51
|
Intermediate Charcot–Marie–Tooth disease: an electrophysiological reappraisal and systematic review. J Neurol 2017; 264:1655-1677. [DOI: 10.1007/s00415-017-8474-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/13/2023]
|
52
|
Abrams CK, Goman M, Wong S, Scherer SS, Kleopa KA, Peinado A, Freidin MM. Loss of Coupling Distinguishes GJB1 Mutations Associated with CNS Manifestations of CMT1X from Those Without CNS Manifestations. Sci Rep 2017; 7:40166. [PMID: 28071741 PMCID: PMC5223219 DOI: 10.1038/srep40166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/01/2016] [Indexed: 11/15/2022] Open
Abstract
CMT1X, an X-linked inherited neuropathy, is caused by mutations in GJB1, which codes for Cx32, a gap junction protein expressed by Schwann cells and oligodendrocytes. Many GJB1 mutations cause central nervous system (CNS) abnormality in males, including stable subclinical signs and, less often, short-duration episodes characterized by motor difficulties and altered consciousness. However, some mutations have no apparent CNS effects. What distinguishes mutations with and without CNS manifestations has been unclear. Here we studied a total of 14 Cx32 mutations, 10 of which are associated with florid episodic CNS clinical syndromes in addition to peripheral neuropathy. The other 4 mutations exhibit neuropathy without clinical or subclinical CNS abnormalities. These "PNS-only" mutations (Y151C, V181M, R183C and L239I) form gap junction plaques and produce levels of junctional coupling similar to those for wild-type Cx32. In contrast, mutants with CNS manifestations (F51L, E102del, V139M, R142Q, R142W, R164W T55I, R164Q and C168Y) either form no morphological gap junction plaques or, if they do, produce little or no detectable junctional coupling. Thus, PNS and CNS abnormalities may involve different aspects of connexin function.
Collapse
Affiliation(s)
- Charles K. Abrams
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago IL, USA
| | - Mikhail Goman
- Department of Neurology, SUNY Downstate, Brooklyn, NY, USA
| | - Sarah Wong
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Steven S. Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kleopas A. Kleopa
- Neurology Clinics and Neuroscience Laboratory, Cyprus Institute for Neurology and Genetics, Nicosia, Cyprus
| | - Alejandro Peinado
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago IL, USA
| | - Mona M. Freidin
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago IL, USA
| |
Collapse
|
53
|
Jerath NU, Gutmann L, Reddy CG, Shy ME. Charcot-marie-tooth disease type 1X in women: Electrodiagnostic findings. Muscle Nerve 2016; 54:728-32. [PMID: 26873881 DOI: 10.1002/mus.25077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 01/31/2016] [Accepted: 02/10/2016] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Symptoms and signs in women with Charcot-Marie-Tooth disease type 1X (CMT1X) are often milder from those in men, but the available electrophysiologic evidence regarding CMT1X in women has been characterized in some patients as non-uniform or asymmetric. METHODS We retrospectively reviewed electrodiagnostic findings from 45 women and 31 men with CMT1X. RESULTS Motor nerve conduction parameters in CMT1X women were less abnormal (P < 0.05), and a wider range of motor conduction velocities (CVs) were seen in women (P < 0.001) compared with men. In women, nerve conduction studies showed lack of conduction block without temporal dispersion. Motor CVs were more frequently in the normal range in women compared with men. There was no significant relationship to age of presentation and motor CV or compound muscle action potential in women. CONCLUSION NCS parameters in CMT1X women did not demonstrate features suggestive of an acquired demyelinating neuropathy. Muscle Nerve, 2016 Muscle Nerve 54: -, 2016 Muscle Nerve 54: 728-732, 2016.
Collapse
Affiliation(s)
- Nivedita U Jerath
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA.
| | - Laurie Gutmann
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA
| | - Chandan G Reddy
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA
| |
Collapse
|
54
|
Xie C, Zhou X, Zhu D, Liu W, Wang X, Yang H, Li Z, Hao Y, Zhang GX, Guan Y. CNS involvement in CMTX1 caused by a novel connexin 32 mutation: a 6-year follow-up in neuroimaging and nerve conduction. Neurol Sci 2016; 37:1063-70. [PMID: 27098243 DOI: 10.1007/s10072-016-2537-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/24/2016] [Indexed: 12/29/2022]
Abstract
X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) is one of the most common inherited neurological disorders. Obvious CNS involvement is relatively rare in CMTX1 patients. A 24-year-old male with CMTX1 presented with three transient stroke-like attacks, and was followed up regularly for 6 years with brain MRI and electrophysiological examination. Transient symmetrical high signals on T2 imaging and restricted diffusion were found in bilateral deep white matter. Electrophysiological measurement revealed a sensorimotor peripheral neuropathy with slightly reduced nerve conduction velocities. A novel thymine to cytosine mutation at nucleotide position 445 in the connexin 32 allele of the GJB1 gene was identified. During the 6-year longitudinal study, patient's motor and sensory function did not worsen; radiological abnormalities correlated with episodes of CNS dysfunction and resolved after clinical recovery; electrophysiological records showed no obvious change. Little change in the patient's clinical, radiological and electrophysiological results over the follow-up reflected a slow disease progression.
Collapse
Affiliation(s)
- Chong Xie
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiajun Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, China
| | - Desheng Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiaoqing Wang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Hong Yang
- Department of Neurology, Shanghai Yangpu Geriatric Hospital, Shanghai, China
| | - Zezhi Li
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA.
| | - Yangtai Guan
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, China
| |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW Charcot-Marie-Tooth disease (CMT) is the common terminology used to describe the hereditary neuropathies. This update reviews advances in the past year in our understanding of these diseases, including some important earlier references. RECENT FINDINGS In the past year, advances in next-generation sequencing continued to increase the number of genes associated with CMT. The connection between genotype and phenotype has become more complicated. New insights into the pathogenesis of the diseases are reviewed. Treatment and clinical trial updates coming from these new insights, as well as use of high-throughput screening to match potential treatments with targets, are moving the field forward. There is a discussion of potential next steps, including the use of patient-derived induced pluripotent stem cells, to enhance our understanding of individual genotypes and phenotypes. SUMMARY The use of high-throughput screens, and techniques such as RNAi and induced pluripotent stem cell continue to push forward other therapies for specific genetic forms of CMT and are potentially more generalizable to peripheral neuropathies. These developments, along with the development of improved outcome measures and longitudinal natural history data, advance CMT, making the future for finding treatments and/or cures closer than it has ever been.
Collapse
|
56
|
Sun B, Chen ZH, Ling L, Li YF, Liu LZ, Yang F, Huang XS. Mutation Analysis of Gap Junction Protein Beta 1 and Genotype-Phenotype Correlation in X-linked Charcot-Marie-Tooth Disease in Chinese Patients. Chin Med J (Engl) 2016; 129:1011-6. [PMID: 27098783 PMCID: PMC4852665 DOI: 10.4103/0366-6999.180511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Among patients with Charcot-Marie-Tooth disease (CMT), the X-linked variant (CMTX) caused by gap junction protein beta 1 (GJB1) gene mutation is the second most frequent type, accounting for approximately 90% of all CMTX. More than 400 mutations have been identified in the GJB1 gene that encodes connexin 32 (CX32). CX32 is thought to form gap junctions that promote the diffusion pathway between cells. GJB1 mutations interfere with the formation of the functional channel and impair the maintenance of peripheral myelin, and novel mutations are continually discovered. METHODS We included 79 unrelated patients clinically diagnosed with CMT at the Department of Neurology of the Chinese People's Liberation Army General Hospital from December 20, 2012, to December 31, 2015. Clinical examination, nerve conduction studies, and molecular and bioinformatics analyses were performed to identify patients with CMTX1. RESULTS Nine GJB1 mutations (c.283G>A, c.77C>T, c.643C>T, c.515C>T, c.191G>A, c.610C>T, c.490C>T, c.491G>A, and c.44G>A) were discovered in nine patients. Median motor nerve conduction velocities of all nine patients were < 38 m/s, resembling CMT Type 1. Three novel mutations, c.643C>T, c.191G>A, and c.610C>T, were revealed and bioinformatics analyses indicated high pathogenicity. CONCLUSIONS The three novel missense mutations within the GJB1 gene broaden the mutational diversity of CMT1X. Molecular analysis of family members and bioinformatics analyses of the afflicted patients confirmed the pathogenicity of these mutations.
Collapse
Affiliation(s)
- Bo Sun
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhao-Hui Chen
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Li Ling
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yi-Fan Li
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Li-Zhi Liu
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Fei Yang
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xu-Sheng Huang
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
57
|
Shy ME. Gene therapy, CMT1X, and the inherited neuropathies. Proc Natl Acad Sci U S A 2016; 113:4552-4. [PMID: 27078106 PMCID: PMC4855541 DOI: 10.1073/pnas.1604005113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Michael E Shy
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
58
|
Intrathecal gene therapy rescues a model of demyelinating peripheral neuropathy. Proc Natl Acad Sci U S A 2016; 113:E2421-9. [PMID: 27035961 DOI: 10.1073/pnas.1522202113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Inherited demyelinating peripheral neuropathies are progressive incurable diseases without effective treatment. To develop a gene therapy approach targeting myelinating Schwann cells that can be translatable, we delivered a lentiviral vector using a single lumbar intrathecal injection and a myelin-specific promoter. The human gene of interest, GJB1, which is mutated in X-linked Charcot-Marie-Tooth Disease (CMT1X), was delivered intrathecally into adult Gjb1-null mice, a genetically authentic model of CMT1X that develops a demyelinating peripheral neuropathy. We obtained widespread, stable, and cell-specific expression of connexin32 in up to 50% of Schwann cells in multiple lumbar spinal roots and peripheral nerves. Behavioral and electrophysiological analysis revealed significantly improved motor performance, quadriceps muscle contractility, and sciatic nerve conduction velocities. Furthermore, treated mice exhibited reduced numbers of demyelinated and remyelinated fibers and fewer inflammatory cells in lumbar motor roots, as well as in the femoral motor and sciatic nerves. This study demonstrates that a single intrathecal lentiviral gene delivery can lead to Schwann cell-specific expression in spinal roots extending to multiple peripheral nerves. This clinically relevant approach improves the phenotype of an inherited neuropathy mouse model and provides proof of principle for treating inherited demyelinating neuropathies.
Collapse
|
59
|
Sadjadi R, Reilly MM, Shy ME, Pareyson D, Laura M, Murphy S, Feely SME, Grider T, Bacon C, Piscosquito G, Calabrese D, Burns TM. Psychometrics evaluation of Charcot-Marie-Tooth Neuropathy Score (CMTNSv2) second version, using Rasch analysis. J Peripher Nerv Syst 2015; 19:192-6. [PMID: 25400013 DOI: 10.1111/jns.12084] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/21/2014] [Accepted: 06/04/2014] [Indexed: 11/28/2022]
Abstract
Charcot-Marie-Tooth Neuropathy Score second version (CMTNSv2) is a validated clinical outcome measure developed for use in clinical trials to monitor disease impairment and progression in affected CMT patients. Currently, all items of CMTNSv2 have identical contribution to the total score. We used Rasch analysis to further explore psychometric properties of CMTNSv2, and in particular, category response functioning, and their weight on the overall disease progression. Weighted category responses represent a more accurate estimate of actual values measuring disease severity and therefore could potentially be used in improving the current version.
Collapse
Affiliation(s)
- Reza Sadjadi
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Fridman V, Bundy B, Reilly MM, Pareyson D, Bacon C, Burns J, Day J, Feely S, Finkel RS, Grider T, Kirk CA, Herrmann DN, Laurá M, Li J, Lloyd T, Sumner CJ, Muntoni F, Piscosquito G, Ramchandren S, Shy R, Siskind CE, Yum SW, Moroni I, Pagliano E, Zuchner S, Scherer SS, Shy ME. CMT subtypes and disease burden in patients enrolled in the Inherited Neuropathies Consortium natural history study: a cross-sectional analysis. J Neurol Neurosurg Psychiatry 2015; 86:873-8. [PMID: 25430934 PMCID: PMC4516002 DOI: 10.1136/jnnp-2014-308826] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/06/2014] [Accepted: 10/24/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The international Inherited Neuropathy Consortium (INC) was created with the goal of obtaining much needed natural history data for patients with Charcot-Marie-Tooth (CMT) disease. We analysed clinical and genetic data from patients in the INC to determine the distribution of CMT subtypes and the clinical impairment associated with them. METHODS We analysed data from 1652 patients evaluated at 13 INC centres. The distribution of CMT subtypes and pathogenic genetic mutations were determined. The disease burden of all the mutations was assessed by the CMT Neuropathy Score (CMTNS) and CMT Examination Score (CMTES). RESULTS 997 of the 1652 patients (60.4%) received a genetic diagnosis. The most common CMT subtypes were CMT1A/PMP22 duplication, CMT1X/GJB1 mutation, CMT2A/MFN2 mutation, CMT1B/MPZ mutation, and hereditary neuropathy with liability to pressure palsy/PMP22 deletion. These five subtypes of CMT accounted for 89.2% of all genetically confirmed mutations. Mean CMTNS for some but not all subtypes were similar to those previously reported. CONCLUSIONS Our findings confirm that large numbers of patients with a representative variety of CMT subtypes have been enrolled and that the frequency of achieving a molecular diagnosis and distribution of the CMT subtypes reflects those previously reported. Measures of severity are similar, though not identical, to results from smaller series. This study confirms that it is possible to assess patients in a uniform way between international centres, which is critical for the planned natural history study and future clinical trials. These data will provide a representative baseline for longitudinal studies of CMT. CLINICAL TRIAL REGISTRATION ID number NCT01193075.
Collapse
Affiliation(s)
- V Fridman
- Departments of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - B Bundy
- University of South Florida Epidemiology Center, Tampa, Florida, USA
| | - M M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - D Pareyson
- Departments of Neurology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - C Bacon
- Departments of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - J Burns
- Departments of Neurology, University of Sydney & Children's Hospital, Sydney, Australia
| | - J Day
- Departments of Neurology, Stanford University, Stanford, California, USA
| | - S Feely
- Departments of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA Departments of Neurology, Wayne State University, Detroit, Michigan, USA
| | - R S Finkel
- Departments of Neurology, Nemours Children's Hospital, Orlando, Florida, USA
| | - T Grider
- Departments of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - C A Kirk
- University of South Florida Epidemiology Center, Tampa, Florida, USA
| | - D N Herrmann
- Departments of Neurology, University of Rochester, Rochester, New York, USA
| | - M Laurá
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - J Li
- Departments of Neurology, Vanderbilt University, Nashville, Tennessee, USA
| | - T Lloyd
- Departments of Neurology, John Hopkins University, Baltimore, Maryland, USA
| | - C J Sumner
- Departments of Neurology, John Hopkins University, Baltimore, Maryland, USA
| | - F Muntoni
- Departments of Neurology, UCL Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - G Piscosquito
- Departments of Neurology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - S Ramchandren
- Departments of Neurology, Wayne State University, Detroit, Michigan, USA Departments of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - R Shy
- Departments of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA Departments of Neurology, Wayne State University, Detroit, Michigan, USA
| | - C E Siskind
- Departments of Neurology, Stanford University, Stanford, California, USA
| | - S W Yum
- Departments of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA Departments of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - I Moroni
- Departments of Neurology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - E Pagliano
- Departments of Neurology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - S Zuchner
- Departments of Neurology, Center for Human Molecular Genomics, University of Miami, Miami, Florida, USA
| | - S S Scherer
- Departments of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M E Shy
- Departments of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA Departments of Neurology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
61
|
Sargiannidou I, Kagiava A, Bashiardes S, Richter J, Christodoulou C, Scherer SS, Kleopa KA. Intraneural GJB1 gene delivery improves nerve pathology in a model of X-linked Charcot-Marie-Tooth disease. Ann Neurol 2015; 78:303-16. [PMID: 26010264 DOI: 10.1002/ana.24441] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 11/11/2022]
Abstract
OBJECTIVE X-linked Charcot-Marie-Tooth disease (CMT1X) is a common inherited neuropathy caused by mutations in the GJB1 gene encoding the gap junction protein connexin32 (Cx32). Clinical studies and disease models indicate that neuropathy mainly results from Schwann cell autonomous, loss-of-function mechanisms; therefore, CMT1X may be treatable by gene replacement. METHODS A lentiviral vector LV.Mpz-GJB1 carrying the GJB1 gene under the Schwann cell-specific myelin protein zero (Mpz) promoter was generated and delivered into the mouse sciatic nerve by a single injection immediately distal to the sciatic notch. Enhanced green fluorescent protein (EGFP) reporter gene expression was quantified and Cx32 expression was examined on a Cx32 knockout (KO) background. A gene therapy trial was performed in a Cx32 KO model of CMT1X. RESULTS EGFP was expressed throughout the length of the sciatic nerve in up to 50% of Schwann cells starting 2 weeks after injection and remaining stable for up to 16 weeks. Following LV.Mpz-GJB1 injection into Cx32 KO nerves, we detected Cx32 expression and correct localization in non-compact myelin areas where gap junctions are normally formed. Gene therapy trial by intraneural injection in groups of 2-month-old Cx32 KO mice, before demyelination onset, significantly reduced the ratio of abnormally myelinated fibers (p = 0.00148) and secondary inflammation (p = 0.0178) at 6 months of age compared to mock-treated animals. INTERPRETATION Gene delivery using a lentiviral vector leads to efficient gene expression specifically in Schwann cells. Restoration of Cx32 expression ameliorates nerve pathology in a disease model and provides a promising approach for future treatments of CMT1X and other inherited neuropathies.
Collapse
Affiliation(s)
| | | | - Stavros Bashiardes
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Jan Richter
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christina Christodoulou
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Steven S Scherer
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Kleopas A Kleopa
- Neuroscience Laboratory
- Neurology Clinics, Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
62
|
Xie HY, Cui Y, Deng F, Feng JC. Connexin: a potential novel target for protecting the central nervous system? Neural Regen Res 2015; 10:659-66. [PMID: 26170830 PMCID: PMC4424762 DOI: 10.4103/1673-5374.155444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2014] [Indexed: 01/11/2023] Open
Abstract
Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings regarding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer's disease, Parkinson's disease, X-linked Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system.
Collapse
Affiliation(s)
- Hong-Yan Xie
- Departmet of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu Cui
- Department of Neurosurgery, the First People's Hospital of Xianyang, Xianyang, Shaanxi Province, China
| | - Fang Deng
- Departmet of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jia-Chun Feng
- Departmet of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
63
|
Brennan MJ, Karcz J, Vaughn NR, Woolwine-Cunningham Y, DePriest AD, Escalona Y, Perez-Acle T, Skerrett IM. Tryptophan Scanning Reveals Dense Packing of Connexin Transmembrane Domains in Gap Junction Channels Composed of Connexin32. J Biol Chem 2015; 290:17074-84. [PMID: 25969535 PMCID: PMC4498046 DOI: 10.1074/jbc.m115.650747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Tryptophan was substituted for residues in all four transmembrane domains of connexin32. Function was assayed using dual cell two-electrode voltage clamp after expression in Xenopus oocytes. Tryptophan substitution was poorly tolerated in all domains, with the greatest impact in TM1 and TM4. For instance, in TM1, 15 substitutions were made, six abolished coupling and five others significantly reduced function. Only TM2 and TM3 included a distinct helical face that lacked sensitivity to tryptophan substitution. Results were visualized on a comparative model of Cx32 hemichannel. In this model, a region midway through the membrane appears highly sensitive to tryptophan substitution and includes residues Arg-32, Ile-33, Met-34, and Val-35. In the modeled channel, pore-facing regions of TM1 and TM2 were highly sensitive to tryptophan substitution, whereas the lipid-facing regions of TM3 and TM4 were variably tolerant. Residues facing a putative intracellular water pocket (the IC pocket) were also highly sensitive to tryptophan substitution. Although future studies will be required to separate trafficking-defective mutants from those that alter channel function, a subset of interactions important for voltage gating was identified. Interactions important for voltage gating occurred mainly in the mid-region of the channel and focused on TM1. To determine whether results could be extrapolated to other connexins, TM1 of Cx43 was scanned revealing similar but not identical sensitivity to TM1 of Cx32.
Collapse
Affiliation(s)
- Matthew J Brennan
- From the Biology Department, State University of New York Buffalo State, Buffalo, New York 14222
| | - Jennifer Karcz
- From the Biology Department, State University of New York Buffalo State, Buffalo, New York 14222
| | - Nicholas R Vaughn
- From the Biology Department, State University of New York Buffalo State, Buffalo, New York 14222
| | - Yvonne Woolwine-Cunningham
- the Clinical and Translational Research Center, State University of New York at Buffalo, Buffalo, New York 14214
| | - Adam D DePriest
- the Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Yerko Escalona
- the Computational Biology Lab, Fundación Ciencia and Vida, 7780344 Santiago, Chile, and the Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, 2360102 Valparaíso, Chile
| | - Tomas Perez-Acle
- the Computational Biology Lab, Fundación Ciencia and Vida, 7780344 Santiago, Chile, and the Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, 2360102 Valparaíso, Chile
| | - I Martha Skerrett
- From the Biology Department, State University of New York Buffalo State, Buffalo, New York 14222,
| |
Collapse
|
64
|
Sargiannidou I, Kim GH, Kyriakoudi S, Eun BL, Kleopa KA. A start codon CMT1X mutation associated with transient encephalomyelitis causes complete loss of Cx32. Neurogenetics 2015; 16:193-200. [PMID: 25771809 DOI: 10.1007/s10048-015-0442-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/02/2015] [Indexed: 01/30/2023]
Abstract
X-linked Charcot-Marie-Tooth disease (CMTX1) results from numerous mutations in the GJB1 gene encoding the gap junction protein connexin32 (Cx32) and is one of the commonest forms of inherited neuropathy. Owing to the expression of Cx32 not only in Schwann cells but also in oligodendrocytes, a subset of CMT1X patients develops central nervous system (CNS) clinical manifestations in addition to peripheral neuropathy. While most GJB1 mutations appear to cause peripheral neuropathy through loss of Cx32 function, the cellular mechanisms underlying the CNS manifestations remain controversial. A novel start codon GJB1 mutation (p.Met1Ile) has been found in a CMT1X patient presenting with recurrent episodes of transient encephalomyelitis without apparent signs of peripheral neuropathy. In order to clarify the functional consequences of this mutation, we examined the cellular expression of two different constructs cloned from genomic DNA including the mutated start codon. None of the cloned constructs resulted in detectable expression of Cx32 by immunocytochemistry or immunoblot, although mRNA was produced at normal levels. Furthermore, co-expression with the other major oligodendrocyte connexin, Cx47, had no negative effect on GJ formation by Cx47. Finally, lysosomal and proteasomal inhibition in cells expressing the start codon mutant constructs failed to recover any detection of Cx32 as a result of impaired protein degradation. Our results indicate that the Cx32 start codon mutation is equivalent to a complete loss of the protein with failure of translation, although transcription is not impaired. Thus, complete loss of Cx32 function is sufficient to produce CNS dysfunction with clinical manifestations.
Collapse
Affiliation(s)
- Irene Sargiannidou
- Neurology Clinics and Neuroscience Laboratory, Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683, Nicosia, Cyprus
| | | | | | | | | |
Collapse
|
65
|
Abrams CK, Freidin M. GJB1-associated X-linked Charcot-Marie-Tooth disease, a disorder affecting the central and peripheral nervous systems. Cell Tissue Res 2015; 360:659-73. [PMID: 25370202 DOI: 10.1007/s00441-014-2014-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/22/2014] [Indexed: 11/24/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is a group of inherited diseases characterized by exclusive or predominant involvement of the peripheral nervous system. Mutations in GJB1, the gene encoding Connexin 32 (Cx32), a gap-junction channel forming protein, cause the most common X-linked form of CMT, CMT1X. Cx32 is expressed in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems, respectively. Thus, patients with CMT1X have both central and peripheral nervous system manifestations. Study of the genetics of CMT1X and the phenotypes of patients with this disorder suggest that the peripheral manifestations of CMT1X are likely to be due to loss of function, while in the CNS gain of function may contribute. Mice with targeted ablation of Gjb1 develop a peripheral neuropathy similar to that seen in patients with CMT1X, supporting loss of function as a mechanism for the peripheral manifestations of this disorder. Possible roles for Cx32 include the establishment of a reflexive gap junction pathway in the peripheral and central nervous system and of a panglial syncitium in the central nervous system.
Collapse
Affiliation(s)
- Charles K Abrams
- Departments of Neurology and Physiology & Pharmacology, State University of New York, Brooklyn, NY, 11203, USA,
| | | |
Collapse
|
66
|
Demyelinating CMT–what’s known, what’s new and what’s in store? Neurosci Lett 2015; 596:14-26. [DOI: 10.1016/j.neulet.2015.01.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/23/2015] [Indexed: 02/06/2023]
|
67
|
Connexins, gap junctions and peripheral neuropathy. Neurosci Lett 2015; 596:27-32. [DOI: 10.1016/j.neulet.2014.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 11/23/2022]
|
68
|
Noto YI, Shiga K, Tsuji Y, Mizuta I, Higuchi Y, Hashiguchi A, Takashima H, Nakagawa M, Mizuno T. Nerve ultrasound depicts peripheral nerve enlargement in patients with genetically distinct Charcot-Marie-Tooth disease. J Neurol Neurosurg Psychiatry 2015; 86:378-84. [PMID: 25091364 DOI: 10.1136/jnnp-2014-308211] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To elucidate the ultrasound (US) features of peripheral nerves including nerve roots in patients with different types of Charcot-Marie-Tooth disease (CMT), and the association between US findings, clinical features and parameters of nerve conduction studies (NCS) in CMT1A. METHODS US of median, sural and great auricular nerves and the C6 nerve root was performed in patients with CMT1A (n=20), MPZ-associated CMT (n=3), NEFL-associated CMT (n=4), EGR2-associated CMT (n=1), ARHGEF10-associated CMT (n=1) and in controls (n=30). In patients with CMT1A, we analysed the correlations between US findings and the following parameters: age, CMT Neuropathy Score (CMTNS) and NCS indices of the median nerve. RESULTS Cross-sectional areas (CSAs) of all the nerves were significantly increased in patients with CMT1A compared with that in controls. In MPZ-associated CMT, increased CSAs were found in the median nerve at wrist and in the great auricular nerve, whereas it was not increased in patients with NEFL-associated CMT. In patients with CMT1A, there was a positive correlation between CMTNS and the CSAs in the median nerves or great auricular nerves. In median nerves in patients with CMT1A, we found a negative correlation between the nerve conduction velocity and the CSA. CONCLUSIONS Nerve US may aid in differentiating among the subtypes of CMT in combination with NCS. In CMT1A, the median nerve CSA correlates with the disease severity and peripheral nerve function.
Collapse
Affiliation(s)
- Yu-ichi Noto
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kensuke Shiga
- Department of Medical Education and Primary Care, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Tsuji
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masanori Nakagawa
- North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
69
|
Schiza N, Sargiannidou I, Kagiava A, Karaiskos C, Nearchou M, Kleopa KA. Transgenic replacement of Cx32 in gap junction-deficient oligodendrocytes rescues the phenotype of a hypomyelinating leukodystrophy model. Hum Mol Genet 2015; 24:2049-64. [PMID: 25524707 DOI: 10.1093/hmg/ddu725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocytes are coupled by gap junctions (GJs) formed mainly by connexin47 (Cx47) and Cx32. Recessive GJC2/Cx47 mutations cause Pelizaeus-Merzbacher-like disease, a hypomyelinating leukodystrophy, while GJB1/Cx32 mutations cause neuropathy and chronic or acute-transient encephalopathy syndromes. Cx32/Cx47 double knockout (Cx32/Cx47dKO) mice develop severe CNS demyelination beginning at 1 month of age leading to death within weeks, offering a relevant model to study disease mechanisms. In order to clarify whether the loss of oligodendrocyte connexins has cell autonomous effects, we generated transgenic mice expressing the wild-type human Cx32 under the control of the mouse proteolipid protein promoter, obtaining exogenous hCx32 expression in oligodendrocytes. By crossing these mice with Cx32KO mice, we obtained expression of hCx32 on Cx32KO background. Immunohistochemical and immunoblot analysis confirmed strong CNS expression of hCx32 specifically in oligodendrocytes and correct localization forming GJs at cell bodies and along the myelin sheath. TG(+)Cx32/Cx47dKO mice generated by further crossing with Cx47KO mice showed that transgenic expression of hCx32 rescued the severe early phenotype of CNS demyelination in Cx32/Cx47dKO mice, resulting in marked improvement of behavioral abnormalities at 1 month of age, and preventing the early mortality. Furthermore, TG(+)Cx32/Cx47dKO mice showed significant improvement of myelination compared with Cx32/Cx47dKO CNS at 1 month of age, while the inflammatory and astrogliotic changes were fully reversed. Our study confirms that loss of oligodendrocyte GJs has cell autonomous effects and that re-establishment of GJ connectivity by replacement of least one GJ protein provides correction of the leukodystrophy phenotype.
Collapse
Affiliation(s)
| | | | | | | | - Marianna Nearchou
- Department of Molecular Pathology and Electron Microscopy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | |
Collapse
|
70
|
Capponi S, Geroldi A, Pezzini I, Gulli R, Ciotti P, Ursino G, Lamp M, Reni L, Schenone A, Grandis M, Mandich P, Bellone E. Contribution of copy number variations in CMT1X: a retrospective study. Eur J Neurol 2015; 22:406-9. [PMID: 24724718 DOI: 10.1111/ene.12434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/06/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Charcot-Marie-Tooth disease type 1X (CMT1X) is an X-linked dominant hereditary motor-sensory peripheral neuropathy, which results from mutations in the Gap Junction B1 (GJB1) gene. In a few cases, gene deletions have been linked to the disease, but their relative contribution in the pathogenesis of CMT1X has not been assessed yet. Herein a retrospective study to establish the incidence of gene deletions is described. METHODS Copy number variation analysis was performed by multiplex ligation-dependent probe amplification, whilst the breakpoints were defined by Sanger sequencing. RESULTS A novel GJB1 deletion was identified in a family presenting with a classical CMT1X phenotype. The rearrangement includes the coding and the regulatory regions of GJB1. CONCLUSIONS GJB1 deletions appear to be a rare but not insignificant cause of CMT1X and are associated with a typical disease phenotype. Accordingly, patients negative for point mutations whose pedigree and clinical records strongly suggest the possibility of CMT1X should be tested for GJB1 copy number variations.
Collapse
Affiliation(s)
- S Capponi
- Section of Medical Genetics, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Gooch CL, Doherty TJ, Chan KM, Bromberg MB, Lewis RA, Stashuk DW, Berger MJ, Andary MT, Daube JR. Motor unit number estimation: A technology and literature review. Muscle Nerve 2014; 50:884-93. [PMID: 25186553 DOI: 10.1002/mus.24442] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Clifton L. Gooch
- Department of Neurology; University of South Florida; Tampa Florida USA
| | - Timothy J. Doherty
- Department of Physical Medicine and Rehabilitation; University of Western Ontario; London Ontario Canada
- Department of Clinical Neurological Sciences; University of Western Ontario; London Ontario Canada
- Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - K. Ming Chan
- Division of Physical Medicine and Rehabilitation/Centre for Neuroscience; University of Alberta; Edmonton Alberta Canada
| | - Mark B. Bromberg
- Department of Neurology; University of Utah; Salt Lake City Utah USA
| | - Richard A. Lewis
- Department of Neurology; Cedars-Sinai; Los Angeles California USA
| | - Dan W. Stashuk
- Systems Design Engineering; University of Waterloo; Waterloo Ontario Canada
| | - Michael J. Berger
- School of Kinesiology; University of Western Ontario; London Ontario Canada
- Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Michael T. Andary
- College of Osteopathic Medicine; Michigan State University; East Lansing Michigan USA
| | - Jasper R. Daube
- Department of Neurology; Mayo Clinic; Rochester Minnesota USA
| |
Collapse
|
72
|
Intermediate Charcot-Marie-Tooth disease. Neurosci Bull 2014; 30:999-1009. [PMID: 25326399 DOI: 10.1007/s12264-014-1475-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/19/2014] [Indexed: 01/15/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a common neurogenetic disorder and its heterogeneity is a challenge for genetic diagnostics. The genetic diagnostic procedures for a CMT patient can be explored according to the electrophysiological criteria: very slow motor nerve conduction velocity (MNCV) (<15 m/s), slow MNCV (15-25 m/s), intermediate MNCV (25-45 m/s), and normal MNCV (>45 m/s). Based on the inheritance pattern, intermediate CMT can be divided into dominant (DI-CMT) and recessive types (RI-CMT). GJB1 is currently considered to be associated with X-linked DI-CMT, and MPZ, INF2, DNM2, YARS, GNB4, NEFL, and MFN2 are associated with autosomal DI-CMT. Moreover, GDAP1, KARS, and PLEKHG5 are associated with RI-CMT. Identification of these genes is not only important for patients and families but also provides new information about pathogenesis. It is hoped that this review will lead to a better understanding of intermediate CMT and provide a detailed diagnostic procedure for intermediate CMT.
Collapse
|
73
|
Kim GH, Kim KM, Suh SI, Ki CS, Eun BL. Charcot-Marie-Tooth disease masquerading as acute demyelinating encephalomyelitis-like illness. Pediatrics 2014; 134:e270-3. [PMID: 24958582 DOI: 10.1542/peds.2012-3243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMTX1) is a clinically heterogeneous hereditary motor and sensory neuropathy with X-linked transmission. Common clinical manifestations of CMTX1 disease, as in other forms of Charcot-Marie-Tooth (CMT) disease, are distal muscle wasting and weakness, hyporeflexia, distal sensory disturbance, and foot deformities. Mutations in the connexin-32 gene (gap junction protein β1 [GJB1]) are responsible for CMTX1 disease. In this report, we describe a patient with CMTX1 disease presenting with recurrent attacks of transient and episodic acute demyelinating encephalomyelitis (ADEM)-like symptoms without previous signs of lower extremity weakness or foot deformities; the patient, as well as his asymptomatic mother, exhibited a novel GJB1 mutation (p.Met1Ile). Differential diagnosis of recurrent and transient ADEM-like illness, if unexplained, should include the possibility of CMTX1 disease.
Collapse
Affiliation(s)
| | - Kyoung Min Kim
- Radiology, Korea University College of Medicine, Seoul, Korea; and
| | - Sang-Il Suh
- Radiology, Korea University College of Medicine, Seoul, Korea; and
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | |
Collapse
|
74
|
Liang C, Howells J, Kennerson M, Nicholson GA, Burke D, Ng K. Axonal excitability in X-linked dominant Charcot Marie Tooth disease. Clin Neurophysiol 2014; 125:1261-9. [PMID: 24290847 DOI: 10.1016/j.clinph.2013.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 10/22/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We investigated peripheral nerve function in X-linked Charcot-Marie-Tooth disease type 1 (CMTX1), and considered the functional consequences of mutant connexin-32. METHODS Twelve subjects (9 female, 3 male) were assessed clinically, by nerve conduction and excitability studies. A model of myelinated axon was used to clarify the contributing changes. RESULTS All subjects had abnormal nerve conduction. Excitability studies on median nerve axons showed greater threshold changes to hyperpolarising currents, with "fanning out" in threshold electrotonus, and modest changes in the recovery cycle. Modelling suggested shortening of internodal length, increase in nodal fast potassium currents, shift of the voltage activation hyperpolarisation-activated cyclic-nucleotide-gated channels, and axonal hyperpolarisation. Plotting threshold versus extent of hyperpolarising threshold change in threshold electrotonus distinguished the CMTX1 patients from other chronic demyelinating neuropathies reported in the literature except hereditary neuropathy with pressure palsies (HNPP). CONCLUSIONS Some measures of axonal excitability are similar in CMTX1 and HNPP (though not the recovery cycle), but they differ from those in other chronic demyelinating neuropathies. The findings in CMTX1 are consistent with known pathology, but are not correlated to neuropathy severity. SIGNIFICANCE The findings in CMTX1 could be largely the result of morphological alterations, rather than plasticity in channel expression or distribution.
Collapse
Affiliation(s)
- Christina Liang
- Department of Neurology and Clinical Neurophysiology, Royal North Shore Hospital, NSW, Australia; The University of Sydney, NSW, Australia
| | - James Howells
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, NSW, Australia; The University of Sydney, NSW, Australia
| | - Marina Kennerson
- ANZAC Research Institute, Concord Repatriation Hospital, NSW, Australia; The University of Sydney, NSW, Australia
| | - Garth A Nicholson
- ANZAC Research Institute, Concord Repatriation Hospital, NSW, Australia; The University of Sydney, NSW, Australia
| | - David Burke
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, NSW, Australia; The University of Sydney, NSW, Australia
| | - Karl Ng
- Department of Neurology and Clinical Neurophysiology, Royal North Shore Hospital, NSW, Australia; Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, NSW, Australia; The University of Sydney, NSW, Australia.
| |
Collapse
|
75
|
Yang E, Prabhu SP. Imaging manifestations of the leukodystrophies, inherited disorders of white matter. Radiol Clin North Am 2014; 52:279-319. [PMID: 24582341 DOI: 10.1016/j.rcl.2013.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The leukodystrophies are a diverse set of inherited white matter disorders and are uncommonly encountered by radiologists in everyday practice. As a result, it is challenging to recognize these disorders and to provide a useful differential for the referring physician. In this article, leukodystrophies are reviewed from the perspective of 4 imaging patterns: global myelination delay, periventricular/deep white matter predominant, subcortical white matter predominant, and mixed white/gray matter involvement patterns. Special emphasis is placed on pattern recognition and unusual combinations of findings that may suggest a specific diagnosis.
Collapse
Affiliation(s)
- Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
76
|
Length dependent loss of motor axons and altered motor unit properties in human diabetic polyneuropathy. Clin Neurophysiol 2014; 125:836-843. [DOI: 10.1016/j.clinph.2013.09.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/26/2013] [Accepted: 09/30/2013] [Indexed: 12/14/2022]
|
77
|
Al-Mateen M, Craig AK, Chance PF. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults. J Child Neurol 2014; 29:342-8. [PMID: 23400245 DOI: 10.1177/0883073812474343] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.
Collapse
Affiliation(s)
- Majeed Al-Mateen
- 1Mary Bridge Children's Hospital and Health Center, Tacoma, WA, USA
| | | | | |
Collapse
|
78
|
McKinney JL, De Los Reyes EC, Lo WD, Flanigan KM. Recurrent central nervous system white matter changes in charcot-Marie-tooth type X disease. Muscle Nerve 2014; 49:451-4. [PMID: 24170412 DOI: 10.1002/mus.24108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2013] [Indexed: 11/10/2022]
Abstract
INTRODUCTION X-linked Charcot-Marie-Tooth (CMT1X) disease is caused by mutations in the GJB1 gene. We describe a young man who presented with recurrent central nervous symptoms and transient white matter changes in the setting of a novel mutation in the GJB1 gene. METHODS Evaluation included clinical examination, neuroimaging, electrophysiological, and molecular genetic studies. RESULTS Clinical examination on 2 admissions 5 years apart demonstrated hemiparesis with findings of underlying peripheral neuropathy. Electrophysiologic studies revealed a sensorimotor polyneuropathy. MRI studies from both admissions revealed white matter changes, with improvement on an intervening study. Mutation analysis showed a novel mutation (c.98T>A; p.Ile33Asn) in the GJB1 gene. CONCLUSIONS Mutations in GJB1 can result in recurrent central nervous system symptoms with transient white matter signal changes on MRI. In patients presenting with hemiparesis, the presence of signs of a peripheral neuropathy may facilitate identification of CMT1X, and is likely to affect clinical management.
Collapse
Affiliation(s)
- Jennifer L McKinney
- Division of Child Neurology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, Ohio, 43205, USA; Department of Pediatrics, Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
79
|
Lewis RA, McDermott MP, Herrmann DN, Hoke A, Clawson LL, Siskind C, Feely SME, Miller LJ, Barohn RJ, Smith P, Luebbe E, Wu X, Shy ME. High-dosage ascorbic acid treatment in Charcot-Marie-Tooth disease type 1A: results of a randomized, double-masked, controlled trial. JAMA Neurol 2013; 70:981-7. [PMID: 23797954 DOI: 10.1001/jamaneurol.2013.3178] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE No current medications improve neuropathy in subjects with Charcot-Marie-Tooth disease type 1A (CMT1A). Ascorbic acid (AA) treatment improved the neuropathy of a transgenic mouse model of CMT1A and is a potential therapy. A lower dosage (1.5 g/d) did not cause improvement in humans. It is unknown whether a higher dosage would prove more effective. OBJECTIVE To determine whether 4-g/d AA improves the neuropathy of subjects with CMT1A. DESIGN A futility design to determine whether AA was unable to reduce worsening on the CMT Neuropathy Score (CMTNS) by at least 50% over a 2-year period relative to a natural history control group. SETTING Three referral centers with peripheral nerve clinics (Wayne State University, Johns Hopkins University, and University of Rochester). PARTICIPANTS One hundred seventy-four subjects with CMT1A were assessed for eligibility; 48 did not meet eligibility criteria and 16 declined to participate. The remaining 110 subjects, aged 13 to 70 years, were randomly assigned in a double-masked fashion with 4:1 allocation to oral AA (87 subjects) or matching placebo (23 subjects). Sixty-nine subjects from the treatment group and 16 from the placebo group completed the study. Two subjects from the treatment group and 1 from the placebo group withdrew because of adverse effects. INTERVENTIONS Oral AA (4 g/d) or matching placebo. MAIN OUTCOMES AND MEASURES Change from baseline to year 2 in the CMTNS, a validated composite impairment score for CMT. RESULTS The mean 2-year change in the CMTNS was -0.21 for the AA group and -0.92 for the placebo group, both better than natural history (+1.33). This was well below 50% reduction of CMTNS worsening from natural history, so futility could not be declared (P > .99). CONCLUSIONS AND RELEVANCE Both treated patients and those receiving placebo performed better than natural history. It seems unlikely that our results support undertaking a larger trial of 4-g/d AA treatment in subjects with CMT1A. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00484510.
Collapse
Affiliation(s)
- Richard A Lewis
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Caramins M, Colebatch JG, Bainbridge MN, Scherer SS, Abrams CK, Hackett EL, Freidin MM, Jhangiani SN, Wang M, Wu Y, Muzny DM, Lindeman R, Gibbs RA. Exome sequencing identification of a GJB1 missense mutation in a kindred with X-linked spinocerebellar ataxia (SCA-X1). Hum Mol Genet 2013; 22:4329-38. [PMID: 23773993 PMCID: PMC3792691 DOI: 10.1093/hmg/ddt282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/11/2013] [Indexed: 12/21/2022] Open
Abstract
We undertook a gene identification and molecular characterization project in a large kindred originally clinically diagnosed with SCA-X1. While presenting with ataxia, this kindred also had some unique peripheral nervous system features. The implicated region on the X chromosome was delineated using haplotyping. Large deletions and duplications were excluded by array comparative genomic hybridization. Exome sequencing was undertaken in two affected subjects. The single identified X chromosome candidate variant was then confirmed to co-segregate appropriately in all affected, carrier and unaffected family members by Sanger sequencing. The variant was confirmed to be novel by comparison with dbSNP, and filtering for a minor allele frequency of <1% in 1000 Genomes project, and was not present in the NHLBI Exome Sequencing Project or a local database at the BCM HGSC. Functional experiments on transfected cells were subsequently undertaken to assess the biological effect of the variant in vitro. The variant identified consisted of a previously unidentified non-synonymous variant, GJB1 p.P58S, in the Connexin 32/Gap Junction Beta 1 gene. Segregation studies with Sanger sequencing confirmed the presence of the variant in all affected individuals and one known carrier, and the absence of the variant in unaffected members. Functional studies confirmed that the p.P58S variant reduced the number and size of gap junction plaques, but the conductance of the gap junctions was unaffected. Two X-linked ataxias have been associated with genetic loci, with the first of these recently characterized at the molecular level. This represents the second kindred with molecular characterization of X-linked ataxia, and is the first instance of a previously unreported GJB1 mutation with a dominant and permanent ataxia phenotype, although different CNS deficits have previously been reported. This pedigree has also been relatively unique in its phenotype due to the presence of central and peripheral neural abnormalities. Other X-linked SCAs with unique features might therefore also potentially represent variable phenotypic expression of other known neurological entities.
Collapse
Affiliation(s)
- Melody Caramins
- Department of Haematology and
- Department of Genetics, South Eastern Area Laboratory Services, Randwick, NSW 2031, Australia
| | - James G. Colebatch
- Department of Neurology, Prince of Wales Hospital
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | | | - Steven S. Scherer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles K. Abrams
- Department of Neurology and
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Emma L. Hackett
- Department of Haematology and
- Department of Genetics, South Eastern Area Laboratory Services, Randwick, NSW 2031, Australia
| | | | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuanqing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert Lindeman
- Department of Haematology and
- Department of Genetics, South Eastern Area Laboratory Services, Randwick, NSW 2031, Australia
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
81
|
Martikainen MH, Majamaa K. Novel GJB1 mutation causing adult-onset Charcot-Marie-Tooth disease in a female patient. Neuromuscul Disord 2013; 23:899-901. [PMID: 23838279 DOI: 10.1016/j.nmd.2013.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/02/2013] [Accepted: 06/11/2013] [Indexed: 11/24/2022]
Abstract
Charcot-Marie-Tooth disease (CMT), which is the eponym for hereditary motor and sensory neuropathy (HMSN), affects ∼1 in 2500 individuals. The most common subtype of X-linked CMT, CMTX1, is caused by mutations in GJB1, the gene encoding connexin 32, a gap junction protein in myelinated Schwann cells. We report a woman, who presented at the age of 56 years with gait unsteadiness and tingling in her feet. Clinical investigation revealed impaired sensation to pinprick, light touch and vibration in her distal lower limbs. Ankle reflexes were bilaterally absent. Sequencing revealed a novel heterozygous c.712C>T (p.R238C) mutation in the GJB1 gene. This mutation is predicted to result in the loss of disulfide bonds and thus in abnormal protein structure. In this woman, the reported novel GJB1 mutation resulted in sensory abnormalities, slowly progressive loss of distal lower limb strength, and notable loss of balance, with onset of symptoms late in adult age.
Collapse
Affiliation(s)
- Mika H Martikainen
- University of Turku and Turku University Hospital, Division of Clinical Neurosciences, Turku, Finland.
| | | |
Collapse
|
82
|
Sivera R, Sevilla T, Vílchez JJ, Martínez-Rubio D, Chumillas MJ, Vázquez JF, Muelas N, Bataller L, Millán JM, Palau F, Espinós C. Charcot-Marie-Tooth disease: genetic and clinical spectrum in a Spanish clinical series. Neurology 2013; 81:1617-25. [PMID: 24078732 PMCID: PMC3806911 DOI: 10.1212/wnl.0b013e3182a9f56a] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/30/2013] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To determine the genetic distribution and the phenotypic correlation of an extensive series of patients with Charcot-Marie-Tooth disease in a geographically well-defined Mediterranean area. METHODS A thorough genetic screening, including most of the known genes involved in this disease, was performed and analyzed in this longitudinal descriptive study. Clinical data were analyzed and compared among the genetic subgroups. RESULTS Molecular diagnosis was accomplished in 365 of 438 patients (83.3%), with a higher success rate in demyelinating forms of the disease. The CMT1A duplication (PMP22 gene) was the most frequent genetic diagnosis (50.4%), followed by mutations in the GJB1 gene (15.3%), and in the GDAP1 gene (11.5%). Mutations in 13 other genes were identified, but were much less frequent. Sixteen novel mutations were detected and characterized phenotypically. CONCLUSIONS The relatively high frequency of GDAP1 mutations, coupled with the scarceness of MFN2 mutations (1.1%) and the high proportion of recessive inheritance (11.6%) in this series exemplify the particularity of the genetic distribution of Charcot-Marie-Tooth disease in this region.
Collapse
Affiliation(s)
- Rafael Sivera
- From the Departments of Neurology (R.S., T.S., J.J.V., J.F.V., N.M., L.B.), Clinical Neurophysiology (M.J.C.), and Genetics (J.M.M.), Hospital Univesitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (T.S., J.J.V., M.J.C., N.M., L.B.), Valencia; Departments of Medicine (T.S., J.J.V.) and Genetics (C.E.), University of Valencia; Program in Rare and Genetic Diseases (D.M.-R., F.P., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia; Centro de Investigación Biomédica en Red de Enfermedades Raras (D.M.-R., J.M.M., F.P., C.E.), Valencia; IBV-CSIC Associated Unit at CIPF (D.M.-R., F.P., C.E.), Valencia; and School of Medicine (F.P.), University of Castilla-La Mancha, Ciudad Real, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Tsai PC, Chen CH, Liu AB, Chen YC, Soong BW, Lin KP, Yet SF, Lee YC. Mutational analysis of the 5' non-coding region of GJB1 in a Taiwanese cohort with Charcot-Marie-Tooth neuropathy. J Neurol Sci 2013; 332:51-5. [PMID: 23827825 DOI: 10.1016/j.jns.2013.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/12/2013] [Indexed: 11/20/2022]
Abstract
Mutations in the 5' non-coding region of GJB1 are rarely reported in patients with Charcot-Marie-Tooth disease (CMT). We therefore aimed to assess the frequency and identities of the GJB1 5' non-coding region mutations in a cohort of CMT. We analyzed the 5' non-coding region of GJB1 (including the promoter P2 and exon 1b) in 91 unrelated CMT patients without an identified genetic cause. Two mutations, c.-529T>C, and c.-459C>T, were identified in one patient each. One polymorphism, c.-713G>A, was also identified in 53 patients and 73 of the 100 control subjects. The luciferase reporter assays showed that c.-459C>T significantly reduced the luciferase expression with or without SOX10 activation, whereas c.-529T>C impaired the expression only with SOX10 co-expression. c.-713G>A had no apparent functional effect. Mutations in the 5' non-coding region of GJB1 account for 0.8% (2 of 251) of CMT and 2.2% (2 of 91) of genetically unassigned CMT in a Taiwanese cohort. As previously demonstrated, c.-459C>T and c.-529T>C may cause CMT through compromising GJB1 expression whereas c.-713G>A is a benign variant. This study highlights the pathogenic role of the GJB1 5' non-coding region mutations in CMT, and suggests that their identification should be considered for CMT patients without commonly observed mutations.
Collapse
Affiliation(s)
- Pei-Chien Tsai
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Siskind CE, Panchal S, Smith CO, Feely SME, Dalton JC, Schindler AB, Krajewski KM. A review of genetic counseling for Charcot Marie Tooth disease (CMT). J Genet Couns 2013; 22:422-36. [PMID: 23604902 DOI: 10.1007/s10897-013-9584-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 03/20/2013] [Indexed: 02/07/2023]
Abstract
Charcot Marie Tooth disease (CMT) encompasses the inherited peripheral neuropathies. While four genes have been found to cause over 90 % of genetically identifiable causes of CMT (PMP22, GJB1, MPZ, MFN2), at least 51 genes and loci have been found to cause CMT when mutated, creating difficulties for clinicians to find a genetic subtype for families. Here, the classic features of CMT as well as characteristic features of the most common subtypes of CMT are described, as well as methods for narrowing down the possible subtypes. Psychosocial concerns particular to the CMT population are identified. This is the most inclusive publication for CMT-specific genetic counseling.
Collapse
Affiliation(s)
- Carly E Siskind
- Neurosciences Department, Stanford Hospital and Clinics, 300 Pasteur Dr., Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited peripheral neuropathies in which the neuropathy is the sole or primary component of the disorder, as opposed to diseases in which the neuropathy is part of a more generalized neurologic or multisystem syndrome. Because of the great genetic heterogeneity of this condition, it can be challenging for the general neurologist to diagnose patients with specific types of CMT. This article reviews the biology of the inherited peripheral neuropathies, delineates major phenotypic features of the CMT subtypes, and suggest strategies for focusing genetic testing.
Collapse
Affiliation(s)
- Mario A Saporta
- National Laboratory of Embryonic Stem Cells, Biomedical Sciences Department, Federal University of Rio de Janeiro, Rua Republica do Peru 362/602, Rio de Janeiro 22021-040, Brazil.
| | | |
Collapse
|
86
|
Komyathy K, Neal S, Feely S, Miller LJ, Lewis RA, Trigge G, Siskind CE, Shy ME, Ramchandren S. Anterior tibialis CMAP amplitude correlations with impairment in CMT1A. Muscle Nerve 2013; 47:493-6. [PMID: 23456782 DOI: 10.1002/mus.23614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 11/05/2022]
Abstract
INTRODUCTION CMT1A is the most common form of Charcot-Marie-Tooth disease (CMT), a slowly progressive neuropathy in which impairment is length dependent. Fibular nerve conduction studies to the anterior tibialis muscle (AT) may serve as a physiological marker of disease progression in patients with CMT1A. The objective of this study is to determine whether the AT compound muscle action potential (CMAP) amplitude correlates with impairment in patients with CMT1A. METHODS We correlated AT CMAP amplitudes and impairment measured by the CMT Neuropathy Score (CMTNS) in a cross-section of 121 patients with CMT1A and a subset of 27 patients with longitudinal data. RESULTS AT CMAP amplitudes correlated with impairment as measured by the CMTNS in cross sectional analysis. Longitudinal changes in the AT CMAP showed a strong inverse correlation with leg strength but not other components of the CMTNS. CONCLUSIONS AT CMAP amplitude may serve as a useful outcome measure for physiological changes in natural history studies and clinical trials for patients with CMT1A.
Collapse
Affiliation(s)
- Kelsey Komyathy
- Wayne State University-Detroit Medical Center, Department of Neurology, 4201 Saint Antoine Street, UHC 8C.28, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Pareyson D, Marchesi C, Salsano E. Dominant Charcot-Marie-Tooth syndrome and cognate disorders. HANDBOOK OF CLINICAL NEUROLOGY 2013; 115:817-845. [PMID: 23931817 DOI: 10.1016/b978-0-444-52902-2.00047-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Charcot-Marie-Tooth neuropathy (CMT) is a group of genetically heterogeneous disorders sharing a similar phenotype, characterized by wasting and weakness mainly involving the distal muscles of lower and upper limbs, variably associated with distal sensory loss and skeletal deformities. This chapter deals with dominantly transmitted CMT and related disorders, namely hereditary neuropathy with liability to pressure palsies (HNPP) and hereditary neuralgic amyotrophy (HNA). During the last 20 years, several genes have been uncovered associated with CMT and our understanding of the underlying molecular mechanisms has greatly improved. Consequently, a precise genetic diagnosis is now possible in the majority of cases, thus allowing proper genetic counseling. Although, unfortunately, treatment is still unavailable for all types of CMT, several cellular and animal models have been developed and some compounds have proved effective in these models. The first trials with ascorbic acid in CMT type 1A have been completed and, although negative, are providing relevant information on disease course and on how to prepare for future trials.
Collapse
Affiliation(s)
- Davide Pareyson
- Clinics of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy.
| | | | | |
Collapse
|
88
|
Abstract
The inherited neuropathies are a clinically and genetically heterogeneous group of disorders in which there have been rapid advances in the last two decades. Molecular genetic testing is now an integral part of the evaluation of patients with inherited neuropathies. In this chapter we describe the genes responsible for the primary inherited neuropathies. We briefly discuss the clinical phenotype of each of the known inherited neuropathy subgroups, describe algorithms for molecular genetic testing of affected patients and discuss genetic counseling. The basic principles of careful phenotyping, documenting an accurate family history, and testing the available genes in an appropriate manner should identify the vast majority of individuals with CMT1 and many of those with CMT2. In this chapter we also describe the current methods of genetic testing. As advances are made in molecular genetic technologies and improvements are made in bioinformatics, it is likely that the current time-consuming methods of DNA sequencing will give way to quicker and more efficient high-throughput methods, which are briefly discussed here.
Collapse
|
89
|
Kleopa KA, Abrams CK, Scherer SS. How do mutations in GJB1 cause X-linked Charcot-Marie-Tooth disease? Brain Res 2012; 1487:198-205. [PMID: 22771394 PMCID: PMC3488165 DOI: 10.1016/j.brainres.2012.03.068] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/24/2012] [Indexed: 11/26/2022]
Abstract
The X-linked form of Charcot-Marie-Tooth disease (CMT1X) is the second most common form of hereditary motor and sensory neuropathy. The clinical phenotype is characterized by progressive weakness, atrophy, and sensory abnormalities that are most pronounced in the distal extremities. Some patients have CNS manifestations. Affected males have moderate to severe symptoms, whereas heterozygous females are usually less affected. Neurophysiology shows intermediate slowing of conduction and length-dependent axonal loss. Nerve biopsies show more prominent axonal degeneration than de/remyelination. Mutations in GJB1, the gene that encodes the gap junction (GJ) protein connexin32 (Cx32) cause CMT1X; more than 400 different mutations have been described. Many Cx32 mutants fail to form functional GJs, or form GJs with abnormal biophysical properties. Schwann cells and oligodendrocytes express Cx32, and the GJs formed by Cx32 play an important role in the homeostasis of myelinated axons. Animal models of CMT1X demonstrate that loss of Cx32 in myelinating Schwann cells causes a demyelinating neuropathy. Effective therapies remain to be developed. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- Neurology Clinics and Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | |
Collapse
|
90
|
Abstract
The X-linked form of Charcot-Marie-Tooth disease (CMT1X) is the second most common form of hereditary motor and sensory neuropathy. The clinical phenotype is characterized by progressive muscle atrophy and weakness, areflexia, and variable sensory abnormalities; central nervous system manifestations occur, too. Affected males have moderate to severe symptoms, whereas heterozygous females are usually less affected. Neurophysiology shows intermediate slowing of conduction and distal axonal loss. Nerve biopsies show more prominent axonal degeneration than de/remyelination. More than 400 different mutations in GJB1, the gene that encodes the gap junction (GJ) protein connexin32 (Cx32), cause CMT1X. Many Cx32 mutants fail to form functional GJs, or form GJs with abnormal biophysical properties. Schwann cells and oligodendrocytes express Cx32, and the GJs formed by Cx32 play an important role in the homeostasis of myelinated axons. Animal models of CMT1X demonstrate that loss of Cx32 in myelinating Schwann cells causes a demyelinating neuropathy. An effective therapy remains to be developed.
Collapse
Affiliation(s)
- Steven S Scherer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
91
|
Abstract
PURPOSE OF REVIEW The inherited peripheral neuropathies are a complex group of disorders caused by mutations in more than 50 genes. Scientifically, these disorders provide extensive information on molecular pathways that cause demyelination, axonal loss, and abnormal interactions between Schwann cells and the axons they ensheathe. Clinically, however, these neuropathies are confusing because it is difficult to determine what gene to test for in a given patient, inheritance patterns may differ among patients, and genetic testing is expensive. This review provides a biological context and guidelines to help neurologists better understand the basis and focus of genetic testing for these disorders. RECENT FINDINGS In the past 5 years, many of the genetic causes of inherited neuropathies have been discovered and the phenotypes of inherited neuropathies have been characterized. Clinical trials of genetic neuropathies are now underway. SUMMARY It is hoped that this review will lead to a better understanding of these fascinating neuropathies for health care professionals and that this improved understanding will facilitate treatment advances for these presently untreatable diseases.
Collapse
Affiliation(s)
- Agnes Patzko
- Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
92
|
Arthur-Farraj P, Murphy S, Laura M, Lunn M, Manji H, Blake J, Ramdharry G, Fox Z, Reilly M. Hand weakness in Charcot-Marie-Tooth disease 1X. Neuromuscul Disord 2012; 22:622-6. [PMID: 22464564 PMCID: PMC3657175 DOI: 10.1016/j.nmd.2012.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 02/14/2012] [Accepted: 02/27/2012] [Indexed: 11/28/2022]
Abstract
There have been suggestions from previous studies that patients with Charcot-Marie-Tooth disease (CMT) have weaker dominant hand muscles. Since all studies to date have included a heterogeneous group of CMT patients we decided to analyse hand strength in 43 patients with CMT1X. We recorded handedness and the MRC scores for the first dorsal interosseous and abductor pollicis brevis muscles, median and ulnar nerve compound motor action potentials and conduction velocities in dominant and non-dominant hands. Twenty-two CMT1X patients (51%) had a weaker dominant hand; none had a stronger dominant hand. Mean MRC scores were significantly higher for first dorsal interosseous and abductor pollicis brevis in non-dominant hands compared to dominant hands. Median nerve compound motor action potentials were significantly reduced in dominant compared to non-dominant hands. We conclude that the dominant hand is weaker than the non-dominant hand in patients with CMT1X.
Collapse
Affiliation(s)
- P.J. Arthur-Farraj
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Burns J, Ouvrier R, Estilow T, Shy R, Laurá M, Pallant JF, Lek M, Muntoni F, Reilly MM, Pareyson D, Acsadi G, Shy ME, Finkel RS. Validation of the Charcot-Marie-Tooth disease pediatric scale as an outcome measure of disability. Ann Neurol 2012; 71:642-52. [PMID: 22522479 DOI: 10.1002/ana.23572] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Charcot-Marie-Tooth disease (CMT) is a common heritable peripheral neuropathy. There is no treatment for any form of CMT, although clinical trials are increasingly occurring. Patients usually develop symptoms during the first 2 decades of life, but there are no established outcome measures of disease severity or response to treatment. We identified a set of items that represent a range of impairment levels and conducted a series of validation studies to build a patient-centered multi-item rating scale of disability for children with CMT. METHODS As part of the Inherited Neuropathies Consortium, patients aged 3 to 20 years with a variety of CMT types were recruited from the USA, United Kingdom, Italy, and Australia. Initial development stages involved definition of the construct, item pool generation, peer review, and pilot testing. Based on data from 172 patients, a series of validation studies were conducted, including item and factor analysis, reliability testing, Rasch modeling, and sensitivity analysis. RESULTS Seven areas for measurement were identified (strength, dexterity, sensation, gait, balance, power, endurance), and a psychometrically robust 11-item scale was constructed (CMT Pediatric Scale [CMTPedS]). Rasch analysis supported the viability of the CMTPedS as a unidimensional measure of disability in children with CMT. It showed good overall model fit, no evidence of misfitting items, and no person misfit, and it was well targeted for children with CMT. INTERPRETATION The CMTPedS is a well-tolerated outcome measure that can be completed in 25 minutes. It is a reliable, valid, and sensitive global measure of disability for children with CMT from the age of 3 years.
Collapse
Affiliation(s)
- Joshua Burns
- Children's Hospital at Westmead and University of Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Murphy SM, Ovens R, Polke J, Siskind CE, Laurà M, Bull K, Ramdharry G, Houlden H, Murphy RPJ, Shy ME, Reilly MM. X inactivation in females with X-linked Charcot-Marie-Tooth disease. Neuromuscul Disord 2012; 22:617-21. [PMID: 22483671 PMCID: PMC3657177 DOI: 10.1016/j.nmd.2012.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/21/2012] [Accepted: 02/29/2012] [Indexed: 11/09/2022]
Abstract
X-linked Charcot–Marie–Tooth disease (CMT1X) is the second most common inherited neuropathy, caused by mutations in gap junction beta-1 (GJB1). Males have a uniformly moderately severe phenotype while females have a variable phenotype, suggested to be due to X inactivation. We aimed to assess X inactivation pattern in females with CMT1X and correlate this with phenotype using the CMT examination score to determine whether the X inactivation pattern accounted for the variable phenotype in females with CMT1X. We determined X inactivation pattern in 67 females with CMT1X and 24 controls using the androgen receptor assay. We were able to determine which X chromosome carried the GJB1 mutation in 30 females. There was no difference in X inactivation pattern between patients and controls. In addition, there was no correlation between X inactivation pattern in blood and phenotype. A possible explanation for these findings is that the X inactivation pattern in Schwann cells rather than in blood may explain the variable phenotype in females with CMT1X.
Collapse
Affiliation(s)
- Sinéad M Murphy
- MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Murphy SM, Herrmann DN, McDermott MP, Scherer SS, Shy ME, Reilly MM, Pareyson D. Reliability of the CMT neuropathy score (second version) in Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2012; 16:191-8. [PMID: 22003934 DOI: 10.1111/j.1529-8027.2011.00350.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Charcot-Marie-Tooth neuropathy score (CMTNS) is a reliable and valid composite score comprising symptoms, signs, and neurophysiological tests, which has been used in natural history studies of CMT1A and CMT1X and as an outcome measure in treatment trials of CMT1A. Following an international workshop on outcome measures in Charcot-Marie-Tooth disease (CMT), the CMTNS was modified to attempt to reduce floor and ceiling effects and to standardize patient assessment, aiming to improve its sensitivity for detecting change over time and the effect of an intervention. After agreeing on the modifications made to the CMTNS (CMTNS2), three examiners evaluated 16 patients to determine inter-rater reliability; one examiner evaluated 18 patients twice within 8 weeks to determine intra-rater reliability. Three examiners evaluated 63 patients using the CMTNS and the CMTNS2 to determine how the modifications altered scoring. For inter- and intra-rater reliability, intra-class correlation coefficients (ICCs) were ≥0.96 for the CMT symptom score and the CMT examination score. There were small but significant differences in some of the individual components of the CMTNS compared with the CMTNS2, mainly in the components that had been modified the most. A longitudinal study is in progress to determine whether the CMTNS2 is more sensitive than the CMTNS for detecting change over time.
Collapse
Affiliation(s)
- Sinéad M Murphy
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK.
| | | | | | | | | | | | | |
Collapse
|
96
|
Kim Y, Choi KG, Park KD, Lee KS, Chung KW, Choi BO. X-linked dominant Charcot-Marie-Tooth disease with connexin 32 (Cx32) mutations in Koreans. Clin Genet 2012; 81:142-9. [PMID: 21291455 DOI: 10.1111/j.1399-0004.2011.01642.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
X-linked dominant Charcot-Marie-Tooth disease (CMTX) is an inherited peripheral neuropathy, caused mainly by a mutation of connexin 32 (Cx32) gene. We performed a mutation analysis of Cx32 by direct sequencing of the coding sequence, then identified 23 mutations from 28 Korean CMTX families. Nine mutations were not reported previously: Gly5Ser, Ser26fs, Val37Leu, Thr86Ile, Val152fs, Phe153Cys, Asp178X, Ala197Val, and Ile214Asn. The extracellular 2 (EC2) domain of Cx32 protein was the hot spot mutation domain in 44% of Koreans. Transmembrane domain 4 was rarely affected in Koreans (4%), compared with 14% of Europeans. The EC1 and intracellular domain was not affected in Koreans, although they were frequently affected in Europeans. This study revealed that the frequencies of CMTX with Cx32 mutations are specific to different ethnic groups. The frequency of CMTX (5.3%) caused by Cx32 mutation in Koreans is similar to those in Asians but lower than those in Europeans. This study suggests differences between CMTX patients with Cx32 mutations and ethnic background.
Collapse
Affiliation(s)
- Y Kim
- Department of Neurology, Ewha Womans University School of Medicine, Mok-dong, Yangchun-Gu, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
97
|
Ramdharry GM, Pollard AJ, Marsden JF, Reilly MM. Comparing gait performance of people with Charcot-Marie-Tooth disease who do and do not wear ankle foot orthoses. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2012; 17:191-9. [PMID: 22228620 DOI: 10.1002/pri.531] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 11/01/2011] [Accepted: 11/14/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND PURPOSE Ankle foot orthoses (AFOs) are commonly prescribed for people with Charcot-Marie-Tooth (CMT) disease. Scant evidence exists to guide the type and timing of orthotic prescription. This study explores the latter issue by investigating the differences in presentation and gait function of people with CMT disease who wore AFOs for daily mobility (n = 11) and a group who did not (n = 21). The aim was to see if there was a difference in the characteristics in people who regularly wear AFOs. METHODS Primary measures of gait function were a 10-m timed walk (comfortable and maximum speed) and a 6-minute walk test. Means of the variables were compared using independent t-tests. Secondary measures included disease severity, lower limb muscle strength, sensory impairment, walking effort, fatigue severity and perceived walking ability. RESULTS AFO wearers walked slower with higher effort. They also had greater disease severity, weaker leg muscles and perceived greater walking difficulty. Subjects not wearing AFOs showed significant relationships between gait variables and muscle strength, whereas AFO wearers showed significant relationships between gait variables and perceived walking ability, fatigue severity and effort. CONCLUSIONS People who regularly wore AFOs were more severely affected, had a slower maximum walking speed, higher energy cost of walking and worse perceived walking ability. Walking ability in this group was related to fatigue, perceived exertion during walking and perceived walking ability. Gait function of people not using AFOs was determined by lower limb muscle function. People prescribed AFOs, those who do not wear them and those not prescribed AFOs were similar in presentation, suggesting that people choose to wear orthoses when their condition becomes sufficiently severe.
Collapse
Affiliation(s)
- Gita M Ramdharry
- School of Rehabilitation Sciences, St George's University of London and Kingston University, Cranmer Terrace, London SW17 0RE, UK.
| | | | | | | |
Collapse
|
98
|
Kleopa KA. The role of gap junctions in Charcot-Marie-Tooth disease. J Neurosci 2011; 31:17753-60. [PMID: 22159091 PMCID: PMC6634164 DOI: 10.1523/jneurosci.4824-11.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 01/06/2023] Open
Affiliation(s)
- Kleopas A Kleopa
- Neurology Clinics and Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus.
| |
Collapse
|
99
|
Siskind CE, Murphy SM, Ovens R, Polke J, Reilly MM, Shy ME. Phenotype expression in women with CMT1X. J Peripher Nerv Syst 2011; 16:102-7. [PMID: 21692908 DOI: 10.1111/j.1529-8027.2011.00332.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Charcot-Marie-Tooth disease type 1X (CMT1X) is the second most common inherited peripheral neuropathy. Women with CMT1X typically have a less severe phenotype than men, perhaps because of X-inactivation patterns. Our objective was to determine the phenotype of women with CMT1X and whether X-inactivation patterns in white blood cells (WBCs) differ between females with CMT1X and controls. Thirty-one women with CMT1X were evaluated using the CMT neuropathy score (CMTNS) and the CMT symptom score in cross-sectional and longitudinal analyses. Lower scores correspond to less disability. WBCs were analyzed for X-inactivation pattern by androgen receptor X-inactivation assay in 14 patients and 23 controls. The 31 women's mean CMTNS was 8.35. Two-thirds of the cohort had a mild CMTNS (mean 4.85) and one-third had a moderate CMTNS (mean 14.73). Three patients had a CMTNS of 0. The pattern of X-inactivation did not differ between the affected and control groups. Women with CMT1X presented with variable impairment independent of age, type of mutation, or location of mutation. No evidence supported the presence of a gap junction beta-1 (GJB1) mutation affecting the pattern of X-inactivation in blood. Further studies are planned to determine whether X-inactivation is the mechanism for CMT1X females' variable phenotypes.
Collapse
Affiliation(s)
- Carly E Siskind
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
100
|
Abstract
Charcot-Marie-Tooth (CMT) disease is the commonest inherited neuromuscular disorder affecting at least 1 in 2,500. Over the last two decades, there have been rapid advances in understanding the molecular basis for many forms of CMT with more than 30 causative genes now described. This has made obtaining an accurate genetic diagnosis possible but at times challenging for clinicians. This review aims to provide a simple, pragmatic approach to diagnosing CMT from a clinician's perspective.
Collapse
Affiliation(s)
- Mary M Reilly
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neurosciences, National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK.
| | | | | |
Collapse
|