51
|
Crotty GF, Keavney JL, Alcalay RN, Marek K, Marshall GA, Rosas HD, Schwarzschild MA. Planning for Prevention of Parkinson Disease: Now Is the Time. Neurology 2022; 99:1-9. [PMID: 36219787 PMCID: PMC10519135 DOI: 10.1212/wnl.0000000000200789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Parkinson disease (PD) is a chronic progressive neurodegenerative disease with increasing worldwide prevalence. Despite many trials of neuroprotective therapies in manifest PD, no disease-modifying therapy has been established. Over the past several decades, a series of breakthroughs have identified discrete populations at substantially increased risk of developing PD. Based on this knowledge, now is the time to design and implement PD prevention trials. This endeavor builds on experience gained from early prevention trials in Alzheimer disease and Huntington disease. This article first reviews prevention trial precedents in these other neurodegenerative diseases before focusing on the critical design elements for PD prevention trials, including whom to enroll for these trials, what therapeutics to test, and how to measure outcomes in prevention trials. Our perspective reflects progress and remaining challenges that motivated a 2021 conference, "Planning for Prevention of Parkinson: A Trial Design Symposium and Workshop."
Collapse
Affiliation(s)
- Grace F Crotty
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| | - Jessi L Keavney
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Roy N Alcalay
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kenneth Marek
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gad A Marshall
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - H Diana Rosas
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael A Schwarzschild
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
52
|
Sumi Y, Masuda F, Kadotani H, Ozeki Y. The prevalence of depression in isolated/idiopathic rapid eye movement sleep behavior disorder: A systematic review and meta-analysis. Sleep Med Rev 2022; 65:101684. [DOI: 10.1016/j.smrv.2022.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
|
53
|
Miyamoto T, Miyamoto M. Odor identification predicts the transition of patients with isolated RBD: A retrospective study. Ann Clin Transl Neurol 2022; 9:1177-1185. [PMID: 35767550 PMCID: PMC9380141 DOI: 10.1002/acn3.51615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION To determine if the severity of olfactory dysfunction in isolated REM sleep behavior disorder (IRBD) predicts conversion to Parkinson's disease (PD) or dementia with Lewy bodies (DLB). METHODS Olfaction was tested using the Japanese version of the University of Pennsylvania Smell Identification Test (UPSIT-J) in 155 consecutive patients with polysomnography-confirmed IRBD and 34 healthy controls. IRBD patients were followed up for 5.8 ± 3.2 (range 0.2-11) years. Thirty-eight patients underwent repeat UPSIT-J evaluation at 2.7 ± 1.3 years after the baseline test. RESULTS UPSIT-J score was lower in IRBD patients than in age- and sex-matched controls. The receiver operating characteristic curve analysis showed that the optimal cutoff score of 22.5 in UPSIT-J discriminated between IRBD patients and controls with a sensitivity of 94.3% and specificity of 81.8%. Anosmia (UPSIT-J score < 19) was present in 54.2% of IRBD patients. In total, 42 patients developed a neurodegenerative disease, of whom 17 had PD, 22 DLB, and 3 MSA. Kaplan-Meier analysis showed that the short-term risk of Lewy body disease (LBD) was higher in patients with anosmia than in those without anosmia. At baseline, the UPSIT-J score was similar between patients who developed PD and DLB (p = 0.136). All three IRBD patients (100%) who developed MSA did not have anosmia. CONCLUSIONS In IRBD patients, anosmia predicts a higher short-term risk of transition to LBD but cannot distinguish between PD and DLB. At baseline, preserved odor identification may occur in latent MSA. Future IRBD neuroprotective trials should evaluate anosmia as a marker of prodromal LBD.
Collapse
Affiliation(s)
- Tomoyuki Miyamoto
- Department of NeurologyDokkyo Medical University Saitama Medical CenterJapan
| | - Masayuki Miyamoto
- Department of NeurologyCenter of Sleep Medicine, Dokkyo Medical UniversityJapan
- Dokkyo Medical UniversitySchool of NursingJapan
| |
Collapse
|
54
|
Dos Santos AB, Skaanning LK, Thaneshwaran S, Mikkelsen E, Romero-Leguizamón CR, Skamris T, Kristensen MP, Langkilde AE, Kohlmeier KA. Sleep-controlling neurons are sensitive and vulnerable to multiple forms of α-synuclein: implications for the early appearance of sleeping disorders in α-synucleinopathies. Cell Mol Life Sci 2022; 79:450. [PMID: 35882665 PMCID: PMC11072003 DOI: 10.1007/s00018-022-04467-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
Parkinson's disease, Multiple System Atrophy, and Lewy Body Dementia are incurable diseases called α-synucleinopathies as they are mechanistically linked to the protein, α-synuclein (α-syn). α-syn exists in different structural forms which have been linked to clinical disease distinctions. However, sleeping disorders (SDs) are common in the prodromal phase of all three α-synucleinopathies, which suggests that sleep-controlling neurons are affected by multiple forms of α-syn. To determine whether a structure-independent neuronal impact of α-syn exists, we compared and contrasted the cellular effect of three different α-syn forms on neurotransmitter-defined cells of two sleep-controlling nuclei located in the brainstem: the laterodorsal tegmental nucleus and the pedunculopontine tegmental nucleus. We utilized size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy and transmission electron microscopy to precisely characterize timepoints in the α-syn aggregation process with three different dominating forms of this protein (monomeric, oligomeric and fibril) and we conducted an in-depth investigation of the underlying neuronal mechanism behind cellular effects of the different forms of the protein using electrophysiology, multiple-cell calcium imaging, single-cell calcium imaging and live-location tracking with fluorescently-tagged α-syn. Interestingly, α-syn altered membrane currents, enhanced firing, increased intracellular calcium and facilitated cell death in a structure-independent manner in sleep-controlling nuclei, and postsynaptic actions involved a G-protein-mediated mechanism. These data are novel as the sleep-controlling nuclei are the first brain regions reported to be affected by α-syn in this structure-independent manner. These regions may represent highly important targets for future neuroprotective therapy to modify or delay disease progression in α-synucleinopathies.
Collapse
Affiliation(s)
- Altair B Dos Santos
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Line K Skaanning
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Siganya Thaneshwaran
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Eyd Mikkelsen
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Cesar R Romero-Leguizamón
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thomas Skamris
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | - Annette E Langkilde
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
55
|
Lancione M, Donatelli G, Del Prete E, Campese N, Frosini D, Cencini M, Costagli M, Biagi L, Lucchi G, Tosetti M, Godani M, Arnaldi D, Terzaghi M, Provini F, Pacchetti C, Cortelli P, Bonanni E, Ceravolo R, Cosottini M. Evaluation of iron overload in nigrosome 1 via quantitative susceptibility mapping as a progression biomarker in prodromal stages of synucleinopathies. Neuroimage 2022; 260:119454. [PMID: 35810938 DOI: 10.1016/j.neuroimage.2022.119454] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022] Open
Abstract
Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies, such as Parkinson's disease (PD), which are characterized by the loss of dopaminergic neurons in substantia nigra, associated with abnormal iron load. The assessment of presymptomatic biomarkers predicting the onset of neurodegenerative disorders is critical for monitoring early signs, screening patients for neuroprotective clinical trials and understanding the causal relationship between iron accumulation processes and disease development. Here, we used Quantitative Susceptibility Mapping (QSM) and 7T MRI to quantify iron deposition in Nigrosome 1 (N1) in early PD (ePD) patients, iRBD patients and healthy controls and investigated group differences and correlation with disease progression. We evaluated the radiological appearance of N1 and analyzed its iron content in 35 ePD, 30 iRBD patients and 14 healthy controls via T2*-weighted sequences and susceptibility (χ) maps. N1 regions of interest (ROIs) were manually drawn on control subjects and warped onto a study-specific template to obtain probabilistic N1 ROIs. For each subject the N1 with the highest mean χ was considered for statistical analysis. The appearance of N1 was rated pathological in 45% of iRBD patients. ePD patients showed increased N1 χ compared to iRBD patients and HC but no correlation with disease duration, indicating that iron load remains stable during the early stages of disease progression. Although no difference was reported in iron content between iRBD and HC, N1 χ in the iRBD group increases as the disease evolves. QSM can reveal temporal changes in N1 iron content and its quantification may represent a valuable presymptomatic biomarker to assess neurodegeneration in the prodromal stages of PD.
Collapse
Affiliation(s)
- Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Graziella Donatelli
- Imago7 Research Foundation, Pisa, Italy; Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
| | - Eleonora Del Prete
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicole Campese
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Cencini
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Mauro Costagli
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Giacomo Lucchi
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | | | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Terzaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Provini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica Rete Metropolitana, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica Rete Metropolitana, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Enrica Bonanni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mirco Cosottini
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
56
|
Šubert M, Šimek M, Novotný M, Tykalová T, Bezdíček O, Růžička E, Šonka K, Dušek P, Rusz J. Linguistic Abnormalities in Isolated Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2022; 37:1872-1882. [PMID: 35799404 DOI: 10.1002/mds.29140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Patients with synucleinopathies frequently display language abnormalities. However, whether patients with isolated rapid eye movement sleep behavior disorder (iRBD) have prodromal language impairment remains unknown. OBJECTIVE We examined whether the linguistic abnormalities in iRBD can serve as potential biomarkers for conversion to synucleinopathy, including the possible effect of mild cognitive impairment (MCI), speaking task, and automation of analysis procedure. METHODS We enrolled 139 Czech native participants, including 40 iRBD without MCI and 14 iRBD with MCI, compared with 40 PD without MCI, 15 PD with MCI, and 30 healthy control subjects. Spontaneous discourse and story-tale narrative were transcribed and linguistically annotated. A quantitative analysis was performed computing three linguistic features. Human annotations were compared with fully automated annotations. RESULTS Compared with control subjects, patients with iRBD showed poorer content density, reflecting the reduction of content words and modifiers. Both PD and iRBD subgroups with MCI manifested less occurrence of unique words and a higher number of n-grams repetitions, indicating poorer lexical richness. The spontaneous discourse task demonstrated language impairment in iRBD without MCI with an area under the curve of 0.72, while the story-tale narrative task better reflected the presence of MCI, discriminating both PD and iRBD subgroups with MCI from control subjects with an area under the curve of up to 0.81. A strong correlation between manually and automatically computed results was achieved. CONCLUSIONS Linguistic features might provide a reliable automated method for detecting cognitive decline caused by prodromal neurodegeneration in subjects with iRBD, providing critical outcomes for future therapeutic trials. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Šubert
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Michal Šimek
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Michal Novotný
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Tereza Tykalová
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Ondřej Bezdíček
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic.,Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Neurology & ARTORG Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
57
|
Ralls F, Cutchen L, Grigg-Damberger MM. What Is the Prognostic Significance of Rapid Eye Movement Sleep Without Atonia in a Polysomnogram? J Clin Neurophysiol 2022; 39:346-355. [PMID: 35239559 DOI: 10.1097/wnp.0000000000000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY Freud said we are lucky to be paralyzed during sleep, so we cannot act out our dreams. Atonia of skeletal muscles normally present during rapid eye movement sleep prevents us from acting out our dreams. Observing rapid eye movement sleep without atonia in a polysomnogram in older adults first and foremost warrants consideration of rapid eye movement behavior disorder. Seventy-five to 90% of older adults with isolated rapid eye movement behavior disorder will develop a neurodegenerative disease within 15 years, most often a synucleinopathy. Rapid eye movement sleep without atonia in those younger than 50 years is commonly found in individuals with narcolepsy and those taking antidepressant medications.
Collapse
Affiliation(s)
- Frank Ralls
- New Mexico Sleep Labs, Rio Rancho, New Mexico, U.S.A
| | - Lisa Cutchen
- Omni Sleep, Albuquerque, New Mexico, U.S.A.; and
| | | |
Collapse
|
58
|
Bellomo G, Giulia De Luca CM, Paoletti FP, Gaetani L, Moda F, Parnetti L. Alpha synuclein seed amplification assays for diagnosing synucleinopathies: the way forward. Neurology 2022; 99:195-205. [DOI: 10.1212/wnl.0000000000200878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and the most common synucleinopathy, as alpha-synuclein (α-syn), a prion-like protein, plays an important pathophysiological role in its onset and progression. Although neuropathological changes begin many years before the onset of motor manifestations, diagnosis still relies on the identification of the motor symptoms, which hinders to formulate an early diagnosis. Since α-syn misfolding and aggregation precede clinical manifestations, the possibility to identify these phenomena in PD patients would allow us to recognize the disease at the earliest, premotor phases, as a consequence of the transition from a clinical to a molecular diagnosis.Seed amplification assays (SAAs) are a group of techniques that currently support the diagnosis of prion subacute encephalopathies, namely Creutzfeldt Jakob disease. These techniques enable the detection of minimal amounts of prions in cerebrospinal fluid (CSF) and other matrices of affected patients. Recently, SAAs have been successfully applied to detect misfolded α-syn in CSF, olfactory mucosa, submandibular gland biopsies, skin and saliva, of patients with PD and other synucleinopathies. In these categories, they can differentiate PD and dementia with Lewy bodies (DLB) from control subjects, even in the prodromal stages of the disease. In terms of differential diagnosis, SAAs satisfactorily differentiated PD, DLB, and multiple system atrophy (MSA) from non-synucleinopathy parkinsonisms. The kinetic analysis of the SAA fluorescence profiles allowed the identification of synucleinopathy-dependent α-syn fibrils conformations, commonly referred to as strains, which have demonstrated diagnostic potential in differentiating among synucleinopathies, especially between Lewy body diseases (PD, DLB) and MSA. In front of these highly promising data, which make the α-syn seeding activity detected by SAAs as the most promising diagnostic biomarker for synucleinopathies, there are still preanalytical and analytical issues, mostly related to the assay standardization, which need to be solved. In this review, we discuss the key findings supporting the clinical application of α-syn SAAs to identify PD and other synucleinopathies, the unmet needs, and future perspectives.
Collapse
|
59
|
Campese N, Fanciulli A. Look broader, see closer: A glimpse into the pre-diagnostic stage of multiple system atrophy. Parkinsonism Relat Disord 2022; 99:105-106. [PMID: 35715287 DOI: 10.1016/j.parkreldis.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nicole Campese
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
60
|
Sosero YL, Yu E, Estiar MA, Krohn L, Mufti K, Rudakou U, Ruskey JA, Asayesh F, Laurent SB, Spiegelman D, Trempe JF, Quinnell TG, Oscroft N, Arnulf I, Montplaisir JY, Gagnon JF, Desautels A, Dauvilliers Y, Gigli GL, Valente M, Janes F, Bernardini A, Sonka K, Kemlink D, Oertel W, Janzen A, Plazzi G, Antelmi E, Biscarini F, Figorilli M, Puligheddu M, Mollenhauer B, Trenkwalder C, Sixel-Döring F, Cochen De Cock V, Monaca CC, Heidbreder A, Ferini-Strambi L, Dijkstra F, Viaene M, Abril B, Boeve BF, Postuma RB, Rouleau GA, Ibrahim A, Stefani A, Högl B, Hu MTM, Gan-Or Z. Rare PSAP Variants and Possible Interaction with GBA in REM Sleep Behavior Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:333-340. [PMID: 34690151 DOI: 10.3233/jpd-212867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND PSAP encodes saposin C, the co-activator of glucocerebrosidase, encoded by GBA. GBA mutations are associated with idiopathic/isolated REM sleep behavior disorder (iRBD), a prodromal stage of synucleinopathy. OBJECTIVE To examine the role of PSAP mutations in iRBD. METHODS We fully sequenced PSAP and performed Optimized Sequence Kernel Association Test in 1,113 iRBD patients and 2,324 controls. We identified loss-of-function (LoF) mutations, which are very rare in PSAP, in three iRBD patients and none in controls (uncorrected p = 0.018). RESULTS Two variants were stop mutations, p.Gln260Ter and p.Glu166Ter, and one was an in-frame deletion, p.332_333del. All three mutations have a deleterious effect on saposin C, based on in silico analysis. In addition, the two carriers of p.Glu166Ter and p.332_333del mutations also carried a GBA variant, p.Arg349Ter and p.Glu326Lys, respectively. The co-occurrence of these extremely rare PSAP LoF mutations in two (0.2%) GBA variant carriers in the iRBD cohort, is unlikely to occur by chance (estimated co-occurrence in the general population based on gnomAD data is 0.00035%). Although none of the three iRBD patients with PSAP LoF mutations have phenoconverted to an overt synucleinopathy at their last follow-up, all manifested initial signs suggestive of motor dysfunction, two were diagnosed with mild cognitive impairment and all showed prodromal clinical markers other than RBD. Their probability of prodromal PD, according to the Movement Disorder Society research criteria, was 98% or more. CONCLUSION These results suggest a possible role of PSAP variants in iRBD and potential genetic interaction with GBA, which requires additional studies.
Collapse
Affiliation(s)
- Yuri L Sosero
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Mehrdad A Estiar
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Kheireddin Mufti
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Farnaz Asayesh
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Sandra B Laurent
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | | | | | - Isabelle Arnulf
- Sleep Disorders Unit, Sorbonne University, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jacques Y Montplaisir
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Gagnon
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Alex Desautels
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Centre for Orphan Diseases, Narcolepsy- Rare hypersomnias, Sleep Unit, Department of Neurology, CHU Montpellier, Institute for Neurosciences of Montpellier INM, Univ Montpellier, INSERM, Montpellier, France
| | - Gian Luigi Gigli
- Department of Neurosciences, Clinical Neurology Unit, University Hospital of Udine, Udine, Italy.,Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Mariarosaria Valente
- Department of Neurosciences, Clinical Neurology Unit, University Hospital of Udine, Udine, Italy.,Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Francesco Janes
- Department of Neurosciences, Clinical Neurology Unit, University Hospital of Udine, Udine, Italy
| | - Andrea Bernardini
- Department of Neurosciences, Clinical Neurology Unit, University Hospital of Udine, Udine, Italy
| | - Karel Sonka
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - David Kemlink
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Wolfgang Oertel
- Department of Neurology, Philipps University, Marburg, Germany
| | - Annette Janzen
- Department of Neurology, Philipps University, Marburg, Germany
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Elena Antelmi
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Neurosciences, Neurology Unit, Movement Disorders Division, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesco Biscarini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Michela Figorilli
- Department of Medical Sciences and Public Health, Sleep Disorder Research Center, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Department of Medical Sciences and Public Health, Sleep Disorder Research Center, University of Cagliari, Cagliari, Italy
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Friederike Sixel-Döring
- Department of Neurology, Philipps University, Marburg, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Valérie Cochen De Cock
- Sleep and Neurology Unit, Beau Soleil Clinic, Montpellier, France.,EuroMov, University of Montpellier, Montpellier, France
| | - Christelle Charley Monaca
- Department of Clinical Neurophysiology and Sleep Center, University Lille North of France, CHU Lille, Lille, France
| | - Anna Heidbreder
- Department of Sleep Medicine and Neuromuscular Disorders, University of Münster, Münster, Germany
| | - Luigi Ferini-Strambi
- Department of Neurological Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Femke Dijkstra
- Laboratory for Sleep Disorders, St. Dimpna Regional Hospital, Geel, Belgium.,Department of Neurology, St. Dimpna Regional Hospital, Geel, Belgium.,Department of Neurology, University Hospital Antwerp, Edegem, Antwerp, Belgium
| | - Mineke Viaene
- Laboratory for Sleep Disorders, St. Dimpna Regional Hospital, Geel, Belgium.,Department of Neurology, St. Dimpna Regional Hospital, Geel, Belgium
| | - Beatriz Abril
- Sleep disorder Unit, Carémeau Hospital, University Hospital of Nîmes, France
| | | | - Ronald B Postuma
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Abubaker Ibrahim
- Department of Neurology, Sleep Disorders Clinic, Medical University of Innsbruck, Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Sleep Disorders Clinic, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Sleep Disorders Clinic, Medical University of Innsbruck, Innsbruck, Austria
| | - Michele T M Hu
- Department of Sleep Medicine and Neuromuscular Disorders, University of Münster, Münster, Germany.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
61
|
Poggiolini I, Gupta V, Lawton M, Lee S, El-Turabi A, Querejeta-Coma A, Trenkwalder C, Sixel-Döring F, Foubert-Samier A, Pavy-Le Traon A, Plazzi G, Biscarini F, Montplaisir J, Gagnon JF, Postuma RB, Antelmi E, Meissner WG, Mollenhauer B, Ben-Shlomo Y, Hu MT, Parkkinen L. Diagnostic value of cerebrospinal fluid alpha-synuclein seed quantification in synucleinopathies. Brain 2022; 145:584-595. [PMID: 34894214 PMCID: PMC9014737 DOI: 10.1093/brain/awab431] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/12/2022] Open
Abstract
Several studies have confirmed the α-synuclein real-time quaking-induced conversion (RT-QuIC) assay to have high sensitivity and specificity for Parkinson's disease. However, whether the assay can be used as a robust, quantitative measure to monitor disease progression, stratify different synucleinopathies and predict disease conversion in patients with idiopathic REM sleep behaviour disorder remains undetermined. The aim of this study was to assess the diagnostic value of CSF α-synuclein RT-QuIC quantitative parameters in regard to disease progression, stratification and conversion in synucleinopathies. We performed α-synuclein RT-QuIC in the CSF samples from 74 Parkinson's disease, 24 multiple system atrophy and 45 idiopathic REM sleep behaviour disorder patients alongside 55 healthy controls, analysing quantitative assay parameters in relation to clinical data. α-Synuclein RT-QuIC showed 89% sensitivity and 96% specificity for Parkinson's disease. There was no correlation between RT-QuIC quantitative parameters and Parkinson's disease clinical scores (e.g. Unified Parkinson's Disease Rating Scale motor), but RT-QuIC positivity and some quantitative parameters (e.g. Vmax) differed across the different phenotype clusters. RT-QuIC parameters also added value alongside standard clinical data in diagnosing Parkinson's disease. The sensitivity in multiple system atrophy was 75%, and CSF samples showed longer T50 and lower Vmax compared to Parkinson's disease. All RT-QuIC parameters correlated with worse clinical progression of multiple system atrophy (e.g. change in Unified Multiple System Atrophy Rating Scale). The overall sensitivity in idiopathic REM sleep behaviour disorder was 64%. In three of the four longitudinally followed idiopathic REM sleep behaviour disorder cohorts, we found around 90% sensitivity, but in one sample (DeNoPa) diagnosing idiopathic REM sleep behaviour disorder earlier from the community cases, this was much lower at 39%. During follow-up, 14 of 45 (31%) idiopathic REM sleep behaviour disorder patients converted to synucleinopathy with 9/14 (64%) of convertors showing baseline RT-QuIC positivity. In summary, our results showed that α-synuclein RT-QuIC adds value in diagnosing Parkinson's disease and may provide a way to distinguish variations within Parkinson's disease phenotype. However, the quantitative parameters did not correlate with disease severity in Parkinson's disease. The assay distinguished multiple system atrophy patients from Parkinson's disease patients and in contrast to Parkinson's disease, the quantitative parameters correlated with disease progression of multiple system atrophy. Our results also provided further evidence for α-synuclein RT-QuIC having potential as an early biomarker detecting synucleinopathy in idiopathic REM sleep behaviour disorder patients prior to conversion. Further analysis of longitudinally followed idiopathic REM sleep behaviour disorder patients is needed to better understand the relationship between α-synuclein RT-QuIC signature and the progression from prodromal to different synucleinopathies.
Collapse
Grants
- Wellcome Trust
- J-0901 Parkinson's UK
- MR/T046287/1 Medical Research Council
- EPSRC
- UKRI-MRC
- EU Horizon 2020 and Michael J. Fox Foundation
- IPMDS
- Canadian Institutes of Health Research and honoraria to serve on advisory boards for EISAI and JAZZ Pharma outside the present field of research
- Canadian Institutes in Health Research, Canada Research Chair, and National Institute on Aging
- Fonds de la Recherche en Sante
- Canadian Institute of Health Research
- The Parkinson Society of Canada
- Weston-Garfield Foundation
- Michael J. Fox Foundation and the Webster Foundation
- Takeda, Roche, Teva Neurosciences, Novartis Canada, Biogen, Boehringer Ingelheim, Theranexus, GE HealthCare, Jazz Pharmaceuticals, AbbVie, Jannsen, Otsuko, Phytopharmics and Inception Sciences
- Deutsche Forschungsgemeinschaft (DFG), EU (Horizon2020), Parkinson Fonds Deutschland, Deutsche Parkinson Vereinigung, Parkinson’s Foundation
- MRC, Wellcome Trust, NIHR and Parkinson’s UK
- Parkinson’s UK, NIHR Oxford Biomedical Research Centre, Cure Parkinson’s Trust, Lab10X, NIHR, Michael J Fox Foundation, H2020 European Union, GE Healthcare and PSP Association
- Parkinson’s UK, Weston Brain Institute and Michael J Fox Foundation
Collapse
Affiliation(s)
- Ilaria Poggiolini
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, UK
| | - Vandana Gupta
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, UK
| | - Michael Lawton
- School of Social and Community Medicine, Bristol Medical School, University of Bristol, UK
| | - Seoyun Lee
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, UK
| | - Aadil El-Turabi
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
| | - Agustin Querejeta-Coma
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, UK
| | - Claudia Trenkwalder
- Department of Neurosurgery, University Medical Center Goettingen, Göttingen, Germany
- Paracelsus Elena Klinik, Centre for Movement Disorders, Kassel, Germany
| | - Friederike Sixel-Döring
- Paracelsus Elena Klinik, Centre for Movement Disorders, Kassel, Germany
- Department of Neurology, Philipps-University Marburg, Germany
| | - Alexandra Foubert-Samier
- French Reference Centre for MSA, University Hospital Bordeaux, Bordeaux, France
- Institute des Maladies Neurodégénératives, CHU Bordeaux and Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Anne Pavy-Le Traon
- French Reference Centre for MSA, University Hospital of Toulouse, Toulouse, France
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- IRCCS—Institute of the Neurological Sciences of Bologna, Bologna, Italy
| | - Francesco Biscarini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Gagnon
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Ronald B Postuma
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada
- Department of Neurology, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - Elena Antelmi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Wassilios G Meissner
- Institute des Maladies Neurodégénératives, CHU Bordeaux and Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Brit Mollenhauer
- Department of Neurosurgery, University Medical Center Goettingen, Göttingen, Germany
- Paracelsus Elena Klinik, Centre for Movement Disorders, Kassel, Germany
| | - Yoav Ben-Shlomo
- School of Social and Community Medicine, Bristol Medical School, University of Bristol, UK
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, UK
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, UK
| |
Collapse
|
62
|
Postuma RB, Pelletier A, Gagnon JF, Montplaisir J. Evolution of Prodromal Multiple System Atrophy from REM Sleep Behavior Disorder: A Descriptive Study. JOURNAL OF PARKINSON'S DISEASE 2022; 12:983-991. [PMID: 35094998 PMCID: PMC9789475 DOI: 10.3233/jpd-213039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Prodromal multiple system atrophy (MSA) has been characterized mainly by retrospective chart reviews. Direct observation and tracking of prodromal markers in MSA have been very limitedObjective:To report the baseline characteristics and evolution of prodromal markers of MSA as they were prospectively measured in patients with idiopathic/isolated REM sleep behavior disorder (iRBD)Methods:Patients with iRBD were evaluated as part of a comprehensive protocol repeated annually. The protocol included assessment of motor, sleep, psychiatric, and autonomic symptoms supplemented by motor examination, quantitative motor testing, neuropsychological examination, orthostatic blood pressure measurement, and tests of olfaction and color vision. Patients who eventually developed MSA were described and compared with those who phenoconverted to Lewy body disease (Parkinson's disease and dementia with Lewy bodies). RESULTS Of 67 phenocoverters, 4 developed MSA-P and 63 developed Lewy body disease. An additional 2 MSA-C patients were seen at baseline, already with cerebellar signs. Compared to those with Lewy body disease, those with MSA-P were younger, had less severe loss of tonic REM sleep atonia, more insomnia symptoms, and better olfaction. Clinically-evident autonomic dysfunction was not invariable in prodromal stages, often developing proximate to or after motor phenoconversion. Of the autonomic symptoms, genitourinary dysfunction was the first to develop in all cases. Olfaction and cognition remained normal throughout the prodromal and clinical disease course, in clear contrast to patients with Lewy body disease. CONCLUSION Prodromal MSA progresses rapidly, often without substantial autonomic dysfunction, and with preserved olfaction and cognition throughout its prodromal course.
Collapse
Affiliation(s)
- Ronald B. Postuma
- Department of Neurology, McGill University, Montreal General Hospital, Montreal, Quebec, Canada,
Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada,Correspondence to: Dr. Ronald B. Postuma, MD, Department of Neurology, Montreal Neurological Institute, 3801 University Avenue NW107, Montreal, H3A 2B4, Canada. E-mail:
| | - Amelie Pelletier
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada
| | - Jean-Francois Gagnon
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada,
Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Jaccques Montplaisir
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada,
Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
63
|
Zolfaghari S, Lewandowski N, Pelletier A, Naeimi SA, Gagnon JF, Brillon-Corbeil M, Montplaisir JY, Postuma RB. Cardiovascular Risk Factors and Phenoconversion to Neurodegenerative Synucleinopathies in Idiopathic REM Sleep Behavior Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:927-933. [PMID: 35001898 PMCID: PMC9789479 DOI: 10.3233/jpd-212984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several studies have suggested that atherosclerotic diseases and diabetes may be risk factors for α-synucleinopathies. This prospective cohort study evaluated whether cardiovascular diseases and metabolic risk factors alter the rate or type of phenoconversion from idiopathic/isolated REM sleep behavior disorder (iRBD) to parkinsonism or dementia. Polysomnography-confirmed iRBD patients recruited between 2004 and 2020 were followed annually. Baseline history of cardiovascular disorders, hypertension, hypercholesterolemia, and diabetes were compared among patients who developed outcomes versus those who remained outcome-free. No atherosclerotic risk factors were associated with development of α-synucleinopathies. Patients with hypercholesterolemia were somewhat more likely to develop dementia with Lewy bodies rather than Parkinson's disease.
Collapse
Affiliation(s)
- Sheida Zolfaghari
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Amelie Pelletier
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Seyed Ali Naeimi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada,
Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Marina Brillon-Corbeil
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Jacques Y. Montplaisir
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | - Ronald B. Postuma
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada,Correspondence to: Dr. Ronald B. Postuma, Department of Neurology, L7-305, Montreal General Hospital, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada. Tel.: +1 514 934 8026; Fax: +1 514 934 8265; E-mail:
| |
Collapse
|
64
|
Iranzo A. Parasomnias and Sleep-Related Movement Disorders in Older Adults. Sleep Med Clin 2022; 17:295-305. [DOI: 10.1016/j.jsmc.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
65
|
Wang C, Chen F, Li Y, Liu J. Possible predictors of phenoconversion in isolated REM sleep behaviour disorder: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:395-403. [PMID: 34937751 DOI: 10.1136/jnnp-2021-328062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND A number of promising biomarkers for predicting imminent α-synucleinopathies have been suggested in isolated rapid eye movement sleep behaviour disorder (iRBD). However, existing evidence is conflicting without quantitative evaluation. METHODS PubMed, Web of Science and ClinicalTrials.gov were searched through June 2021 to identify possible predictors of phenoconversion from iRBD to Parkinson's disease (PD). The pooled HRs and standardised mean differences (SMDs) with 95% CIs were calculated using fixed-effects or random-effects model. RESULTS A total of 123 studies were included in the meta-analysis. Significant motor dysfunction (HR 1.83, 95% CI 1.33 to 2.51, I2=86.8%, p<0.001), constipation (HR 1.52, 95% CI 1.26 to 1.84, I2=8.3%, p=0.365), orthostatic hypotension (HR 1.93, 95% CI 1.05 to 3.53, I2=54.9%, p=0.084), hyposmia (HR 2.78, 95% CI 1.83 to 4.23, I2=23.9%, p=0.255), mild cognitive impairment (HR 2.27, 95% CI 1.58 to 3.27, I2=0%, p=0.681) and abnormal colour vision (SMD -0.34, 95% CI -0.63 to -0.05, I2=45.6%, p=0.087) correlated with susceptibility to PD. The process can also be traced by putaminal dopamine transporter imaging (HR 2.60, 95% CI 1.94 to 3.48, I2=0%, p=0.781) and tonic electromyographic activity (HR 1.50, 95% CI 1.04 to 2.15, I2=70%, p=0.018). CONCLUSIONS The predictive value of each biomarker was initially highlighted with comprehensive evaluation. Combining specific predictors with high sensitivity is promising for detecting phenoconversion in the prodromal stage. Large-scale and multicentre studies are pivotal to extend our findings.
Collapse
Affiliation(s)
- Chunyi Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzheng Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China .,CAS Center for Excellence in Brain Science & Intelligence Technology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregneration, Nantong University, Nantong, China
| |
Collapse
|
66
|
de Natale ER, Wilson H, Politis M. Predictors of RBD progression and conversion to synucleinopathies. Curr Neurol Neurosci Rep 2022; 22:93-104. [PMID: 35274191 PMCID: PMC9001233 DOI: 10.1007/s11910-022-01171-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Purpose of review Rapid eye movement (REM) sleep behaviour disorder (RBD) is considered the expression of the initial neurodegenerative process underlying synucleinopathies and constitutes the most important marker of their prodromal phase. This article reviews recent research from longitudinal research studies in isolated RBD (iRBD) aiming to describe the most promising progression biomarkers of iRBD and to delineate the current knowledge on the level of prediction of future outcome in iRBD patients at diagnosis. Recent findings Longitudinal studies revealed the potential value of a variety of biomarkers, including clinical markers of motor, autonomic, cognitive, and olfactory symptoms, neurophysiological markers such as REM sleep without atonia and electroencephalography, genetic and epigenetic markers, cerebrospinal fluid and serum markers, and neuroimaging markers to track the progression and predict phenoconversion. To-date the most promising neuroimaging biomarker in iRBD to aid the prediction of phenoconversion is striatal presynaptic striatal dopaminergic dysfunction. Summary There is a variety of potential biomarkers for monitoring disease progression and predicting iRBD conversion into synucleinopathies. A combined multimodal biomarker model could offer a more sensitive and specific tool. Further longitudinal studies are warranted to iRBD as a high-risk population for early neuroprotective interventions and disease-modifying therapies.
Collapse
Affiliation(s)
| | - Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.
| |
Collapse
|
67
|
Fang Y, Dai S, Jin C, Si X, Gu L, Song Z, Gao T, Chen Y, Yan Y, Yin X, Pu J, Zhang B. Aquaporin-4 Polymorphisms Are Associated With Cognitive Performance in Parkinson’s Disease. Front Aging Neurosci 2022; 13:740491. [PMID: 35356146 PMCID: PMC8959914 DOI: 10.3389/fnagi.2021.740491] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
ObjectiveAquaporin-4 (AQP4) facilitates a sleep-enhanced interstitial brain waste clearance system. This study was conducted to determine the clinical implication of AQP4 polymorphisms in Parkinson’s disease (PD).MethodsThree-hundred and eighty-two patients with PD and 180 healthy controls with a mean follow-up time of 66.1 months from the Parkinson’s Progression Marker Initiative study were analyzed. We examined whether AQP4 SNPs were associated with an altered rate of motor or cognitive decline using linear mixed model and Cox regression. We then investigated whether AQP4 SNPs were associated with Aβ burden as measured by 18F Florbetapir standard uptake values. Furthermore, we examined if AQP4 SNPs moderated the association between REM sleep behavior disorder (RBD) and CSF biomarkers.ResultsIn patients with PD, AQP4 rs162009 (AA/AG vs. GG) was associated with slower dementia conversion, better performance in letter-number sequencing and symbol digit modalities, lower Aβ deposition in the putamen, anterior cingulum, and frontotemporal areas. In the subgroup of high RBD screening questionnaire score, rs162009 AA/AG had a higher CSF Aβ42 level. rs162009 AA/AG also had better performance in semantic fluency in healthy controls. Besides, rs68006382 (GG/GA vs. AA) was associated with faster progression to mild cognitive impairment, worse performance in letter-number sequencing, semantic fluency, and symbol digit modalities in patients with PD.InterpretationGenetic variations of AQP4 and subsequent alterations of glymphatic efficacy might contribute to an altered rate of cognitive decline in PD. AQP4 rs162009 is likely a novel genetic prognostic marker of glymphatic function and cognitive decline in PD.
Collapse
Affiliation(s)
- Yi Fang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shaobing Dai
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chongyao Jin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoli Si
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Song
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Gao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yaping Yan
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinzhen Yin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Baorong Zhang Jiali Pu
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Baorong Zhang Jiali Pu
| |
Collapse
|
68
|
Liepelt-Scarfone I, Ophey A, Kalbe E. Cognition in prodromal Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:93-111. [PMID: 35248208 DOI: 10.1016/bs.pbr.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One characteristic of Parkinson's disease (PD) is a prodromal phase, lasting many years during which both pre-clinical motor and non-motor symptoms occur. Around one-fifth of patients with PD manifest mild cognitive impairment at time of clinical diagnosis. Thus, important challenges are to define the time of onset of cognitive dysfunction in the prodromal phase of PD, and to define its co-occurrence with other specific characteristics. Evidence for cognitive change in prodromal PD comes from various study designs, including both longitudinal and cross-sectional approaches with different target groups. These studies support the concept that changes in global cognitive function and alterations in executive functions occur, and that these changes may be present up to 6 years before clinical PD diagnosis. Notably, this evidence led to including global cognitive impairment as an independent prodromal marker in the recently updated research criteria of the Movement Disorder Society for prodromal PD. Knowledge in this field, however, is still at its beginning, and evidence is sparse about many aspects of this topic. Further longitudinal studies including standardized assessments of global and domain-specific cognitive functions are needed to gain further knowledge about the first appearance, the course, and the interaction of cognitive deficits with other non-motor symptoms in prodromal stage PD. Treatment approaches, including non-pharmacological interventions, in individuals with prodromal PD might help to prevent or delay cognitive dysfunction in early PD.
Collapse
Affiliation(s)
- Inga Liepelt-Scarfone
- German Center for Neurodegenerative Diseases (DZNE) and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; IB-Hochschule, Stuttgart, Germany.
| | - Anja Ophey
- Medical Psychology, Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Medical Faculty of the University of Cologne, Cologne, Germany
| | - Elke Kalbe
- Medical Psychology, Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Medical Faculty of the University of Cologne, Cologne, Germany
| |
Collapse
|
69
|
Halhouli O, Zhang Q, Aldridge GM. Caring for patients with cognitive dysfunction, fluctuations and dementia caused by Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:407-434. [PMID: 35248204 DOI: 10.1016/bs.pbr.2022.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cognitive dysfunction is one of the most prevalent non-motor symptoms in patients with Parkinson's disease (PD). While it tends to worsen in the later stages of disease, it can occur at any time, with 15-20% of patients exhibiting cognitive deficits at diagnosis (Aarsland et al., 2010; Goldman and Sieg, 2020). The characteristic features of cognitive dysfunction include impairment in executive function, visuospatial abilities, and attention, which vary in severity from subtle impairment to overt dementia (Martinez-Horta and Kulisevsky, 2019). To complicate matters, cognitive dysfunction is prone to fluctuate in PD patients, impacting diagnosis and the ability to assess progression and decision-making capacity. The diagnosis of cognitive impairment or dementia has a huge impact on patient independence, quality of life, life expectancy and caregiver burden (Corallo et al., 2017; Lawson et al., 2016; Leroi et al., 2012). It is therefore essential that physicians caring for patients with PD provide education, screening and treatment for this aspect of the disease. In this chapter, we provide a practical guide for the assessment and management of various degrees of cognitive dysfunction in patients with PD by approaching the disease at different stages. We address risk factors for cognitive dysfunction, prevention strategies prior to making the diagnosis, available tools for screening. Lastly, we review aspects of care, management and considerations, including decision-making capacity, that occur after the patient has been diagnosed with cognitive dysfunction or dementia.
Collapse
Affiliation(s)
- Oday Halhouli
- University of Iowa, Department of Neurology, Iowa City, IA, United States
| | - Qiang Zhang
- University of Iowa, Department of Neurology, Iowa City, IA, United States
| | | |
Collapse
|
70
|
Mahlknecht P, Marini K, Werkmann M, Poewe W, Seppi K. Prodromal Parkinson's disease: hype or hope for disease-modification trials? Transl Neurodegener 2022; 11:11. [PMID: 35184752 PMCID: PMC8859908 DOI: 10.1186/s40035-022-00286-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
The ultimate goal in Parkinson's disease (PD) research remains the identification of treatments that are capable of slowing or even halting the progression of the disease. The failure of numerous past disease-modification trials in PD has been attributed to a variety of factors related not only to choosing wrong interventions, but also to using inadequate trial designs and target populations. In patients with clinically established PD, neuronal pathology may already have advanced too far to be modified by any intervention. Based on such reasoning, individuals in yet prediagnostic or prodromal disease stages, may provide a window of opportunity to test disease-modifying strategies. There is now sufficient evidence from prospective studies to define diagnostic criteria for prodromal PD and several approaches have been studied in observational cohorts. These include the use of PD-risk algorithms derived from multiple established risk factors for disease as well as follow-up of cohorts with single defined prodromal markers like hyposmia, rapid eye movement sleep behavior disorders, or PD gene carriers. In this review, we discuss recruitment strategies for disease-modification trials in various prodromal PD cohorts, as well as potential trial designs, required trial durations, and estimated sample sizes. We offer a concluding outlook on how the goal of implementing disease-modification trials in prodromal cohorts might be achieved in the future.
Collapse
|
71
|
Luca A, Cicero CE, Giuliano L, Sgroi R, Vancheri E, Terravecchia C, Squillaci R, Rascunà C, Donzuso G, Mostile G, Sciacca G, Zappia M, Nicoletti A. Obsessive–compulsive personality disorder in rapid eye movement sleep behavior disorder. Sci Rep 2022; 12:2401. [PMID: 35165341 PMCID: PMC8844273 DOI: 10.1038/s41598-022-06424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
Rapid eye movement sleep behavior disorder (RBD) is a common prodromic non-motor symptom of Parkinson’s disease (PD). Only few studies have evaluated the personality of RBD patients with conflicting results. Aim of the study was to evaluate the frequency of Personality Disorders (PeDs)in RBD. RBD patients, PD patients and healthy controls (HC) were enrolled. All the enrolled subjects underwent a full neurological examination. Motor symptoms were evaluated with the UPDRS-Motor Examination. PeDs were assessed with the Structured Clinical Interview for DSM-IV Personality Disorders (SCID-II). Twenty-nine RBD patients [14 men (48.3%); mean age 55.6 ± 11.1], 30 PD patients [17 men (56.7%); mean age 65.7 ± 10.7] and 30 HC [12 men (40%); mean age 65.7 ± 5.4] were enrolled in the study. PD patients had a disease duration of 4.5 ± 4.6 and presented a mean UPDRS-ME score of 26.7 ± 9.4. The most frequent PeDs was the Obsessive–Compulsive one (OCPeD); OCPeD was significantly more frequent in RBD (55.2%) patients than HC (13.3%; p-value < 0.001). No significant differences were found comparing the frequency of OCPeD in RBD patients to that in PD. In the present study, the prevalence of OCPeD in RBD patients was close to that reported in PD patients. Our data could suggest the existence of a common disease-specific RBD-PD personality profile.
Collapse
|
72
|
Prodromal Cognitive Deficits and the Risk of Subsequent Parkinson’s Disease. Brain Sci 2022; 12:brainsci12020199. [PMID: 35203962 PMCID: PMC8870093 DOI: 10.3390/brainsci12020199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022] Open
Abstract
Background: There is growing interest in identifying individuals who are in the prodromal phase of Parkinson’s disease (PD), as these individuals are potentially suitable for inclusion in intervention trials to prevent clinically manifest PD. However, it is less clear whether—and to what extent—cognitive deficits are present in prodromal PD. Methods: A systematic query was conducted through PubMed and Embase for prospective observational cohort studies that (a) assessed cognitive performance in individuals free of manifest PD at baseline and (b) subsequently followed up participants for incident PD. We grouped the results by cognitive domain, and for domains that had been reported in at least three separate studies, we performed random-effects, inverse variance meta-analyses based on summary statistics. Results: We identified nine articles suitable for inclusion, with a total of 215 patients with phenoconversion and 13,524 individuals remaining disease-free at follow-up. The studies were highly heterogeneous in study design, study population, and cognitive test batteries. Studies that included only cognitive screening measures such as MMSE or MoCA reported no association between worse cognitive performance and onset of manifest PD (combined odds ratio 1.08; 95% confidence interval 0.66–1.77). By contrast, studies that used extensive cognitive testing batteries found that global cognitive deficits were associated with an increased risk of manifest PD. In domain-specific analyses, there was evidence for an association between worse executive functioning (OR 1.45; 95% CI 1.10–1.92), but not memory (OR 1.20; 95% CI 0.85–1.70) or attention (OR 0.98; 95% CI 0.23–4.26), and clinically manifest PD. Conclusion: Although some caution due to high heterogeneity among published studies is warranted, the available evidence suggests that global and executive cognitive deficits are prodromal features of PD. Collaborative prospective studies with extensive cognitive test batteries are required to shed light on domain-specific deficits, temporal relations, and subgroup differences in prodromal cognitive deficits in PD.
Collapse
|
73
|
Puligheddu M, Figorilli M, Antelmi E, Arnaldi D, Casaglia E, d’Aloja E, Ferini-Strambi L, Ferri R, Gigli GL, Ingravallo F, Maestri M, Terzaghi M, Plazzi G. Predictive risk factors of phenoconversion in idiopathic REM sleep behavior disorder: the Italian study "FARPRESTO". Neurol Sci 2022; 43:6919-6928. [PMID: 36087148 PMCID: PMC9663351 DOI: 10.1007/s10072-022-06374-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/27/2022] [Indexed: 01/17/2023]
Abstract
Most patients with idiopathic REM sleep behavior disorder (iRBD) will develop an overt α-synucleinopathy over time, with a rate of phenoconversion of 73.5% after 12 years from diagnosis. Several markers of phenoconversion were identified; however, most studies investigated biomarkers separately, with retrospective study designs, in small cohorts or without standardized data collection methods. The risk FActoRs PREdictive of phenoconversion in idiopathic REM sleep behavior disorder: the Italian STudy (FARPRESTO) is a multicentric longitudinal retrospective and prospective study with a cohort of incident (prospective recruitment) and prevalent (retrospective recruitment) iRBD patients, whose primary aim is to stratify the risk of phenoconversion, through the systematic collection by means of electronic case report forms of different biomarkers. Secondary aims are to (1) describe the sociodemographic and clinical characteristics of patients with iRBD; (2) collect longitudinal data about the development of α-synucleinopathies; (3) monitor the impact of iRBD on quality of life and sleep quality; (4) assess the correlation between phenoconversion, cognitive performance, and loss of normal muscle atony during REM sleep; (5) identify RBD phenotypes through evaluating clinical, biological, neurophysiological, neuropsychological, and imaging biomarkers; and (6) validate vPSG criteria for RBD diagnosis. The FARPRESTO study will collect a large and harmonized dataset, assessing the role of different biomarkers providing a unique opportunity for a holistic, multidimensional, and personalized approach to iRBD, with several possible application and impact at different levels, from basic to clinical research, and from prevention to management. The FARPRESTO has been registered at clinicaltrials.gov (NCT05262543).
Collapse
Affiliation(s)
- Monica Puligheddu
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari , Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Michela Figorilli
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari , Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Elena Antelmi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Daneo 3, 16132 Genoa, Italy ,IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Elisa Casaglia
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari , Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Ernesto d’Aloja
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy ,Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Gian Luigi Gigli
- Dipartimento di Area Medica (DAME), Università di Udine e Clinica Neurologica e di Neuroriabilitazione, Azienda Sanitaria Universitaria Friuli Centrale, Ospedale “Santa Maria della Misericordia”, Udine, Italy
| | - Francesca Ingravallo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Michele Terzaghi
- IRCCS Mondino Foundation, Pavia, Italy ,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Giuseppe Plazzi
- IRCCS, Istituto delle Scienze Neurologiche Di Bologna, Bologna, Italy ,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
74
|
Peng X, Zhang H. Research progress in rapid eye movement sleep behavior disorder. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1415-1422. [PMID: 35232913 PMCID: PMC10930583 DOI: 10.11817/j.issn.1672-7347.2021.200928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 06/14/2023]
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by abnormal dream acting behavior such as vocalization and twitching related to dream content during REM sleep. The diagnosis requires polysomnography demonstrating a loss of normal skeletal muscle atonia during REM sleep. Both idiopathic RBD and secondary RBD are highly related to synucleinopathy including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Almost all idiopathic RBD patients will develop synucleinopathy after a few years. Therefore, RBD may be an early marker in the progression of synucleinopathy.
Collapse
Affiliation(s)
- Xinke Peng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Hainan Zhang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
75
|
Lama J, Buhidma Y, Fletcher E, Duty S. Animal models of Parkinson's disease: a guide to selecting the optimal model for your research. Neuronal Signal 2021; 5:NS20210026. [PMID: 34956652 PMCID: PMC8661507 DOI: 10.1042/ns20210026] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a complex, multisystem disorder characterised by α-synuclein (SNCA) pathology, degeneration of nigrostriatal dopaminergic neurons, multifactorial pathogenetic mechanisms and expression of a plethora of motor and non-motor symptoms. Animal models of PD have already been instructive in helping us unravel some of these aspects. However, much remains to be discovered, requiring continued interrogation by the research community. In contrast with the situation for many neurological disorders, PD benefits from of a wide range of available animal models (pharmacological, toxin, genetic and α-synuclein) but this makes selection of the optimal one for a given study difficult. This is especially so when a study demands a model that displays a specific combination of features. While many excellent reviews of animal models already exist, this review takes a different approach with the intention of more readily informing this decision-making process. We have considered each feature of PD in turn - aetiology, pathology, pathogenesis, motor dysfunctions and non-motor symptoms (NMS) - highlighting those animal models that replicate each. By compiling easily accessible tables and a summary figure, we aim to provide the reader with a simple, go-to resource for selecting the optimal animal model of PD to suit their research needs.
Collapse
Affiliation(s)
- Joana Lama
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Yazead Buhidma
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Edward J.R. Fletcher
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Susan Duty
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| |
Collapse
|
76
|
You S, Won KS, Kim KT, Lee HW, Cho YW. Cardiac Autonomic Dysfunction Is Associated with Severity of REM Sleep without Atonia in Isolated REM Sleep Behavior Disorder. J Clin Med 2021; 10:5414. [PMID: 34830696 PMCID: PMC8621819 DOI: 10.3390/jcm10225414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
123I-metaiodobenzylguanidine (MIBG) cardiac scintigraphy was performed to assess cardiac autonomic dysfunction and demonstrate its correlation with clinical and polysomnographic characteristics in patients with isolated rapid eye movement (REM) sleep behavior disorder. All subjects including 39 patients with isolated REM sleep behavior disorder and 17 healthy controls underwent MIBG cardiac scintigraphy for cardiac autonomic dysfunction assessment. The isolated REM sleep behavior disorder was confirmed by in-lab overnight polysomnography. A receiver operating curve was constructed to determine the cut-off value of the early and delayed heart-to-mediastinum ratio in patients with isolated REM sleep behavior disorder. Based on each cut-off value, a comparison analysis of REM sleep without atonia was performed by dividing isolated REM sleep behavior disorder patients into two groups. MIBG uptake below the cut-off value was associated with higher REM sleep without atonia. The lower heart-to-mediastinum ratio had significantly higher REM sleep without atonia (%), both with cut-off values of early (11.0 ± 5.6 vs. 29.3 ± 23.2%, p = 0.018) and delayed heart-to-mediastinum ratio (9.1 ± 4.3 vs. 30.0 ± 22.9%, p = 0.011). These findings indicate that reduced MIBG uptake is associated with higher REM sleep without atonia in isolated REM sleep behavior disorder.
Collapse
Affiliation(s)
- Sooyeoun You
- Department of Neurology, Keimyung University School of Medicine, Daegu 42601, Korea; (S.Y.); (K.T.K.)
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Keun Tae Kim
- Department of Neurology, Keimyung University School of Medicine, Daegu 42601, Korea; (S.Y.); (K.T.K.)
| | - Hyang Woon Lee
- Departments of Neurology, Medical Science, Computational Medicine, System Health Science & Engineering, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul 07985, Korea
| | - Yong Won Cho
- Department of Neurology, Keimyung University School of Medicine, Daegu 42601, Korea; (S.Y.); (K.T.K.)
| |
Collapse
|
77
|
Jeong E, Cha KS, Shin HR, Kim EY, Jun JS, Kim TJ, Byun JI, Shin JW, Sunwoo JS, Jung KY. Alerting network alteration in isolated rapid eye movement sleep behavior disorder patients with mild cognitive impairment. Sleep Med 2021; 89:10-18. [PMID: 34864507 DOI: 10.1016/j.sleep.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Mild cognitive impairment (MCI) was found in 30-50% of the isolated REM sleep behavior disorder (iRBD) patients. Furthermore, it is known that patients with Parkinson's disease have attention network defects. Given that iRBD is known to be the prodromal disease of α-synucleinopathies, our aim was to investigate whether there are attention network dysfunctions in iRBD patients following the presence of MCI. METHODS 14 healthy controls, 48 iRBD patients, 24 with MCI and 24 without MCI, were included in this study. Attention network task (ANT) was used to assess alerting, orienting, and executive control networks. Event-related potentials (ERPs) and behavioral performances were recorded during the ANT. Parietal N1 and P3 components were analyzed to find effects of the three attention networks. RESULTS IRBD patients without MCI showed neuropsychological, behavioral, and ERP results similar to those of healthy controls. On the other hand, iRBD patients with MCI showed a general decline in cognitive domains with no alerting effect (controls, p = 0.043; iRBD-noMCI, p = 0.014; iRBD-MCI, p = 0.130) while preserving orienting and executive control effect. Furthermore, iRBD patients with MCI had impairments in executive function and verbal memory domains, compared to iRBD patients without MCI. CONCLUSIONS Our findings indicate that when cognition is reduced to MCI levels in iRBD patients, the attention network, especially the alerting component, is impaired. The attention network and cognition, on the other hand, can be preserved in iRBD patients due to the compensatory mechanism.
Collapse
Affiliation(s)
- El Jeong
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, South Korea
| | - Kwang Su Cha
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye-Rim Shin
- Department of Neurology, Dankook University Hospital, Cheonan, South Korea
| | - Eun Young Kim
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Jin-Sun Jun
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Jung-Won Shin
- Department of Neurology, CHA University, Bundang CHA Medical Center, Seongnam, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
78
|
Zolfaghari S, Yao CW, Wolfson C, Pelletier A, Postuma RB. Sleep Disorders and Future Diagnosis of Parkinsonism: A Prospective Study Using the Canadian Longitudinal Study on Aging. JOURNAL OF PARKINSONS DISEASE 2021; 12:257-266. [PMID: 34744049 DOI: 10.3233/jpd-212796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Earlier detection of parkinsonism, specifically during its prodromal stage, may be key to preventing its progression. Previous studies have produced contradictory results on the association between sleep symptoms and prodromal parkinsonism. OBJECTIVE We conducted a prospective study within the Canadian Longitudinal Study on Aging (CLSA) to determine whether self-reported symptoms of insomnia, somnolence, apnea, and restless legs syndrome predate the diagnosis of parkinsonism after three years of follow-up. METHODS At baseline, amongst other information, participants completed a questionnaire for difficulty initiating or maintaining sleep, daytime somnolence, snoring or stopping breathing during sleep, and symptoms of restless legs syndrome. After 3 years of follow-up, baseline responses from participants who self-reported a new diagnosis of parkinsonism (cases) were compared to those who did not (controls). For each case, 10 controls were individually matched by age, sex, education, BMI, caffeine, smoking, and alcohol. Binary unconditional logistic regression models were used to estimate the association between sleep symptoms and new-onset parkinsonism, adjusting for age, sex, education, BMI, smoking, alcohol, and caffeine. RESULTS We identified 58 incident-parkinsonism cases and 580 matched controls (65.5%male, mean age = 69.60, SD = 8.0). Baseline symptoms of sleep-onset insomnia (12.1%vs. 13.0%, Adjusted OR[95%CI] = 0.87[0.32,2.33]), sleep-maintenance insomnia (24.1%vs. 20.2%, AOR = 1.01[0.46,2.20]), daytime somnolence (8.6%vs. 7.4%, AOR = 1.11[0.37,3.39]), obstructive sleep apnea (27.3%vs. 26.2%, AOR = 0.84[0.40,1.79]), and restless leg syndrome (20.6%vs. 9.9%, AOR = 1.34[0.42,4.25]) were similar among those who developed parkinsonism and those who did not. CONCLUSION Symptoms of insomnia, somnolence, apnea, and restless legs did not predate a new diagnosis of parkinsonism over 3 years.
Collapse
Affiliation(s)
- Sheida Zolfaghari
- Integrated Program in Neuroscience, McGillUniversity, Montreal, Quebec, Canada.,ResearchInstitute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Chun W Yao
- Integrated Program in Neuroscience, McGillUniversity, Montreal, Quebec, Canada.,ResearchInstitute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christina Wolfson
- ResearchInstitute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Epidemiology, Biostatisticsand Occupational Health, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Neurology andNeurosurgery, McGill University, Montreal, Quebec, Canada
| | - Amelie Pelletier
- ResearchInstitute of the McGill University Health Centre, Montreal, Quebec, Canada.,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacrä-Coeur de Monträal, Montreal, Quebec
| | - Ronald B Postuma
- ResearchInstitute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Neurology andNeurosurgery, McGill University, Montreal, Quebec, Canada.,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacrä-Coeur de Monträal, Montreal, Quebec
| |
Collapse
|
79
|
Wang XT, Yu H, Liu FT, Zhang C, Ma YH, Wang J, Dong Q, Tan L, Wang H, Yu JT. Associations of sleep disorders with cerebrospinal fluid α-synuclein in prodromal and early Parkinson's disease. J Neurol 2021; 269:2469-2478. [PMID: 34605986 DOI: 10.1007/s00415-021-10812-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Our aim is to investigate the associations of sleep disorders with cerebrospinal fluid (CSF) α-synuclein (α-syn) in healthy controls (HCs), and patients with prodromal and early Parkinson's disease (PD). METHODS We included a total of 575 individuals, consisting of 360 PD individuals, 46 prodromal PD individuals, and 169 HCs. Multiple linear regression models and linear mixed-effects models were used to investigate the associations of sleep disorders with baseline and longitudinal CSF α-syn. Associations between the change rates of sleep disorders and CSF α-syn were further investigated via multiple linear regression models. RESULTS In PD, probable Rapid-eye-movement sleep Behavior Disorder (pRBD) (β = - 0.1199; P = 0.0444) and RBD sub-items, such as aggressive dreams (β = - 0.1652; P = 0.0072) and hurting bed partner (β = - 0.2468; P = 0.0010), contributed to lower CSF α-syn. The association between aggressive dreams and lower CSF α-syn further survived Bonferroni correction (P < 0.0036). In prodromal PD, dream-enacting (a specific RBD behavior) was significantly associated with decreased CSF α-syn during the follow-up (β = - 0.0124; P = 0.0237). HCs with daytime sleepiness when inactive-sitting in public places (β = - 0.0033; P = 0.0135) showed decreased CSF α-syn. Furthermore, increased possibilities of daytime sleepiness when sitting and reading contributed to a greater decrease of CSF α-syn in HCs (β = - 196.8779; P = 0.0433). CONCLUSIONS Sleep disorders were associated with decreased CSF α-syn. Sleep management may be important for disease monitoring and preventing the progression of α-syn pathology.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Huan Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Feng-Tao Liu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Can Zhang
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Jian Wang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, China.
| | - Han Wang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
80
|
Metzger JM, Matsoff HN, Vu D, Zinnen AD, Jones KM, Bondarenko V, Simmons HA, Moore CF, Emborg ME. Myelin Basic Protein and Cardiac Sympathetic Neurodegeneration in Nonhuman Primates. Neurol Res Int 2021; 2021:4776610. [PMID: 34646580 PMCID: PMC8505074 DOI: 10.1155/2021/4776610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Minimal myelination is proposed to be a contributing factor to the preferential nigral neuronal loss in Parkinson's disease (PD). Similar to nigral dopaminergic neurons, sympathetic neurons innervating the heart have long, thin axons which are unmyelinated or minimally myelinated. Interestingly, cardiac sympathetic loss in PD is heterogeneous across the heart, yet the spatial relationship between myelination and neurodegeneration is unknown. Here, we report the mapping of myelin basic protein (MBP) expression across the left ventricle of normal rhesus macaques (n = 5) and animals intoxicated with systemic 6-OHDA (50 mg/kg iv) to model parkinsonian cardiac neurodegeneration (n = 10). A subset of 6-OHDA-treated rhesus received daily dosing of pioglitazone (5 mg/kg po; n = 5), a PPARγ agonist with neuroprotective properties. In normal animals, MBP-immunoreactivity (-ir) was identified surrounding approximately 14% of axonal fibers within nerve bundles of the left ventricle, with more myelinated nerve fibers at the base level of the left ventricle than the apex (p < 0.014). Greater MBP-ir at the base was related to a greater number of nerve bundles at that level relative to the apex (p < 0.05), as the percent of myelinated nerve fibers in bundles was not significantly different between levels of the heart. Cardiac sympathetic loss following 6-OHDA was associated with decreased MBP-ir in cardiac nerve bundles, with the percent decrease of MBP-ir greater in the apex (84.5%) than the base (52.0%). Interestingly, cardiac regions and levels with more MBP-ir in normal animals showed attenuated sympathetic loss relative to areas with less MBP-ir in 6-OHDA + placebo (r = -0.7, p < 0.014), but not in 6-OHDA + pioglitazone (r = -0.1) subjects. Our results demonstrate that myelination is present around a minority of left ventricle nerve bundle fibers, is heterogeneously distributed in the heart of rhesus macaques, and has a complex relationship with cardiac sympathetic neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Jeanette M. Metzger
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Helen N. Matsoff
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Don Vu
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Alexandra D. Zinnen
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kathryn M. Jones
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Viktoriya Bondarenko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Colleen F. Moore
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
81
|
Exploring the Role of Orexinergic Neurons in Parkinson's Disease. Neurotox Res 2021; 39:2141-2153. [PMID: 34495449 DOI: 10.1007/s12640-021-00411-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting about 2% of the population. A neuropeptide, orexin, is linked with sleep abnormalities in the parkinsonian patient. This study aimed to review the changes in the orexinergic system in parkinsonian subjects and the effects of orexin. A number of search techniques were used and presumed during the search, including cloud databank searches of PubMed and Medline using title words, keywords, and MeSH terms. PD is characterised by motor dysfunctions (postural instability, rigidity, tremor) and cognitive disorders, sleep-wake abnormalities grouped under non-motor disorders. The Orexinergic system found in the hypothalamus is linked with autonomic function, neuroprotection, learning and memory, and the sleep-wake cycle. Prepro-orexin, a precursor peptide (130 amino acids), gives rise to orexins (Orx-A and Orx-B). Serum orexin level measurement is vital for evaluating several neurological disorders (Alzheimer's disease, Huntington's disease, and PD). Orexinergic neurons are activated by hypoglycemia and ghrelin, while they are restrained by food consumption and leptin. Orexinergic system dysfunctioning was found to be linked with non-motor symptoms (sleep abnormalities) in PD. Orexinergic neuron's behaviour may be either inhibitory or excitatory depending on the environment in which they are present. As well, orexin antagonists are found to improve the abnormal sleep pattern. Since the orexinergic system plays a role in several psychological and neurological disorders, therefore, these disorders can be managed by targeting this system.
Collapse
|
82
|
Peng A, Ji S, Li W, Lai W, Qiu X, He S, Dong B, Huang C, Chen L. Gastric Electrical Dysarrhythmia in Probable Rapid Eye Movement Sleep Behavior Disorder. Front Neurol 2021; 12:687215. [PMID: 34512510 PMCID: PMC8427525 DOI: 10.3389/fneur.2021.687215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Subjective gastrointestinal complaints have been repeatedly reported in patients with REM sleep behavior disorder (RBD), but objective evidence is scarce. We aimed to objectively investigate the gastrointestinal dysfunction in individuals with probable RBD (pRBD) using an electrogastrogram. Methods: Thirty-two participants with pRBD and 60 age- and gender-matched healthy controls were enrolled. pRBD was diagnosed based on questionnaires and further assessed by experienced neurologists. After thorough assessment of participants' subjective gastrointestinal symptoms, preprandial and postprandial gastric activities were measured using an electrogastrogram. Dominant frequency, dominant power ratio, and the ratio of preprandial to postprandial power were analyzed. Results: Among the gastric symptoms, hiccup (34.8 vs. 9.6%, p = 0.017) and postprandial gastric discomfort (43.5 vs. 15.4%, p = 0.017) were more frequent in participants with pRBD than in controls. The dominant frequency on the electrode overlying the gastric pyloric antrum was lower in pRBD than in healthy controls (2.9 [2.6-2.9] vs. 2.9 [2.9-3.2] cpm, p = 0.006). A reduced dominant power ratio from the same electrode was also found in individuals with pRBD (60.7 [58.0-64.5] vs. 64.2 [58.7-69.6] %, p = 0.046). Conclusion: Patients with pRBD have a higher rate of gastric dysfunction, which presented as irregular slow wave rhythmicity on an electrogastrogram.
Collapse
Affiliation(s)
- Anjiao Peng
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shuming Ji
- Department of Project Design and Statistics, West China Hospital, Sichuan University, Chengdu, China
| | - Wanling Li
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wanlin Lai
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangmiao Qiu
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shixu He
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bosi Dong
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Huang
- Department of Rehabilitation Medicine Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Chen
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
83
|
Shadrina M, Slominsky P. Modeling Parkinson's Disease: Not Only Rodents? Front Aging Neurosci 2021; 13:695718. [PMID: 34421573 PMCID: PMC8377290 DOI: 10.3389/fnagi.2021.695718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023] Open
Abstract
Parkinson’s disease (PD) is a common chronic progressive multifactorial neurodegenerative disease. In most cases, PD develops as a sporadic idiopathic disease. However, in 10%–15% of all patients, Mendelian inheritance of the disease is observed in an autosomal dominant or autosomal recessive manner. To date, mutations in seven genes have been convincingly confirmed as causative in typical familial forms of PD, i.e., SNCA, LRRK2, VPS35, PRKN, PINK1, GBA, and DJ-1. Family and genome-wide association studies have also identified a number of candidate disease genes and a common genetic variability at 90 loci has been linked to risk for PD. The analysis of the biological function of both proven and candidate genes made it possible to conclude that mitochondrial dysfunction, lysosomal dysfunction, impaired exosomal transport, and immunological processes can play important roles in the development of the pathological process of PD. The mechanisms of initiation of the pathological process and its earliest stages remain unclear. The study of the early stages of the disease (before the first motor symptoms appear) is extremely complicated by the long preclinical period. In addition, at present, the possibility of performing complex biochemical and molecular biological studies familial forms of PD is limited. However, in this case, the analysis of the state of the central nervous system can only be assessed by indirect signs, such as the level of metabolites in the cerebrospinal fluid, peripheral blood, and other biological fluids. One of the potential solutions to this problem is the analysis of disease models, in which it is possible to conduct a detailed in-depth study of all aspects of the pathological process, starting from its earliest stages. Many modeling options are available currently. An analysis of studies published in the 2000s suggests that toxic models in rodents are used in the vast majority of cases. However, interesting and important data for understanding the pathogenesis of PD can be obtained from other in vivo models. Within the framework of this review, we will consider various models of PD that were created using various living organisms, from unicellular yeast (Saccharomyces cerevisiae) and invertebrate (Nematode and Drosophila) forms to various mammalian species.
Collapse
Affiliation(s)
- Maria Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Petr Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
84
|
Miglis MG, Adler CH, Antelmi E, Arnaldi D, Baldelli L, Boeve BF, Cesari M, Dall'Antonia I, Diederich NJ, Doppler K, Dušek P, Ferri R, Gagnon JF, Gan-Or Z, Hermann W, Högl B, Hu MT, Iranzo A, Janzen A, Kuzkina A, Lee JY, Leenders KL, Lewis SJG, Liguori C, Liu J, Lo C, Ehgoetz Martens KA, Nepozitek J, Plazzi G, Provini F, Puligheddu M, Rolinski M, Rusz J, Stefani A, Summers RLS, Yoo D, Zitser J, Oertel WH. Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol 2021; 20:671-684. [PMID: 34302789 DOI: 10.1016/s1474-4422(21)00176-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly regarded as being in the early stages of a progressive neurodegenerative disease involving α-synuclein pathology, such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. Abnormal α-synuclein deposition occurs early in the neurodegenerative process across the central and peripheral nervous systems and might precede the appearance of motor symptoms and cognitive decline by several decades. These findings provide the rationale to develop reliable biomarkers that can better predict conversion to clinically manifest α-synucleinopathies. In addition, biomarkers of disease progression will be essential to monitor treatment response once disease-modifying therapies become available, and biomarkers of disease subtype will be essential to enable prediction of which subtype of α-synucleinopathy patients with isolated RBD might develop.
Collapse
Affiliation(s)
- Mitchell G Miglis
- Department of Neurology and Neurological Sciences and Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, CA, USA.
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Elena Antelmi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dario Arnaldi
- Clinical Neurology, DINOGMI, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Baldelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Bradley F Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matteo Cesari
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene Dall'Antonia
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Nico J Diederich
- Department of Neuroscience, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Kathrin Doppler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Petr Dušek
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | | | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal-Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
| | - Ziv Gan-Or
- The Neuro-Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Wiebke Hermann
- Department of Neurology, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE), Research Site Rostock, Rostock, Germany
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alex Iranzo
- Sleep Disorders Center, Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Annette Janzen
- Department of Neurology and Section on Clinical Neuroscience, Philipps University Marburg, Marburg, Germany
| | | | - Jee-Young Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Klaus L Leenders
- Department of Nuclear Medicine and Biomedical Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Claudio Liguori
- Sleep Medicine Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jun Liu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christine Lo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kaylena A Ehgoetz Martens
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Jiri Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Giuseppe Plazzi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; UOC Clinica Neurologica Rete Metropolitana NEUROMET, Bellaria Hospital, Bologna, Italy
| | - Monica Puligheddu
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Michal Rolinski
- Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Seoul, South Korea
| | - Jennifer Zitser
- Department of Neurology and Neurological Sciences, University of California, San Francisco, CA, USA; Department of Neurology, Tel Aviv Sourasky Medical Center, Affiliate of Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Wolfgang H Oertel
- Department of Neurology and Section on Clinical Neuroscience, Philipps University Marburg, Marburg, Germany; Institute for Neurogenomics, Helmholtz Center for Health and Environment, München-Neuherberg, Germany
| |
Collapse
|
85
|
Honeycutt L, Gagnon JF, Pelletier A, Montplaisir JY, Gagnon G, Postuma RB. Characterization of Depressive and Anxiety Symptoms in Idiopathic REM Sleep Behavior Disorder. JOURNAL OF PARKINSONS DISEASE 2021; 11:1409-1416. [PMID: 33967057 DOI: 10.3233/jpd-212625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Depression and anxiety are common in synucleinopathies and often present during prodromal stages, including idiopathic/isolated REM sleep behavior disorder (iRBD). However, the specific profiles of depression/anxiety and their predictive values for phenoconversion remain unclear. OBJECTIVE To assess the predominant manifestations, predictive value, and changes over time in depressive and anxiety symptoms in iRBD. METHODS Patients with polysomnography-confirmed iRBD (n = 114) and healthy controls (n = 44) were recruited. The Beck Depression Inventory and Beck Anxiety Inventory were administered at baseline, which was repeated prospectively over follow-up. Factor solutions were generated to delineate symptom clusters within the scales, and to help disentangle primary mood symptoms from other neurodegenerative confounds. Total scores, individual scale items, and factors were evaluated to 1) compare patients and controls, 2) assess progression of symptoms over time, and 3) assess predictive value for phenoconversion. RESULTS At baseline, iRBD patients had more severe depressive (9.0 = 6.7 vs 5.8 = 4.8) and anxiety (7.0 = 7.9 vs 4.5 = 6.0) symptoms than controls. Increased scores were seen in numerous individual scale items and most scales' factors. For depressive symptoms, there was no progression of total scores or factors over time. However, anxiety scores worsened slightly over prospective follow-up (annual slope = 0.58 points, p < 0.05). Over an average 2.4 = 3.1-year follow-up, 37 patients phenoconverted and 72 remained disease-free. Neither baseline depressive nor anxiety symptoms predicted phenoconversion to clinical neurodegenerative disease. CONCLUSIONS Depressive and anxiety symptoms are common in iRBD. However, they do not predict phenoconversion and show only modest progression over time, solely for anxiety.
Collapse
Affiliation(s)
- Lucy Honeycutt
- Department of Neurology, McGill University, Montreal General Hospital, Montreal, 7 QC, Canada
| | - Jean-François Gagnon
- Centre d'Études Avancées en Médecine du Sommeil, CIUSSS-NÎM-Hĉpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
| | - Amélie Pelletier
- Centre d'Études Avancées en Médecine du Sommeil, CIUSSS-NÎM-Hĉpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neurology, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jacques Y Montplaisir
- Centre d'Études Avancées en Médecine du Sommeil, CIUSSS-NÎM-Hĉpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Psychiatry, Université de Montreal, Montreal, QC, Canada
| | - Geneviève Gagnon
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Ronald B Postuma
- Department of Neurology, McGill University, Montreal General Hospital, Montreal, 7 QC, Canada.,Centre d'Études Avancées en Médecine du Sommeil, CIUSSS-NÎM-Hĉpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neurology, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
86
|
Walker IM, Fullard ME, Morley JF, Duda JE. Olfaction as an early marker of Parkinson's disease and Alzheimer's disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:317-329. [PMID: 34266602 DOI: 10.1016/b978-0-12-819973-2.00030-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Olfactory impairment is a common and early sign of Parkinson's disease (PD) and Alzheimer's disease (AD), the two most prevalent neurodegenerative conditions in the elderly. This phenomenon corresponds to pathologic processes emerging in the olfactory system prior to the onset of typical clinical manifestations. Clinically available tests can establish hyposmia through odor identification assessment, discrimination, and odor detection threshold. There are significant efforts to develop preventative or disease-modifying therapies that slow down or halt the progression of PD and AD. Due to the convenience and low cost of its assessment, olfactory impairment could be used in these studies as a screening instrument. In the clinical setting, loss of smell may also help to differentiate PD and AD from alternative causes of Parkinsonism and cognitive impairment, respectively. Here, we discuss the pathophysiology of olfactory dysfunction in PD and AD and how it can be assessed in the clinical setting to aid in the early and differential diagnosis of these disorders.
Collapse
Affiliation(s)
- Ian M Walker
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz, VA Medical Center, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michelle E Fullard
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| | - James F Morley
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz, VA Medical Center, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John E Duda
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz, VA Medical Center, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
87
|
Day JO, Mullin S. The Genetics of Parkinson's Disease and Implications for Clinical Practice. Genes (Basel) 2021; 12:genes12071006. [PMID: 34208795 PMCID: PMC8304082 DOI: 10.3390/genes12071006] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
The genetic landscape of Parkinson’s disease (PD) is characterised by rare high penetrance pathogenic variants causing familial disease, genetic risk factor variants driving PD risk in a significant minority in PD cases and high frequency, low penetrance variants, which contribute a small increase of the risk of developing sporadic PD. This knowledge has the potential to have a major impact in the clinical care of people with PD. We summarise these genetic influences and discuss the implications for therapeutics and clinical trial design.
Collapse
Affiliation(s)
- Jacob Oliver Day
- Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK;
| | - Stephen Mullin
- Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK;
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London WC1N 3BG, UK
- Correspondence:
| |
Collapse
|
88
|
Kempster P. Prodromal and advanced non-motor features of Parkinson's disease. BMJ Neurol Open 2021; 3:e000168. [PMID: 34250486 PMCID: PMC8217910 DOI: 10.1136/bmjno-2021-000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Peter Kempster
- Neurosciences Department, Monash Medical Centre, Clayton, Victoria, Australia
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
89
|
Giannini G, Provini F, Cortelli P, Calandra-Buonaura G. REM Sleep Behaviour Disorder in Multiple System Atrophy: From Prodromal to Progression of Disease. Front Neurol 2021; 12:677213. [PMID: 34194385 PMCID: PMC8238043 DOI: 10.3389/fneur.2021.677213] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
A higher frequency of motor and breathing sleep-related disorders in multiple system atrophy (MSA) populations is reported. REM sleep behaviour disorder (RBD) is one of the most robust markers of an underlying alpha-synucleinopathy. Although a large corpus of literature documented the higher prevalence of RBD in MSA, few studies have systematically investigated the prevalence of RBD as mode of disease onset and its role in disease progression. Moreover, there has been increasing interest in phenoconversion into synucleinopathies of cohorts of patients with isolated RBD (iRBD). Finally, some studies investigated RBD as predictive factor of conversion in isolated autonomic failure, a synucleinopathy presenting with autonomic failure as the sole clinical manifestation that could convert to a manifest central nervous system synucleinopathy. As the field of neurodegenerative disorders moves increasingly towards developing disease-modifying therapies, detecting individuals in the prodromal stage of these synucleinopathies becomes crucial. The aims of this review are to summarise (1) the prevalence of RBD during the course of MSA and as presenting feature of MSA (iRBD), (2) the RBD features in MSA, (3) MSA progression and prognosis in the subgroup of patients with RBD predating disease onset, and (4) the prevalence of MSA conversion in iRBD cohorts. Moreover, we summarise previous results on the role of RBD in the context of isolated autonomic failure as marker of phenoconversion to other synucleinopathies and, in particular, to MSA.
Collapse
Affiliation(s)
- Giulia Giannini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unità Operativa Complessa (UOC) Clinica Neurologica Rete Metropolitana NEUROMET, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Federica Provini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unità Operativa Complessa (UOC) Clinica Neurologica Rete Metropolitana NEUROMET, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unità Operativa Complessa (UOC) Clinica Neurologica Rete Metropolitana NEUROMET, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unità Operativa Complessa (UOC) Clinica Neurologica Rete Metropolitana NEUROMET, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
90
|
Dos Santos AB, Skaanning LK, Mikkelsen E, Romero-Leguizamón CR, Kristensen MP, Klein AB, Thaneshwaran S, Langkilde AE, Kohlmeier KA. α-Synuclein Responses in the Laterodorsal Tegmentum, the Pedunculopontine Tegmentum, and the Substantia Nigra: Implications for Early Appearance of Sleep Disorders in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:1773-1790. [PMID: 34151857 DOI: 10.3233/jpd-212554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder associated with insoluble pathological aggregates of the protein α-synuclein. While PD is diagnosed by motor symptoms putatively due to aggregated α-synuclein-mediated damage to substantia nigra (SN) neurons, up to a decade before motor symptom appearance, patients exhibit sleep disorders (SDs). Therefore, we hypothesized that α-synuclein, which can be present in monomeric, fibril, and other forms, has deleterious cellular actions on sleep-control nuclei. OBJECTIVE We investigated whether native monomer and fibril forms of α-synuclein have effects on neuronal function, calcium dynamics, and cell-death-induction in two sleep-controlling nuclei: the laterodorsal tegmentum (LDT), and the pedunculopontine tegmentum (PPT), as well as the motor-controlling SN. METHODS Size exclusion chromatography, Thioflavin T emission, and circular dichroism spectroscopy were used to isolate structurally defined forms of recombinant, human α-synuclein. Neuronal and viability effects of characterized monomeric and fibril forms of α-synuclein were determined on LDT, PPT, and SN neurons using electrophysiology, calcium imaging, and neurotoxicity assays. RESULTS In LDT and PPT, both forms of α-synuclein induced excitation and increased calcium, and the monomeric form heightened putatively excitotoxic neuronal death, whereas, in the SN we saw inhibition, decreased intracellular calcium, and monomeric α-synuclein was not associated with heightened cell death. CONCLUSION Nucleus-specific differential effects suggest mechanistic underpinnings of SDs' prodromal appearance in PD. While speculative, we hypothesize that the monomeric form of α-synuclein compromises functionality of sleep-control neurons, leading to the presence of SDs decades prior to motor dysfunction.
Collapse
Affiliation(s)
| | - Line K Skaanning
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Eyd Mikkelsen
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Anders B Klein
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kristi A Kohlmeier
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
91
|
Howell MJ. Rapid Eye Movement Sleep Behavior Disorder and Other Rapid Eye Movement Parasomnias. ACTA ACUST UNITED AC 2021; 26:929-945. [PMID: 32756229 DOI: 10.1212/con.0000000000000896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW The discovery of rapid eye movement (REM) sleep and, in particular, REM sleep behavior disorder (RBD) have brought elusive nightmarish experiences to scientific scrutiny. This article summarizes a century of sleep research to examine the maladies of dreaming, their pathophysiologic significance, and management. RECENT FINDINGS Under healthy physiologic conditions, REM sleep is characterized by vivid mentation combined with skeletal muscle paralysis. The loss of REM sleep atonia in RBD results in vivid, potentially injurious dream enactment to patients and bed partners. RBD is common, affecting at least 1% of the population and is primarily caused by α-synuclein pathology of REM sleep-related brainstem neurons. The majority of patients with RBD ultimately develop a neurodegenerative syndrome such as Parkinson disease, dementia with Lewy bodies, or multiple system atrophy. Among patients with Parkinson disease, RBD predicts an aggressive disease course with rapid cognitive, motor, and autonomic decline. RBD is diagnosed by the presence of dream enactment episodes (either recorded or clinically recalled) and physiologic evidence of REM sleep without atonia demonstrated on polysomnography. Bedroom safety is of paramount importance in the management of RBD while pharmacokinetic options include melatonin or clonazepam. SUMMARY The injurious dream enactment of RBD is common and treatable. It is a syndrome of α-synuclein pathology with most patients ultimately developing Parkinson disease, dementia with Lewy bodies, or a related disorder.
Collapse
|
92
|
Rusz J, Hlavnička J, Novotný M, Tykalová T, Pelletier A, Montplaisir J, Gagnon JF, Dušek P, Galbiati A, Marelli S, Timm PC, Teigen LN, Janzen A, Habibi M, Stefani A, Holzknecht E, Seppi K, Evangelista E, Rassu AL, Dauvilliers Y, Högl B, Oertel W, St Louis EK, Ferini-Strambi L, Růžička E, Postuma RB, Šonka K. Speech Biomarkers in Rapid Eye Movement Sleep Behavior Disorder and Parkinson Disease. Ann Neurol 2021; 90:62-75. [PMID: 33856074 PMCID: PMC8252762 DOI: 10.1002/ana.26085] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 04/11/2021] [Indexed: 01/19/2023]
Abstract
Objective This multilanguage study used simple speech recording and high‐end pattern analysis to provide sensitive and reliable noninvasive biomarkers of prodromal versus manifest α‐synucleinopathy in patients with idiopathic rapid eye movement sleep behavior disorder (iRBD) and early‐stage Parkinson disease (PD). Methods We performed a multicenter study across the Czech, English, German, French, and Italian languages at 7 centers in Europe and North America. A total of 448 participants (337 males), including 150 with iRBD (mean duration of iRBD across language groups 0.5–3.4 years), 149 with PD (mean duration of disease across language groups 1.7–2.5 years), and 149 healthy controls were recorded; 350 of the participants completed the 12‐month follow‐up. We developed a fully automated acoustic quantitative assessment approach for the 7 distinctive patterns of hypokinetic dysarthria. Results No differences in language that impacted clinical parkinsonian phenotypes were found. Compared with the controls, we found significant abnormalities of an overall acoustic speech severity measure via composite dysarthria index for both iRBD (p = 0.002) and PD (p < 0.001). However, only PD (p < 0.001) was perceptually distinct in a blinded subjective analysis. We found significant group differences between PD and controls for monopitch (p < 0.001), prolonged pauses (p < 0.001), and imprecise consonants (p = 0.03); only monopitch was able to differentiate iRBD patients from controls (p = 0.004). At the 12‐month follow‐up, a slight progression of overall acoustic speech impairment was noted for the iRBD (p = 0.04) and PD (p = 0.03) groups. Interpretation Automated speech analysis might provide a useful additional biomarker of parkinsonism for the assessment of disease progression and therapeutic interventions. ANN NEUROL 2021;90:62–75
Collapse
Affiliation(s)
- Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic.,Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Hlavnička
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Michal Novotný
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Tereza Tykalová
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Amelie Pelletier
- Department of Neurology, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Center for Advanced Research in Sleep Medicine, CIUSSS-NIM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Jean-Francois Gagnon
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Andrea Galbiati
- Sleep Disorders Center, Division of Neuroscience, Ospedale San Raffaele, Università Vita-Salute, Milan, Italy
| | - Sara Marelli
- Sleep Disorders Center, Division of Neuroscience, Ospedale San Raffaele, Università Vita-Salute, Milan, Italy
| | - Paul C Timm
- Mayo Center for Sleep Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN.,Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Luke N Teigen
- Mayo Center for Sleep Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN.,Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Annette Janzen
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Mahboubeh Habibi
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Evi Holzknecht
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisa Evangelista
- National Reference Network for Narcolepsy, Sleep-Wake Disorder Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Anna Laura Rassu
- National Reference Network for Narcolepsy, Sleep-Wake Disorder Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Yves Dauvilliers
- National Reference Network for Narcolepsy, Sleep-Wake Disorder Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Oertel
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Erik K St Louis
- Mayo Center for Sleep Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN.,Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN.,Mayo Clinic Health System Southwest Wisconsin, La Crosse, WI
| | - Luigi Ferini-Strambi
- Sleep Disorders Center, Division of Neuroscience, Ospedale San Raffaele, Università Vita-Salute, Milan, Italy
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ronald B Postuma
- Department of Neurology, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Center for Advanced Research in Sleep Medicine, CIUSSS-NIM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
93
|
Muñoz-Lopetegi A, Berenguer J, Iranzo A, Serradell M, Pujol T, Gaig C, Muñoz E, Tolosa E, Santamaría J. Magnetic resonance imaging abnormalities as a marker of multiple system atrophy in isolated rapid eye movement sleep behavior disorder. Sleep 2021; 44:5911953. [PMID: 32978947 DOI: 10.1093/sleep/zsaa089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
STUDY OBJECTIVES Patients with isolated rapid eye movement (REM) sleep behavior disorder (IRBD) develop Parkinson disease (PD), dementia with Lewy bodies (DLB), or multiple system atrophy (MSA). Magnetic resonance imaging (MRI) is abnormal in MSA showing abnormalities in the putamen, cerebellum, and brainstem. Our objective was to evaluate the usefulness of MRI to detect MRI abnormalities in IRBD and predict development of MSA and not PD and DLB. METHODS In IRBD patients that eventually developed PD, DLB, and MSA, we looked for the specific structural MRI abnormalities described in manifest MSA (e.g. hot cross-bun sign, putaminal rim, and cerebellar atrophy). We compared the frequency of these MRI changes among groups of converters (PD, DLB, and MSA) and analyzed their ability to predict development of MSA. The clinical and radiological features of the IRBD patients that eventually converted to MSA are described in detail. RESULTS A total of 61 IRBD patients who underwent MRI phenoconverted to PD (n = 30), DLB (n = 26), and MSA (n = 5) after a median follow-up of 2.4 years from neuroimaging. MRI changes typical of MSA were found in four of the five (80%) patients who converted to MSA and in three of the 56 (5.4%) patients who developed PD or DLB. MRI changes of MSA had sensitivity of 80.0%, specificity of 94.6%, positive likelihood ratio of 14.9 (95% CI 4.6-48.8), and negative likelihood ratio of 0.2 (95% CI 0.04-1.2) to predict MSA. CONCLUSIONS In IRBD, conventional brain MRI is helpful to predict conversion to MSA. The specific MRI abnormalities of manifest MSA may be detected in its premotor stage.
Collapse
Affiliation(s)
- Amaia Muñoz-Lopetegi
- Center for Sleep Disorders, Neurology Service, Universitat de Barcelona, IDIBAPS, CIBERNED:CB06/05/0018-ISCIII, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Joan Berenguer
- Radiology Service, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alex Iranzo
- Center for Sleep Disorders, Neurology Service, Universitat de Barcelona, IDIBAPS, CIBERNED:CB06/05/0018-ISCIII, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Monica Serradell
- Center for Sleep Disorders, Neurology Service, Universitat de Barcelona, IDIBAPS, CIBERNED:CB06/05/0018-ISCIII, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Teresa Pujol
- Radiology Service, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Carles Gaig
- Center for Sleep Disorders, Neurology Service, Universitat de Barcelona, IDIBAPS, CIBERNED:CB06/05/0018-ISCIII, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Esteban Muñoz
- Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED:CB06/05/0018-ISCIII, Barcelona, Spain
| | - Eduard Tolosa
- Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED:CB06/05/0018-ISCIII, Barcelona, Spain
| | - Joan Santamaría
- Center for Sleep Disorders, Neurology Service, Universitat de Barcelona, IDIBAPS, CIBERNED:CB06/05/0018-ISCIII, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
94
|
Zhou L, Li G, Zhang Y, Zhang M, Chen Z, Zhang L, Wang X, Zhang M, Ye G, Li Y, Chen S, Li B, Wei H, Liu J. Increased free water in the substantia nigra in idiopathic REM sleep behaviour disorder. Brain 2021; 144:1488-1497. [PMID: 33880500 DOI: 10.1093/brain/awab039] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/14/2020] [Accepted: 12/04/2020] [Indexed: 11/14/2022] Open
Abstract
Imaging markers sensitive to neurodegeneration in the substantia nigra are critically needed for future disease-modifying trials. Previous studies have demonstrated the utility of posterior substantia nigra free water as a marker of progression in Parkinson's disease. In this study, we tested the hypothesis that free water is elevated in the posterior substantia nigra of idiopathic REM sleep behaviour disorder, which is considered a prodromal stage of synucleinopathy. We applied free-water imaging to 32 healthy control subjects, 34 patients with idiopathic REM sleep behaviour disorder and 38 patients with Parkinson's disease. Eighteen healthy control subjects and 22 patients with idiopathic REM sleep behaviour disorder were followed up and completed longitudinal free-water imaging. Free-water values in the substantia nigra were calculated for each individual and compared among groups. We tested the associations between posterior substantia nigra free water and uptake of striatal dopamine transporter in idiopathic REM sleep behaviour disorder. Free-water values in the posterior substantia nigra were significantly higher in the patients with idiopathic REM sleep behaviour disorder patients than in the healthy control subjects, but were significantly lower in patients with idiopathic REM sleep behaviour disorder than in patients with Parkinson's disease. In addition, we observed significantly negative associations between posterior substantia nigra free-water values and dopamine transporter striatal binding ratios in the idiopathic REM sleep behaviour disorder patients. Longitudinal free-water imaging analyses were conducted with a linear mixed-effects model, and showed a significant Group × Time interaction in posterior substantia nigra, identifying increased mean free-water values in posterior substantia nigra of idiopathic REM sleep behaviour disorder over time. These results demonstrate that free water in the posterior substantia nigra is a valid imaging marker of neurodegeneration in idiopathic REM sleep behaviour disorder, which has the potential to be used as an indicator in disease-modifying trials.
Collapse
Affiliation(s)
- Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuyao Zhang
- School of Information and Science and Technology, Shanghai Tech University, Shanghai, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lina Zhang
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaojin Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Zhang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guanyu Ye
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuanyuan Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
95
|
Ma L, Liu SY, Cen SS, Li Y, Zhang H, Han C, Gu ZQ, Mao W, Ma JH, Zhou YT, Xu EH, Chan P. Detection of Motor Dysfunction With Wearable Sensors in Patients With Idiopathic Rapid Eye Movement Disorder. Front Bioeng Biotechnol 2021; 9:627481. [PMID: 33937213 PMCID: PMC8084288 DOI: 10.3389/fbioe.2021.627481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with idiopathic rapid eye movement sleep behavior disorder (iRBD) are at high risk for conversion to synucleinopathy and Parkinson disease (PD). This can potentially be monitored by measuring gait characteristics of iRBD patients, although quantitative data are scarce and previous studies have reported inconsistent findings. This study investigated subclinical gait changes in polysomnography-proven iRBD patients compared to healthy controls (HCs) during 3 different walking conditions using wearable motor sensors in order to determine whether gait changes can be detected in iRBD patients that could reflect early symptoms of movement disorder. A total 31 iRBD patients and 20 HCs were asked to walk in a 10-m corridor at their usual pace, their fastest pace, and a normal pace while performing an arithmetic operation (dual-task condition) for 1 min each while using a wearable gait analysis system. General gait measurements including stride length, stride velocity, stride time, gait length asymmetry, and gait variability did not differ between iRBD patients and HCs; however, the patients showed decreases in range of motion (P = 0.004) and peak angular velocity of the trunk (P = 0.001) that were significant in all 3 walking conditions. iRBD patients also had a longer step time before turning compared to HCs (P = 0.035), and the difference between groups remained significant after adjusting for age, sex, and height. The decreased trunk motion while walking and increased step time before turning observed in iRBD may be early manifestations of body rigidity and freezing of gait and are possible prodromal symptoms of PD.
Collapse
Affiliation(s)
- Lin Ma
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Shu-Ying Liu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Shan-Shan Cen
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Yuan Li
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Hui Zhang
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Chao Han
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Zhu-Qin Gu
- Clinical and Research Center for Parkinson's Disease, Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Jing-Hong Ma
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Yong-Tao Zhou
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Er-He Xu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Piu Chan
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Clinical and Research Center for Parkinson's Disease, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
96
|
Genetics of synucleins in neurodegenerative diseases. Acta Neuropathol 2021; 141:471-490. [PMID: 32740728 DOI: 10.1007/s00401-020-02202-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022]
Abstract
The SNCA locus currently has an indisputable role in Parkinson's disease and other synucleinopathies. The role of genetic variability in the other members of the synuclein family (SNCB and SNCG) in disease is far less clear. In this review, we critically assess the pathogenicity, main characteristics, and roles of genetic variants in these genes reported to be causative of synucleinopathies. We also summarize the different association signals identified in the SNCA locus that have been associated with risk for disease. We take a bird's eye view of the variability currently reported in the general population for the three genes and use these data to infer on the potential relationship between each of the genes and human disease.
Collapse
|
97
|
Bae YJ, Song YS, Kim JM, Choi BS, Nam Y, Choi JH, Lee WW, Kim JH. Determining the Degree of Dopaminergic Denervation Based on the Loss of Nigral Hyperintensity on SMWI in Parkinsonism. AJNR Am J Neuroradiol 2021; 42:681-687. [PMID: 33509919 DOI: 10.3174/ajnr.a6960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/21/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND PURPOSE Nigrostriatal dopaminergic function in patients with Parkinson disease can be assessed using 123I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)-nortropan dopamine transporter (123I-FP-CIT) SPECT, and a good correlation has been demonstrated between nigral status on SWI and dopaminergic denervation on 123I-FP-CIT SPECT. Here, we aim to correlate quantified dopamine transporter attenuation on 123I-FP-CIT SPECT with nigrosome-1 status using susceptibility map-weighted imaging (SMWI). MATERIALS AND METHODS Between May 2017 and January 2018, consecutive patients with idiopathic Parkinson disease (n = 109) and control participants (n = 29) who underwent 123I-FP-CIT SPECT with concurrent 3T SWI were included. SMWI was generated from SWI. Two neuroradiologists evaluated nigral hyperintensity from nigrosome-1 on each side of the substantia nigra. Using consensus reading, we compared the 123I-FP-CIT-specific binding ratio according to nigral hyperintensity status and the 123I-FP-CIT specific binding ratio threshold to confirm the loss of nigral hyperintensity was determined using receiver operating characteristic curve analysis. RESULTS The concordance rate between SMWI and 123I-FP-CIT SPECT was 65.9%. The 123I-FP-CIT-specific binding ratios in the striatum, caudate nucleus, and putamen were significantly lower when nigral hyperintensity in the ipsilateral substantia nigra was absent than when present (all, P < .001). The 123I-FP-CIT-specific binding ratio threshold values for the determination of nigral hyperintensity loss were 2.56 in the striatum (area under the curve, 0.890), 3.07 in the caudate nucleus (0.830), and 2.36 in the putamen (0.887). CONCLUSIONS Nigral hyperintensity on SMWI showed high positive predictive value and low negative predictive value with dopaminergic degeneration on 123I-FP-CIT SPECT. In patients with Parkinson disease, the loss of nigral hyperintensity is prominent in patients with lower striatal specific binding ratios.
Collapse
Affiliation(s)
- Y J Bae
- From the Department of Radiology (Y.J.B., B.S.C., J.H.K.)
| | - Y S Song
- Nuclear Medicine (Y.S.S., W.W.L.)
| | - J-M Kim
- Neurology (J.-M.K., J.-H.C.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - B S Choi
- From the Department of Radiology (Y.J.B., B.S.C., J.H.K.)
| | - Y Nam
- Division of Biomedical Engineering (Y.N.), Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea
| | - J-H Choi
- Neurology (J.-M.K., J.-H.C.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - W W Lee
- Nuclear Medicine (Y.S.S., W.W.L.)
- Medical Research Center, Institute of Radiation Medicine (W.W.L.), Seoul National University, Seoul, Republic of Korea
| | - J H Kim
- From the Department of Radiology (Y.J.B., B.S.C., J.H.K.)
| |
Collapse
|
98
|
Abstract
Recent epidemiological evidence indicates that diagnosis of attention-deficit/hyperactivity disorder (ADHD) is associated with increased risk for diseases of the basal ganglia and cerebellum, including Parkinson's disease (PD). The evidence reviewed here indicates that deficits in striatal dopamine are a shared component of the causal chains that produce these disorders. Neuropsychological studies of adult ADHD, prodromal PD, and early-stage PD reveal similar deficits in executive functions, memory, attention, and inhibition that are mediated by similar neural substrates. These and other findings are consistent with the possibility that ADHD may be part of the PD prodrome. The mechanisms that may mediate the association between PD and ADHD include neurotoxic effects of stimulants, other environmental exposures, and Lewy pathology. Understanding the nature of the association between PD and ADHD may provide insight into the etiology and pathogenesis of both disorders. The possible contribution of stimulants to this association may have important clinical and public health implications.
Collapse
|
99
|
Lo C, Arora S, Ben-Shlomo Y, Barber TR, Lawton M, Klein JC, Kanavou S, Janzen A, Sittig E, Oertel WH, Grosset DG, Hu MT. Olfactory Testing in Parkinson Disease and REM Behavior Disorder: A Machine Learning Approach. Neurology 2021; 96:e2016-e2027. [PMID: 33627500 DOI: 10.1212/wnl.0000000000011743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE We sought to identify an abbreviated test of impaired olfaction amenable for use in busy clinical environments in prodromal (isolated REM sleep behavior disorder [iRBD]) and manifest Parkinson disease (PD). METHODS Eight hundred ninety individuals with PD and 313 controls in the Discovery cohort study underwent Sniffin' Stick odor identification assessment. Random forests were initially trained to distinguish individuals with poor (functional anosmia/hyposmia) and good (normosmia/super-smeller) smell ability using all 16 Sniffin' Sticks. Models were retrained using the top 3 sticks ranked by order of predictor importance. One randomly selected 3-stick model was tested in a second independent PD dataset (n = 452) and in 2 iRBD datasets (Discovery n = 241, Marburg n = 37) before being compared to previously described abbreviated Sniffin' Stick combinations. RESULTS In differentiating poor from good smell ability, the overall area under the curve (AUC) value associated with the top 3 sticks (anise/licorice/banana) was 0.95 in the Development dataset (sensitivity 90%, specificity 92%, positive predictive value 92%, negative predictive value 90%). Internal and external validation confirmed AUCs ≥0.90. The combination of the 3-stick model determined poor smell, and an RBD screening questionnaire score of ≥5 separated those with iRBD from controls with a sensitivity, specificity, positive predictive value, and negative predictive value of 65%, 100%, 100%, and 30%. CONCLUSIONS Our 3-Sniffin'-Stick model holds potential utility as a brief screening test in the stratification of individuals with PD and iRBD according to olfactory dysfunction. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that a 3-Sniffin'-Stick model distinguishes individuals with poor and good smell ability and can be used to screen for individuals with iRBD.
Collapse
Affiliation(s)
- Christine Lo
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK.
| | - Siddharth Arora
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK
| | - Yoav Ben-Shlomo
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK
| | - Thomas R Barber
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK
| | - Michael Lawton
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK
| | - Johannes C Klein
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK
| | - Sofia Kanavou
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK
| | - Annette Janzen
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK
| | - Elisabeth Sittig
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK
| | - Wolfgang H Oertel
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK
| | - Donald G Grosset
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK
| | - Michele T Hu
- From the Oxford Parkinson's Disease Centre (C.L., S.A., T.R.B., J.C.K., M.T.H.), Nuffield Department of Clinical Neurosciences (C.L., T.R.B., J.C.K., M.T.H.), and Saïd Business School (S.A.), University of Oxford; Population Health Sciences (Y.B.-S., M.L., S.K.), University of Bristol, UK; Department of Neurology (A.J., E.S., W.H.O.), Philipps University Marburg; Institute for Neurogenomics (W.H.O.), München Helmholtz Center for Health and Environment, Neuherberg München, Germany; and Institute of Neurological Sciences (D.G.G.), Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
100
|
Salami M. Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Front Neurosci 2021; 15:613120. [PMID: 33642976 PMCID: PMC7904897 DOI: 10.3389/fnins.2021.613120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract hosts trillions of microorganisms that is called “gut microbiota.” The gut microbiota is involved in a wide variety of physiological features and functions of the body. Thus, it is not surprising that any damage to the gut microbiota is associated with disorders in different body systems. Probiotics, defined as living microorganisms with health benefits for the host, can support or restore the composition of the gut microbiota. Numerous investigations have proved a relationship between the gut microbiota with normal brain function as well as many brain diseases, in which cognitive dysfunction is a common clinical problem. On the other hand, increasing evidence suggests that the existence of a healthy gut microbiota is crucial for normal cognitive processing. In this regard, interplay of the gut microbiota and cognition has been under focus of recent researches. In the present paper, I review findings of the studies considering beneficial effects of either gut microbiota or probiotic bacteria on the brain cognitive function in the healthy and disease statuses.
Collapse
Affiliation(s)
- Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|