51
|
Lindeman RE, Pelegri F. Localized products of futile cycle/lrmp promote centrosome-nucleus attachment in the zebrafish zygote. Curr Biol 2012; 22:843-51. [PMID: 22542100 DOI: 10.1016/j.cub.2012.03.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/16/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND The centrosome has a well-established role as a microtubule organizer during mitosis and cytokinesis. In addition, it facilitates the union of parental haploid genomes following fertilization by nucleating a microtubule aster along which the female pronucleus migrates toward the male pronucleus. Stable associations between the sperm aster and the pronuclei are essential during this directed movement. RESULTS Our studies reveal that the zebrafish gene futile cycle (fue) is required in the zygote for male pronucleus-centrosome attachment and female pronuclear migration. We show that fue encodes a novel, maternally-provided long form of lymphoid-restricted membrane protein (lrmp), a vertebrate-specific gene of unknown function. Both maternal lrmp messenger RNA (mRNA) and protein are highly localized in the zygote, in a largely overlapping pattern at nuclear membranes, centrosomes, and spindles. Truncated Lrmp-EGFP fusion proteins identified subcellular targeting signals in the C terminus of Lrmp; however, endogenous mRNA localization is likely important to ensure strict spatial expression of the protein. Localization of both Lrmp protein and lrmp RNA is defective in fue mutant embryos, indicating that correct targeting of lrmp gene products is dependent on Lrmp function. CONCLUSIONS Lrmp is a conserved vertebrate gene whose maternally inherited products are essential for nucleus-centrosome attachment and pronuclear congression during fertilization. Precise subcellular localization of lrmp products also suggests a requirement for strict spatiotemporal regulation of their function in the early embryo.
Collapse
Affiliation(s)
- Robin E Lindeman
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
52
|
Sun M, Li Z, Gui JF. Dynamic distribution of spindlin in nucleoli, nucleoplasm and spindle from primary oocytes to mature eggs and its critical function for oocyte-to-embryo transition in gibel carp. ACTA ACUST UNITED AC 2011; 313:461-73. [PMID: 20878746 DOI: 10.1002/jez.618] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Spindlin (Spin) was thought as a maternal-effect factor associated with meiotic spindle. Its role for the oocyte-to-embryo transition was suggested in mouse, but its direct evidence for the function had been not obtained in other vertebrates. In this study, we used the CagSpin-specific antibody to investigate CagSpin expression pattern and distribution during oogenesis of gibel carp (Carassius auratus gibelio). First, the oocyte-specific expression pattern and dynamic distribution was revealed in nucleoli, nucleoplasm, and spindle from primary oocytes to mature eggs by immunofluorescence localization. In primary oocytes and growth stage oocytes, CagSpin accumulates in nucleoli in increasing numbers along with the oocyte growth, and its disassembly occurs in vitellogenic oocytes, which implicates that CagSpin may be a major component of a large number of nucleoli in fish growth oocytes. Then, co-localization of CagSpin and β-tubulin was revealed in meiotic spindle of mature egg, indicating that CagSpin is one spindle-associated factor. Moreover, microinjection of CagSpin-specific antibody into the fertilized eggs blocked the first cleavage, and found that the CagSpin depletion resulted in spindle assembly disturbance. Thereby, our study provided the first direct evidence for the critical oocyte-to-embryo transition function of Spin in vertebrates, and confirmed that Spin is one important maternal-effect factor that participates in oocyte growth, oocyte maturation, and oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Min Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan, China
| | | | | |
Collapse
|
53
|
Wühr M, Obholzer N, Megason S, Detrich H, Mitchison T. Live imaging of the cytoskeleton in early cleavage-stage zebrafish embryos. Methods Cell Biol 2011; 101:1-18. [PMID: 21550437 PMCID: PMC6551615 DOI: 10.1016/b978-0-12-387036-0.00001-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The large and transparent cells of cleavage-stage zebrafish embryos provide unique opportunities to study cell division and cytoskeletal dynamics in very large animal cells. Here, we summarize recent progress, from our laboratories and others, on live imaging of the microtubule and actin cytoskeletons during zebrafish embryonic cleavage. First, we present simple protocols for extending the breeding competence of zebrafish mating ensembles throughout the day, which ensures a steady supply of embryos in early cleavage, and for mounting these embryos for imaging. Second, we describe a transgenic zebrafish line [Tg(bactin2:HsENSCONSIN17-282-3xEGFP)hm1] that expresses the green fluorescent protein (GFP)-labeled microtubule-binding part of ensconsin (EMTB-3GFP). We demonstrate that the microtubule-based structures of the early cell cycles can be imaged live, with single microtubule resolution and with high contrast, in this line. Microtubules are much more easily visualized using this tagged binding protein rather than directly labeled tubulin (injected Alexa-647-labeled tubulin), presumably due to lower background from probe molecules not attached to microtubules. Third, we illustrate live imaging of the actin cytoskeleton by injection of the actin-binding fragment of utrophin fused to GFP. Fourth, we compare epifluorescence-, spinning-disc-, laser-scanning-, and two-photon-microscopic modalities for live imaging of the microtubule cytoskeleton in early embryos of our EMTB-3GFP-expressing transgenic line. Finally, we discuss future applications and extensions of our methods.
Collapse
Affiliation(s)
- M. Wühr
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - N.D. Obholzer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - S.G. Megason
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - H.W. Detrich
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - T.J. Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
54
|
Pelegri F, Mullins MC. Genetic Screens for Mutations Affecting Adult Traits and Parental-effect Genes. Methods Cell Biol 2011; 104:83-120. [DOI: 10.1016/b978-0-12-374814-0.00005-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
55
|
Abstract
The tropical fresh water minnow, Danio rerio, more commonly known as zebrafish, has emerged rapidly over the last decade as a powerful tool for developmental geneticists. External fertilization, high fecundity, a short generation time, and optical transparency of embryos during early development combined with the amenability to a variety of genetic manipulations constitute in the zebrafish the convergence of several unique advantages for a vertebrate model system. Traditional forward genetic screens, which employ the use of a chemical mutagen such as N-ethyl-N-nitrosourea to induce mutations in the male genome, have also proven to be highly successful in the zebrafish. This chapter provides experimental approaches to successfully induce pre-meiotic mutations in the male zebrafish germline and genetic strategies to recover and maintain such mutations in subsequent generations (Section 3.1). Though discussed specifically in the context of zebrafish research in this chapter, many of these genetic approaches may also be broadly applicable in other model systems. We also discuss experimental techniques to manipulate the ploidy of zebrafish embryos, which when used in combination with the standard mutagenesis protocol significantly expedite the identification of the induced mutations (Section 3.2). Additional stand-alone procedures are provided in Section 3.3, which are also required for the execution of the experiments discussed in its preceding sections.
Collapse
|
56
|
Gupta T, Marlow FL, Ferriola D, Mackiewicz K, Dapprich J, Monos D, Mullins MC. Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet 2010; 6:e1001073. [PMID: 20808893 PMCID: PMC2924321 DOI: 10.1371/journal.pgen.1001073] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 07/15/2010] [Indexed: 11/23/2022] Open
Abstract
Although of fundamental importance in developmental biology, the genetic basis for the symmetry breaking events that polarize the vertebrate oocyte and egg are largely unknown. In vertebrates, the first morphological asymmetry in the oocyte is the Balbiani body, a highly conserved, transient structure found in vertebrates and invertebrates including Drosophila, Xenopus, human, and mouse. We report the identification of the zebrafish magellan (mgn) mutant, which exhibits a novel enlarged Balbiani body phenotype and a disruption of oocyte polarity. To determine the molecular identity of the mgn gene, we positionally cloned the gene, employing a novel DNA capture method to target region-specific genomic DNA of 600 kb for massively parallel sequencing. Using this technique, we were able to enrich for the genomic region linked to our mutation within one week and then identify the mutation in mgn using massively parallel sequencing. This is one of the first successful uses of genomic DNA enrichment combined with massively parallel sequencing to determine the molecular identity of a gene associated with a mutant phenotype. We anticipate that the combination of these technologies will have wide applicability for the efficient identification of mutant genes in all organisms. We identified the mutation in mgn as a deletion in the coding sequence of the zebrafish microtubule actin crosslinking factor 1 (macf1) gene. macf1 is a member of the highly conserved spectraplakin family of cytoskeletal linker proteins, which play diverse roles in polarized cells such as neurons, muscle cells, and epithelial cells. In mgn mutants, the oocyte nucleus is mislocalized; and the Balbiani body, localized mRNAs, and organelles are absent from the periphery of the oocyte, consistent with a function for macf1 in nuclear anchoring and cortical localization. These data provide the first evidence for a role for spectraplakins in polarization of the vertebrate oocyte and egg. How the axes of the embryo are established is an important question in developmental biology. In many organisms, the axes of the embryo are established during oogenesis through the generation of a polarized egg. Very little is known regarding the mechanisms of polarity establishment and maintenance in vertebrate oocytes and eggs. We have identified a zebrafish mutant called magellan, which displays a defect in egg polarity. The gene disrupted in the magellan mutant encodes the cytoskeletal linker protein microtubule actin crosslinking factor 1 (macf1). In vertebrates, it can take years to identify the molecular nature of a mutation. We used a new technique to identify the magellan mutation, which allowed us to rapidly isolate genomic DNA linked to the mutation and sequence it. Our results describe an important new function for macf1 in polarizing the oocyte and egg and demonstrate the feasibility of this new technique for the efficient identification of mutations.
Collapse
Affiliation(s)
- Tripti Gupta
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Deborah Ferriola
- Generation Biotech, Lawrenceville, New Jersey, United States of America
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Katarzyna Mackiewicz
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Johannes Dapprich
- Generation Biotech, Lawrenceville, New Jersey, United States of America
| | - Dimitri Monos
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
57
|
Fuentes R, Fernández J. Ooplasmic segregation in the zebrafish zygote and early embryo: Pattern of ooplasmic movements and transport pathways. Dev Dyn 2010; 239:2172-89. [DOI: 10.1002/dvdy.22349] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
58
|
Lindeman RE, Pelegri F. Vertebrate maternal-effect genes: Insights into fertilization, early cleavage divisions, and germ cell determinant localization from studies in the zebrafish. Mol Reprod Dev 2010; 77:299-313. [PMID: 19908256 PMCID: PMC4276564 DOI: 10.1002/mrd.21128] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the earliest stages of animal development prior to the commencement of zygotic transcription, all critical cellular processes are carried out by maternally-provided molecular products accumulated in the egg during oogenesis. Disruption of these maternal products can lead to defective embryogenesis. In this review, we focus on maternal genes with roles in the fundamental processes of fertilization, cell division, centrosome regulation, and germ cell development with emphasis on findings from the zebrafish, as this is a unique and valuable model system for vertebrate reproduction.
Collapse
Affiliation(s)
- Robin E. Lindeman
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin
| |
Collapse
|
59
|
|
60
|
Abstract
All animal embryos pass through a stage during which developmental control is handed from maternally provided gene products to those synthesized from the zygotic genome. This maternal-to-zygotic transition (MZT) has been extensively studied in model organisms, including echinoderms, nematodes, insects, fish,amphibians and mammals. In all cases, the MZT can be subdivided into two interrelated processes: first, a subset of maternal mRNAs and proteins is eliminated; second, zygotic transcription is initiated. The timing and scale of these two events differ across species, as do the cellular and morphogenetic processes that sculpt their embryos. In this article, we discuss conserved and distinct features within the two component processes of the MZT.
Collapse
Affiliation(s)
- Wael Tadros
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, TMDT Building, 101 College Street, Toronto,Ontario, Canada M5G 1L7
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, TMDT Building, 101 College Street, Toronto,Ontario, Canada M5G 1L7
| |
Collapse
|
61
|
Yabe T, Ge X, Lindeman R, Nair S, Runke G, Mullins MC, Pelegri F. The maternal-effect gene cellular island encodes aurora B kinase and is essential for furrow formation in the early zebrafish embryo. PLoS Genet 2009; 5:e1000518. [PMID: 19543364 PMCID: PMC2686166 DOI: 10.1371/journal.pgen.1000518] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 05/13/2009] [Indexed: 12/30/2022] Open
Abstract
Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function.
Collapse
Affiliation(s)
- Taijiro Yabe
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Xiaoyan Ge
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Robin Lindeman
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Sreelaja Nair
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Greg Runke
- Department of Cell and Developmental Biology, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, United States of America
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
62
|
G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition. Dev Biol 2009; 326:131-42. [DOI: 10.1016/j.ydbio.2008.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 11/24/2022]
|
63
|
Mathias JR, Dodd ME, Walters KB, Rhodes J, Kanki JP, Look AT, Huttenlocher A. Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J Cell Sci 2008; 120:3372-83. [PMID: 17881499 DOI: 10.1242/jcs.009159] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The hallmark of chronic inflammation is the infiltration and persistence of leukocytes within inflamed tissue. Here, we describe the first zebrafish chronic inflammation mutant identified in an insertional mutagenesis screen for mutants that exhibit abnormal tissue distribution of neutrophils. We identified a mutant line with an insertion in the Hepatocyte growth factor activator inhibitor 1 gene (hai1; also known as Spint1) that showed accumulation of neutrophils in the fin. The mutant embryos exhibited inflammation in areas of epidermal hyperproliferation that was rescued by knock-down of the type II transmembrane serine protease Matriptase 1 (also known as St14), suggesting a novel role for Hai1-Matriptase 1 pathway in regulating inflammation. Using time-lapse microscopy of mutant embryos that express GFP from a neutrophil-specific promoter, we found that individual neutrophils in inflamed tissue displayed random motility characterized by periods of pausing alternating with periods of motility. During periods of persistent movement the cells were highly polarized, while the pausing modes were characterized by a loss of cell polarity. In contrast to responses to acute injury, neutrophils did not exhibit clear retrograde chemotaxis or resolution of inflammation in the mutant. These findings illustrate the utility of zebrafish as a new model system to study chronic inflammation and to visualize immune responses with high resolution in vivo.
Collapse
Affiliation(s)
- Jonathan R Mathias
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Changes of γ-tubulin expression and distribution in the zebrafish (Danio rerio) ovary, oocyte and embryo. Gene Expr Patterns 2008; 8:237-47. [DOI: 10.1016/j.gep.2007.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/22/2022]
|
65
|
Yabe T, Ge X, Pelegri F. The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication. Dev Biol 2007; 312:44-60. [PMID: 17950723 PMCID: PMC2693064 DOI: 10.1016/j.ydbio.2007.08.054] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 08/25/2007] [Accepted: 08/29/2007] [Indexed: 11/30/2022]
Abstract
A female-sterile zebrafish maternal-effect mutation in cellular atoll (cea) results in defects in the initiation of cell division starting at the second cell division cycle. This phenomenon is caused by defects in centrosome duplication, which in turn affect the formation of a bipolar spindle. We show that cea encodes the centriolar coiled-coil protein Sas-6, and that zebrafish Cea/Sas-6 protein localizes to centrosomes. cea also has a genetic paternal contribution, which when mutated results in an arrested first cell division followed by normal cleavage. Our data supports the idea that, in zebrafish, paternally inherited centrosomes are required for the first cell division while maternally derived factors are required for centrosomal duplication and cell divisions in subsequent cell cycles. DNA synthesis ensues in the absence of centrosome duplication, and the one-cycle delay in the first cell division caused by cea mutant sperm leads to whole genome duplication. We discuss the potential implications of these findings with regards to the origin of polyploidization in animal species. In addition, the uncoupling of developmental time and cell division count caused by the cea mutation suggests the presence of a time window, normally corresponding to the first two cell cycles, which is permissive for germ plasm recruitment.
Collapse
Affiliation(s)
| | - Xiaoyan Ge
- Laboratory of Genetics, University of Wisconsin – Madison
| | | |
Collapse
|
66
|
Kaftanovskaya E, Motosugi N, Kinoshita M, Ozato K, Wakamatsu Y. Ploidy mosaicism in well-developed nuclear transplants produced by transfer of adult somatic cell nuclei to nonenucleated eggs of medaka (Oryzias latipes). Dev Growth Differ 2007; 49:691-8. [PMID: 17868281 DOI: 10.1111/j.1440-169x.2007.00962.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromosomal abnormalities such as ploidy mosaicism have constituted a major obstacle to the successful nuclear transfer of adult somatic cell nuclei in lower vertebrates to date. Euploid mosaicism has been reported previously in well-developed amphibian transplants. Here, we investigated ploidy mosaicisms in well-developed transplants of adult somatic cell nuclei in medaka fish (Oryzias latipes). Donor nuclei from primary cultured cells from the adult caudal fin of a transgenic strain carrying the green fluorescent protein gene (GFP) were transferred to recipient nonenucleated eggs of a wild-type strain to produce 662 transplants. While some of the transplants developed beyond the body formation stage and several hatched, all exhibited varying degrees of abnormal morphology, limited growth and subsequent death. Twenty-one transplants, 19 embryos and two larvae, were selected for chromosomal analysis; all were well-developed 6-day-old or later embryonic stages exhibiting slight morphological abnormalities and the same pattern of GFP expression as that of the donor strain. In addition, all exhibited various levels of euploid mosaicism with haploid-diploid, haploid-triploid or haploid-diploid-triploid chromosome sets. No visible chromosomal abnormalities were observed. Thus, euploid mosaicism similar to that observed in amphibians was confirmed in well-developed nuclear transplants of fish.
Collapse
Affiliation(s)
- Elena Kaftanovskaya
- Laboratory of Freshwater Fish Stocks, Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
67
|
Pfaff KL, Straub CT, Chiang K, Bear DM, Zhou Y, Zon LI. The zebra fish cassiopeia mutant reveals that SIL is required for mitotic spindle organization. Mol Cell Biol 2007; 27:5887-97. [PMID: 17576815 PMCID: PMC1952118 DOI: 10.1128/mcb.00175-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A critical step in cell division is formation of the mitotic spindle, which is a bipolar array of microtubules that mediates chromosome separation. Here, we report that the SCL-interrupting locus (SIL), a vertebrate-specific cytosolic protein, is necessary for proper mitotic spindle organization in zebrafish and human cells. A homozygous lethal zebrafish mutant, cassiopeia (csp), was identified by a genetic screen for mitotic mutant. csp mutant embryos have an increased mitotic index, have highly disorganized mitotic spindles, and often lack one or both centrosomes. These phenotypes are caused by a loss-of-function mutation in zebrafish sil. To determine if the requirement for SIL in mitotic spindle organization is conserved in mammals, we generated an antibody against human SIL, which revealed that SIL localizes to the poles of the mitotic spindle during metaphase. Furthermore, short hairpin RNA knockdown of SIL in human cells recapitulates the zebrafish csp mitotic spindle defects. These data, taken together, identify SIL as a novel, vertebrate-specific regulator of mitotic spindle assembly.
Collapse
Affiliation(s)
- Kathleen L Pfaff
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Dana Farber Cancer Research Institute, Howard Hughes Medical Institute, and Harvard Medical School, Karp Family Research Building, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
68
|
Liu J, Lessman CA. Soluble tubulin complexes, γ-tubulin, and their changing distribution in the zebrafish (Danio rerio) ovary, oocyte and embryo. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:56-73. [PMID: 17293149 DOI: 10.1016/j.cbpb.2006.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/22/2006] [Accepted: 12/29/2006] [Indexed: 11/17/2022]
Abstract
Tubulin dynamics, i.e., the interchange of polymeric and soluble forms, is important for microtubule (MTs) cellular functions, and thus plays essential roles in zebrafish oogenesis and embryogenesis. A novel finding in this study revealed that there were soluble pools of tubulins in zebrafish oocytes that were sequestered and maintained in a temporary "oligomeric" state, which retained assembling and disassembling potential (suggested by undetected acetylated tubulin, marker of stable tubulin), but lacked abilities to assemble into MTs spontaneously in vivo. Using differential centrifugation, gel chromatography and DM1A-probed western blot, soluble alpha-tubulin was found to be associated with large molecular weight complexes (MW range to over 2 MDa) which were reduced in amount by the blastula stage, especially in some batches of embryos, with a concomitant decrease in soluble tubulin. Complexes (MW range less than 2 MDa) then increased in the gastrula with an increase in soluble alpha-tubulin. Two different anti-gamma-tubulin monoclonal antibodies, GTU 88 and TU 30, revealed the existence of soluble gamma-tubulin in both zebrafish oocytes and embryos, which also decreased by the blastula stage and increased in the gastrula stage. Soluble alpha-tubulin and gamma-tubulin extracted from zebrafish ovaries, oocytes and embryos co-localized in fractions on three different columns: S-200 Sephacryl, DEAE and Superose-6b. The soluble tubulin complexes were competent to assemble into MTs in vitro induced by taxol, and gamma-tubulin was co-localized with assembled MTs. These soluble tubulin complexes were stable during freeze-thaw cycles and resisted high ionic interaction (up to 1.5 M NaCl). Furthermore, some ovarian soluble alpha-tubulin could be co-immunoprecipitated with gamma-tubulin, and vice versa. Two antibodies specific for Xenopus gamma-tubulin ring complex proteins (Xgrip 109 and Xgrip 195) detected single bands from ovarian extracts in western blots, suggesting the existence of Xgrip 109 and Xgrip 195 homologues in zebrafish. These findings, together with recent work on gamma-tubulin ring complexes in oocytes, eggs and embryos of other species, suggest that soluble gamma-tubulin-associated protein complexes may be involved in regulating tubulin dynamics during zebrafish oogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jianxiong Liu
- Department of Biology, The University of Memphis, Memphis, TN 38152-3560, USA
| | | |
Collapse
|
69
|
O'Boyle S, Bree RT, McLoughlin S, Grealy M, Byrnes L. Identification of zygotic genes expressed at the midblastula transition in zebrafish. Biochem Biophys Res Commun 2007; 358:462-8. [PMID: 17490614 DOI: 10.1016/j.bbrc.2007.04.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/20/2007] [Indexed: 01/30/2023]
Abstract
Early development of the embryo is directed by maternal gene products and characterised by limited zygotic gene activity, cell division synchrony and no cell motility in several vertebrates including fish and frogs. At the midblastula transition (MBT), zygotic transcription is grossly activated, cells become motile and cell divisions become asynchronous. The aim of this study was to identify genes whose expression is up-regulated at the MBT in zebrafish. Suppression subtractive hybridisation (SSH) was employed to isolate 48 unique cDNAs, 28 of which show significant similarity to known genes and 20 represent novel cDNAs. Twenty one of these genes, with potential roles in transcriptional regulation, cell cycle control, and embryonic patterning showed increased expression at the MBT. Our results demonstrate the value of SSH as a tool to clone novel, zygotic, developmentally regulated genes that may be important in the progression of the MBT and embryonic patterning.
Collapse
Affiliation(s)
- Shaun O'Boyle
- Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
70
|
Feitsma H, Leal MC, Moens PB, Cuppen E, Schulz RW. Mlh1 deficiency in zebrafish results in male sterility and aneuploid as well as triploid progeny in females. Genetics 2007; 175:1561-9. [PMID: 17237513 PMCID: PMC1855116 DOI: 10.1534/genetics.106.068171] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In most eukaryotes, recombination of homologous chromosomes during meiosis is necessary for proper chromosome pairing and subsequent segregation. The molecular mechanisms of meiosis are still relatively unknown, but numerous genes are known to be involved, among which are many mismatch repair genes. One of them, mlh1, colocalizes with presumptive sites of crossing over, but its exact action remains unclear. We studied meiotic processes in a knockout line for mlh1 in zebrafish. Male mlh1 mutants are sterile and display an arrest in spermatogenesis at metaphase I, resulting in increased testis weight due to accumulation of prophase I spermatocytes. In contrast, females are fully fertile, but their progeny shows high rates of dysmorphology and mortality within the first days of development. SNP-based chromosome analysis shows that this is caused by aneuploidy, resulting from meiosis I chromosomal missegregation. Surprisingly, the small percentage of progeny that develops normally has a complete triploid genome, consisting of both sets of maternal and one set of paternal chromosomes. As adults, these triploid fish are infertile males with wild-type appearance. The frequency of triploid progeny of mlh1 mutant females is much higher than could be expected for random chromosome segregation. Together, these results show that multiple solutions exist for meiotic crossover/segregation problems.
Collapse
Affiliation(s)
- Harma Feitsma
- Hubrecht Laboratory, Centre for Biomedical Genetics, 3584 CT, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
71
|
Meng L, Luo J, Li C, Kinsey WH. Role of Src homology 2 domain-mediated PTK signaling in mouse zygotic development. Reproduction 2006; 132:413-21. [PMID: 16940282 DOI: 10.1530/rep.1.01151] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fyn and other Src-family kinases play an essential role at several steps during egg activation following fertilization of externally fertilizing species, such as marine invertebrates, fish, and frogs. Recent studies demonstrate that the requirement for Src-family kinases in activation of the mammalian egg is different from lower species, and the objective of this study was to test the role of the Fyn kinase in the mouse egg activated by intracytoplasmic sperm injection (ICSI). An Src homology 2 (SH2) domain containing fusion protein was used to suppress Fyn function in the mouse zygote following ICSI. Eggs injected with the Fyn SH2 domain at an intracellular concentration of 4–8 μM exhibited reduced developmental potential with 100% of the zygotes being arrested following the first or the second cleavage. At higher concentrations, the protein blocked pronuclear congression and the zygotes remained at the pronuclear stage. The SH2 domain had no effect on sperm-induced calcium oscillations in distinct contrast to its effect on the eggs of lower species. The results indicate that the SH2 domain of Fyn kinase plays an important role in pronuclear congression as well as early cleavage events and that this effect appears not to involve disruption of calcium oscillations.
Collapse
Affiliation(s)
- Li Meng
- Center for Reproductive Sciences and Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
72
|
Theusch EV, Brown KJ, Pelegri F. Separate pathways of RNA recruitment lead to the compartmentalization of the zebrafish germ plasm. Dev Biol 2006; 292:129-41. [PMID: 16457796 DOI: 10.1016/j.ydbio.2005.12.045] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/19/2005] [Accepted: 12/21/2005] [Indexed: 11/25/2022]
Abstract
The maternal RNAs vasa, dead end, nanos1, and daz-like all become localized to the peripheral ends of the first and second cleavage furrows, where they form part of the zebrafish germ plasm. We show that aggregates of a first class of germ plasm components, which include dead end, nanos1, and vasa RNAs, are initially present in a wide cortical band at the animal pole. Aggregates containing these three RNAs appear to be associated with f-actin, which during the first cell cycle undergoes a microtubule-dependent movement towards the periphery as well as circumferential alignment. These cytoskeletal rearrangements lead to the further aggregation of particles containing these RNAs and their concomitant recruitment to the forming furrow. Aggregates containing a second class of germ plasm RNA components, which include the transcript for daz-like, translocate along the plane of the cortex towards the animal pole, where they are recruited to the germ plasm. After recruitment to the furrow, these two classes of RNAs occupy overlapping yet distinct regions of the germ plasm, and this arrangement is maintained during the early cleavage stages. Our observations suggest that separate pathways of RNA recruitment facilitate the compartmentalization of the zebrafish germ plasm.
Collapse
Affiliation(s)
- Elizabeth V Theusch
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, USA
| | | | | |
Collapse
|
73
|
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| | | |
Collapse
|
74
|
Song MH, Brown NL, Kuwada JY. The cfy mutation disrupts cell divisions in a stage-dependent manner in zebrafish embryos. Dev Biol 2005; 276:194-206. [PMID: 15531374 DOI: 10.1016/j.ydbio.2004.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 07/27/2004] [Accepted: 08/16/2004] [Indexed: 11/26/2022]
Abstract
The zebrafish curly fry (cfy) mutation leads to embryonic lethality and abnormal cell divisions starting at 12-14 h postfertilization (hpf) during neural tube formation. The mitotic defect is seen in a variety of tissues including the central nervous system (CNS). In homozygous mutant embryos, mitoses are disorganized with an increase in mitotic figures throughout the developing neural tube. One consequence of aberrant mitoses in cfy embryos is an increase in cell death. Despite this, patterning of the early CNS is relatively unperturbed with distribution of the early, primary neurons indistinguishable from that of wild-type embryos. At later stages, however, the number of neurons was dramatically decreased throughout the CNS. The effect on neurons in older cfy embryos but not young ones correlates with the time of birth of neurons: primary neurons are born before the action of the cfy gene and later neurons after. Presumably, death of neuronal progenitors that divide beginning at the neural keel stage or death of their neuronal progeny accounts for the diminution of neurons in older mutant embryos. In addition, oligodendrocytes, which also develop late in the CNS, are greatly reduced in number in cfy embryos due to an apparent decrease in oligodendrocyte precursors. Genetic mosaic analysis demonstrates that the mutant phenotype is cell-autonomous. Furthermore, there are no obvious defects in apical/basal polarity within the neuroepithelium, suggesting that the cfy gene is not critical for epithelial polarity and that polarity defects are unlikely to account for the increased mitotic figures in mutants. These results suggest that the cfy gene regulates mitosis perhaps in a stage-dependent manner in vertebrate embryos.
Collapse
Affiliation(s)
- Mi Hye Song
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
75
|
Nojima H, Shimizu T, Kim CH, Yabe T, Bae YK, Muraoka O, Hirata T, Chitnis A, Hirano T, Hibi M. Genetic evidence for involvement of maternally derived Wnt canonical signaling in dorsal determination in zebrafish. Mech Dev 2005; 121:371-86. [PMID: 15110047 DOI: 10.1016/j.mod.2004.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 02/09/2004] [Accepted: 02/09/2004] [Indexed: 12/21/2022]
Abstract
In zebrafish, the program for dorsal specification begins soon after fertilization. Dorsal determinants are localized initially to the vegetal pole, then transported to the blastoderm, where they are thought to activate the canonical Wnt pathway, which induces the expression of dorsal-specific genes. We identified a novel maternal-effect recessive mutation, tokkaebi (tkk), that affects formation of the dorsal axis. Severely ventralized phenotypes, including a lack of dorso-anterior structures, were seen in 5-100% of the embryos obtained from tkk homozygous transmitting females. tkk embryos displayed defects in the nuclear accumulation of beta-catenin on the dorsal side, and reduced or absent expression of dorsal-specific genes. Mesoderm and endoderm formation outside the dorsal axis was not significantly affected. Injection of RNAs for activated beta-catenin, dominant-negative forms of Axin1 and GSK3beta, and wild-type Dvl3, into the tkk embryos suppressed the ventralized phenotypes and/or dorsalized the embryos, and restored or induced an ectopic and expanded expression of bozozok/dharma and goosecoid. However, dorsalization by wnt RNAs was affected in the tkk embryos. Inhibition of cytoplasmic calcium release elicited an ectopic and expanded expression of chordin in the wild-type, but did not restore chordin expression efficiently in the tkk embryos. These data indicate that the tkk gene product functions upstream of or parallel to the beta-catenin-degradation machinery to control the stability of beta-catenin. The tkk locus was mapped to chromosome 16. These data provide genetic evidence that the maternally derived canonical Wnt pathway upstream of beta-catenin is involved in dorsal axis formation in zebrafish.
Collapse
Affiliation(s)
- Hideaki Nojima
- Department of Molecular Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Pelegri F, Dekens MPS, Schulte-Merker S, Maischein HM, Weiler C, Nüsslein-Volhard C. Identification of recessive maternal-effect mutations in the zebrafish using a gynogenesis-based method. Dev Dyn 2004; 231:324-35. [PMID: 15366009 DOI: 10.1002/dvdy.20145] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In animal species, early developmental processes are driven by maternally derived factors. Here, we describe a forward genetics approach to identify recessive mutations in genes encoding such maternal factors in the zebrafish. We used a gynogenesis-based approach to identify 14 recessive maternal-effect mutations. Homozygosity for these mutations in adult females leads to the inviability of their offspring. Confocal microscopy of embryos labeled with a DNA dye and a membrane marker allowed us to further analyze mutant embryos for defects in nuclear and cellular divisions. The mutations result in a range of defects in early developmental processes, including egg activation, early nuclear events, mitosis, cytokinesis, axial patterning, and gastrulation. Our effort constitutes a systematic attempt to identify maternal-effect genes in a vertebrate species. The sample of mutations that we have identified reflects the diversity of maternally driven functions in early development and underscores the importance of maternal factors in this process.
Collapse
Affiliation(s)
- Francisco Pelegri
- Max-Plank Institut für Entwicklungsbiologie, Abteilung Genetik, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
77
|
Dosch R, Wagner DS, Mintzer KA, Runke G, Wiemelt AP, Mullins MC. Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev Cell 2004; 6:771-80. [PMID: 15177026 DOI: 10.1016/j.devcel.2004.05.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2003] [Revised: 03/29/2004] [Accepted: 03/29/2004] [Indexed: 11/17/2022]
Abstract
Maternal factors control development prior to the activation of the embryonic genome. In vertebrates, little is known about the molecular mechanisms by which maternal factors regulate embryonic development. To understand the processes controlled by maternal factors and identify key genes involved, we embarked on a maternal-effect mutant screen in the zebrafish. We identified 68 maternal-effect mutants. Here we describe 15 mutations in genes controlling processes prior to the midblastula transition, including egg development, blastodisc formation, embryonic polarity, initiation of cell cleavage, and cell division. These mutants exhibit phenotypes not previously observed in zygotic mutant screens. This collection of maternal-effect mutants provides the basis for a molecular genetic analysis of the maternal control of embryogenesis in vertebrates.
Collapse
Affiliation(s)
- Roland Dosch
- Department of Cell and Developmental Biology, University of Pennsylvania, School of Medicine, 1211 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
78
|
Abstract
All processes that occur before the activation of the zygotic genome at the midblastula transition are driven by maternal products, which are produced during oogenesis and stored in the mature oocyte. Upon egg activation and fertilization, these maternal factors initiate developmental cascades that carry out the embryonic developmental program. Even after the initiation of zygotic gene expression, perduring maternal products continue performing essential functions, either together with other maternal factors or through interactions with newly expressed zygotic products. Advances in zebrafish research have placed this organism in a unique position to contribute to a detailed understanding of the role of maternal factors in early vertebrate development. This review summarizes our knowledge on the processes involved in the production and redistribution of maternal factors during zebrafish oogenesis and early development, as well as our understanding of the function of these factors in axis formation, germ layer and germ cell specification, and other early embryonic processes.
Collapse
Affiliation(s)
- Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
79
|
Abstract
To complete the cell cycle, the cleavage furrow draws the plasma membrane toward the cell center, pinching the cytoplasm into two lobes that are subsequently separated into two cells. The position of the cleavage furrow is induced by the mitotic spindle during early anaphase. Although the mechanism of cleavage furrow positioning is not understood at a molecular level, recent results suggest that it might be mediated by local relief from the inhibitory effects of microtubules.
Collapse
Affiliation(s)
- Michael Glotzer
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
80
|
Affiliation(s)
- Jennifer L Shepard
- Division of Hematology-Oncology, Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
81
|
Affiliation(s)
- Francisco Pelegri
- University of Wisconsin-Madison, Laboratory of Genetics, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
82
|
Dekens MPS, Santoriello C, Vallone D, Grassi G, Whitmore D, Foulkes NS. Light Regulates the Cell Cycle in Zebrafish. Curr Biol 2003; 13:2051-7. [PMID: 14653994 DOI: 10.1016/j.cub.2003.10.022] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The timing of cell proliferation is a key factor contributing to the regulation of normal growth. Daily rhythms of cell cycle progression have been documented in a wide range of organisms. However, little is known about how environmental, humoral, and cell-autonomous factors contribute to these rhythms. Here, we demonstrate that light plays a key role in cell cycle regulation in the zebrafish. Exposure of larvae to light-dark (LD) cycles causes a range of different cell types to enter S phase predominantly at the end of the day. When larvae are raised in constant darkness (DD), a low level of arrhythmic S phase is observed. In addition, light-entrained cell cycle rhythms persist for several days after transfer to DD, both observations pointing to the involvement of the circadian clock. We show that the number of LD cycles experienced is essential for establishing this rhythm during larval development. Furthermore, we reveal that the same phenomenon exists in a zebrafish cell line. This represents the first example of a vertebrate cell culture system where circadian rhythms of the cell cycle are observed. Thus, we implicate the cell-autonomous circadian clock in the regulation of the vertebrate cell cycle by light.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max-Planck Institut für Entwicklungsbiologie, Spemannstrasse 35-39, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|