51
|
Li K, Zhang J, Li JYH. Gbx2 plays an essential but transient role in the formation of thalamic nuclei. PLoS One 2012; 7:e47111. [PMID: 23056596 PMCID: PMC3464241 DOI: 10.1371/journal.pone.0047111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2012] [Accepted: 09/12/2012] [Indexed: 01/06/2023] Open
Abstract
Unlike the laminar arrangement of neurons in the neocortex, thalamic neurons aggregate to form about dozens of nuclei, many of which make topographic connections with specific areas in the neocortex. The molecular mechanisms underlying the formation of thalamic nuclei remain largely unknown. Homeodomain transcription factor Gbx2 is specifically expressed in the developing thalamus. Deleting Gbx2 leads to severe disruption of the histogenesis of the thalamus in mice, demonstrating an essential role of Gbx2 in this brain structure. Using inducible genetic fate mapping, we have previously shown that the neuronal precursors for different sets of thalamic nuclei have distinctive onset and duration of Gbx2 expression, suggesting that the dynamic expression of Gbx2 plays an important role in the specification and differentiation of thalamic nuclei. Here, we showed that the Gbx2 lineage exclusively gives rise to neurons but not glia in the thalamus. We performed conditional deletion to examine the temporal requirements of Gbx2 in the developing thalamus in mice. Corresponding to the dynamic and differential expression of Gbx2 in various thalamic nucleus groups, deleting Gbx2 at different embryonic stages disrupts formation of distinct sets of thalamic nuclei. Interestingly, different thalamic nuclei have remarkably different requirements of Gbx2 for the survival of thalamic neurons. Furthermore, although Gbx2 expression persists in many thalamic nuclei until adulthood, only the initial expression of Gbx2 following neurogenesis is crucial for the differentiation of thalamic nuclei. Our results indicate that the dynamic expression of Gbx2 may act as an important determinant in coupling with other developmental programs to generate distinct thalamic nuclei.
Collapse
Affiliation(s)
- Kairong Li
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Jiaqing Zhang
- Biochemistry Department of Medical School, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - James Y. H. Li
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
52
|
A SINE-derived element constitutes a unique modular enhancer for mammalian diencephalic Fgf8. PLoS One 2012; 7:e43785. [PMID: 22937095 PMCID: PMC3427154 DOI: 10.1371/journal.pone.0043785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2012] [Accepted: 07/25/2012] [Indexed: 01/04/2023] Open
Abstract
Transposable elements, including short interspersed repetitive elements (SINEs), comprise nearly half the mammalian genome. Moreover, they are a major source of conserved non-coding elements (CNEs), which play important functional roles in regulating development-related genes, such as enhancing and silencing, serving for the diversification of morphological and physiological features among species. We previously reported a novel SINE family, AmnSINE1, as part of mammalian-specific CNEs. One AmnSINE1 locus, named AS071, showed an enhancer property in the developing mouse diencephalon. Indeed, AS071 appears to recapitulate the expression of diencephalic fibroblast growth factor 8 (Fgf8). Here we established three independent lines of AS071-transgenic mice and performed detailed expression profiling of AS071-enhanced lacZ in comparison with that of Fgf8 across embryonic stages. We demonstrate that AS071 is a distal enhancer that directs Fgf8 expression in the developing diencephalon. Furthermore, enhancer assays with constructs encoding partially deleted AS071 sequence revealed a unique modular organization in which AS071 contains at least three functionally distinct sub-elements that cooperatively direct the enhancer activity in three diencephalic domains, namely the dorsal midline and the lateral wall of the diencephalon, and the ventral midline of the hypothalamus. Interestingly, the AmnSINE1-derived sub-element was found to specify the enhancer activity to the ventral midline of the hypothalamus. To our knowledge, this is the first discovery of an enhancer element that could be separated into respective sub-elements that determine regional specificity and/or the core enhancing activity. These results potentiate our understanding of the evolution of retroposon-derived cis-regulatory elements as well as the basis for future studies of the molecular mechanism underlying the determination of domain-specificity of an enhancer.
Collapse
|
53
|
Lu J, Lu K, Li D. Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro. Neural Regen Res 2012; 7:1688-94. [PMID: 25624789 PMCID: PMC4302448 DOI: 10.3969/j.issn.1673-5374.2012.22.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2012] [Accepted: 05/03/2012] [Indexed: 12/21/2022] Open
Abstract
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells.
Collapse
Affiliation(s)
- Jiang Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China ; Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Dongsheng Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
54
|
Affiliation(s)
- Clemens Kiecker
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| | - Andrew Lumsden
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| |
Collapse
|
55
|
Bluske KK, Vue TY, Kawakami Y, Taketo MM, Yoshikawa K, Johnson JE, Nakagawa Y. β-Catenin signaling specifies progenitor cell identity in parallel with Shh signaling in the developing mammalian thalamus. Development 2012; 139:2692-702. [PMID: 22745311 DOI: 10.1242/dev.072314] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Neural progenitor cells within the developing thalamus are spatially organized into distinct populations. Their correct specification is critical for generating appropriate neuronal subtypes in specific locations during development. Secreted signaling molecules, such as sonic hedgehog (Shh) and Wnts, are required for the initial formation of the thalamic primordium. Once thalamic identity is established and neurogenesis is initiated, Shh regulates the positional identity of thalamic progenitor cells. Although Wnt/β-catenin signaling also has differential activity within the thalamus during this stage of development, its significance has not been directly addressed. In this study, we used conditional gene manipulations in mice and explored the roles of β-catenin signaling in the regional identity of thalamic progenitor cells. We found β-catenin is required during thalamic neurogenesis to maintain thalamic fate while suppressing prethalamic fate, demonstrating that regulation of regional fate continues to require extrinsic signals. These roles of β-catenin appeared to be mediated at least partly by regulating two basic helix-loop-helix (bHLH) transcription factors, Neurog1 and Neurog2. β-Catenin and Shh signaling function in parallel to specify two progenitor domains within the thalamus, where individual transcription factors expressed in each progenitor domain were regulated differently by the two signaling pathways. We conclude that β-catenin has multiple functions during thalamic neurogenesis and that both Shh and β-catenin pathways are important for specifying distinct types of thalamic progenitor cells, ensuring that the appropriate neuronal subtypes are generated in the correct locations.
Collapse
Affiliation(s)
- Krista K Bluske
- Department of Neuroscience, Developmental Biology Center and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Kawasaki H, Iwai L, Tanno K. Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation. Mol Brain 2012; 5:24. [PMID: 22716093 PMCID: PMC3460770 DOI: 10.1186/1756-6606-5-24] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2012] [Accepted: 06/05/2012] [Indexed: 01/01/2023] Open
Abstract
Background Higher mammals such as primates and carnivores have highly developed unique brain structures such as the ocular dominance columns in the visual cortex, and the gyrus and outer subventricular zone of the cerebral cortex. However, our molecular understanding of the formation, function and diseases of these structures is still limited, mainly because genetic manipulations that can be applied to higher mammals are still poorly available. Results Here we developed and validated a rapid and efficient technique that enables genetic manipulations in the brain of gyrencephalic carnivores using in utero electroporation. Transgene-expressing ferret babies were obtained within a few weeks after electroporation. GFP expression was detectable in the embryo and was observed at least 2 months after birth. Our technique was useful for expressing transgenes in both superficial and deep cortical neurons, and for examining the dendritic morphologies and axonal trajectories of GFP-expressing neurons in ferrets. Furthermore, multiple genes were efficiently co-expressed in the same neurons. Conclusion Our method promises to be a powerful tool for investigating the fundamental mechanisms underlying the development, function and pathophysiology of brain structures which are unique to higher mammals.
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
57
|
Hagemann AIH, Scholpp S. The Tale of the Three Brothers - Shh, Wnt, and Fgf during Development of the Thalamus. Front Neurosci 2012; 6:76. [PMID: 22654733 PMCID: PMC3361129 DOI: 10.3389/fnins.2012.00076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2012] [Accepted: 05/04/2012] [Indexed: 12/19/2022] Open
Abstract
The thalamic complex is an essential part of the brain that requires a combination of specialized activities to attain its final complexity. In the following review we will describe the induction process of the mid-diencephalic organizer (MDO) where three different signaling pathways merge: Wnt, Shh, and Fgf. Here, we dissect the function of each signaling pathway in the thalamus in chronological order of their appearance. First we describe the Wnt mediated induction of the MDO and compartition of the caudal forebrain, then the Shh mediated determination of proneural gene expression before discussing recent progress in characterizing Fgf function during thalamus development. Then, we focus on transcription factors, which are regulated by these pathways and which play a pivotal role in neurogenesis in the thalamus. The three signaling pathways act together in a strictly regulated chronology to orchestrate the development of the entire thalamus.
Collapse
Affiliation(s)
- Anja I H Hagemann
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics Karlsruhe, Germany
| | | |
Collapse
|
58
|
Martinez-Ferre A, Martinez S. Molecular regionalization of the diencephalon. Front Neurosci 2012; 6:73. [PMID: 22654731 PMCID: PMC3360461 DOI: 10.3389/fnins.2012.00073] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2012] [Accepted: 05/03/2012] [Indexed: 01/29/2023] Open
Abstract
The anatomic complexity of the diencephalon depends on precise molecular and cellular regulative mechanisms orchestrated by regional morphogenetic organizers at the neural tube stage. In the diencephalon, like in other neural tube regions, dorsal and ventral signals codify positional information to specify ventro-dorsal regionalization. Retinoic acid, Fgf8, BMPs, and Wnts signals are the molecular factors acting upon the diencephalic epithelium to specify dorsal structures, while Shh is the main ventralizing signal. A central diencephalic organizer, the zona limitans intrathalamica (ZLI), appears after neurulation in the central diencephalic alar plate, establishing additional antero-posterior positional information inside diencephalic alar plate. Based on Shh expression, the ZLI acts as a morphogenetic center, which cooperates with other signals in thalamic specification and pattering in the alar plate of diencephalon. Indeed, Shh is expressed first in the basal plate extending dorsally through the ZLI epithelium as the development proceeds. Despite the importance of ZLI in diencephalic morphogenesis the mechanisms that regulate its development remain incompletely understood. Actually, controversial interpretations in different experimental models have been proposed. That is, experimental results have suggested that (i) the juxtaposition of the molecularly heterogeneous neuroepithelial areas, (ii) cell reorganization in the epithelium, and/or (iii) planar and vertical inductions in the neural epithelium, are required for ZLI specification and development. We will review some experimental data to approach the study of the molecular regulation of diencephalic regionalization, with special interest in the cellular mechanisms underlying planar inductions.
Collapse
|
59
|
|
60
|
Chatterjee M, Li JYH. Patterning and compartment formation in the diencephalon. Front Neurosci 2012; 6:66. [PMID: 22593732 PMCID: PMC3349951 DOI: 10.3389/fnins.2012.00066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2012] [Accepted: 04/17/2012] [Indexed: 01/03/2023] Open
Abstract
The diencephalon gives rise to structures that play an important role in connecting the anterior forebrain with the rest of the central nervous system. The thalamus is the major diencephalic derivative that functions as a relay station between the cortex and other lower order sensory systems. Almost two decades ago, neuromeric/prosomeric models were proposed describing the subdivision and potential segmentation of the diencephalon. Unlike the laminar structure of the cortex, the diencephalon is progressively divided into distinct functional compartments consisting principally of thalamus, epithalamus, pretectum, and hypothalamus. Neurons generated within these domains further aggregate to form clusters called nuclei, which form specific structural and functional units. We review the recent advances in understanding the genetic mechanisms that are involved in the patterning and compartment formation of the diencephalon.
Collapse
Affiliation(s)
- Mallika Chatterjee
- Department of Genetics and Developmental Biology, University of Connecticut Health Center Farmington, CT, USA
| | | |
Collapse
|
61
|
Abstract
Current research on the thalamus and related structures in the zebrafish diencephalon identifies an increasing number of both neurological structures and ontogenetic processes as evolutionary conserved between teleosts and mammals. The patterning processes, for example, which during the embryonic development of zebrafish form the thalamus proper appear largely conserved. Yet also striking differences between zebrafish and other vertebrates have been observed, particularly when we look at mature and histologically differentiated brains. A case in point is the migrated preglomerular complex of zebrafish which evolved only within the lineage of ray-finned fish and has no counterpart in mammals or tetrapod vertebrates. Based on its function as a sensory relay station with projections to pallial zones, the preglomerular complex has been compared to specific thalamic nuclei in mammals. However, no thalamic projections to the zebrafish dorsal pallium, which corresponds topologically to the mammalian isocortex, have been identified. Merely one teleostean thalamic nucleus proper, the auditory nucleus, projects to a part of the dorsal telencephalon, the pallial amygdala. Studies on patterning mechanisms identify a rostral and caudal domain in the embryonic thalamus proper. In both, teleosts and mammals, the rostral domain gives rise to GABAergic neurons, whereas glutamatergic neurons originate in the caudal domain of the zebrafish thalamus. The distribution of GABAergic derivatives in the adult zebrafish brain, furthermore, revealed previously overlooked thalamic nuclei and redefined already established ones. These findings require some reconsideration regarding the topological origin of these adult structures. In what follows, I discuss how evolutionary conserved and newly acquired features of the developing and adult zebrafish thalamus can be compared to the mammalian situation.
Collapse
Affiliation(s)
- Thomas Mueller
- Department of Developmental Biology, Faculty of Biology, Institute of Biology I, University of Freiburg Freiburg, Germany
| |
Collapse
|
62
|
Molnár Z, Garel S, López-Bendito G, Maness P, Price DJ. Mechanisms controlling the guidance of thalamocortical axons through the embryonic forebrain. Eur J Neurosci 2012; 35:1573-85. [PMID: 22607003 PMCID: PMC4370206 DOI: 10.1111/j.1460-9568.2012.08119.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Thalamocortical axons must cross a complex cellular terrain through the developing forebrain, and this terrain has to be understood for us to learn how thalamocortical axons reach their destinations. Selective fasciculation, guidepost cells and various diencephalic and telencephalic gradients have been implicated in thalamocortical guidance. As our understanding of the relevant forebrain patterns has increased, so has our knowledge of the guidance mechanisms. Our aim here is to review recent observations of cellular and molecular mechanisms related to: the growth of thalamofugal projections to the ventral telencephalon, thalamic axon avoidance of the hypothalamus and extension into the telencephalon to form the internal capsule, the crossing of the pallial-subpallial boundary, and the growth towards the cerebral cortex. We shall review current theories for the explanation of the maintenance and alteration of topographic order in the thalamocortical projections to the cortex. It is now increasingly clear that several mechanisms are involved at different stages of thalamocortical development, and each contributes substantially to the eventual outcome. Revealing the molecular and cellular mechanisms can help to link specific genes to details of actual developmental mechanisms.
Collapse
Affiliation(s)
- Zoltán Molnár
- University of Oxford, Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, UK
| | - Sonia Garel
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, 46 rue d’Ulm, 75230 PARIS cedex 05, France
- INSERM, U1024, Avenir Team
- CNRS, UMR 8197
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Joan d’Alacant, 03550, Spain
| | - Patricia Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - David J Price
- Genes and Development Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
63
|
Abstract
The thalamus is strategically positioned within the caudal diencephalic area of the forebrain, between the mesencephalon and telencephalon. This location is important for unique aspects of thalamic function, to process and relay sensory and motor information to and from the cerebral cortex. How the thalamus comes to reside within this region of the central nervous system has been the subject of much investigation. Extracellular signals secreted from key locations both extrinsic and intrinsic to the thalamic primordium have recently been identified and shown to play important roles in the growth, regionalization, and specification of thalamic progenitors. One factor in particular, the secreted morphogen Sonic hedgehog (Shh), has been implicated in spatiotemporal and threshold models of thalamic development that differ from other areas of the CNS due, in large part, to its expression within two signaling centers, the basal plate and the zona limitans intrathalamica, a dorsally projecting spike that separates the thalamus from the subthalamic region. Shh signaling from these dual sources exhibit unique and overlapping functions in the control of thalamic progenitor identity and nuclei specification. This review will highlight recent advances in our understanding of Shh function during thalamic development, revealing similarities, and differences that exist between species.
Collapse
Affiliation(s)
- Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
64
|
Mattes B, Weber S, Peres J, Chen Q, Davidson G, Houart C, Scholpp S. Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain. Neural Dev 2012; 7:12. [PMID: 22475147 PMCID: PMC3349543 DOI: 10.1186/1749-8104-7-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2012] [Accepted: 04/04/2012] [Indexed: 01/05/2023] Open
Abstract
Background A fundamental requirement for development of diverse brain regions is the function of local organizers at morphological boundaries. These organizers are restricted groups of cells that secrete signaling molecules, which in turn regulate the fate of the adjacent neural tissue. The thalamus is located in the caudal diencephalon and is the central relay station between the sense organs and higher brain areas. The mid-diencephalic organizer (MDO) orchestrates the development of the thalamus by releasing secreted signaling molecules such as Shh. Results Here we show that canonical Wnt signaling in the caudal forebrain is required for the formation of the Shh-secreting MD organizer in zebrafish. Wnt signaling induces the MDO in a narrow time window of 4 hours - between 10 and 14 hours post fertilization. Loss of Wnt3 and Wnt3a prevents induction of the MDO, a phenotype also observed upon blockage of canonical Wnt signaling per se. Pharmaceutical activation of the canonical Wnt pathways in Wnt3/Wnt3a compound morphant embryos is able to restore the lack of the MDO. After blockage of Wnt signaling or knock-down of Wnt3/Wnt3a we find an increase of apoptotic cells specifically within the organizer primordium. Consistently, blockage of apoptosis restores the thalamus organizer MDO in Wnt deficient embryos. Conclusion We have identified canonical Wnt signaling as a novel pathway, that is required for proper formation of the MDO and consequently for the development of the major relay station of the brain - the thalamus. We propose that Wnt ligands are necessary to maintain the primordial tissue of the organizer during somitogenesis by suppressing Tp53-mediated apoptosis.
Collapse
Affiliation(s)
- Benjamin Mattes
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | | | | | | | | | | | |
Collapse
|
65
|
Price DJ, Clegg J, Duocastella XO, Willshaw D, Pratt T. The importance of combinatorial gene expression in early Mammalian thalamic patterning and thalamocortical axonal guidance. Front Neurosci 2012; 6:37. [PMID: 22435047 PMCID: PMC3304307 DOI: 10.3389/fnins.2012.00037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2011] [Accepted: 02/28/2012] [Indexed: 12/24/2022] Open
Abstract
The thalamus is essential for sensory perception. In mammals, work on the mouse has taught us most of what we know about how it develops and connects to the cortex. The mature thalamus of all mammalian species comprises numerous anatomically distinct collections of neurons called nuclei that differ in function, connectivity, and molecular constitution. At the time of its initial appearance as a distinct structure following neural tube closure, the thalamus is already patterned by the regional expression of numerous regulatory genes. This patterning, which lays down the blueprint for later development of thalamic nuclei, predates the development of thalamocortical projections. In this review we apply novel analytical methods to gene expression data available in the Allen Developing Mouse Brain Atlas to highlight the complex organized molecular heterogeneity already present among cells in the thalamus from the earliest stages at which it contains differentiating neurons. This early patterning is likely to invest in axons growing from different parts of the thalamus the ability to navigate in an ordered way to their appropriate area in the cerebral cortex. We review the mechanisms and cues that thalamic axons use, encounter, and interpret to attain the cortex. Mechanisms include guidance by previously generated guidepost cells, such as those in the subpallium that maintain thalamic axonal order and direction, and axons such as those of reciprocal projections from intermediate structures or from the cortex itself back toward the thalamus. We show how thalamocortical pathfinding involves numerous guidance cues operating at a series of steps along their route. We stress the importance of the combinatorial actions of multiple genes for the development of the numerous specific identities and functions of cells in this exquisitely complex system and their orderly innervation of the cortex.
Collapse
Affiliation(s)
- David J Price
- Centre for Integrative Physiology, University of Edinburgh Edinburgh, UK
| | | | | | | | | |
Collapse
|
66
|
Haddad-Tóvolli R, Heide M, Zhou X, Blaess S, Alvarez-Bolado G. Mouse thalamic differentiation: gli-dependent pattern and gli-independent prepattern. Front Neurosci 2012; 6:27. [PMID: 22371696 PMCID: PMC3283895 DOI: 10.3389/fnins.2012.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2011] [Accepted: 02/08/2012] [Indexed: 12/17/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is essential for thalamic development. The Gli transcription factors act downstream of Shh – while Gli2 is the major activator (GliA), Gli3 acts primarily as a repressor (GliR). The thalamus is remarkable among dorsal structures because of its proximity to the mid-diencephalic organizer, a unique dorsal Shh source. This lends complexity to the interactions between Shh, Gli2, and Gli3, suggesting the presence of a dorsal Gli activator which elsewhere is found only ventrally, and making the dissection of thalamic Gli functions particularly interesting. A current model based on mutant phenotypes in telencephalon and midbrain postulates a degree of reciprocal antagonism of Shh and Gli3 in dorsal brain regions. To approach the role of Gli factors in thalamic specification we first analyzed mice deficient in Gli2 or Gli3. In Gli2 mutants, the thalamus is small and poorly differentiated with the exception of the medial and intralaminar nuclei which, in contrast, are specifically and severely affected by Gli3 inactivation. Gbx2 expression is very reduced in the Gli3 mutant. Most thalamic nuclei are present in both mutants, although incompletely differentiated, as reflected by the loss of specific markers. The ventral posterior group, revealed by novel specific marker Hes1, is present in both mutants and extends axons to the telencephalon. To test the Gli3/Shh interaction we generated a novel mutant deficient in Gli3 and neuroepithelial Shh. The thalamus of the n-Shh/Gli3 double mutants is very large and very poorly differentiated except for a broad domain of Gbx2, Lhx2, and Calb2 expression. In utero electroporation experiments on wild type embryos suggest that a stage-specific factor acting early is responsible for this prepattern. We show that, in the thalamus, GliA acts downstream of Shh to specify pattern and size of the thalamic nuclei to the exception of the medial and intralaminar groups. Gli3A can partially substitute for Gli2A in the Gli2 mutant. GliR is essential for specification and growth of the medial and intralaminar nuclei, contributes to the specification of other thalamic nuclei and reduces thalamic size. GliA (from neuroepithelial Shh signaling) and GliR do not show reciprocal antagonism in the thalamus, and their joint abolition does not rescue the wild type phenotype.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | | | | | | | | |
Collapse
|
67
|
Peukert D, Weber S, Lumsden A, Scholpp S. Lhx2 and Lhx9 determine neuronal differentiation and compartition in the caudal forebrain by regulating Wnt signaling. PLoS Biol 2011; 9:e1001218. [PMID: 22180728 PMCID: PMC3236734 DOI: 10.1371/journal.pbio.1001218] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2011] [Accepted: 11/02/2011] [Indexed: 11/19/2022] Open
Abstract
Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment.
Collapse
Affiliation(s)
- Daniela Peukert
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
- MRC Centre of Developmental Neurobiology, King's College London, United Kingdom
| | - Sabrina Weber
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
| | - Andrew Lumsden
- MRC Centre of Developmental Neurobiology, King's College London, United Kingdom
| | - Steffen Scholpp
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
68
|
Saarimäki-Vire J, Alitalo A, Partanen J. Analysis of Cdh22 expression and function in the developing mouse brain. Dev Dyn 2011; 240:1989-2001. [PMID: 21761482 DOI: 10.1002/dvdy.22686] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022] Open
Abstract
Classical cadherins are important cell adhesion molecules specifying and separating brain nuclei and developmental compartments. Cadherin-22 (Cdh22) belongs to type II subfamily of classical cadherins, and is expressed at the midbrain-hindbrain boundary during early embryogenesis. In Fgfr1 mutant mouse embryos, which have a disturbed midbrain-hindbrain border, Cdh22 is down-regulated. Here, we studied expression of Cdh22 in developing mouse brain in more detail and compared it to expression of related family members. This revealed both complementary and overlapping patterns of Cdh22, Cdh11, Cdh8, and Cdh6 expression in distinct regions of the forebrain and midbrain. We used a mutated allele of Cdh22 to study its function in brain development. Loss of Cdh22 caused reduced postnatal viability. Despite strong Cdh22 expression in the developing brain, we did not observe defects in compartmentalization or abnormalities in the midbrain and forebrain nuclei in Cdh22 mutants. This may be explained by functional redundancy between type II cadherins.
Collapse
|
69
|
Wang L, Bluske KK, Dickel LK, Nakagawa Y. Basal progenitor cells in the embryonic mouse thalamus - their molecular characterization and the role of neurogenins and Pax6. Neural Dev 2011; 6:35. [PMID: 22077982 PMCID: PMC3234181 DOI: 10.1186/1749-8104-6-35] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2011] [Accepted: 11/11/2011] [Indexed: 11/16/2022] Open
Abstract
Background The size and cell number of each brain region are influenced by the organization and behavior of neural progenitor cells during embryonic development. Recent studies on developing neocortex have revealed the presence of neural progenitor cells that divide away from the ventricular surface and undergo symmetric divisions to generate either two neurons or two progenitor cells. These 'basal' progenitor cells form the subventricular zone and are responsible for generating the majority of neocortical neurons. However, not much has been studied on similar types of progenitor cells in other brain regions. Results We have identified and characterized basal progenitor cells in the embryonic mouse thalamus. The progenitor domain that generates all of the cortex-projecting thalamic nuclei contained a remarkably high proportion of basally dividing cells. Fewer basal progenitor cells were found in other progenitor domains that generate non-cortex projecting nuclei. By using intracellular domain of Notch1 (NICD) as a marker for radial glial cells, we found that basally dividing cells extended outside the lateral limit of radial glial cells, indicating that, similar to the neocortex and ventral telencephalon, the thalamus has a distinct subventricular zone. Neocortical and thalamic basal progenitor cells shared expression of some molecular markers, including Insm1, Neurog1, Neurog2 and NeuroD1. Additionally, basal progenitor cells in each region also expressed exclusive markers, such as Tbr2 in the neocortex and Olig2 and Olig3 in the thalamus. In Neurog1/Neurog2 double mutant mice, the number of basally dividing progenitor cells in the thalamus was significantly reduced, which demonstrates the roles of neurogenins in the generation and/or maintenance of basal progenitor cells. In Pax6 mutant mice, the part of the thalamus that showed reduced Neurog1/2 expression also had reduced basal mitosis. Conclusions Our current study establishes the existence of a unique and significant population of basal progenitor cells in the thalamus and their dependence on neurogenins and Pax6. These progenitor cells may have important roles in enhancing the generation of neurons within the thalamus and may also be critical for generating neuronal diversity in this complex brain region.
Collapse
Affiliation(s)
- Lynn Wang
- Department of Neuroscience, Developmental Biology Center and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
70
|
Guillemot F, Zimmer C. From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron 2011; 71:574-88. [PMID: 21867876 DOI: 10.1016/j.neuron.2011.08.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 08/04/2011] [Indexed: 01/08/2023]
Abstract
The generation of a functional nervous system involves a multitude of steps that are controlled by just a few families of extracellular signaling molecules. Among these, the fibroblast growth factor (FGF) family is particularly prominent for the remarkable diversity of its functions. FGFs are best known for their roles in the early steps of patterning of the neural primordium and proliferation of neural progenitors. However, other equally important functions have emerged more recently, including in the later steps of neuronal migration, axon navigation, and synaptogenesis. We review here these diverse functions and discuss the mechanisms that account for this unusual range of activities. FGFs are essential components of most protocols devised to generate therapeutically important neuronal populations in vitro or to stimulate neuronal repair in vivo. How FGFs promote the development of the nervous system and maintain its integrity will thus remain an important focus of research in the future.
Collapse
Affiliation(s)
- François Guillemot
- Division of Molecular Neurobiology, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK.
| | | |
Collapse
|
71
|
Yu T, Yaguchi Y, Echevarria D, Martinez S, Basson MA. Sprouty genes prevent excessive FGF signalling in multiple cell types throughout development of the cerebellum. Development 2011; 138:2957-68. [PMID: 21693512 DOI: 10.1242/dev.063784] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
Fibroblast growth factors (FGFs) and regulators of the FGF signalling pathway are expressed in several cell types within the cerebellum throughout its development. Although much is known about the function of this pathway during the establishment of the cerebellar territory during early embryogenesis, the role of this pathway during later developmental stages is still poorly understood. Here, we investigated the function of sprouty genes (Spry1, Spry2 and Spry4), which encode feedback antagonists of FGF signalling, during cerebellar development in the mouse. Simultaneous deletion of more than one of these genes resulted in a number of defects, including mediolateral expansion of the cerebellar vermis, reduced thickness of the granule cell layer and abnormal foliation. Analysis of cerebellar development revealed that the anterior cerebellar neuroepithelium in the early embryonic cerebellum was expanded and that granule cell proliferation during late embryogenesis and early postnatal development was reduced. We show that the granule cell proliferation deficit correlated with reduced sonic hedgehog (SHH) expression and signalling. A reduction in Fgfr1 dosage during development rescued these defects, confirming that the abnormalities are due to excess FGF signalling. Our data indicate that sprouty acts both cell autonomously in granule cell precursors and non-cell autonomously to regulate granule cell number. Taken together, our data demonstrate that FGF signalling levels have to be tightly controlled throughout cerebellar development in order to maintain the normal development of multiple cell types.
Collapse
Affiliation(s)
- Tian Yu
- Department of Craniofacial Development, King's College London, London, UK
| | | | | | | | | |
Collapse
|
72
|
Matsui A, Yoshida AC, Kubota M, Ogawa M, Shimogori T. Mouse in utero electroporation: controlled spatiotemporal gene transfection. J Vis Exp 2011:3024. [PMID: 21860382 PMCID: PMC3217635 DOI: 10.3791/3024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/31/2022] Open
Abstract
In order to understand the function of genes expressed in specific region of the developing brain, including signaling molecules and axon guidance molecules, local gene transfer or knock- out is required. Gene targeting knock-in or knock-out into local regions is possible to perform with combination with a specific CRE line, which is laborious, costly, and time consuming. Therefore, a simple transfection method, an in utero electroporation technique, which can be performed with short time, will be handy to test the possible function of candidate genes prior to the generation of transgenic animals. In addition to this, in utero electroporation targets areas of the brain where no specific CRE line exists, and will limit embryonic lethality. Here, we present a method of in utero electroporation combining two different types of electrodes for simple and convenient gene transfer into target areas of the developing brain. First, a unique holding method of embryos using an optic fiber optic light cable will make small embryos (from E9.5) visible for targeted DNA solution injection into ventricles and needle type electrodes insertion to the targeted brain area. The patterning of the brain such as cortical area occur at early embryonic stage, therefore, these early electroporation from E9.5 make a big contribution to understand entire area patterning event. Second, the precise shape of a capillary prevents uterine damage by making holes by insertion of the capillary. Furthermore, the precise shape of the needle electrodes are created with tungsten and platinum wire and sharpened using sand paper and insulated with nail polish, a method which is described in great detail in this protocol. This unique technique allows transfection of plasmid DNA into restricted areas of the brain and will enable small embryos to be electroporated. This will help to, open a new window for many scientists who are working on cell differentiation, cell migration, axon guidance in very early embryonic stage. Moreover, this technique will allow scientists to transfect plasmid DNA into deep parts of the developing brain such as thalamus and hypothalamus, where not many region-specific CRE lines exist for gain of function (GOF) or loss of function (LOF) analyses.
Collapse
Affiliation(s)
- Asuka Matsui
- Lab for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Japan
| | | | | | | | | |
Collapse
|
73
|
Dixit R, Lu F, Cantrup R, Gruenig N, Langevin LM, Kurrasch DM, Schuurmans C. Efficient gene delivery into multiple CNS territories using in utero electroporation. J Vis Exp 2011:2957. [PMID: 21730943 DOI: 10.3791/2957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023] Open
Abstract
The ability to manipulate gene expression is the cornerstone of modern day experimental embryology, leading to the elucidation of multiple developmental pathways. Several powerful and well established transgenic technologies are available to manipulate gene expression levels in mouse, allowing for the generation of both loss- and gain-of-function models. However, the generation of mouse transgenics is both costly and time consuming. Alternative methods of gene manipulation have therefore been widely sought. In utero electroporation is a method of gene delivery into live mouse embryos(1,2) that we have successfully adapted(3,4). It is largely based on the success of in ovo electroporation technologies that are commonly used in chick(5). Briefly, DNA is injected into the open ventricles of the developing brain and the application of an electrical current causes the formation of transient pores in cell membranes, allowing for the uptake of DNA into the cell. In our hands, embryos can be efficiently electroporated as early as embryonic day (E) 11.5, while the targeting of younger embryos would require an ultrasound-guided microinjection protocol, as previously described(6). Conversely, E15.5 is the latest stage we can easily electroporate, due to the onset of parietal and frontal bone differentiation, which hampers microinjection into the brain. In contrast, the retina is accessible through the end of embryogenesis. Embryos can be collected at any time point throughout the embryonic or early postnatal period. Injection of a reporter construct facilitates the identification of transfected cells. To date, in utero electroporation has been most widely used for the analysis of neocortical development(1,2,3,4). More recent studies have targeted the embryonic retina(7,8,9) and thalamus(10,11,12). Here, we present a modified in utero electroporation protocol that can be easily adapted to target different domains of the embryonic CNS. We provide evidence that by using this technique, we can target the embryonic telencephalon, diencephalon and retina. Representative results are presented, first showing the use of this technique to introduce DNA expression constructs into the lateral ventricles, allowing us to monitor progenitor maturation, differentiation and migration in the embryonic telencephalon. We also show that this technique can be used to target DNA to the diencephalic territories surrounding the 3(rd) ventricle, allowing the migratory routes of differentiating neurons into diencephalic nuclei to be monitored. Finally, we show that the use of micromanipulators allows us to accurately introduce DNA constructs into small target areas, including the subretinal space, allowing us to analyse the effects of manipulating gene expression on retinal development.
Collapse
Affiliation(s)
- Rajiv Dixit
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary
| | | | | | | | | | | | | |
Collapse
|
74
|
Suzuki-Hirano A, Ogawa M, Kataoka A, Yoshida AC, Itoh D, Ueno M, Blackshaw S, Shimogori T. Dynamic spatiotemporal gene expression in embryonic mouse thalamus. J Comp Neurol 2011; 519:528-43. [PMID: 21192082 DOI: 10.1002/cne.22531] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
The anatomy of the mammalian thalamus is characterized by nuclei, which can be readily identified in postnatal animals. However, the molecular mechanisms that guide specification and differentiation of neurons in specific thalamic nuclei are still largely unknown, and few molecular markers are available for most of these thalamic subregions at early stages of development. We therefore searched for patterned gene expression restricted to specific mouse thalamic regions by in situ hybridization during the onset of thalamic neurogenesis (embryonic [E] days E10.5-E12.5). To obtain correct regional information, we used Shh as a landmark and compared spatial relationships with the zona limitans intrathalamica (Zli), the border of the p2 and p3 compartments of the diencephalon. We identified genes that are expressed specifically in the ventricular zone of the thalamic neuroepithelium and also identified a number of genes that already exhibited regional identity at E12.5. Although many genes expressed in the mantle regions of the thalamus at E12.5 showed regionally restricted patterns, none of these clearly corresponded to individual thalamic nuclei. We next examined gene expression at E15.5, when thalamocortical axons (TCAs) project from distinct regions of the thalamus and reach their targets in the cerebral cortex. Regionally restricted patterns of gene expression were again seen for many genes, but some regionally bounded expression patterns in the early postnatal thalamus had shifted substantially by E15.5. These findings reveal that nucleogenesis in the developing thalamus is associated with selective and complex changes in gene expression and provide a list of genes that may actively regulate the development of thalamic nuclei.
Collapse
|
75
|
Yuge K, Kataoka A, Yoshida AC, Itoh D, Aggarwal M, Mori S, Blackshaw S, Shimogori T. Region-specific gene expression in early postnatal mouse thalamus. J Comp Neurol 2011; 519:544-61. [PMID: 21192083 DOI: 10.1002/cne.22532] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Previous studies in the developing mouse thalamus have demonstrated that regional identity is established during early stages of development (Suzuki-Hirano et al. J. Comp. Neurol. 2011;519:528-543). However, the developing thalamus often shows little resemblance to the anatomical organization of the postnatal thalamus, making it difficult to identify genes that might mediate the organization of thalamic nuclei. We therefore analyzed the expression pattern of genes that we have identified as showing regional expression in embryonic thalamus on postnatal days (P) 6-8 by using in situ hybridization. We also identified several genes expressed only in the postnatal thalamus with restricted expression in specific nuclei. We first demonstrated the selective expression of neurotransmitter-related genes (vGlut2, vGAT, D2R, and HTR2C), identifying the neurotransmitter subtypes of cells in this region, and we also demonstrated selective expression of additional genes in the thalamus (Steel, Slitrk6, and AI852580). In addition, we demonstrated expression of genes specific to somatosensory thalamic nuclei, the ventrobasal posterior nuclei (VP); a visual thalamic nucleus, the dorsal lateral geniculate nucleus (dLGN); and an auditory thalamic nucleus, the medial geniculate body (MGB) (p57Kip, Nr1d1, and GFRα1). We also identified genes that are selectively expressed in multiple different nuclei (Foxp2, Chst2, and EphA8). Finally, we demonstrated that several bone morphogenetic proteins (BMPs) and their inhibitors are expressed in the postnatal thalamus in a nucleus-specific fashion, suggesting that BMPs play roles in the postnatal thalamus unrelated to their known role in developmental patterning. Our findings provide important information for understanding the mechanisms of nuclear specification and connectivity during development, as well as their maintenance in adult thalamus.
Collapse
Affiliation(s)
- Kazuya Yuge
- RIKEN Brain Science Institute, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Domínguez L, González A, Moreno N. Ontogenetic distribution of the transcription factor nkx2.2 in the developing forebrain of Xenopus laevis. Front Neuroanat 2011; 5:11. [PMID: 21415915 PMCID: PMC3049246 DOI: 10.3389/fnana.2011.00011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2010] [Accepted: 02/16/2011] [Indexed: 11/20/2022] Open
Abstract
The expression of the Nkx2.2 gene is involved in the organization of the alar-basal boundary in the forebrain of vertebrates. Its expression in different diencephalic and telencephalic regions, helped to define distinct progenitor domains in mouse and chick. Here we investigated the pattern of Nkx2.2 protein distribution throughout the development of the forebrain of the anuran amphibian, Xenopus laevis. We used immunohistochemical and in situ hybridization techniques for its detection in combination with other essential territorial markers in the forebrain. No expression was observed in the telencephalon. In the alar hypothalamus, Nkx2.2 positive cells were scattered in the suprachiasmatic territory, but also in the supraopto-paraventricular area, as defined by the expression of the transcription factor Orthopedia (Otp) and the lack of xDll4. In the basal hypothalamus Nkx2.2 expressing cells were localized in the tuberal region, with the exception of the arcuate nucleus, rich in Otp expressing cells. In the diencephalon it was expressed in all three prosomeres (P1–P3) and not in the zona limitans intrathalamica. The presence of Nkx2.2 expressing cells in P3 was restricted to the alar portion, as well as in prosomere P2, whereas in P1 the Nkx2.2 expressing cells were located in the basal plate and identified the alar/basal boundary. These results showed that Nkx2.2 and Sonic hedgehog are expressed in parallel adjacent stripes along the anterior–posterior axis. The results of this study showed a conserved distribution pattern of Nkx2.2 among vertebrates, crucial to recognize subdivisions that are otherwise indistinct, and supported the relevance of this transcription factor in the organization of the forebrain, particularly in the delineation of the alar/basal boundary of the forebrain.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| | | | | |
Collapse
|
77
|
Morona R, Ferran JL, Puelles L, González A. Embryonic genoarchitecture of the pretectum in Xenopus laevis: A conserved pattern in tetrapods. J Comp Neurol 2011; 519:1024-50. [DOI: 10.1002/cne.22548] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
78
|
Bonev B, Pisco A, Papalopulu N. MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 2011; 20:19-32. [PMID: 21238922 PMCID: PMC3361082 DOI: 10.1016/j.devcel.2010.11.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2010] [Revised: 10/11/2010] [Accepted: 11/19/2010] [Indexed: 12/19/2022]
Abstract
Neural progenitors self-renew and generate neurons throughout the central nervous system. Here, we uncover an unexpected regional specificity in the properties of neural progenitor cells, revealed by the function of a microRNA—miR-9. miR-9 is expressed in neural progenitors, and its knockdown results in an inhibition of neurogenesis along the anterior-posterior axis. However, the underlying mechanism differs—in the hindbrain, progenitors fail to exit the cell cycle, whereas in the forebrain they undergo apoptosis, counteracting the proliferative effect. Among several targets, we functionally identify hairy1 as a primary target of miR-9, regulated at the mRNA level. hairy1 mediates the effects of miR-9 on proliferation, through Fgf8 signaling in the forebrain and Wnt signaling in the hindbrain, but affects apoptosis only in the forebrain, via the p53 pathway. Our findings show a positional difference in the responsiveness of progenitors to miR-9 depletion, revealing an underlying divergence of their properties.
Collapse
Affiliation(s)
- Boyan Bonev
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
79
|
Jeong Y, Dolson DK, Waclaw RR, Matise MP, Sussel L, Campbell K, Kaestner KH, Epstein DJ. Spatial and temporal requirements for sonic hedgehog in the regulation of thalamic interneuron identity. Development 2011; 138:531-41. [PMID: 21205797 DOI: 10.1242/dev.058917] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
In caudal regions of the diencephalon, sonic hedgehog (Shh) is expressed in the ventral midline of prosomeres 1-3 (p1-p3), which underlie the pretectum, thalamus and prethalamus, respectively. Shh is also expressed in the zona limitans intrathalamica (zli), a dorsally projecting spike that forms at the p2-p3 boundary. The presence of two Shh signaling centers in the thalamus has made it difficult to determine the specific roles of either one in regional patterning and neuronal fate specification. To investigate the requirement of Shh from a focal source of expression in the ventral midline of the diencephalon, we used a newly generated mouse line carrying a targeted deletion of the 525 bp intronic sequence mediating Shh brain enhancer-1 (SBE1) activity. In SBE1 mutant mice, Shh transcription was initiated but not maintained in the ventral midline of the rostral midbrain and caudal diencephalon, yet expression in the zli was unaffected. In the absence of ventral midline Shh, rostral thalamic progenitors (pTH-R) adopted the molecular profile of a more caudal thalamic subtype (pTH-C). Surprisingly, despite their early mis-specification, neurons derived from the pTH-R domain continued to migrate to their proper thalamic nucleus, extended axons along their normal trajectory and expressed some, but not all, of their terminal differentiation markers. Our results, and those of others, suggest a model whereby Shh signaling from distinct spatial and temporal domains in the diencephalon exhibits unique and overlapping functions in the development of discrete classes of thalamic interneurons.
Collapse
Affiliation(s)
- Yongsu Jeong
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Inamura N, Ono K, Takebayashi H, Zalc B, Ikenaka K. Olig2 Lineage Cells Generate GABAergic Neurons in the Prethalamic Nuclei, Including the Zona Incerta, Ventral Lateral Geniculate Nucleus and Reticular Thalamic Nucleus. Dev Neurosci 2011; 33:118-29. [DOI: 10.1159/000328974] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2010] [Accepted: 05/01/2011] [Indexed: 11/19/2022] Open
|
81
|
Molecular pathways controlling development of thalamus and hypothalamus: from neural specification to circuit formation. J Neurosci 2010; 30:14925-30. [PMID: 21068293 DOI: 10.1523/jneurosci.4499-10.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023] Open
Abstract
The embryonic diencephalon gives rise to the vertebrate thalamus and hypothalamus, which play essential roles in sensory information processing and control of physiological homeostasis and behavior, respectively. In this review, we present new steps toward characterizing the molecular pathways that control development of these structures, based on findings in a variety of model organisms. We highlight advances in understanding how early regional patterning is orchestrated through the action of secreted signaling molecules such as Sonic hedgehog and fibroblast growth factors. We address the role of individual transcription factors in control of the regional identity and neural differentiation within the developing diencephalon, emphasizing the contribution of recent large-scale gene expression studies in providing an extensive catalog of candidate regulators of hypothalamic neural cell fate specification. Finally, we evaluate the molecular mechanisms involved in the experience-dependent development of both thalamo-cortical and hypothalamic neural circuitry.
Collapse
|
82
|
Aggarwal M, Mori S, Shimogori T, Blackshaw S, Zhang J. Three-dimensional diffusion tensor microimaging for anatomical characterization of the mouse brain. Magn Reson Med 2010; 64:249-61. [PMID: 20577980 PMCID: PMC2915547 DOI: 10.1002/mrm.22426] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2009] [Accepted: 02/08/2010] [Indexed: 11/06/2022]
Abstract
Diffusion tensor imaging is gaining increasing importance for anatomical imaging of the developing mouse brain. However, the application of diffusion tensor imaging to mouse brain imaging at microscopic levels is hindered by the limitation on achievable spatial resolution. In this study, fast diffusion tensor microimaging of the mouse brain, based on a diffusion-weighted gradient and spin echo technique with twin-navigator echo phase correction, is presented. Compared to echo planar and spin echo acquisition, the diffusion-weighted gradient and spin echo acquisition resulted in significant reduction in scan time and had minimal image distortion, thereby allowing acquisition at higher spatial resolution. In this study, three-dimensional diffusion tensor microimaging of the mouse brains at spatial resolutions of 50-60 microm revealed unprecedented anatomical details. Thin fiber bundles in the adult striatum and white matter tracts in the embryonic day 12 mouse brains were visualized for the first time. The study demonstrated that data acquired using the diffusion tensor microimaging technique allow three-dimensional mapping of gene expression data and can serve as a platform to study gene expression patterns in the context of neuroanatomy in the developing mouse brain.
Collapse
Affiliation(s)
- Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
83
|
Scholpp S, Lumsden A. Building a bridal chamber: development of the thalamus. Trends Neurosci 2010; 33:373-80. [PMID: 20541814 PMCID: PMC2954313 DOI: 10.1016/j.tins.2010.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 12/26/2022]
Abstract
The thalamus is a central brain region that plays a crucial role in distributing incoming sensory information to appropriate regions of the cortex. The thalamus develops in the posterior part of the embryonic forebrain, where early cell fate decisions are controlled by a local signaling center – the mid-diencephalic organizer – which forms at the boundary between prospective prethalamus and thalamus. In this review we discuss recent observations of early thalamic development in zebrafish, chick, and mouse embryos, that reveal a conserved set of interactions between homeodomain transcription factors. These interactions position the organizer along the neuraxis. The most prominent of the organizer's signals, Sonic hedgehog, is necessary for conferring regional identity on the prethalamus and thalamus and for patterning their differentiation.
Collapse
Affiliation(s)
- Steffen Scholpp
- Karlsruhe Institute of Technology, Institute for Toxicology and Genetics, 76021 Karlsruhe, Germany
| | | |
Collapse
|
84
|
A genomic atlas of mouse hypothalamic development. Nat Neurosci 2010; 13:767-75. [PMID: 20436479 DOI: 10.1038/nn.2545] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2010] [Accepted: 03/11/2010] [Indexed: 01/09/2023]
Abstract
The hypothalamus is a central regulator of many behaviors that are essential for survival, such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, we performed microarray analysis at 12 different developmental time points. We then conducted developmental in situ hybridization for 1,045 genes that were dynamically expressed over the course of hypothalamic neurogenesis. We identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis and constructed a detailed molecular atlas of the developing hypothalamus. As a proof of concept of the utility of these data, we used these markers to analyze the phenotype of mice in which Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium and found that Shh is essential for anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology and dysfunction.
Collapse
|
85
|
Bluske KK, Kawakami Y, Koyano-Nakagawa N, Nakagawa Y. Differential activity of Wnt/beta-catenin signaling in the embryonic mouse thalamus. Dev Dyn 2010; 238:3297-309. [PMID: 19924825 DOI: 10.1002/dvdy.22167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022] Open
Abstract
In neural development, several Wnt genes are expressed in the vertebrate diencephalon, including the thalamus. However, roles of Wnt signaling in the thalamus during neurogenesis are not well understood. We examined Wnt/beta-catenin activity in embryonic mouse thalamus and found that a Wnt target gene Axin2 and reporter activity of BAT-gal transgenic mice show similar, differential patterns within the thalamic ventricular zone, where ventral and rostral regions had lower activity than other regions. Expression of Wnt ligands and signaling components also showed complex, differential patterns. Finally, based on partially reciprocal patterns of Wnt and Shh signals in the thalamic ventricular zone, we tested if Shh signal is sufficient or necessary for the differential Axin2 expression. Analysis of mice with enhanced or reduced Shh signal showed that Axin2 expression is similar to controls. These results suggest that differential Wnt signaling may play a role in patterning the thalamus independent of Shh signaling.
Collapse
Affiliation(s)
- Krista K Bluske
- Department of Neuroscience, and Graduate Program in Neuroscience, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
86
|
Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for Zic4 and Foxp2 in visual and auditory pathway development. J Neurosci 2009; 29:13672-83. [PMID: 19864579 DOI: 10.1523/jneurosci.2127-09.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023] Open
Abstract
Primary sensory nuclei of the thalamus process and relay parallel channels of sensory input into the cortex. The developmental processes by which these nuclei acquire distinct functional roles are not well understood. To identify novel groups of genes with a potential role in differentiating two adjacent sensory nuclei, we performed a microarray screen comparing perinatal gene expression in the principal auditory relay nucleus, the medial geniculate nucleus (MGN), and principal visual relay nucleus, the lateral geniculate nucleus (LGN). We discovered and confirmed groups of highly ranked, differentially expressed genes with qRT-PCR and in situ hybridization. A functional role for Zic4, a transcription factor highly enriched in the LGN, was investigated using Zic4-null mice, which were found to have changes in topographic patterning of retinogeniculate projections. Foxp2, a transcriptional repressor expressed strongly in the MGN, was found to be positively regulated by activity in the MGN. These findings identify roles for two differentially expressed genes, Zic4 and Foxp2, in visual and auditory pathway development. Finally, to test whether modality-specific patterns of gene expression are influenced by extrinsic patterns of input, we performed an additional microarray screen comparing the normal MGN to "rewired" MGN, in which normal auditory afferents are ablated and novel retinal inputs innervate the MGN. Data from this screen indicate that rewired MGN acquires some patterns of gene expression that are present in the developing LGN, including an upregulation of Zic4 expression, as well as novel patterns of expression which may represent unique processes of cross-modal plasticity.
Collapse
|
87
|
Abstract
Habenular nuclei play a key role in the control of motor and cognitive behavior, processing emotion, motivation, and reward values in the brain. Thus, analysis of the molecular and cellular mechanisms underlying the development and evolution of this region will contribute to a better understanding of brain function. The Fgf8 gene is expressed in the dorsal midline of the diencephalon, close to the area in which the habenular region will develop. Given that Fgf8 is an important morphogenetic signal, we decided to investigate the role of Fgf8 signaling in diencephalic development. To this end, we analyzed the effects of altered Fgf8 expression in the mouse embryo, using molecular and cellular markers. Decreasing Fgf8 activity in the diencephalon was found to be associated with dosage-dependent alterations in the epithalamus: the habenular region and pineal gland are reduced or lacking in Fgf8 hypomorphic mice. Actually, our findings indicate that Fgf8 may be the master gene for these diencephalic domains, acting as an inductive and morphogenetic regulator. Therefore, the emergence of the habenular region in vertebrates could be understood in terms of a phylogenetic territorial addition caused by de novo expression of Fgf8 in the diencephalic alar plate. This region specializes to permit the development of adaptive control of the motor function in the vertebrate brain.
Collapse
|
88
|
Suzuki-Hirano A, Shimogori T. The role of Fgf8 in telencephalic and diencephalic patterning. Semin Cell Dev Biol 2009; 20:719-25. [DOI: 10.1016/j.semcdb.2009.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2009] [Revised: 03/09/2009] [Accepted: 04/01/2009] [Indexed: 12/22/2022]
|
89
|
Abstract
The mammalian thalamus is located in the diencephalon and is composed of dozens of morphologically and functionally distinct nuclei. The majority of these nuclei project axons to the neocortex in unique patterns and play critical roles in sensory, motor, and cognitive functions. It has been assumed that the adult thalamus is derived from neural progenitor cells located within the alar plate of the caudal diencephalon. Nevertheless, how a distinct array of postmitotic thalamic nuclei emerge from this single developmental unit has remained largely unknown. Our recent studies found that these thalamic nuclei are in fact derived from molecularly heterogeneous populations of progenitor cells distributed within at least two distinct progenitor domains in the caudal diencephalon. In this study, we investigated how such molecular heterogeneity is established and maintained during early development of the thalamus and how early signaling mechanisms influence the formation of postmitotic thalamic nuclei. By using mouse genetics and in utero electroporation, we provide evidence that Sonic hedgehog (Shh), which is normally expressed in ventral and rostral borders of the embryonic thalamus, plays a crucial role in patterning progenitor domains throughout the thalamus. We also show that increasing or decreasing Shh activity causes dramatic reorganization of postmitotic thalamic nuclei through altering the positional identity of progenitor cells.
Collapse
|
90
|
Chen L, Guo Q, Li JYH. Transcription factor Gbx2 acts cell-nonautonomously to regulate the formation of lineage-restriction boundaries of the thalamus. Development 2009; 136:1317-26. [PMID: 19279136 DOI: 10.1242/dev.030510] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
Relatively little is known about the development of the thalamus, especially its differentiation into distinct nuclei. We demonstrate here that Gbx2-expressing cells in mouse diencephalon contribute to the entire thalamic nuclear complex. However, the neuronal precursors for different thalamic nuclei display temporally distinct Gbx2 expression patterns. Gbx2-expressing cells and their descendents form sharp lineage-restriction boundaries delineating the thalamus from the pretectum, epithalamus and prethalamus, revealing multiple compartmental boundaries within the mouse diencephalon. Without Gbx2, cells originating from the thalamus abnormally contribute to the epithalamus and pretectum. This abnormality does not result from an overt defect in patterning or cell-fate specification in Gbx2 mutants. Chimeric and genetic mosaic analysis demonstrate that Gbx2 plays a cell-nonautonomous role in controlling segregation of postmitotic thalamic neurons from the neighboring brain structures that do not express Gbx2. We propose that, within the developing thalamus, the dynamic and differential expression of Gbx2 may be involved in the specific segregation of thalamic neurons, leading to partition of the thalamus into different nuclei.
Collapse
Affiliation(s)
- Li Chen
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|