51
|
Oriel C, Lasko P. Recent Developments in Using Drosophila as a Model for Human Genetic Disease. Int J Mol Sci 2018; 19:E2041. [PMID: 30011838 PMCID: PMC6073706 DOI: 10.3390/ijms19072041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Many insights into human disease have been built on experimental results in Drosophila, and research in fruit flies is often justified on the basis of its predictive value for questions related to human health. Additionally, there is now a growing recognition of the value of Drosophila for the study of rare human genetic diseases, either as a means of validating the causative nature of a candidate genetic variant found in patients, or as a means of obtaining functional information about a novel disease-linked gene when there is little known about it. For these reasons, funders in the US, Europe, and Canada have launched targeted programs to link human geneticists working on discovering new rare disease loci with researchers who work on the counterpart genes in Drosophila and other model organisms. Several of these initiatives are described here, as are a number of output publications that validate this new approach.
Collapse
Affiliation(s)
- Christine Oriel
- Maternal Infant Child Youth and Research Network, V2-230, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada.
| | - Paul Lasko
- Department of Biology, McGill University, 3649 Promenade Sir-William-Osler, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
52
|
Papoutsi T, Luna-Zurita L, Prados B, Zaffran S, de la Pompa JL. Bmp2 and Notch cooperate to pattern the embryonic endocardium. Development 2018; 145:dev.163378. [PMID: 29853617 DOI: 10.1242/dev.163378] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
Signaling interactions between the myocardium and endocardium pattern embryonic cardiac regions, instructing their development to fulfill specific functions in the mature heart. We show that ectopic Bmp2 expression in the mouse chamber myocardium changes the transcriptional signature of adjacent chamber endocardial cells into valve tissue, and enables them to undergo epithelial-mesenchyme transition. This induction is independent of valve myocardium specification and requires high levels of Notch1 activity. Biochemical experiments suggest that Bmp2-mediated Notch1 induction is achieved through transcriptional activation of the Notch ligand Jag1, and physical interaction of Smad1/5 with the intracellular domain of the Notch1 receptor. Thus, widespread myocardial Bmp2 and endocardial Notch signaling drive presumptive ventricular endocardium to differentiate into valve endocardium. Understanding the molecular basis of valve development is instrumental to designing therapeutic strategies for congenital heart valve defects.
Collapse
Affiliation(s)
- Tania Papoutsi
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Luis Luna-Zurita
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Belén Prados
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, GMGF, UMR_S910, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, France
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain .,Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
53
|
Grassini DR, Lagendijk AK, De Angelis JE, Da Silva J, Jeanes A, Zettler N, Bower NI, Hogan BM, Smith KA. Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume. Development 2018; 145:dev.160739. [PMID: 29752386 DOI: 10.1242/dev.160739] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/02/2018] [Indexed: 12/30/2022]
Abstract
Atrial natriuretic peptide (nppa/anf) and brain natriuretic peptide (nppb/bnp) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy; however, their genomic location in cis has impeded formal analysis. Using genome editing, we have generated mutants for nppa and nppb, and found that single mutants were indistinguishable from wild type, whereas nppa/nppb double mutants displayed heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4, tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirmed cardiac jelly expansion in nppa/nppb double mutants. Finally, bmp4 knockdown rescued the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber.
Collapse
Affiliation(s)
- Daniela R Grassini
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anne K Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jessica E De Angelis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jason Da Silva
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Angela Jeanes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicole Zettler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Neil I Bower
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kelly A Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
54
|
Teegala S, Chauhan R, Lei E, Weinstein DC. Tbx2 is required for the suppression of mesendoderm during early Xenopus development. Dev Dyn 2018; 247:903-913. [PMID: 29633424 DOI: 10.1002/dvdy.24633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/14/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND T-box family proteins are DNA-binding transcriptional regulators that play crucial roles during germ layer formation in the early vertebrate embryo. Well-characterized members of this family, including the transcriptional activators Brachyury and VegT, are essential for the proper formation of mesoderm and endoderm, respectively. To date, T-box proteins have not been shown to play a role in the promotion of the third primary germ layer, ectoderm. RESULTS Here, we report that the T-box factor Tbx2 is both sufficient and necessary for ectodermal differentiation in the frog Xenopus laevis. Tbx2 is expressed zygotically in the presumptive ectoderm, during blastula and gastrula stages. Ectopic expression of Tbx2 represses mesoderm and endoderm, while loss of Tbx2 leads to inappropriate expression of mesoderm- and endoderm-specific genes in the region fated to give rise to ectoderm. Misexpression of Tbx2 also promotes neural tissue in animal cap explants, suggesting that Tbx2 plays a role in both the establishment of ectodermal fate and its dorsoventral patterning. CONCLUSIONS Our studies demonstrate that Tbx2 functions as a transcriptional repressor during germ layer formation, and suggest that this activity is mediated in part through repression of target genes that are stimulated, in the mesendoderm, by transactivating T-box proteins. Taken together, our results point to a critical role for Tbx2 in limiting the potency of blastula-stage progenitor cells during vertebrate germ layer differentiation. Developmental Dynamics 247:903-913, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sushma Teegala
- Department of Biology, The Graduate Center, City University of New York, New York.,Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Riddhi Chauhan
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Emily Lei
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Daniel C Weinstein
- Department of Biology, Queens College, City University of New York, Flushing, New York
| |
Collapse
|
55
|
Meng J, Xu WY, Chen X, Lin T, Deng XY. Gene locations may contribute to predicting gene regulatory relationships. J Zhejiang Univ Sci B 2018; 19:25-37. [PMID: 29308605 DOI: 10.1631/jzus.b1700303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We propose that locations of genes on chromosomes can contribute to the prediction of gene regulatory relationships. We constructed a time-based gene regulatory network of zebrafish cardiogenesis on the basis of a spatio-temporal neighborhood method. Through the network, specific regulatory pathways and order of gene expression during zebrafish cardiogenesis were obtained. By comparing the order with locations of these genes on chromosomes, we discovered that there exists a reversal phenomenon between the order and order of gene locations. The discovery provides an inherent rule to instruct exploration of gene regulatory relationships. Specifically, the discovery can help to predict if regulatory relationships between genes exist and contribute to evaluating the correctness of discovered gene regulatory relationships.
Collapse
Affiliation(s)
- Jun Meng
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Yuan Xu
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao Chen
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Lin
- Laboratory of Machine Learning and Optimization, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne 999034, Switzerland
| | - Xiao-Yu Deng
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
56
|
Abstract
The generation and propagation of the cardiac impulse is the central function of the cardiac conduction system (CCS). Impulse initiation occurs in nodal tissues that have high levels of automaticity, but slow conduction properties. Rapid impulse propagation is a feature of the ventricular conduction system, which is essential for synchronized contraction of the ventricular chambers. When functioning properly, the CCS produces ~2.4 billion heartbeats during a human lifetime and orchestrates the flow of cardiac impulses, designed to maximize cardiac output. Abnormal impulse initiation or propagation can result in brady- and tachy-arrhythmias, producing an array of symptoms, including syncope, heart failure or sudden cardiac death. Underlying the functional diversity of the CCS are gene regulatory networks that direct cell fate towards a nodal or a fast conduction gene program. In this review, we will discuss our current understanding of the transcriptional networks that dictate the components of the CCS, the growth factor-dependent signaling pathways that orchestrate some of these transcriptional hierarchies and the effect of aberrant transcription factor expression on mammalian conduction disease.
Collapse
|
57
|
Lv Y, Si M, Chen N, Li Y, Ma X, Yang H, Zhang L, Zhu H, Xu GY, Wu GP, Cao C. TBX2 over-expression promotes nasopharyngeal cancer cell proliferation and invasion. Oncotarget 2017; 8:52699-52707. [PMID: 28881763 PMCID: PMC5581062 DOI: 10.18632/oncotarget.17084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/12/2017] [Indexed: 12/31/2022] Open
Abstract
TBX2 is a member of the T box transcription factor family. Its expression and potential biological functions in nasopharyngeal cancer (NPC) cells are studied here. We showed that TBX2 mRNA and protein expression was significantly elevated in multiple human NPC tissues, as compared with that in adjacent normal tissues. Knockdown of TBX2 by targeted-siRNA significantly inhibited proliferation and invasion of NPC cells (CNE-1 and HONE-1 lines). Meanwhile, TBX2 knockdown also induced G1-phase cell cycle arrest. At the molecular level, we discovered that expressions of several tumor suppressor genes, including p21, p27, phosphatase with tensin homology (PTEN) and E-Cadherin, were increased dramatically after TBX2 knockdown in above NPC cells. Collectively, our results imply that TBX2 over-expression promotes NPC cell proliferation and invasion, possibly via silencing several key tumor suppressor genes.
Collapse
Affiliation(s)
- Yan Lv
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Meng Si
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Nannan Chen
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ya Li
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xingkai Ma
- Department of Otolaryngology, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Huijun Yang
- Department of Otolaryngology, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Ling Zhang
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Hongyan Zhu
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China.,Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ge-Ping Wu
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China.,Department of Otolaryngology, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - C Cao
- Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
58
|
Drummond BE, Li Y, Marra AN, Cheng CN, Wingert RA. The tbx2a/b transcription factors direct pronephros segmentation and corpuscle of Stannius formation in zebrafish. Dev Biol 2017; 421:52-66. [PMID: 27840199 PMCID: PMC5955707 DOI: 10.1016/j.ydbio.2016.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
The simplified and genetically conserved zebrafish pronephros is an excellent model to examine the cryptic processes of cell fate decisions during the development of nephron segments as well as the origins of associated endocrine cells that comprise the corpuscles of Stannius (CS). Using whole mount in situ hybridization, we found that transcripts of the zebrafish genes t-box 2a (tbx2a) and t-box 2b (tbx2b), which belong to the T-box family of transcription factors, were expressed in the caudal intermediate mesoderm progenitors that give rise to the distal pronephros and CS. Deficiency of tbx2a, tbx2b or both tbx2a/b reduced the size of the distal late (DL) segment, which was accompanied by a proximal convoluted segment (PCT) expansion. Further, tbx2a/b deficiency led to significantly larger CS clusters. These phenotypes were also observed in embryos with the from beyond (fby)c144 mutation, which encodes a premature stop codon in the tbx2b T-box sequence. Conversely, overexpression of tbx2a and tbx2b in wild-type embryos expanded the DL segment where cells were comingled with the adjacent DE, and also decreased CS cell number, but notably did not alter PCT development-providing independent evidence that tbx2a and tbx2b are each necessary and sufficient to promote DL fate and suppress CS genesis. Epistasis studies indicated that tbx2a acts upstream of tbx2b to regulate the DL and CS fates, and likely has other targets as well. Retinoic acid (RA) addition and inhibition studies revealed that tbx2a and tbx2b are negatively regulated by RA signaling. Interestingly, the CS cell expansion that typifies tbx2a/b deficiency also occurred when blocking Notch signaling with the chemical DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester). Ectopic activation of Notch in Tg(hsp70::Gal4; UAS::NICD)(NICD) embryos led to a reduced CS post heat-shock induction. To further examine the link between the tbx2a/b genes and Notch during CS formation, DAPT treatment was used to block Notch activity in tbx2a/b deficient embryos, and tbx2a/b knockdown was performed in NICD transgenic embryos. Both manipulations caused similar CS expansions, indicating that Notch functions upstream of the tbx2a/b genes to suppress CS ontogeny. Taken together, these data reveal for the first time that tbx2a/b mitigate pronephros segmentation downstream of RA, and that interplay between Notch signaling and tbx2a/b regulate CS formation, thus providing several novel insights into the genetic regulatory networks that influence these lineages.
Collapse
Affiliation(s)
- Bridgette E Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yue Li
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amanda N Marra
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Christina N Cheng
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
59
|
|
60
|
Cho GS, Park DS, Choi SC, Han JK. Tbx2 regulates anterior neural specification by repressing FGF signaling pathway. Dev Biol 2016; 421:183-193. [PMID: 27913219 DOI: 10.1016/j.ydbio.2016.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
During early embryogenesis, FGF signals regulate the antero-posterior (AP) patterning of the neural plate by promoting posterior cell fates. In particular, BMP signal-mediated attenuation of FGF pathway plays a critical role in the determination of the anterior neural region. Here we show that Tbx2, a T-box transcriptional repressor regulates anterior neural specification by suppressing FGF8 signaling pathway in Xenopus embryo. Tbx2 is expressed in the anterior edge of the neural plate in early neurulae. Overexpression and knockdown of Tbx2 induce expansion and reduction in the expression of anterior neural markers, respectively. It also suppresses FGF8-induced ERK phosphorylation and neural caudalization. Tbx2, which is a target gene of BMP signal, down-regulates FGF8 signaling by inhibiting the expression of Flrt3, a positive regulator of this pathway. We found that Tbx2 binds directly to the T-box element located in the promoter region of Flrt3 gene, thereby interfering with the activity of the promoter. Consistently, Tbx2 augmentation of anterior neural formation is inhibited by co-expression of Flrt3. Furthermore, disruption of the anterior-most structures such as eyes in Tbx2-depleted embryos can be rescued by inhibition of Flrt3 function or FGF signaling. Taken together, our results suggest that Tbx2 mediates BMP signal to down-regulate FGF signaling pathway by repressing Flrt3 expression for anterior tissue formation.
Collapse
Affiliation(s)
- Gun-Sik Cho
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Dong-Seok Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Pungnap-Dong, Songpa-Gu, Seoul 138-736, Republic of Korea
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Pungnap-Dong, Songpa-Gu, Seoul 138-736, Republic of Korea.
| | - Jin-Kwan Han
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea.
| |
Collapse
|
61
|
Burger NB, Haak MC, Kok E, de Groot CJM, Shou W, Scambler PJ, Lee Y, Cho E, Christoffels VM, Bekker MN. Cardiac defects, nuchal edema and abnormal lymphatic development are not associated with morphological changes in the ductus venosus. Early Hum Dev 2016; 101:39-48. [PMID: 27405055 DOI: 10.1016/j.earlhumdev.2016.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND In human fetuses with cardiac defects and increased nuchal translucency, abnormal ductus venosus flow velocity waveforms are observed. It is unknown whether abnormal ductus venosus flow velocity waveforms in fetuses with increased nuchal translucency are a reflection of altered cardiac function or are caused by local morphological alterations in the ductus venosus. AIM The aim of this study was to investigate if the observed increased nuchal translucency, cardiac defects and abnormal lymphatic development in the examined mouse models are associated with local changes in ductus venosus morphology. STUDY DESIGN Mouse embryos with anomalous lymphatic development and nuchal edema (Ccbe1(-/-) embryos), mouse embryos with cardiac defects and nuchal edema (Fkbp12(-/-), Tbx1(-/-), Chd7(fl/fl);Mesp1Cre, Jarid2(-/-NE+) embryos) and mouse embryos with cardiac defects without nuchal edema (Tbx2(-/-), Fgf10(-/-), Jarid2(-/-NE-) embryos) were examined. Embryos were analyzed from embryonic day (E) 11.5 to 15.5 using markers for endothelium, smooth muscle actin, nerve tissue and elastic fibers. RESULTS All mutant and wild-type mouse embryos showed similar, positive endothelial and smooth muscle cell expression in the ductus venosus at E11.5-15.5. Nerve marker and elastic fiber expression were not identified in the ductus venosus in all investigated mutant and wild-type embryos. Local morphology and expression of the used markers were similar in the ductus venosus in all examined mutant and wild-type embryos. CONCLUSIONS Cardiac defects, nuchal edema and abnormal lymphatic development are not associated with morphological changes in the ductus venosus. Ductus venosus flow velocity waveforms most probably reflect intracardiac pressure.
Collapse
Affiliation(s)
- Nicole B Burger
- Department of Obstetrics and Gynecology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands.
| | - Monique C Haak
- Department of Obstetrics, Leiden University Medical Center, Albinusdreef 2 2333 ZA Leiden, the Netherlands.
| | - Evelien Kok
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Meibergdreef 9 1105 AZ Amsterdam, the Netherlands.
| | - Christianne J M de Groot
- Department of Obstetrics and Gynecology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands.
| | - Weinian Shou
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Indiana University School of Medicine, 705 Riley Hospital Dr. Indianapolis, Indiana, USA.
| | - Peter J Scambler
- Department of Molecular Medicine, University College London, Institute of Child Health, Gower Street, London, WC1E 6BT, United Kingdom.
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave. Madison, Wisconsin, USA.
| | - Eunjin Cho
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave. Madison, Wisconsin, USA.
| | - Vincent M Christoffels
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Meibergdreef 9 1105 AZ Amsterdam, the Netherlands.
| | - Mireille N Bekker
- Department of Obstetrics and Gynecology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands.
| |
Collapse
|
62
|
Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish. PLoS One 2016; 11:e0161205. [PMID: 27556898 PMCID: PMC4996461 DOI: 10.1371/journal.pone.0161205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3–24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish.
Collapse
|
63
|
Abstract
T-box (Tbx) genes encode an ancient group of transcription factors that play important roles in patterning, specification, proliferation, and differentiation programs in vertebrate organogenesis. This is testified by severe organ malformation syndromes in mice homozygous for engineered null alleles of specific T-box genes and by the large number of human inherited organ-specific diseases that have been linked to mutations in these genes. One of the organ systems that has not been associated with loss of specific T-box gene function in human disease for long is the excretory system. However, this has changed with the finding that mutations in TBX18, a member of a vertebrate-specific subgroup within the Tbx1-subfamily of T-box transcription factor genes, cause congenital anomalies of the kidney and urinary tract, predominantly hydroureter and ureteropelvic junction obstruction. Gene expression analyses, loss-of-function studies, and lineage tracing in the mouse suggest a primary role for this transcription factor in specifying the ureteric mesenchyme in the common anlage of the kidney, the ureter, and the bladder. We review the function of Tbx18 in ureterogenesis and discuss the body of evidence that Tbx18 and other members of the T-box gene family, namely, Tbx1, Tbx2, Tbx3, and Tbx20, play additional roles in development and homeostasis of other components of the excretory system in vertebrates.
Collapse
|
64
|
Greulich F, Rudat C, Farin HF, Christoffels VM, Kispert A. Lack of Genetic Interaction between Tbx18 and Tbx2/Tbx20 in Mouse Epicardial Development. PLoS One 2016; 11:e0156787. [PMID: 27253890 PMCID: PMC4890940 DOI: 10.1371/journal.pone.0156787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/19/2016] [Indexed: 11/18/2022] Open
Abstract
The epicardium, the outermost layer of the heart, is an essential source of cells and signals for the formation of the cardiac fibrous skeleton and the coronary vasculature, and for the maturation of the myocardium during embryonic development. The molecular factors that control epicardial mobilization and differentiation, and direct the epicardial-myocardial cross-talk are, however, insufficiently understood. The T-box transcription factor gene Tbx18 is specifically expressed in the epicardium of vertebrate embryos. Loss of Tbx18 is dispensable for epicardial development, but may influence coronary vessel maturation. In contrast, over-expression of an activator version of TBX18 severely impairs epicardial development by premature differentiation of epicardial cells into SMCs indicating a potential redundancy of Tbx18 with other repressors of the T-box gene family. Here, we show that Tbx2 and Tbx20 are co-expressed with Tbx18 at different stages of epicardial development. Using a conditional gene targeting approach we find that neither the epicardial loss of Tbx2 nor the combined loss of Tbx2 and Tbx18 affects epicardial development. Similarly, we observed that the heterozygous loss of Tbx20 with and without additional loss of Tbx18 does not impact on epicardial integrity and mobilization in mouse embryos. Thus, Tbx18 does not function redundantly with Tbx2 or Tbx20 in epicardial development.
Collapse
Affiliation(s)
- Franziska Greulich
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Henner F. Farin
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Vincent M. Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
65
|
van Weerd JH, Christoffels VM. The formation and function of the cardiac conduction system. Development 2016; 143:197-210. [PMID: 26786210 DOI: 10.1242/dev.124883] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cardiac conduction system (CCS) consists of distinctive components that initiate and conduct the electrical impulse required for the coordinated contraction of the cardiac chambers. CCS development involves complex regulatory networks that act in stage-, tissue- and dose-dependent manners, and recent findings indicate that the activity of these networks is sensitive to common genetic variants associated with cardiac arrhythmias. Here, we review how these findings have provided novel insights into the regulatory mechanisms and transcriptional networks underlying CCS formation and function.
Collapse
Affiliation(s)
- Jan Hendrik van Weerd
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
66
|
Chen Y, Pan L, Su Z, Wang J, Li H, Ma X, Liu Y, Lu F, Qu J, Hou L. The transcription factor TBX2 regulates melanogenesis in melanocytes by repressing Oca2. Mol Cell Biochem 2016; 415:103-9. [DOI: 10.1007/s11010-016-2680-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/04/2016] [Indexed: 01/24/2023]
|
67
|
Dorn T, Goedel A, Lam JT, Haas J, Tian Q, Herrmann F, Bundschu K, Dobreva G, Schiemann M, Dirschinger R, Guo Y, Kühl SJ, Sinnecker D, Lipp P, Laugwitz KL, Kühl M, Moretti A. Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity. Stem Cells 2016; 33:1113-29. [PMID: 25524439 PMCID: PMC6750130 DOI: 10.1002/stem.1923] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/29/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
During cardiogenesis, most myocytes arise from cardiac progenitors expressing the transcription factors Isl1 and Nkx2-5. Here, we show that a direct repression of Isl1 by Nkx2-5 is necessary for proper development of the ventricular myocardial lineage. Overexpression of Nkx2-5 in mouse embryonic stem cells (ESCs) delayed specification of cardiac progenitors and inhibited expression of Isl1 and its downstream targets in Isl1(+) precursors. Embryos deficient for Nkx2-5 in the Isl1(+) lineage failed to downregulate Isl1 protein in cardiomyocytes of the heart tube. We demonstrated that Nkx2-5 directly binds to an Isl1 enhancer and represses Isl1 transcriptional activity. Furthermore, we showed that overexpression of Isl1 does not prevent cardiac differentiation of ESCs and in Xenopus laevis embryos. Instead, it leads to enhanced specification of cardiac progenitors, earlier cardiac differentiation, and increased cardiomyocyte number. Functional and molecular characterization of Isl1-overexpressing cardiomyocytes revealed higher beating frequencies in both ESC-derived contracting areas and Xenopus Isl1-gain-of-function hearts, which associated with upregulation of nodal-specific genes and downregulation of transcripts of working myocardium. Immunocytochemistry of cardiomyocyte lineage-specific markers demonstrated a reduction of ventricular cells and an increase of cells expressing the pacemaker channel Hcn4. Finally, optical action potential imaging of single cardiomyocytes combined with pharmacological approaches proved that Isl1 overexpression in ESCs resulted in normally electrophysiologically functional cells, highly enriched in the nodal subtype at the expense of the ventricular lineage. Our findings provide an Isl1/Nkx2-5-mediated mechanism that coordinately regulates the specification of cardiac progenitors toward the different myocardial lineages and ensures proper acquisition of myocyte subtype identity.
Collapse
Affiliation(s)
- Tatjana Dorn
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Burger NB, Bekker MN, Kok E, De Groot CJM, Martin JF, Shou W, Scambler PJ, Lee Y, Christoffels VM, Haak MC. Increased nuchal translucency origins from abnormal lymphatic development and is independent of the presence of a cardiac defect. Prenat Diagn 2015; 35:1278-86. [DOI: 10.1002/pd.4687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Nicole B. Burger
- Department of Obstetrics and Gynecology; VU University Medical Center; Amsterdam The Netherlands
| | - Mireille N. Bekker
- Department of Obstetrics and Gynecology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Evelien Kok
- Department of Anatomy, Embryology and Physiology; Academic Medical Center; Amsterdam The Netherlands
| | | | - James F. Martin
- Department of Molecular Physiology and Biophysics; Baylor College of Medicine; Houston TX USA
| | - Weinian Shou
- Riley Heart Research Center, Division of Pediatric Cardiology; Indiana University School of Medicine; Indianapolis IN USA
| | - Peter J. Scambler
- Department of Molecular Medicine; UCL Institute of Child Health; London United Kingdom
| | - Youngsook Lee
- Department of Cell and Regenerative Biology; University of Wisconsin-Madison; Madison WI USA
| | - Vincent M. Christoffels
- Department of Anatomy, Embryology and Physiology; Academic Medical Center; Amsterdam The Netherlands
| | - Monique C. Haak
- Department of Obstetrics; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
69
|
Sailani MR, Santoni FA, Letourneau A, Borel C, Makrythanasis P, Hibaoui Y, Popadin K, Bonilla X, Guipponi M, Gehrig C, Vannier A, Carre-Pigeon F, Feki A, Nizetic D, Antonarakis SE. DNA-Methylation Patterns in Trisomy 21 Using Cells from Monozygotic Twins. PLoS One 2015; 10:e0135555. [PMID: 26317209 PMCID: PMC4552626 DOI: 10.1371/journal.pone.0135555] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
DNA methylation is essential in mammalian development. We have hypothesized that methylation differences induced by trisomy 21 (T21) contribute to the phenotypic characteristics and heterogeneity in Down syndrome (DS). In order to determine the methylation differences in T21 without interference of the interindividual genomic variation, we have used fetal skin fibroblasts from monozygotic (MZ) twins discordant for T21. We also used skin fibroblasts from MZ twins concordant for T21, normal MZ twins without T21, and unrelated normal and T21 individuals. Reduced Representation Bisulfite Sequencing (RRBS) revealed 35 differentially methylated promoter regions (DMRs) (Absolute methylation differences = 25%, FDR < 0.001) in MZ twins discordant for T21 that have also been observed in comparison between unrelated normal and T21 individuals. The identified DMRs are enriched for genes involved in embryonic organ morphogenesis (FDR = 1.60 e -03) and include genes of the HOXB and HOXD clusters. These DMRs are maintained in iPS cells generated from this twin pair and are correlated with the gene expression changes. We have also observed an increase in DNA methylation level in the T21 methylome compared to the normal euploid methylome. This observation is concordant with the up regulation of DNA methyltransferase enzymes (DNMT3B and DNMT3L) and down regulation of DNA demethylation enzymes (TET2 and TET3) observed in the iPSC of the T21 versus normal twin. Altogether, the results of this study highlight the epigenetic effects of the extra chromosome 21 in T21 on loci outside of this chromosome that are relevant to DS associated phenotypes.
Collapse
Affiliation(s)
- M. Reza Sailani
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research Frontiers in Genetics Program, University of Geneva, Geneva, Switzerland
| | - Federico A. Santoni
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research Frontiers in Genetics Program, University of Geneva, Geneva, Switzerland
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Youssef Hibaoui
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals, Geneva, Switzerland
- Department of Obstetrics and Gynecology, Hôpital Cantonal Fribourgeois, Fribourg, Switzerland
| | - Konstantin Popadin
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Ximena Bonilla
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Corinne Gehrig
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Anne Vannier
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Frederique Carre-Pigeon
- Centre Hospitalier Universitaire Reims, Service de Genetique et de Biologie de la Reproduction, CECOS, Hopital Maison Blanche, F-51092 Reims, France
| | - Anis Feki
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals, Geneva, Switzerland
- Department of Obstetrics and Gynecology, Hôpital Cantonal Fribourgeois, Fribourg, Switzerland
| | - Dean Nizetic
- The Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Unit 04–11, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research Frontiers in Genetics Program, University of Geneva, Geneva, Switzerland
- iGE3 institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
70
|
GATA-dependent transcriptional and epigenetic control of cardiac lineage specification and differentiation. Cell Mol Life Sci 2015; 72:3871-81. [PMID: 26126786 PMCID: PMC4575685 DOI: 10.1007/s00018-015-1974-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Heart progenitor cells differentiate into various cell types including pacemaker and working cardiomyocytes. Cell-type specific gene expression is achieved by combinatorial interactions between tissue-specific transcription factors (TFs), co-factors, and chromatin remodelers and DNA binding elements in regulatory regions. Dysfunction of these transcriptional networks may result in congenital heart defects. Functional analysis of the regulatory DNA sequences has contributed substantially to the identification of the transcriptional network components and combinatorial interactions regulating the tissue-specific gene programs. GATA TFs have been identified as central players in these networks. In particular, GATA binding elements have emerged as a platform to recruit broadly active histone modification enzymes and cell-type-specific co-factors to drive cell-type-specific gene programs. Here, we discuss the role of GATA factors in cell fate decisions and differentiation in the developing heart.
Collapse
|
71
|
Genome-wide Analysis of Body Proportion Classifies Height-Associated Variants by Mechanism of Action and Implicates Genes Important for Skeletal Development. Am J Hum Genet 2015; 96:695-708. [PMID: 25865494 DOI: 10.1016/j.ajhg.2015.02.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/27/2015] [Indexed: 01/20/2023] Open
Abstract
Human height is a composite measurement, reflecting the sum of leg, spine, and head lengths. Many common variants influence total height, but the effects of these or other variants on the components of height (body proportion) remain largely unknown. We studied sitting height ratio (SHR), the ratio of sitting height to total height, to identify such effects in 3,545 African Americans and 21,590 individuals of European ancestry. We found that SHR is heritable: 26% and 39% of the total variance of SHR can be explained by common variants in European and African Americans, respectively, and global European admixture is negatively correlated with SHR in African Americans (r(2) ≈ 0.03). Six regions reached genome-wide significance (p < 5 × 10(-8)) for association with SHR and overlapped biological candidate genes, including TBX2 and IGFBP3. We found that 130 of 670 height-associated variants are nominally associated (p < 0.05) with SHR, more than expected by chance (p = 5 × 10(-40)). At these 130 loci, the height-increasing alleles are associated with either a decrease (71 loci) or increase (59 loci) in SHR, suggesting that different height loci disproportionally affect either leg length or spine/head length. Pathway analyses via DEPICT revealed that height loci affecting SHR, and especially those affecting leg length, show enrichment of different biological pathways (e.g., bone/cartilage/growth plate pathways) than do loci with no effect on SHR (e.g., embryonic development). These results highlight the value of using a pair of related but orthogonal phenotypes, in this case SHR with height, as a prism to dissect the biology underlying genetic associations in polygenic traits and diseases.
Collapse
|
72
|
Abstract
Many of the major discoveries in the fields of genetics and developmental biology have been made using the fruit fly, Drosophila melanogaster. With regard to heart development, the conserved network of core cardiac transcription factors that underlies cardiogenesis has been studied in great detail in the fly, and the importance of several signaling pathways that regulate heart morphogenesis, such as Slit/Robo, was first shown in the fly model. Recent technological advances have led to a large increase in the genomic data available from patients with congenital heart disease (CHD). This has highlighted a number of candidate genes and gene networks that are potentially involved in CHD. To validate genes and genetic interactions among candidate CHD-causing alleles and to better understand heart formation in general are major tasks. The specific limitations of the various cardiac model systems currently employed (mammalian and fish models) provide a niche for the fly model, despite its evolutionary distance to vertebrates and humans. Here, we review recent advances made using the Drosophila embryo that identify factors relevant for heart formation. These underline how this model organism still is invaluable for a better understanding of CHD.
Collapse
|
73
|
Papaioannou VE. The T-box gene family: emerging roles in development, stem cells and cancer. Development 2014; 141:3819-33. [PMID: 25294936 DOI: 10.1242/dev.104471] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T-box family of transcription factors exhibits widespread involvement throughout development in all metazoans. T-box proteins are characterized by a DNA-binding motif known as the T-domain that binds DNA in a sequence-specific manner. In humans, mutations in many of the genes within the T-box family result in developmental syndromes, and there is increasing evidence to support a role for these factors in certain cancers. In addition, although early studies focused on the role of T-box factors in early embryogenesis, recent studies in mice have uncovered additional roles in unsuspected places, for example in adult stem cell populations. Here, I provide an overview of the key features of T-box transcription factors and highlight their roles and mechanisms of action during various stages of development and in stem/progenitor cell populations.
Collapse
Affiliation(s)
- Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
74
|
Wansleben S, Peres J, Hare S, Goding CR, Prince S. T-box transcription factors in cancer biology. Biochim Biophys Acta Rev Cancer 2014; 1846:380-91. [PMID: 25149433 DOI: 10.1016/j.bbcan.2014.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023]
Abstract
The evolutionarily conserved T-box family of transcription factors have critical and well-established roles in embryonic development. More recently, T-box factors have also gained increasing prominence in the field of cancer biology where a wide range of cancers exhibit deregulated expression of T-box factors that possess tumour suppressor and/or tumour promoter functions. Of these the best characterised is TBX2, whose expression is upregulated in cancers including breast, pancreatic, ovarian, liver, endometrial adenocarcinoma, glioblastomas, gastric, uterine cervical and melanoma. Understanding the role and regulation of TBX2, as well as other T-box factors, in contributing directly to tumour progression, and especially in suppression of senescence and control of invasiveness suggests that targeting TBX2 expression or function alone or in combination with currently available chemotherapeutic agents may represent a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sabina Wansleben
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Jade Peres
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Shannagh Hare
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Oxford University, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|
75
|
Clowes C, Boylan MGS, Ridge LA, Barnes E, Wright JA, Hentges KE. The functional diversity of essential genes required for mammalian cardiac development. Genesis 2014; 52:713-37. [PMID: 24866031 PMCID: PMC4141749 DOI: 10.1002/dvg.22794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Genes required for an organism to develop to maturity (for which no other gene can compensate) are considered essential. The continuing functional annotation of the mouse genome has enabled the identification of many essential genes required for specific developmental processes including cardiac development. Patterns are now emerging regarding the functional nature of genes required at specific points throughout gestation. Essential genes required for development beyond cardiac progenitor cell migration and induction include a small and functionally homogenous group encoding transcription factors, ligands and receptors. Actions of core cardiogenic transcription factors from the Gata, Nkx, Mef, Hand, and Tbx families trigger a marked expansion in the functional diversity of essential genes from midgestation onwards. As the embryo grows in size and complexity, genes required to maintain a functional heartbeat and to provide muscular strength and regulate blood flow are well represented. These essential genes regulate further specialization and polarization of cell types along with proliferative, migratory, adhesive, contractile, and structural processes. The identification of patterns regarding the functional nature of essential genes across numerous developmental systems may aid prediction of further essential genes and those important to development and/or progression of disease. genesis 52:713–737, 2014.
Collapse
Affiliation(s)
- Christopher Clowes
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
76
|
Nakamura R, Tsukahara T, Qu W, Ichikawa K, Otsuka T, Ogoshi K, Saito TL, Matsushima K, Sugano S, Hashimoto S, Suzuki Y, Morishita S, Takeda H. Large hypomethylated domains serve as strong repressive machinery for key developmental genes in vertebrates. Development 2014; 141:2568-80. [PMID: 24924192 DOI: 10.1242/dev.108548] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA methylation is a fundamental epigenetic modification in vertebrate genomes and a small fraction of genomic regions is hypomethylated. Previous studies have implicated hypomethylated regions in gene regulation, but their functions in vertebrate development remain elusive. To address this issue, we generated epigenomic profiles that include base-resolution DNA methylomes and histone modification maps from both pluripotent cells and mature organs of medaka fish and compared the profiles with those of human ES cells. We found that a subset of hypomethylated domains harbor H3K27me3 (K27HMDs) and their size positively correlates with the accumulation of H3K27me3. Large K27HMDs are conserved between medaka and human pluripotent cells and predominantly contain promoters of developmental transcription factor genes. These key genes were found to be under strong transcriptional repression, when compared with other developmental genes with smaller K27HMDs. Furthermore, human-specific K27HMDs show an enrichment of neuronal activity-related genes, which suggests a distinct regulation of these genes in medaka and human. In mature organs, some of the large HMDs become shortened by elevated DNA methylation and associate with sustained gene expression. This study highlights the significance of domain size in epigenetic gene regulation. We propose that large K27HMDs play a crucial role in pluripotent cells by strictly repressing key developmental genes, whereas their shortening consolidates long-term gene expression in adult differentiated cells.
Collapse
Affiliation(s)
- Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuya Tsukahara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Wei Qu
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Kazuki Ichikawa
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Takayoshi Otsuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Katsumi Ogoshi
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Taro L Saito
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sumio Sugano
- Department of Medical Genome, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Shinichi Hashimoto
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan Department of Laboratory Medicine, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Shinichi Morishita
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
77
|
GATA-dependent regulatory switches establish atrioventricular canal specificity during heart development. Nat Commun 2014; 5:3680. [PMID: 24770533 PMCID: PMC4015328 DOI: 10.1038/ncomms4680] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022] Open
Abstract
The embryonic vertebrate heart tube develops an atrioventricular canal that divides the atrial and ventricular chambers, forms atrioventricular conduction tissue and organizes valve development. Here we assess the transcriptional mechanism underlying this localized differentiation process. We show that atrioventricular canal-specific enhancers are GATA-binding site-dependent and act as switches that repress gene activity in the chambers. We find that atrioventricular canal-specific gene loci are enriched in H3K27ac, a marker of active enhancers, in atrioventricular canal tissue and depleted in H3K27ac in chamber tissue. In the atrioventricular canal, Gata4 activates the enhancers in synergy with Bmp2/Smad signalling, leading to H3K27 acetylation. In contrast, in chambers, Gata4 cooperates with pan-cardiac Hdac1 and Hdac2 and chamber-specific Hey1 and Hey2, leading to H3K27 deacetylation and repression. We conclude that atrioventricular canal-specific enhancers are platforms integrating cardiac transcription factors, broadly active histone modification enzymes and localized co-factors to drive atrioventricular canal-specific gene activity. The atrioventricular canal partitions the developing vertebrate heart. Here, the authors show that the cardiac transcription factor Gata4 together with histone modification enzymes and localized co-factors binds atrioventricular canal-specific enhancers, thereby repressing gene activity in the cardiac chambers.
Collapse
|
78
|
Dickover M, Hegarty JM, Ly K, Lopez D, Yang H, Zhang R, Tedeschi N, Hsiai TK, Chi NC. The atypical Rho GTPase, RhoU, regulates cell-adhesion molecules during cardiac morphogenesis. Dev Biol 2014; 389:182-91. [PMID: 24607366 DOI: 10.1016/j.ydbio.2014.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/28/2014] [Accepted: 02/18/2014] [Indexed: 11/29/2022]
Abstract
The vertebrate heart undergoes early complex morphologic events in order to develop key cardiac structures that regulate its overall function (Fahed et al., 2013). Although many genetic factors that participate in patterning the heart have been elucidated (Tu and Chi, 2012), the cellular events that drive cardiac morphogenesis have been less clear. From a chemical genetic screen to identify cellular pathways that control cardiac morphogenesis in zebrafish, we observed that inhibition of the Rho signaling pathways resulted in failure to form the atrioventricular canal and loop the linear heart tube. To identify specific Rho proteins that may regulate this process, we analyzed cardiac expression profiling data and discovered that RhoU was expressed at the atrioventricular canal during the time when it forms. Loss of RhoU function recapitulated the atrioventricular canal and cardiac looping defects observed in the ROCK inhibitor treated zebrafish. Similar to its family member RhoV/Chp (Tay et al., 2010), we discovered that RhoU regulates the cell junctions between cardiomyocytes through the Arhgef7b/Pak kinase pathway in order to guide atrioventricular canal development and cardiac looping. Inhibition of this pathway resulted in similar underlying cardiac defects and conversely, overexpression of a PAK kinase was able to rescue the loss of RhoU cardiac defect. Finally, we found that Wnt signaling, which has been implicated in atrioventricular canal development (Verhoeven et al., 2011), may regulate the expression of RhoU at the atrioventricular canal. Overall, these findings reveal a cardiac developmental pathway involving RhoU/Arhgef7b/Pak signaling, which helps coordinate cell junction formation between atrioventricular cardiomyocytes to promote cell adhesiveness and cell shapes during cardiac morphogenesis. Failure to properly form these cell adhesions during cardiac development may lead to structural heart defects and mechanistically account for the cellular events that occur in certain human congenital heart diseases.
Collapse
Affiliation(s)
- Michael Dickover
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Jeffrey M Hegarty
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Kim Ly
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Diana Lopez
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Hongbo Yang
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Ruilin Zhang
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Neil Tedeschi
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Tzung K Hsiai
- Department of Medicine, Division of Cardiology, University of Southern California, Los Angeles, CA, USA
| | - Neil C Chi
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093-0613J, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
79
|
Wang E, Wang Z, Liu S, Gu H, Gong D, Hua K, Nie Y, Wang J, Wang H, Gong J, Zhang Y, Zhang H, Liu R, Hu S, Zhang H. Polymorphisms of VEGF, TGFβ1, TGFβR2 and conotruncal heart defects in a Chinese population. Mol Biol Rep 2014; 41:1763-70. [PMID: 24443223 DOI: 10.1007/s11033-014-3025-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/03/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Enshi Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital & Cardiovascular Institute, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Lee E, Koo Y, Ng A, Wei Y, Luby-Phelps K, Juraszek A, Xavier RJ, Cleaver O, Levine B, Amatruda JF. Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy 2014; 10:572-87. [PMID: 24441423 DOI: 10.4161/auto.27649] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic analyses indicate that autophagy, an evolutionarily conserved lysosomal degradation pathway, is essential for eukaryotic differentiation and development. However, little is known about whether autophagy contributes to morphogenesis during embryogenesis. To address this question, we examined the role of autophagy in the early development of zebrafish, a model organism for studying vertebrate tissue and organ morphogenesis. Using zebrafish that transgenically express the fluorescent autophagy reporter protein, GFP-LC3, we found that autophagy is active in multiple tissues, including the heart, during the embryonic period. Inhibition of autophagy by morpholino knockdown of essential autophagy genes (including atg5, atg7, and becn1) resulted in defects in morphogenesis, increased numbers of dead cells, abnormal heart structure, and reduced organismal survival. Further analyses of cardiac development in autophagy-deficient zebrafish revealed defects in cardiac looping, abnormal chamber morphology, aberrant valve development, and ectopic expression of critical transcription factors including foxn4, tbx5, and tbx2. Consistent with these results, Atg5-deficient mice displayed abnormal Tbx2 expression and defects in valve development and chamber septation. Thus, autophagy plays an essential, conserved role in cardiac morphogenesis during vertebrate development.
Collapse
Affiliation(s)
- Eunmyong Lee
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Yeon Koo
- Department of Molecular Biology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Aylwin Ng
- Center for Computational & Integrative Biology; Massachusetts General Hospital; Boston, MA USA; Gastrointestinal Unit; Massachusetts General Hospital; Boston, MA USA; Broad Institute of Harvard and MIT; Cambridge, MA USA
| | - Yongjie Wei
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA; Center for Autophagy Research; University of Texas Southwestern Medical Center; Dallas, TX USA; Howard Hughes Medical Institute; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Kate Luby-Phelps
- Department of Cell Biology; UT Southwestern Medical Center; Dallas, TX USA
| | - Amy Juraszek
- Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Ramnik J Xavier
- Center for Computational & Integrative Biology; Massachusetts General Hospital; Boston, MA USA; Gastrointestinal Unit; Massachusetts General Hospital; Boston, MA USA; Broad Institute of Harvard and MIT; Cambridge, MA USA
| | - Ondine Cleaver
- Department of Molecular Biology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Beth Levine
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA; Center for Autophagy Research; University of Texas Southwestern Medical Center; Dallas, TX USA; Howard Hughes Medical Institute; University of Texas Southwestern Medical Center; Dallas, TX USA; Department of Microbiology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - James F Amatruda
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA; Department of Molecular Biology; University of Texas Southwestern Medical Center; Dallas, TX USA; Department of Pediatrics; University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
81
|
Zhang Y, Han Q, Fan H, Li W, Xing Q, Yan B. Genetic analysis of the TBX2 gene promoter in indirect inguinal hernia. Hernia 2013; 18:513-7. [PMID: 24309999 DOI: 10.1007/s10029-013-1199-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/24/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE Inguinal hernia is a common disease, majority of which are indirect inguinal hernia (IIH). A positive family history indicates that genetic factors play important roles in the IIH development. To date, genetic causes for IIH remain unknown. T-box transcription factor 2 (TBX2) is a major regulator in the morphogenesis and organogenesis. The human TBX2 gene is widely expressed in fetal and adult tissues, including muscle and connective tissues. Therefore, we speculated that altered TBX2 gene expression may be involved in the IIH formation. METHODS IIH patients (n = 129) and ethnic-matched healthy subjects (n = 198) were recruited for this study. The human TBX2 gene promoters were generated with PCR and directly sequenced to identify DNA sequence variants (DSVs). Furthermore, biological functions of the DSVs were examined with reporter gene constructs in cultured cells. RESULTS Total six DSVs within the TBX2 gene promoter were identified. A heterozygous DSV (g.59476307G>C) was identified in an IIH patient, but in none of controls, which significantly decreased the TBX2 gene promoter activities. Another heterozygous DSV (g.59476704G>C) was only found in one control, which did not affect TBX2 gene promoter activities. Four DSVs, g.59476316C>A (rs73991913), g.59476415T>C (rs1476781), g.59476510G>C (rs4455026) and g.59476892C>T (rs2286524), all of which were single nucleotide polymorphisms, were found in both IIH patients and controls with similar frequencies. CONCLUSIONS Our data suggested that the DSV within the TBX2 gene promoter was implicated in the IIH development as a rare cause.
Collapse
Affiliation(s)
- Y Zhang
- Division of Hand and Foot Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, 272029, Shandong, China
| | | | | | | | | | | |
Collapse
|
82
|
Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2403-13. [DOI: 10.1016/j.bbadis.2013.07.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 11/17/2022]
|
83
|
A novel role for the anti-senescence factor TBX2 in DNA repair and cisplatin resistance. Cell Death Dis 2013; 4:e846. [PMID: 24113180 PMCID: PMC3824674 DOI: 10.1038/cddis.2013.365] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022]
Abstract
The emergence of drug resistant tumours that are able to escape cell death pose a major problem in the treatment of cancers. Tumours develop resistance to DNA-damaging chemotherapeutic agents by acquiring the ability to repair their DNA. Combination therapies that induce DNA damage and disrupt the DNA damage repair process may therefore prove to be more effective against such tumours. The developmentally important transcription factor TBX2 has been suggested as a novel anticancer drug target, as it is overexpressed in several cancers and possesses strong anti-senescence and pro-proliferative functions. Importantly, we recently showed that when TBX2 is silenced, we are able to reverse several features of transformation in both breast cancer and melanoma cells. Overexpression of TBX2 has also been linked to drug resistance and we have shown that its ectopic expression results in genetically unstable polyploidy cells with resistance to cisplatin. Whether the overexpression of endogenous TBX2 levels is associated with cisplatin resistance in TBX2-driven cancers has, however, not been shown. To address this we have silenced TBX2 in a cisplatin-resistant breast cancer cell line and we show that knocking down TBX2 sensitises the cells to cisplatin by disrupting the ATM-CHK2-p53 signalling pathway. Cell cycle analyses demonstrate that when TBX2 is knocked down there is an abrogation of an S-phase arrest but a robust G2/M arrest that correlates with a reduction in phosphorylated CHK2 and p53 levels. This prevents DNA repair resulting in TBX2-deficient cells entering mitosis with damaged DNA and consequently undergoing mitotic catastrophe. These results suggest that targeting TBX2 in combination with chemotherapeutic drugs such as cisplatin could improve the efficacy of current anticancer treatments.
Collapse
|
84
|
Thi Thu HN, Haw Tien SF, Loh SL, Bok Yan JS, Korzh V. Tbx2a is required for specification of endodermal pouches during development of the pharyngeal arches. PLoS One 2013; 8:e77171. [PMID: 24130849 PMCID: PMC3795029 DOI: 10.1371/journal.pone.0077171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 09/01/2013] [Indexed: 11/21/2022] Open
Abstract
Tbx2 is a member of the T-box family of transcription factors essential for embryo- and organogenesis. A deficiency in the zebrafish paralogue tbx2a causes abnormalities of the pharyngeal arches in a p53-independent manner. The pharyngeal arches are formed by derivatives of all three embryonic germ layers: endodermal pouches, mesenchymal condensations and neural crest cells. While tbx2a expression is restricted to the endodermal pouches, its function is required for the normal morphogenesis of the entire pharyngeal arches. Given the similar function of Tbx1 in craniofacial development, we explored the possibility of an interaction between Tbx1 and Tbx2a. The use of bimolecular fluorescence complementation revealed the interaction between Tbx2a and Tbx1, thus providing support for the idea that functional interaction between different, co-expressed Tbx proteins could be a common theme across developmental processes in cell lineages and tissues. Together, this work provides mechanistic insight into the role of TBX2 in human disorders affecting the face and neck.
Collapse
Affiliation(s)
- Hang Nguyen Thi Thu
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Siau Lin Loh
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Jimmy So Bok Yan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
85
|
Takashima Y, Suzuki A. Regulation of organogenesis and stem cell properties by T-box transcription factors. Cell Mol Life Sci 2013; 70:3929-45. [PMID: 23479132 PMCID: PMC11113830 DOI: 10.1007/s00018-013-1305-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 12/28/2022]
Abstract
T-box transcription factors containing the common DNA-binding domain T-box contribute to the organization of multiple tissues in vertebrates and invertebrates. In mammals, 17 T-box genes are divided into five subfamilies depending on their amino acid homology. The proper distribution and expression of individual T-box transcription factors in different tissues enable regulation of the proliferation and differentiation of tissue-specific stem cells and progenitor cells in a suitable time schedule for tissue organization. Consequently, uncontrollable expressions of T-box genes induce abnormal tissue organization, and eventually cause various diseases with malformation and malfunction of tissues and organs. Furthermore, some T-box transcription factors are essential for maintaining embryonic stem cell pluripotency, improving the quality of induced pluripotent stem cells, and inducing cell-lineage conversion of differentiated cells. These lines of evidence indicate fundamental roles of T-box transcription factors in tissue organization and stem cell properties, and suggest that these transcription factors will be useful for developing therapeutic approaches in regenerative medicine.
Collapse
Affiliation(s)
- Yasuo Takashima
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
86
|
Wu TS, Yang JJ, Yu FY, Liu BH. Cardiotoxicity of mycotoxin citrinin and involvement of microRNA-138 in zebrafish embryos. Toxicol Sci 2013; 136:402-12. [PMID: 24052562 DOI: 10.1093/toxsci/kft206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Citrinin (CTN) is a fungal secondary metabolite that contaminates various foodstuffs and animal feeds; it also exhibits organotoxicity in several animal models. In this study, the zebrafish was used to elucidate the mechanism of CTN cardiotoxicity in developing embryos. Following CTN administration, the gross morphology of the embryonic heart was apparently altered, including heart malformation, pericardial edema, and red blood accumulation. Whole-mount immunostaining and histological analysis of ventricle and atrium indicated incorrect heart looping and reduced size of heart chambers. From the perspective of cardiac function, the heartbeat and blood flow rate of embryos were significantly decreased in the presence of CTN. CTN also modulated the expression of tbx2a and jun B genes, but not that of bmp4 and nkx2.5. Furthermore, the heart areas of CTN-exposed embryos demonstrated an elevated levels of aldh1a2 and cspg2 messenger RNA; these 2 cardiac-related genes are known to be involved in retinoic acid (RA) pathway as well as downstream targets of microRNA-138 (miR-138) in zebrafish. CTN treatment also downregulated the expression of miR-138. Moreover, overexpression of miR-138 was able to rescue the heart defects generated by CTN. These results support the notion that CTN exposure has a severe impact on heart development, affecting heart morphogenesis through the dysregulation of miR-138, RA signaling, and tbx2a.
Collapse
|
87
|
Foxn4: a multi-faceted transcriptional regulator of cell fates in vertebrate development. SCIENCE CHINA-LIFE SCIENCES 2013; 56:985-93. [PMID: 24008385 DOI: 10.1007/s11427-013-4543-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Vertebrate development culminates in the generation of proper proportions of a large variety of different cell types and subtypes essential for tissue, organ and system functions in the right place at the right time. Foxn4, a member of the forkhead box/winged-helix transcription factor superfamily, is expressed in mitotic progenitors and/or postmitotic precursors in both neural (e.g., retina and spinal cord) and non-neural tissues (e.g., atrioventricular canal and proximal airway). During development of the central nervous system, Foxn4 is required to specify the amacrine and horizontal cell fates from multipotent retinal progenitors while suppressing the alternative photoreceptor cell fates through activating Dll4-Notch signaling. Moreover, it activates Dll4-Notch signaling to drive commitment of p2 progenitors to the V2b and V2c interneuron fates during spinal cord neurogenesis. In development of non-neural tissues, Foxn4 plays an essential role in the specification of the atrioventricular canal and is indirectly required for patterning the distal airway during lung development. In this review, we highlight current understanding of the structure, expression and developmental functions of Foxn4 with an emphasis on its cell-autonomous and non-cell-autonomous roles in different tissues and animal model systems.
Collapse
|
88
|
Nachtrab G, Kikuchi K, Tornini VA, Poss KD. Transcriptional components of anteroposterior positional information during zebrafish fin regeneration. Development 2013; 140:3754-64. [PMID: 23924636 PMCID: PMC3754474 DOI: 10.1242/dev.098798] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 01/14/2023]
Abstract
Many fish and salamander species regenerate amputated fins or limbs, restoring the size and shape of the original appendage. Regeneration requires that spared cells retain or recall information encoding pattern, a phenomenon termed positional memory. Few factors have been implicated in positional memory during vertebrate appendage regeneration. Here, we investigated potential regulators of anteroposterior (AP) pattern during fin regeneration in adult zebrafish. Sequence-based profiling from tissues along the AP axis of uninjured pectoral fins identified many genes with region-specific expression, several of which encoded transcription factors with known AP-specific expression or function in developing embryonic pectoral appendages. Transgenic reporter strains revealed that regulatory sequences of the transcription factor gene alx4a activated expression in fibroblasts and osteoblasts within anterior fin rays, whereas hand2 regulatory sequences activated expression in these same cell types within posterior rays. Transgenic overexpression of hand2 in all pectoral fin rays did not affect formation of the proliferative regeneration blastema, yet modified the lengths and widths of regenerating bones. Hand2 influenced the character of regenerated rays in part by elevation of the vitamin D-inactivating enzyme encoded by cyp24a1, contributing to region-specific regulation of bone metabolism. Systemic administration of vitamin D during regeneration partially rescued bone defects resulting from hand2 overexpression. Thus, bone-forming cells in a regenerating appendage maintain expression throughout life of transcription factor genes that can influence AP pattern, and differ across the AP axis in their expression signatures of these and other genes. These findings have implications for mechanisms of positional memory in vertebrate tissues.
Collapse
Affiliation(s)
- Gregory Nachtrab
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kazu Kikuchi
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie A. Tornini
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| |
Collapse
|
89
|
Han Y, Tu WW, Wen YG, Yan DW, Qiu GQ, Peng ZH, Zhou CZ. Increased expression of TBX2 is a novel independent prognostic biomarker of a worse outcome in colorectal cancer patients after curative surgery and a potential therapeutic target. Med Oncol 2013; 30:688. [DOI: 10.1007/s12032-013-0688-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 08/06/2013] [Indexed: 12/21/2022]
|
90
|
Andersen TA, Troelsen KDLL, Larsen LA. Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 2013; 71:1327-52. [PMID: 23934094 PMCID: PMC3958813 DOI: 10.1007/s00018-013-1430-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022]
Abstract
Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers.
Collapse
Affiliation(s)
- Troels Askhøj Andersen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | | | | |
Collapse
|
91
|
Hashem SI, Claycomb WC. Genetic isolation of stem cell-derived pacemaker-nodal cardiac myocytes. Mol Cell Biochem 2013; 383:161-71. [PMID: 23877224 DOI: 10.1007/s11010-013-1764-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022]
Abstract
Dysfunction of the cardiac pacemaker tissues due to genetic defects, acquired diseases, or aging results in arrhythmias. When arrhythmias occur, artificial pacemaker implants are used for treatment. However, the numerous limitations of electronic implants have prompted studies of biological pacemakers that can integrate into the myocardium providing a permanent cure. Embryonic stem (ES) cells cultured as three-dimensional (3D) spheroid aggregates termed embryoid bodies possess the ability to generate all cardiac myocyte subtypes. Here, we report the use of a SHOX2 promoter and a Cx30.2 enhancer to genetically identify and isolate ES cell-derived sinoatrial node (SAN) and atrioventricular node (AVN) cells, respectively. The ES cell-derived Shox2 and Cx30.2 cardiac myocytes exhibit a spider cell morphology and high intracellular calcium loading characteristic of pacemaker-nodal myocytes. These cells express abundant levels of pacemaker genes such as endogenous HCN4, Cx45, Cx30.2, Tbx2, and Tbx3. These cells were passaged, frozen, and thawed multiple times while maintaining their pacemaker-nodal phenotype. When cultured as 3D aggregates in an attempt to create a critical mass that simulates in vivo architecture, these cell lines exhibited an increase in the expression level of key regulators of cardiovascular development, such as GATA4 and GATA6 transcription factors. In addition, the aggregate culture system resulted in an increase in the expression level of several ion channels that play a major role in the spontaneous diastolic depolarization characteristic of pacemaker cells. We have isolated pure populations of SAN and AVN cells that will be useful tools for generating biological pacemakers.
Collapse
Affiliation(s)
- Sherin I Hashem
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | | |
Collapse
|
92
|
José-Edwards DS, Oda-Ishii I, Nibu Y, Di Gregorio A. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development. Development 2013; 140:2422-33. [PMID: 23674602 DOI: 10.1242/dev.094227] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
T-box genes are potent regulators of mesoderm development in many metazoans. In chordate embryos, the T-box transcription factor Brachyury (Bra) is required for specification and differentiation of the notochord. In some chordates, including the ascidian Ciona, members of the Tbx2 subfamily of T-box genes are also expressed in this tissue; however, their regulatory relationships with Bra and their contributions to the development of the notochord remain uncharacterized. We determined that the notochord expression of Ciona Tbx2/3 (Ci-Tbx2/3) requires Ci-Bra, and identified a Ci-Tbx2/3 notochord CRM that necessitates multiple Ci-Bra binding sites for its activity. Expression of mutant forms of Ci-Tbx2/3 in the developing notochord revealed a role for this transcription factor primarily in convergent extension. Through microarray screens, we uncovered numerous Ci-Tbx2/3 targets, some of which overlap with known Ci-Bra-downstream notochord genes. Among the Ci-Tbx2/3 notochord targets are evolutionarily conserved genes, including caspases, lineage-specific genes, such as Noto4, and newly identified genes, such as MLKL. This work sheds light on a large section of the notochord regulatory circuitry controlled by T-box factors, and reveals new components of the complement of genes required for the proper formation of this structure.
Collapse
Affiliation(s)
- Diana S José-Edwards
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | | | | | | |
Collapse
|
93
|
RiboTag analysis of actively translated mRNAs in Sertoli and Leydig cells in vivo. PLoS One 2013; 8:e66179. [PMID: 23776628 PMCID: PMC3679032 DOI: 10.1371/journal.pone.0066179] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/02/2013] [Indexed: 01/06/2023] Open
Abstract
Male spermatogenesis is a complex biological process that is regulated by hormonal signals from the hypothalamus (GnRH), the pituitary gonadotropins (LH and FSH) and the testis (androgens, inhibin). The two key somatic cell types of the testis, Leydig and Sertoli cells, respond to gonadotropins and androgens and regulate the development and maturation of fertilization competent spermatozoa. Although progress has been made in the identification of specific transcripts that are translated in Sertoli and Leydig cells and their response to hormones, efforts to expand these studies have been restricted by technical hurdles. In order to address this problem we have applied an in vivo ribosome tagging strategy (RiboTag) that allows a detailed and physiologically relevant characterization of the "translatome" (polysome-associated mRNAs) of Leydig or Sertoli cells in vivo. Our analysis identified all previously characterized Leydig and Sertoli cell-specific markers and identified in a comprehensive manner novel markers of Leydig and Sertoli cells; the translational response of these two cell types to gonadotropins or testosterone was also investigated. Modulation of a small subset of Sertoli cell genes occurred after FSH and testosterone stimulation. However, Leydig cells responded robustly to gonadotropin deprivation and LH restoration with acute changes in polysome-associated mRNAs. These studies identified the transcription factors that are induced by LH stimulation, uncovered novel potential regulators of LH signaling and steroidogenesis, and demonstrate the effects of LH on the translational machinery in vivo in the Leydig cell.
Collapse
|
94
|
Douglas NC, Papaioannou VE. The T-box transcription factors TBX2 and TBX3 in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 2013; 18:143-7. [PMID: 23624936 PMCID: PMC3692603 DOI: 10.1007/s10911-013-9282-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022] Open
Abstract
TBX2 and TBX3, closely related members of the T-box family of transcription factor genes, are expressed in mammary tissue in both humans and mice. Ulnar mammary syndrome (UMS), an autosomal dominant disorder caused by mutations in TBX3, underscores the importance of TBX3 in human breast development, while abnormal mammary gland development in Tbx2 or Tbx3 mutant mice provides models for experimental investigation. In addition to their roles in mammary development, aberrant expression of TBX2 and TBX3 is associated with breast cancer. TBX2 is preferentially amplified in BRCA1/2-associated breast cancers and TBX3 overexpression has been associated with advanced stage disease and estrogen-receptor-positive breast tumors. The regulation of Tbx2 and Tbx3 and the downstream targets of these genes in development and disease are not as yet fully elucidated. However, it is clear that the two genes play unique, context-dependent roles both in mammary gland development and in mammary tumorigenesis.
Collapse
Affiliation(s)
- Nataki C Douglas
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
95
|
Saadi I, Das P, Zhao M, Raj L, Ruspita I, Xia Y, Papaioannou VE, Bei M. Msx1 and Tbx2 antagonistically regulate Bmp4 expression during the bud-to-cap stage transition in tooth development. Development 2013; 140:2697-702. [PMID: 23720046 DOI: 10.1242/dev.088393] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bmp4 expression is tightly regulated during embryonic tooth development, with early expression in the dental epithelial placode leading to later expression in the dental mesenchyme. Msx1 is among several transcription factors that are induced by epithelial Bmp4 and that, in turn, are necessary for the induction and maintenance of dental mesenchymal Bmp4 expression. Thus, Msx1(-/-) teeth arrest at early bud stage and show loss of Bmp4 expression in the mesenchyme. Ectopic expression of Bmp4 rescues this bud stage arrest. We have identified Tbx2 expression in the dental mesenchyme at bud stage and show that this can be induced by epithelial Bmp4. We also show that endogenous Tbx2 and Msx1 can physically interact in mouse C3H10T1/2 cells. In order to ascertain a functional relationship between Msx1 and Tbx2 in tooth development, we crossed Tbx2 and Msx1 mutant mice. Our data show that the bud stage tooth arrest in Msx1(-/-) mice is partially rescued in Msx1(-/-);Tbx2(+/-) compound mutants. This rescue is accompanied by formation of the enamel knot (EK) and by restoration of mesenchymal Bmp4 expression. Finally, knockdown of Tbx2 in C3H10T1/2 cells results in an increase in Bmp4 expression. Together, these data identify a novel role for Tbx2 in tooth development and suggest that, following their induction by epithelial Bmp4, Msx1 and Tbx2 in turn antagonistically regulate odontogenic activity that leads to EK formation and to mesenchymal Bmp4 expression at the key bud-to-cap stage transition.
Collapse
Affiliation(s)
- Irfan Saadi
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Pang S, Liu Y, Zhao Z, Huang W, Chen D, Yan B. Novel and functional sequence variants within the TBX2 gene promoter in ventricular septal defects. Biochimie 2013; 95:1807-9. [PMID: 23727221 DOI: 10.1016/j.biochi.2013.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/17/2013] [Indexed: 12/13/2022]
Abstract
Congenital heart disease (CHD) is the most common birth defects in humans. To date, genetic causes for CHD remain largely unknown. T-box transcription factor 2 (TBX2) gene is expressed in the myocardium of atrioventricular canal, outflow tract and inflow tract and plays a critical role in heart chamber formation. Genomic deletion and duplication of TBX2 gene have been associated with cardiac defects. As TBX2 acts in a dose-dependent manner, we hypothesized that DNA sequence variants (DSVs) within TBX2 gene promoter may mediate CHD development by changing TBX2 levels. In this study, TBX2 gene promoter was genetically analyzed in large cohorts of patients with ventricular septal defect (VSD) (n = 324) and ethnic-matched healthy controls (n = 328). Four novel and heterozygous DSVs, g.59477201C > T, g.59477347G > A, g.59477353delG and g.59477371G > A were identified in VSD patients, but in none of controls. Functional analyses revealed that all of the four DSVs significantly decreased transcriptional activities of TBX2 gene promoter. Therefore, our data suggested that the DSVs within TBX2 gene promoter identified in VSD patients may contribute to VSD etiology.
Collapse
Affiliation(s)
- Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, 79 Guhuai Road, Jining, Shandong 272029, China
| | | | | | | | | | | |
Collapse
|
97
|
Brosens E, Eussen H, van Bever Y, van der Helm RM, Ijsselstijn H, Zaveri HP, Wijnen R, Scott DA, Tibboel D, de Klein A. VACTERL Association Etiology: The Impact of de novo and Rare Copy Number Variations. Mol Syndromol 2013; 4:20-6. [PMID: 23653573 DOI: 10.1159/000345577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Copy number variations (CNVs), either DNA gains or losses, have been found at common regions throughout the human genome. Most CNVs neither have a pathogenic significance nor result in disease-related phenotypes but, instead, reflect the normal population variance. However, larger CNVs, which often arise de novo, are frequently associated with human disease. A genetic contribution has long been suspected in VACTERL (Vertebral, Anal, Cardiac, TracheoEsophageal fistula, Renal and Limb anomalies) association. The anomalies observed in this association overlap with several monogenetic conditions associated with mutations in specific genes, e.g. Townes Brocks (SALL1), Feingold syndrome (MYCN) or Fanconi anemia. So far VACTERL association has typically been considered a diagnosis of exclusion. Identifying recurrent or de novo genomic variations in individuals with VACTERL association could make it easier to distinguish VACTERL association from other syndromes and could provide insight into disease mechanisms. Sporadically, de novo CNVs associated with VACTERL are described in literature. In addition to this literature review of genomic variation in published VACTERL association patients, we describe CNVs present in 68 VACTERL association patients collected in our institution. De novo variations (>30 kb) are absent in our VACTERL association cohort. However, we identified recurrent rare CNVs which, although inherited, could point to mechanisms or biological processes contributing to this constellation of developmental defects.
Collapse
Affiliation(s)
- E Brosens
- Department of Clinical Genetics, Erasmus Medical Centre, The Netherlands ; Department of Pediatric Surgery, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Tbx2 terminates shh/fgf signaling in the developing mouse limb bud by direct repression of gremlin1. PLoS Genet 2013; 9:e1003467. [PMID: 23633963 PMCID: PMC3636256 DOI: 10.1371/journal.pgen.1003467] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
Vertebrate limb outgrowth is driven by a positive feedback loop that involves Sonic hedgehog (Shh) and Gremlin1 (Grem1) in the posterior limb bud mesenchyme and Fibroblast growth factors (Fgfs) in the overlying epithelium. Proper spatio-temporal control of these signaling activities is required to avoid limb malformations such as polydactyly. Here we show that, in Tbx2-deficient hindlimbs, Shh/Fgf4 signaling is prolonged, resulting in increased limb bud size and duplication of digit 4. In turn, limb-specific Tbx2 overexpression leads to premature termination of this signaling loop with smaller limbs and reduced digit number as phenotypic manifestation. We show that Tbx2 directly represses Grem1 in distal regions of the posterior limb mesenchyme allowing Bone morphogenetic protein (Bmp) signaling to abrogate Fgf4/9/17 expression in the overlying epithelium. Since Tbx2 itself is a target of Bmp signaling, our data identify a growth-inhibiting positive feedback loop (Bmp/Tbx2/Grem1). We propose that proliferative expansion of Tbx2-expressing cells mediates self-termination of limb bud outgrowth due to their refractoriness to Grem1 induction. Developmental defects of the limb skeleton, such as variations from the normal number of digits, can result from an abnormal size of the early limb bud. The mechanisms that restrict limb bud growth to avoid polydactyly, i.e. the formation of extra digits, are unclear. Gremlin 1 (Grem1) has been identified as a key regulator in this process via its role as secreted antagonist of Bone morphogenetic protein (Bmp) signaling. But it remains unknown how Grem1 expression is switched off appropriately to achieve normal limb bud size. Here we show in the mouse embryo that T-box transcription factor 2 (Tbx2) directly represses Grem1. We show that Tbx2-positive mesenchymal cells at the posterior margin of the limb bud create a Grem1-negative zone that expands concomitantly with limb bud growth. Progressive displacement of the source of Grem1 and its target region, the apical ectodermal ridge, eventually disrupts epithelial-mesenchymal signaling that is crucial for further proliferative expansion. Our data show how local control of signaling activities is translated into the architecture of the adult skeleton, i.e. the number or digits, which helps us to understand the molecular bases of human polydactyly.
Collapse
|
99
|
The Wilms' tumor suppressor Wt1 regulates Coronin 1B expression in the epicardium. Exp Cell Res 2013; 319:1365-81. [PMID: 23562652 DOI: 10.1016/j.yexcr.2013.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 01/17/2023]
Abstract
Coronin 1B has been shown to be critical for cell motility and various actin-dependent processes. To understand its role more extensively, the expression and transcriptional regulation of Coro1b gene during mouse development were explored. Coronin 1B is ubiquitously expressed in the whole embryo but nevertheless shows distinct expression pattern in developing heart. In addition to the localization in endocardium, Coronin 1B is specifically expressed in the endocardial cushion and epicardium where cardiac EMT processes take place as the heart develops. Promoter deletion analysis identified the positions between -1038 and -681 is important for Coro1b basal promoter activity. In addition to a correlation of Coronin 1B localization with Wt1 expression in the epicardium, we also identified putative Wt1 binding sequences within Coro1b promoter. Direct binding of Wt1 to GC-rich sequences within the Coro1b promoter is required for the regulation of Coro1b gene expression. In accordance with the motility defect found in Coronin 1B-knockdown cells, a modest decrease in expression of Coronin 1B in the remaining epicardium of Wt1(EGFPCre/EGFPCre) mutant embryos was observed. These findings seem to shed light on the role of Wt1 during cell migration and suggest that, at least in part, this involves transcriptional control of Coro1b gene expression.
Collapse
|
100
|
Choudhry P, Trede NS. DiGeorge syndrome gene tbx1 functions through wnt11r to regulate heart looping and differentiation. PLoS One 2013; 8:e58145. [PMID: 23533583 PMCID: PMC3606275 DOI: 10.1371/journal.pone.0058145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/31/2013] [Indexed: 01/31/2023] Open
Abstract
DiGeorge syndrome (DGS) is the most common microdeletion syndrome, and is characterized by congenital cardiac, craniofacial and immune system abnormalities. The cardiac defects in DGS patients include conotruncal and ventricular septal defects. Although the etiology of DGS is critically regulated by TBX1 gene, the molecular pathways underpinning TBX1's role in heart development are not fully understood. In this study, we characterized heart defects and downstream signaling in the zebrafish tbx1−/− mutant, which has craniofacial and immune defects similar to DGS patients. We show that tbx1−/− mutants have defective heart looping, morphology and function. Defective heart looping is accompanied by failure of cardiomyocytes to differentiate normally and failure to change shape from isotropic to anisotropic morphology in the outer curvatures of the heart. This is the first demonstration of tbx1's role in regulating heart looping, cardiomyocyte shape and differentiation, and may explain how Tbx1 regulates conotruncal development in humans. Next we elucidated tbx1's molecular signaling pathway guided by the cardiac phenotype of tbx1−/− mutants. We show for the first time that wnt11r (wnt11 related), a member of the non-canonical Wnt pathway, and its downstream effector gene alcama (activated leukocyte cell adhesion molecule a) regulate heart looping and differentiation similarly to tbx1. Expression of both wnt11r and alcama are downregulated in tbx1−/− mutants. In addition, both wnt11r−/− mutants and alcama morphants have heart looping and differentiation defects similar to tbx1−/− mutants. Strikingly, heart looping and differentiation in tbx1−/− mutants can be partially rescued by ectopic expression of wnt11r or alcama, supporting a model whereby heart looping and differentiation are regulated by tbx1 in a linear pathway through wnt11r and alcama. This is the first study linking tbx1 and non-canonical Wnt signaling and extends our understanding of DGS and heart development.
Collapse
Affiliation(s)
- Priya Choudhry
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail: (PC) (PC); (NT) (NT)
| | - Nikolaus S. Trede
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail: (PC) (PC); (NT) (NT)
| |
Collapse
|