51
|
Bédard P, Sanes JN. On a basal ganglia role in learning and rehearsing visual-motor associations. Neuroimage 2009; 47:1701-10. [PMID: 19341805 DOI: 10.1016/j.neuroimage.2009.03.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 03/14/2009] [Accepted: 03/17/2009] [Indexed: 11/28/2022] Open
Abstract
Fronto-striatal circuitry interacts with the midbrain dopaminergic system to mediate the learning of stimulus-response associations, and these associations often guide everyday actions, but the precise role of these circuits in forming and consolidating rules remains uncertain. A means to examine basal ganglia circuit contributions to associative motor learning is to examine these process in a lesion model system, such as Parkinson's disease (PD), a basal ganglia disorder characterized by the loss of dopamine neurons. We used functional magnetic resonance imaging (MRI) to compare brain activation of PD patients with a group of healthy aged-match participants during a visual-motor associative learning task that entailed discovering and learning arbitrary associations between a set of six visual stimuli and corresponding spatial locations by moving a joystick-controlled cursor. We tested the hypothesis that PD would recruit more areas than age-matched controls during learning and also show increased activation in commonly activated regions, probably in the parietal and premotor cortices, and the cerebellum, perhaps as compensatory mechanisms for their disrupted fronto-striatal networks. PD had no effect in acquiring the associative relationships and learning-related activation in several key frontal cortical and subcortical structures. However, we found that PD modified activation in other areas, including those in the cerebellum and frontal, and parietal cortex, particularly during initial learning. These results may suggest that the basal ganglia circuits become active more so during the initial formation of rule-based behavior.
Collapse
Affiliation(s)
- Patrick Bédard
- Department of Neuroscience, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
52
|
Beauchamp M, Dagher A, Panisset M, Doyon J. Neural substrates of cognitive skill learning in Parkinson’s disease. Brain Cogn 2008; 68:134-43. [DOI: 10.1016/j.bandc.2008.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 03/11/2008] [Accepted: 03/14/2008] [Indexed: 11/28/2022]
|
53
|
Abstract
PURPOSE OF REVIEW New insights into the psychophysiological determinants of performance changes and brain plasticity associated with motor sequence learning have recently been gained through behavioral and imaging studies in healthy individuals. In addition, using a variety of motor sequential paradigms in groups of patients affected by a movement disorder, major advances have been achieved in our understanding of the pathophysiological mechanisms underlying Parkinson's and Huntington's diseases, as well as primary forms of dystonia. RECENT FINDINGS This review begins by describing the latest findings in normal participants with regards to the dynamic alterations in neural networks observed across the different phases of motor sequence learning. It then focuses on the hotly debated issue of motor memory consolidation, highlighting the results of novel studies that investigated the role of both day and night sleep, the neural substrates and the developmental evolution mediating this process. Finally, this paper addresses current work looking at motor sequence learning in movement disorders that helps to better comprehend the functional contribution of basal ganglia structures to this type of memory, to assess the impact of such diseases on related patterns of brain activation, as well as to identify the neuronal compensatory mechanisms educed by these basal ganglia disorders. SUMMARY Such advances have major implications, not only for optimizing ways to learn new skilled behaviors in real-life situations, but also for guiding therapeutic approaches in patients with movement disorders.
Collapse
|
54
|
Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology 2008; 70:1470-7. [PMID: 18367705 PMCID: PMC4454398 DOI: 10.1212/01.wnl.0000304050.05332.9c] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To use (18)F-fluorodeoxyglucose (FDG) and PET to investigate changes in regional metabolism associated with mild cognitive impairment (MCI) in Parkinson disease (PD). Cognitive abnormalities are common in PD. However, little is known about the functional abnormalities that underlie the manifestations of MCI in this disorder. METHODS We used FDG PET to measure regional glucose metabolism in patients with PD with multiple-domain MCI (MD-MCI; n = 18), with single-domain MCI (SD-MCI; n = 15), and without MCI (N-MCI; n = 18). These patients were matched for age, education, disease duration, and motor disability. Maps of regional metabolism in the three groups were compared using statistical parametric mapping (SPM). We also computed the expression of a previously validated cognition-related spatial covariance pattern (PDCP) in the patient groups and in an age-matched healthy control cohort (n = 15). PDCP expression was compared across groups using analysis of variance. RESULTS SPM revealed decreased prefrontal and parietal metabolism (p < 0.001) in MD-MCI relative to N-MCI, as well as an increase in brainstem/cerebellar metabolism (p < 0.001) in this group. In these regions, SD-MCI occupied an intermediate position between the two other groups. PDCP expression was abnormally elevated in the N-, SD-, and MD-MCI groups (p < 0.05), increasing stepwise with worsening cognitive impairment (p < 0.01). CONCLUSIONS Early cognitive decline in Parkinson disease as defined by mild cognitive impairment is associated with discrete regional changes and abnormal metabolic network activity. The quantification of these alterations with (18)F-fluorodeoxyglucose PET may allow for the objective assessment of the progression and treatment of this disease manifestation.
Collapse
Affiliation(s)
- C Huang
- Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, 350 Community Drive, Manhasset, NY 11030, USA
| | | | | | | | | | | |
Collapse
|
55
|
Karagulle Kendi AT, Lehericy S, Luciana M, Ugurbil K, Tuite P. Altered diffusion in the frontal lobe in Parkinson disease. AJNR Am J Neuroradiol 2008; 29:501-5. [PMID: 18202242 DOI: 10.3174/ajnr.a0850] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Parkinson disease (PD) is characterized by basal ganglia abnormalities. However, there are neurodegenerative changes in PD that extend beyond the basal ganglia and that are not sufficiently evaluated with standard MR imaging. The aim of this study was to characterize whole-brain gray matter (GM) and white matter (WM) changes in PD by using diffusion tensor imaging (DTI). MATERIALS AND METHODS Thirteen control and 12 subjects with nondemented PD were examined by using DTI and 3D anatomic T1-weighted images. Statistical parametric mapping analyses of DTI and anatomic images were performed. Patients were evaluated with a variety of neurocognitive measures and the Unified Parkinson's Disease Rating Scale (UPDRS) OFF (cessation of medication) and ON (taking medications as normal) their antiparkinsonian medications. RESULTS The PD participants had dopa-responsive features as ascertained by the UPDRS OFF versus ON medications and had no cognitive impairment. Decreased fractional anisotropy (FA) was observed in subjects with PD bilaterally in the frontal lobes, including the supplementary motor area, the presupplementary motor area, and the cingulum. There were no significant differences in mean diffusivity or GM/WM attenuation between PD subjects and controls. CONCLUSION Statistical parametric mapping analysis of DTI showed changes in FA in frontal areas without volume loss. These results confirm that the neurodegenerative process extends beyond the basal ganglia in PD.
Collapse
Affiliation(s)
- A T Karagulle Kendi
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minn., USA
| | | | | | | | | |
Collapse
|
56
|
Carbon M, Ghilardi MF, Argyelan M, Dhawan V, Bressman SB, Eidelberg D. Increased cerebellar activation during sequence learning in DYT1 carriers: an equiperformance study. Brain 2007; 131:146-54. [PMID: 17947338 DOI: 10.1093/brain/awm243] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have found that motor sequence learning and related brain activation is impaired in non-manifesting (nm) carriers of the DYT1 deletion for dystonia. In the present study we used a trial-and-error sequence-learning task in conjunction with an equiperformance study design to identify the neural substrates that support sequence learning in nmDYT1 mutation carriers. Six nmDYT1 mutation carriers and six control subjects were scanned with H215O PET during the performance of a trial-and-error guided, kinematically controlled motor sequence learning task and a matched motor execution task. Controls were matched for age and performance. PET data analysis was performed using statistical parametric mapping (SPM99). Although performing at matched levels, nmDYT1 mutation carriers overactivated the lateral cerebellum and the right inferotemporal cortex relative to age-matched controls (P < 0.001). In contrast, they showed relative activation deficits in the dorsolateral prefrontal cortex bilaterally, as well as in the left anterior cingulate and the dorsal premotor cortex (P < 0.001). Prominent compensatory involvement of the cerebellum during target learning is consistent with our prior sequence-learning experiments in nmDYT1 mutation carriers. Contrasting to mutation carriers, normals used bilateral cerebellar activation in conjunction with a prominent prefrontal bilateralization only when confronted with a much higher task difficulty. nmDYT1 mutation carriers lack recruitment of these prefrontal regions that depend on modulation within the cortico-striato-pallido-thalamocortical (CSPTC) loops. Instead, they compensate solely using cerebellar activation. This observation is in keeping with recent evidence of impaired structure/function relationships within CSPTC networks in dystonia perhaps occurring on a neurodevelopmental basis. The inability to recruit the appropriate set of neocortical areas because of altered fronto-striatal connectivity may have led to the shift to cerebellar processing.
Collapse
Affiliation(s)
- Maren Carbon
- Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, New York, New York 11030, USA
| | | | | | | | | | | |
Collapse
|
57
|
Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D. Metabolic brain networks associated with cognitive function in Parkinson's disease. Neuroimage 2007; 34:714-23. [PMID: 17113310 PMCID: PMC4456012 DOI: 10.1016/j.neuroimage.2006.09.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/24/2006] [Accepted: 09/06/2006] [Indexed: 01/17/2023] Open
Abstract
The motor manifestations of Parkinson's disease (PD) have been linked to an abnormal spatial covariance pattern involving basal ganglia thalamocortical pathways. By contrast, little is known about the functional networks that underlie cognitive dysfunction in this disorder. To identify such patterns, we studied 15 non-demented PD patients using FDG PET and a voxel-based network modeling approach. We detected a significant covariance pattern that correlated (p<0.01) with performance on tests of memory and executive functioning. This PD-related cognitive pattern (PDCP) was characterized by metabolic reductions in frontal and parietal association areas and relative increases in the cerebellar vermis and dentate nuclei. To validate this pattern, we analyzed data from 32 subsequent PD patients of similar age, disease duration and severity. Prospective measurements of PDCP activity predicted memory performance (p<0.005), visuospatial function (p<0.01), and perceptual motor speed (p<0.005) in this validation sample. PDCP scores additionally exhibited an excellent degree of test-retest reliability (intraclass correlation coefficient, ICC=0.89) in patients undergoing repeat FDG PET at an 8-week interval. Unlike the PD-related motor pattern, PDCP expression was not significantly altered by antiparkinsonian treatment with either intravenous levodopa or deep brain stimulation (DBS). These findings substantiate the PDCP as a reproducible imaging marker of cognitive function in PD. Because PDCP expression is not altered by routine antiparkinsonian treatment, this measure of network activity may prove useful in clinical trials targeting the progression of non-motor manifestations of this disorder.
Collapse
Affiliation(s)
- Chaorui Huang
- Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, New York, NY 11030, USA
- Department of Neurology and Medicine, North Shore University Hospital and New York University School of Medicine, New York NY, USA
| | - Paul Mattis
- Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, New York, NY 11030, USA
- Department of Psychiatry, North Shore-Long Island Jewish Health System, Manhasset, NY 11030, USA
| | - Chengke Tang
- Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, New York, NY 11030, USA
- Department of Neurology and Medicine, North Shore University Hospital and New York University School of Medicine, New York NY, USA
| | - Kenneth Perrine
- Department of Psychiatry, North Shore-Long Island Jewish Health System, Manhasset, NY 11030, USA
| | - Maren Carbon
- Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, New York, NY 11030, USA
- Department of Neurology and Medicine, North Shore University Hospital and New York University School of Medicine, New York NY, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, New York, NY 11030, USA
- Department of Neurology and Medicine, North Shore University Hospital and New York University School of Medicine, New York NY, USA
| |
Collapse
|
58
|
Mentis MJ, Delalot D, Naqvi H, Gordon MF, Gudesblatt M, Edwards C, Donatelli L, Dhawan V, Eidelberg D. Anticholinesterase effect on motor kinematic measures and brain activation in Parkinson's disease. Mov Disord 2006; 21:549-55. [PMID: 16228997 PMCID: PMC4457276 DOI: 10.1002/mds.20706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anticholinesterase (AChE) drugs are being prescribed off label for nonmotor symptoms in Parkinson's disease (PD). Theoretically, these drugs can impair motor function. A small literature suggests AChE therapy has little effect on clinical motor evaluation; however, no study has made objective motor kinematic measures or evaluated brain function. We hypothesized that even if clinical examination was normal in PD patients on dopamine therapy, (1) sensitive kinematic measures would be abnormal during AChE therapy or (2) normal kinematic measures would be maintained by compensatory brain activation. We carried out a randomized, double-blind, placebo-controlled trial of 8 weeks donepezil (10 mg/day) in 17 PD subjects. Subjects carried out a computerized motor task during a positron emission tomography (PET) scan before starting the drug and again after 8 weeks of donepezil or placebo. Kinematic measures of motor function and PET scans were analyzed to compare the effects of donepezil and placebo. Neither placebo nor donepezil altered motor kinematic measures. Furthermore, movement integrity while on donepezil was maintained without compensatory brain activity. Donepezil 10 mg/day can be given for nonmotor symptoms in PD without adverse motor effects or compensatory brain activity.
Collapse
Affiliation(s)
- Marc J Mentis
- Center for Neurosciences, North Shore-LIJ Health System, New Hyde Park, NY 11030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Anderson CM, Maas LC, Frederick BD, Bendor JT, Spencer TJ, Livni E, Lukas SE, Fischman AJ, Madras BK, Renshaw PF, Kaufman MJ. Cerebellar vermis involvement in cocaine-related behaviors. Neuropsychopharmacology 2006; 31:1318-26. [PMID: 16237382 DOI: 10.1038/sj.npp.1300937] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the cerebellum is increasingly being viewed as a brain area involved in cognition, it typically is excluded from circuitry considered to mediate stimulant-associated behaviors since it is low in dopamine. Yet, the primate cerebellar vermis (lobules II-III and VIII-IX) has been reported to contain axonal dopamine transporter immunoreactivity (DAT-IR). We hypothesized that DAT-IR-containing vermis areas would be activated in cocaine abusers by cocaine-related cues and, in healthy humans, would accumulate DAT-selective ligands. We used BOLD fMRI to determine whether cocaine-related cues activated DAT-IR-enriched vermis regions in cocaine abusers and positron emission tomography imaging of healthy humans to determine whether the DAT-selective ligand [11C]altropane accumulated in those vermis regions. Cocaine-related cues selectively induced BOLD activation in lobules II-III and VIII-IX in cocaine users, and, at early time points after ligand administration, we found appreciable [11C]altropane accumulation in lobules VIII-IX, possibly indicating DAT presence in this region. These data suggest that parts of cerebellar vermis mediate cocaine's persisting and acute effects. In light of prior findings illustrating vermis connections to midbrain dopamine cell body regions, established roles for the vermis as a locus of sensorimotor integration and motor planning, and findings of increased vermis activation in substance abusers during reward-related and other cognitive tasks, we propose that the vermis be considered one of the structures involved in cocaine- and other incentive-related behaviors.
Collapse
Affiliation(s)
- Carl M Anderson
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
van Hedel HJA, Waldvogel D, Dietz V. Learning a high-precision locomotor task in patients with Parkinson's disease. Mov Disord 2005; 21:406-11. [PMID: 16211616 DOI: 10.1002/mds.20710] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We evaluated the acquisition and performance of a high-precision locomotor task in patients with Parkinson's disease (PD) and healthy subjects. All subjects walked on a treadmill and had to step repetitively as low as possible over an obstacle without touching it. During blocks 1 and 2, the subjects had full vision and received additional acoustic warning and feedback signals. During block 3, vision became restricted. Changes in foot clearance and the number of obstacle hits were evaluated. Initially, PD patients performed poorer and improved foot clearance slower. After task repetition, the groups performed similarly. Restricting vision deteriorated performance in both groups. The similar performance of PD patients after task repetition might indicate that adequate training could improve adaptive locomotor behavior in PD patients.
Collapse
|
61
|
Abstract
In this review, we discuss the role of neuroimaging in assessing treatment options for movement disorders, particularly Parkinson's disease (PD). Imaging methods to assess dopaminergic function have recently been applied in trials of potential neuroprotective agents. Other imaging methods using regional metabolism and/or cerebral perfusion have been recently introduced to quantify the modulation of network activity as an objective marker of the treatment response. Both imaging strategies have provided novel insights into the mechanisms underlying a variety of pharmacological and stereotaxic surgical treatment strategies for PD and other movement disorders.
Collapse
Affiliation(s)
- Thomas Eckert
- Department of Neurology II and Psychiatry, University of Magdeburg, Germany
| | | |
Collapse
|
62
|
Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 2005; 15:161-7. [PMID: 15831397 DOI: 10.1016/j.conb.2005.03.004] [Citation(s) in RCA: 664] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
On the basis of brain imaging studies, Doyon and Ungerleider recently proposed a model describing the cerebral plasticity that occurs in both cortico-striatal and cortico-cerebellar systems of the adult brain during learning of new motor skilled behaviors. This theoretical framework makes several testable predictions with regards to the contribution of these neural systems based on the phase (fast, slow, consolidation, automatization, and retention) and nature of the motor learning processes (motor sequence versus motor adaptation) acquired through repeated practice. There has been recent behavioral, lesion and additional neuroimaging studies that have addressed the assumptions made in this theory that will help in the revision of this model.
Collapse
Affiliation(s)
- Julien Doyon
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, 4565, Queen-Mary Street, Montreal, Quebec, H3W 1W5, Canada.
| | | |
Collapse
|
63
|
Yoshida T, Warabi T, Kato M, Kiriyama K, Yanagisawa N. Visuomotor dependency on an initial fixation target involved in the disorder of visually-guided manual movement in Parkinson's disease. Neurosci Res 2005; 51:167-73. [PMID: 15681034 DOI: 10.1016/j.neures.2004.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
Role of a central fixation target on the latencies of visually guided manual movement was analyzed on young healthy subjects, age-matched control subjects and patients with Parkinson's disease (Hoehn and Yahr stages II, III, and IV). Two paradigms were used: overlap paradigm where a central fixation target was lighted throughout the test, and gap paradigm where a central fixation target was turned off 200 ms before a peripheral target was lighted. The subject was first asked to fixate the central target then instructed to locate a peripheral target with a laser beam spot, operated with wrist flexion or extension as quickly as possible. Latencies of gap paradigm are always shorter than those of overlap task in all the groups. Latencies of both overlap and gap tasks prolonged from young to elder, from elder to PD II, from PD II to PD III and from PD III to PD IV. Also latencies were extremely prolonged in the overlap tasks and correlated with disease severity. Latencies in the gap tasks were less prolonged as compared with those in the overlap tasks. The visual fixation target prolonged the visuo-motor latency in association with severity of Parkinson's disease.
Collapse
Affiliation(s)
- Toshikazu Yoshida
- Clinical Brain Research Laboratory Toyokura Memorial Hall, Sapporo Yamnoue Hospital, Yamanote 6-9-1-1, 063-0006, Japan
| | | | | | | | | |
Collapse
|
64
|
Abstract
In this brief article, we report preliminary results from an NIH-funded project to use functional brain imaging to study the natural history of neurodegeneration during the earliest clinical stages of PD. We used positron emission tomography (PET) to measure DAT binding (18F-FPCIT), resting glucose metabolism (18FFDG), and brain activation (H215O) responses in 20 newly diagnosed PD patients. The longitudinal study is being conducted at three time points for each measurement during a 5-year period. The interim results indicate the evolution of abnormal metabolic brain networks and activation responses occurring in parallel with presynaptic nigrostriatal dopamine dysfunction in early PD.
Collapse
Affiliation(s)
- Kotaro Asanuma
- Center for Neurosciences, North Shore-Long Island Jewish Research Institute, 350 Community Drive, Manhasset, New York 11030, USA
| | | | | | | |
Collapse
|
65
|
Thobois S, Jahanshahi M, Pinto S, Frackowiak R, Limousin-Dowsey P. PET and SPECT functional imaging studies in Parkinsonian syndromes: from the lesion to its consequences. Neuroimage 2004; 23:1-16. [PMID: 15325346 DOI: 10.1016/j.neuroimage.2004.04.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 04/23/2004] [Accepted: 04/30/2004] [Indexed: 10/26/2022] Open
Abstract
Functional imaging techniques provide major insights into understanding the pathophysiology, progression, complications, and differential diagnosis of Parkinson's disease (PD). The dopaminergic system has been particularly studied allowing now early, presymptomatic diagnoses, which is of interest for future neuroprotective strategies. The existence of a compensatory hyperactivity of dopa-decarboxylase at disease onset has been recently demonstrated in the nigrostriatal and also extrastriatal dopaminergic pathways. Modification of dopamine receptors expression is observed during PD, but the respective contribution of dopaminergic drugs and the disease process towards these changes is still debated. Abnormalities of cerebral activation are seen and are clearly task-dependent, but the coexistence of hypoactivation in some areas and hyperactivation in others is also now well established. Such hyperactivation may be compensatory but could also reflect an inability to select appropriate motor circuits and inhibit inappropriate ones by PD patients. Interestingly, dopaminergic medications or surgical therapy reverse such abnormalities of brain activation.
Collapse
Affiliation(s)
- S Thobois
- Sobell Department of Motor Neurosciences and Movement Disorders, Institute of Neurology, London, UK.
| | | | | | | | | |
Collapse
|
66
|
Mentis MJ, Dhawan V, Feigin A, Delalot D, Zgaljardic D, Edwards C, Eidelberg D. Early stage Parkinson's disease patients and normal volunteers: comparative mechanisms of sequence learning. Hum Brain Mapp 2003; 20:246-58. [PMID: 14673808 PMCID: PMC6871797 DOI: 10.1002/hbm.10142] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Accepted: 08/27/2003] [Indexed: 11/09/2022] Open
Abstract
Early-stage nondemented Parkinson's disease (PD(es)) patients can learn short but not long sequences as well as controls. We have previously shown that to achieve normal performance, PD(es) patients activated the same right-sided cortical regions as controls plus the homologous left sided cortex and bilateral cerebellum. In this study, we evaluated two related hypotheses to explain the behavioral abnormalities and the increased bilateral brain activation observed in the PD(es) group. Hypothesis 1 proposed that PD(es) patients recruit regions from a normal bilateral network specialized for sequence learning that healthy controls would activate if performing difficult tasks. Thus, PD(es) patients can learn short sequences as well as controls. Hypothesis 2 proposed that information processing within the network in the PD(es) group is impaired. Thus, PD(es) patients cannot learn as difficult a sequence as controls. To test hypothesis 1, we increased task difficulty and statistical power in the control group and showed that the control and the PD(es) groups activated the same regions. To test hypothesis 2, we analyzed the equal performance data using two partial least squares (PLS) multivariate analyses. The task-PLS analysis showed that to perform equally with controls, the PD(es) group expressed the normal bilateral network more than the control group. The behavior-PLS analysis showed that the correlation between learning performance and regional activation was significantly different between the groups. We conclude that PD(es) patients have near normal learning if task difficulty is moderate because they can recruit additional regions from a normal bilateral network specialized for sequence learning. However, when a difficult task would normally require bilateral activation, PD(es) patients fail to learn because information processing within the network is impaired. Hum. Brain Mapp. 20:246-258, 2003.
Collapse
Affiliation(s)
- Marc J Mentis
- Functional Brain Imaging Laboratory, Center for Neurosciences, North Shore-Long Island Jewish Research Institute, North Shore University Hospital and New York University School of Medicine, Manhasset, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
67
|
|
68
|
Abstract
PURPOSE OF REVIEW Cognitive deficits that occur even early in the course of Parkinson's disease have received increasing attention in current imaging research. The exact physio-pathological processes mediating the deficits and the complex relationship of cognitive signs and antiparkinsonian treatment are not well understood. A clearer understanding of these mechanisms could potentially influence treatment choices, drug development and, ultimately, patient care. RECENT FINDINGS Abnormal networks identified in studies of resting state metabolism in Parkinson's disease represent metabolic markers for remote effects of striato-nigral degeneration. These metabolic changes include subcortico-cortical networks, in particular cognitive cortico-striato-pallidal-thalamocortical loops. Recent brain studies focus on intervention-related brain changes. They illustrate different task-specific changes in brain activation with deep brain stimulation and with levodopa. Variable results of stimulation can be attributed to different effects on segregated cortico-striato-pallidal-thalamocortical loops during stimulation. By contrast, the heterogeneity observed in studies with levodopa possibly reflects the disease-stage and task-specific effects of levodopa. A decline in caudate dopamine modulated basal ganglia outflow appears to contribute to executive dysfunction and to brain activation changes in these loops at early Parkisnon's disease stages, while mesocortical degeneration mediated increases of inefficient dorsolateral prefrontal cortex activation may display a feature of more advanced disease stages only. SUMMARY Despite evidence for the role of dopamine and cortico-striato-pallidal-thalamocortical loops in cognition, the specific contributions of mesocortical dopamine depletion and striatal dysfunction with downstream consequences on the loops remain to be separated. Additionally, more research is needed into the role of non-dopaminergic pathology in cognitive decline in Parkinson's disease.
Collapse
Affiliation(s)
- Maren Carbon
- Center for Neurosciences, North Shore-Long Island Jewish Research Institute, New York, New York, USA
| | | |
Collapse
|