
Adenovirus (Ad) mediated expression of therapeutic proteins from salivary glands can result in the delivery of biologically active proteins into the circulation where they impart their physiological function. In recent years, Ad vector delivery to salivary glands (SGs) has emerged as a viable option for gene therapy. Here, we engineered a variant of human proinsulin (hProinsulin-B10) into an Ad vector and demonstrated its ability to transduce cell lines, and express a bioactive protein that induces the phosphorylation of AKT, a key insulin signaling molecule. We also examined its expression in mice following delivery of the vector to the parotid gland (PTG), the submandibular gland (SMG) or to the liver via the tail vein and assessed transgenic protein expression and vector containment for each delivery method. In all cases, hProinsulin-B10 was expressed and secreted into the circulation. Lower levels of circulating hProinsulin-B10 were obtained from the PTG while higher levels were obtained from the tail vein and the SMG; however, vector particle containment was best when delivered to the SMG. Expression of hProinsulin-B10 in the SMG of chemically induced diabetic mice prevented excessive hyperglycemia observed in untreated mice. These results demonstrate that hProinsulin-B10 can be expressed and secreted into the circulation from SGs and can function physiologically in vivo. The ability to remediate a diabetic phenotype in a model of type 1 diabetes mellitus is the first step in an effort that may lead to a possible therapy for diabetes.
Collapse
Affiliation(s)
- Anne M. Rowzee
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paola J. Perez-Riveros
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah Krygowski
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bruce J. Baum
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Niamh X. Cawley
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
82
|
Denis CJ, Lambeir AM. The potential of carboxypeptidase M as a therapeutic target in cancer. Expert Opin Ther Targets 2013; 17:265-79. [PMID: 23294303 DOI: 10.1517/14728222.2012.741122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In the recent literature, carboxypeptidase M (CPM) emerged as a potential cancer biomarker. CPM modulates receptor signaling of kinins, anaphylatoxins, and chemokines. These CPM substrates affect proliferation, angiogenesis, and apoptosis of cancer cells. What is the evidence that CPM is a drug target for cancer therapy? AREAS COVERED The literature was searched using PubMed with the search terms "carboxypeptidase M" and/or "chromosome 12q13-15" eventually combined with general terms related to cancer. Information was retrieved from the GEO database and material of gene expression and proteomic studies. EXPERT OPINION CPM is a part of the molecular signature of many cancers. There is good evidence that it is useful for the discrimination and stratification of cancer types, possibly in combination with other markers such as EGFR and MDM2. Whether it is also a drug target remains to be determined. Lung, kidney, brain, and the reproductive system contain relatively high levels of CPM, but its functions in those tissues are largely unknown. CPM is expressed on tumor-associated macrophages. To facilitate the investigation of CPM in tumor-associated inflammation and in the other aspects of tumor biology, it is necessary to develop potent and selective CPM inhibitors.
Collapse
Affiliation(s)
- Catherine J Denis
- University of Antwerp, Pharmaceutical Sciences, Laboratory of Medical Biochemistry, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | | |
Collapse
|
83
|
Woronowicz A, Cawley NX, Peng Loh Y. Carbamazepine Prevents Hippocampal Neurodegeneration in Mice Lacking the Neuroprotective Protein, Carboxypetidase E. ACTA ACUST UNITED AC 2013; Suppl 1:2. [PMID: 25346878 PMCID: PMC4208313 DOI: 10.4172/2167-065x.s1-002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carboxypeptidase E (CPE) has recently been described as a neuroprotective protein, and in mice devoid of CPE, a complete loss of the hippocampal CA3 neurons is observed. The pattern of loss is characteristic of that caused by status epilepticus. We therefore set out to determine when this loss occurred, what might induce it and if it could be prevented. We found that the hippocampus was intact in 4 week old CPE knock out (KO) mice that had not undergone weaning. However, weaning of 2 or 3 week old CPE KO mice, which involves maternal separation (emotional stress) and ear tagging and tail snipping for genotyping (physical stress), resulted in degeneration of the CA3 neurons by 3 and 4 weeks of age, respectively, while the wild-type mice were unaffected. Moreover, the physical stress caused a more severe neurodegeneration phenotype than the emotional stress of the maternal separation alone. Daily treatment with carbamazepine, an antiepileptic agent, in 2 week old CPE KO mice for 2 weeks prevented the neurodegeneration, despite the weaning process at 3 weeks. No further neurodegeneration was observed 3 weeks post weaning in carbamazepine treated mice. These results showed that degeneration of the CA3 neurons in the hippocampus, previously observed in 6 week old CPE KO mice, is not due to a developmental defect, but caused by physical and emotional stress during the weaning process. This degeneration was prevented by carbamazepine suggesting that the stress associated with weaning caused epileptic-like events in the CPE KO mice.
Collapse
Affiliation(s)
- Alicja Woronowicz
- Section on Cellular Neurobiology, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute on Child Health and Human Development, National Institutes of Health, USA
| | - Niamh X Cawley
- Section on Cellular Neurobiology, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute on Child Health and Human Development, National Institutes of Health, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute on Child Health and Human Development, National Institutes of Health, USA
| |
Collapse
|
84
|
Lee C, Hu J, Ralls S, Kitamura T, Loh YP, Yang Y, Mukouyama YS, Ahn S. The molecular profiles of neural stem cell niche in the adult subventricular zone. PLoS One 2012; 7:e50501. [PMID: 23209762 PMCID: PMC3510163 DOI: 10.1371/journal.pone.0050501] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022] Open
Abstract
Neural stem cells (NSCs) reside in a unique microenvironment called the neurogenic niche and generate functional new neurons. The neurogenic niche contains several distinct types of cells and interacts with the NSCs in the subventricular zone (SVZ) of the lateral ventricle. While several molecules produced by the niche cells have been identified to regulate adult neurogenesis, a systematic profiling of autocrine/paracrine signaling molecules in the neurogenic regions involved in maintenance, self-renewal, proliferation, and differentiation of NSCs has not been done. We took advantage of the genetic inducible fate mapping system (GIFM) and transgenic mice to isolate the SVZ niche cells including NSCs, transit-amplifying progenitors (TAPs), astrocytes, ependymal cells, and vascular endothelial cells. From the isolated cells and microdissected choroid plexus, we obtained the secretory molecule expression profiling (SMEP) of each cell type using the Signal Sequence Trap method. We identified a total of 151 genes encoding secretory or membrane proteins. In addition, we obtained the potential SMEP of NSCs using cDNA microarray technology. Through the combination of multiple screening approaches, we identified a number of candidate genes with a potential relevance for regulating the NSC behaviors, which provide new insight into the nature of neurogenic niche signals.
Collapse
Affiliation(s)
- Cheol Lee
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jingqiong Hu
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sherry Ralls
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yanqin Yang
- DNA Sequencing and Genomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yoh-suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (YM); (SA)
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (YM); (SA)
| |
Collapse
|
85
|
Plá V, Paco S, Ghezali G, Ciria V, Pozas E, Ferrer I, Aguado F. Secretory sorting receptors carboxypeptidase E and secretogranin III in amyloid β-associated neural degeneration in Alzheimer's disease. Brain Pathol 2012; 23:274-84. [PMID: 22998035 DOI: 10.1111/j.1750-3639.2012.00644.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/12/2012] [Indexed: 11/29/2022] Open
Abstract
The secretory sorting receptors carboxypeptidase E (CPE) and secretogranin III (SgIII) critically activate peptidic messengers and targeting them at the regulated secretory pathway. In Alzheimer's disease (AD), the wide range of changes includes impaired function of key secretory peptidic cargos such as brain-derived neurotrophic factor (BDNF) and neuropeptides. Here, we analyzed CPE and SgIII in the cerebral cortex of AD patients and transgenic mice. In the normal human cortex, a preferential location in dendrites and perikarya was observed for CPE, whereas SgIII was mainly associated with axons and terminal-like buttons. Interestingly, SgIII and CPE were consistently detected in astroglial cell bodies and thin processes. In AD cortices, a strong wide accumulation of both sorting receptors was detected in dystrophic neurites surrounding amyloid plaques. Occasionally, increased levels of SgIII were also observed in plaque associate-reactive astrocytes. Of note, the main alterations detected for CPE and SgIII in AD patients were faithfully recapitulated by APPswe/PS1dE9 mice. These results implicate for the first time the sorting receptors for regulated secretion in amyloid β-associated neural degeneration. Because CPE and SgIII are essential in the process and targeting of neuropeptides and neurotrophins, their participation in the pathological progression of AD may be suggested.
Collapse
Affiliation(s)
- Virginia Plá
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
86
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|