51
|
Druckenbrod NR, Powers PA, Bartley CR, Walker JW, Epstein ML. Targeting of endothelin receptor-B to the neural crest. Genesis 2008; 46:396-400. [PMID: 18693272 DOI: 10.1002/dvg.20415] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endothelin receptor B (Ednrb) plays a critical role in the development of melanocytes and neurons and glia of the enteric nervous system. These distinct neural crest-derived cell types express Ednrb and share the property of intercalating into tissues, such as the intestine whose muscle precursor cells also express Ednrb. Such widespread Ednrb expression has been a significant obstacle in establishing precise roles for Ednrb in development. We describe here the production of an Ednrb allele floxed at exon 3 and its use in excising the receptor from mouse neural crest cells by use of Cre-recombinase driven by the Wnt1 promoter. Mice born with neural crest-specific excision of Ednrb possess aganglionic colon, lack trunk pigmentation, and die within 5 weeks due to megacolon. Ednrb receptor expression in these animals is absent only in the neural crest but present in surrounding smooth muscle cells. The absence of Ednrb from crest cells also results in a compensatory upregulation of Ednrb expression in other cells within the gut. We conclude that Ednrb loss only in neural crest cells is sufficient to produce the Hirschsprungs disease phenotype observed with genomic Ednrb mutations.
Collapse
Affiliation(s)
- Noah R Druckenbrod
- Department of Anatomy, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
52
|
Olden T, Akhtar T, Beckman SA, Wallace KN. Differentiation of the zebrafish enteric nervous system and intestinal smooth muscle. Genesis 2008; 46:484-98. [DOI: 10.1002/dvg.20429] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Sato Y, Heuckeroth RO. Retinoic acid regulates murine enteric nervous system precursor proliferation, enhances neuronal precursor differentiation, and reduces neurite growth in vitro. Dev Biol 2008; 320:185-98. [PMID: 18561907 PMCID: PMC2586054 DOI: 10.1016/j.ydbio.2008.05.524] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/01/2008] [Accepted: 05/02/2008] [Indexed: 02/01/2023]
Abstract
Enteric nervous system (ENS) precursors undergo a complex process of cell migration, proliferation, and differentiation to form an integrated network of neurons and glia within the bowel wall. Although retinoids regulate ENS development, molecular and cellular mechanisms of retinoid effects on the ENS are not well understood. We hypothesized that retinoids might directly affect ENS precursor differentiation and proliferation, and tested that hypothesis using immunoselected fetal ENS precursors in primary culture. We now demonstrate that all retinoid receptors and many retinoid biosynthetic enzymes are present in the fetal bowel at about the time that migrating ENS precursors reach the distal bowel. We further demonstrate that retinoic acid (RA) enhances proliferation of subsets of ENS precursors in a time-dependent fashion and increases neuronal differentiation. Surprisingly, however, enteric neurons that develop in retinoid deficient media have dramatically longer neurites than those exposed to RA. This difference in neurite growth correlates with increased RhoA protein at the neurite tip, decreased Smurf1 (a protein that targets RhoA for degradation), and dramatically decreased Smurf1 mRNA in response to RA. Collectively these data demonstrate diverse effects of RA on ENS precursor development and suggest that altered fetal retinoid availability or metabolism could contribute to intestinal motility disorders.
Collapse
Affiliation(s)
- Yoshiharu Sato
- Department of Pediatrics, Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8208, St. Louis MO 63110
| | - Robert O. Heuckeroth
- Department of Pediatrics, Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8208, St. Louis MO 63110
| |
Collapse
|
54
|
Abstract
The enteric nervous system (ENS) consists of many different types of enteric neurones forming complex reflex circuits that underlie or regulate many gut functions. Studies of humans with Hirschsprung's disease (distal aganglionosis), and of animal models of Hirschsprung's disease, have led to the identification of many of the genetic, molecular and cellular mechanisms responsible for the colonization of the gut by enteric neurone precursors. However, later events in the ENS development are still poorly understood, including the development of functioning ENS circuits. This article is a personal view of the current state of play in our understanding of the ENS development and of the future of the field.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
55
|
Copenhaver PF. How to innervate a simple gut: familiar themes and unique aspects in the formation of the insect enteric nervous system. Dev Dyn 2007; 236:1841-64. [PMID: 17420985 PMCID: PMC3097047 DOI: 10.1002/dvdy.21138] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Like the vertebrate enteric nervous system (ENS), the insect ENS consists of interconnected ganglia and nerve plexuses that control gut motility. However, the insect ENS lies superficially on the gut musculature, and its component cells can be individually imaged and manipulated within cultured embryos. Enteric neurons and glial precursors arise via epithelial-to-mesenchymal transitions that resemble the generation of neural crest cells and sensory placodes in vertebrates; most cells then migrate extensive distances before differentiating. A balance of proneural and neurogenic genes regulates the morphogenetic programs that produce distinct structures within the insect ENS. In vivo studies have also begun to decipher the mechanisms by which enteric neurons integrate multiple guidance cues to select their pathways. Despite important differences between the ENS of vertebrates and invertebrates, common features in their programs of neurogenesis, migration, and differentiation suggest that these relatively simple preparations may provide insights into similar developmental processes in more complex systems.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
56
|
Anderson RB, Newgreen DF, Young HM. Neural crest and the development of the enteric nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:181-96. [PMID: 17076282 DOI: 10.1007/978-0-387-46954-6_11] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The formation of the enteric nervous system (ENS) is a particularly interesting example of the migratory ability of the neural crest and of the complexity of structures to which neural crest cells contribute. The distance that neural crest cells migrate to colonize the entire length of the gastrointestinal tract exceeds that of any other neural crest cell population. Furthermore, this migration takes a long time--over 25% of the gestation period for mice and around 3 weeks in humans. After colonizing the gut, neural crest-derived cells within the gut wall then differentiate into glial cells plus many different types of neurons, and generate the most complex part of the peripheral nervous system.
Collapse
Affiliation(s)
- Richard B Anderson
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, VIC, Australia
| | | | | |
Collapse
|
57
|
Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nat Rev Neurosci 2007; 8:466-79. [PMID: 17514199 DOI: 10.1038/nrn2137] [Citation(s) in RCA: 386] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The enteric nervous system (ENS) has been explored by developmental neurobiologists and medical researchers for decades. Whereas developmental biologists have been unravelling the molecular mechanisms underlying the migration, proliferation and differentiation of the neural crest derivatives that give rise to the ENS, human geneticists have been uncovering the genetic basis for diseases of the ENS, notably Hirschsprung's disease. Here we discuss the exciting recent advances, including novel transgenic and genetic tools, a broadening range of model organisms, and the pursuit of ENS stem cells as a therapeutic tool, that are bringing these fields closer together.
Collapse
Affiliation(s)
- Tiffany A Heanue
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
58
|
Flynn B, Bergner AJ, Turner KN, Young HM, Anderson RB. Effect of Gdnf haploinsufficiency on rate of migration and number of enteric neural crest-derived cells. Dev Dyn 2007; 236:134-41. [PMID: 17103416 DOI: 10.1002/dvdy.21013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enteric nervous system arises predominantly from vagal level neural crest cells that migrate into the foregut and then colonize the entire length of the gastrointestinal tract. Previous studies have demonstrated that glial cell line-derived neurotrophic factor (GDNF) promotes the migration of enteric neural crest-derived cells (ENCs) in vitro, but a role for GDNF in the migration of ENCs in vivo has yet to be demonstrated. In this study, the effects of Gdnf haploinsufficiency on ENC rate of migration and number during mid embryonic development were examined. Although the entire gut of embryonic Gdnf(+/-) mice was colonized, a significant delay in the migration of ENCs along the embryonic hindgut was found. However, significant effects of Gdnf haploinsufficiency on ENC number were detected before the stage at which migration defects were first evident. As previous studies have shown a relationship between ENC number and migration, the effects of Gdnf haploinsufficiency on migration may be due to an indirect effect on cell number and/or a direct effect of GDNF on ENC migration. Gdnf haploinsufficiency did not cause any detectable change in the rate of neuronal differentiation of ENCs.
Collapse
Affiliation(s)
- Brianna Flynn
- Department of Anatomy & Cell Biology, University of Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
59
|
Anderson RB, Bergner AJ, Taniguchi M, Fujisawa H, Forrai A, Robb L, Young HM. Effects of different regions of the developing gut on the migration of enteric neural crest-derived cells: A role for Sema3A, but not Sema3F. Dev Biol 2007; 305:287-99. [PMID: 17362911 DOI: 10.1016/j.ydbio.2007.02.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 11/25/2022]
Abstract
The enteric nervous system arises from vagal (caudal hindbrain) and sacral level neural crest-derived cells that migrate into and along the developing gut. Data from previous studies have suggested that (i) there may be gradients along the gut that induce the caudally directed migration of vagal enteric neural precursors (ENPs), (ii) exposure to the caecum might alter the migratory ability of vagal ENPs and (iii) Sema3A might regulate the entry into the hindgut of ENPs derived from sacral neural crest. Using co-cultures we show that there is no detectable gradient of chemoattractive molecules along the pre-caecal gut that specifically promotes the caudally directed migration of vagal ENPs, although vagal ENPs migrate faster caudally than rostrally along explants of hindgut. Exposure to the caecum did not alter the rate at which ENPs colonized explants of hindgut, but it did alter the ability of ENPs to colonize the midgut. The co-cultures also revealed that there is localized expression of a repulsive cue in the distal hindgut, which might delay the entry of sacral ENPs. We show that Sema3A is expressed by the hindgut mesenchyme and its receptor, neuropilin-1, is expressed by migrating ENPs. Furthermore, there is premature entry of sacral ENPs and extrinsic axons into the distal hindgut of fetal mice lacking Sema3A. These data show that Sema3A expressed by the distal hindgut regulates the entry of sacral ENPs and extrinsic axons into the hindgut. ENPs did not express neuropilin-2 and there was no detectable change in the timetable by which ENPs colonize the gut in mice lacking neuropilin-2.
Collapse
Affiliation(s)
- R B Anderson
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|
60
|
Simpson MJ, Zhang DC, Mariani M, Landman KA, Newgreen DF. Cell proliferation drives neural crest cell invasion of the intestine. Dev Biol 2006; 302:553-68. [PMID: 17178116 DOI: 10.1016/j.ydbio.2006.10.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/12/2006] [Accepted: 10/09/2006] [Indexed: 10/24/2022]
Abstract
A general mathematical model of cell invasion is developed and validated with an experimental system. The model incorporates two basic cell functions: non-directed (diffusive) motility and proliferation to a carrying capacity limit. The model is used here to investigate cell proliferation and motility differences along the axis of an invasion wave. Mathematical simulations yield surprising and counterintuitive predictions. In this general scenario, cells at the invasive front are proliferative and migrate into previously unoccupied tissues while those behind the front are essentially nonproliferative and do not directly migrate into unoccupied tissues. These differences are not innate to the cells, but are a function of proximity to uninvaded tissue. Therefore, proliferation at the invading front is the critical mechanism driving apparently directed invasion. An appropriate system to experimentally validate these predictions is the directional invasion and colonization of the gut by vagal neural crest cells that establish the enteric nervous system. An assay using gut organ culture with chick-quail grafting is used for this purpose. The experimental results are entirely concordant with the mathematical predictions. We conclude that proliferation at the wavefront is a key mechanism driving the invasive process. This has important implications not just for the neural crest, but for other invasion systems such as epidermal wound healing, carcinoma invasion and other developmental cell migrations.
Collapse
Affiliation(s)
- Matthew J Simpson
- Department of Mathematics and Statistics, University of Melbourne, and The Murdoch Childrens Research Institute, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
61
|
Abstract
The neurons and glia that comprise the enteric nervous system (ENS), the intrinsic innervation of the gastrointestinal tract, are derived from vagal and sacral regions of the neural crest. In order to form the ENS, neural crest-derived precursors undergo a number of processes including survival, migration and proliferation, prior to differentiation into neuronal subtypes, some of which form functional connections with the gut smooth muscle. Investigation of the developmental processes that underlie ENS formation has progressed dramatically in recent years, in no small part due to the attention of scientists from a range of disciplines on the genesis of Hirschsprung's disease (aganglionic megacolon), the major congenital abnormality of the ENS. This review summarizes recent advances in the field of early ENS ontogeny and focuses on: (i) the spatiotemporal migratory pathways followed by vagal and sacral neural crest-derived ENS precursors, including recent in vivo imaging of migrating crest cells within the gut, (ii) the roles of the RET and EDNRB signalling pathways and how these pathways interact to control ENS development, and (iii) how perpendicular migrations of neural crest cells within the gut lead to the formation of the myenteric and submucosal plexi located between the smooth muscle layers of the gut wall.
Collapse
Affiliation(s)
- A J Burns
- Neural Development Unit, UCL Institute of Child Health, London, UK.
| | | |
Collapse
|
62
|
Vohra BP, Tsuji K, Nagashimada M, Uesaka T, Wind D, Armon J, Enomoto H, Heuckeroth RO. Differential gene expression and functional analysis implicate novel mechanisms in enteric nervous system precursor migration and neuritogenesis. Dev Biol 2006; 298:259-71. [PMID: 16904662 PMCID: PMC1952185 DOI: 10.1016/j.ydbio.2006.06.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/17/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Enteric nervous system (ENS) development requires complex interactions between migrating neural-crest-derived cells and the intestinal microenvironment. Although some molecules influencing ENS development are known, many aspects remain poorly understood. To identify additional molecules critical for ENS development, we used DNA microarray, quantitative real-time PCR and in situ hybridization to compare gene expression in E14 and P0 aganglionic or wild type mouse intestine. Eighty-three genes were identified with at least two-fold higher expression in wild type than aganglionic bowel. ENS expression was verified for 39 of 42 selected genes by in situ hybridization. Additionally, nine identified genes had higher levels in aganglionic bowel than in WT animals suggesting that intestinal innervation may influence gene expression in adjacent cells. Strikingly, many synaptic function genes were expressed at E14, a time when the ENS is not needed for survival. To test for developmental roles for these genes, we used pharmacologic inhibitors of Snap25 or vesicle-associated membrane protein (VAMP)/synaptobrevin and found reduced neural-crest-derived cell migration and decreased neurite extension from ENS precursors. These results provide an extensive set of ENS biomarkers, demonstrate a role for SNARE proteins in ENS development and highlight additional candidate genes that could modify Hirschsprung's disease penetrance.
Collapse
Affiliation(s)
- Bhupinder P.S. Vohra
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Keiji Tsuji
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mayumi Nagashimada
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Uesaka
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daniel Wind
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Jennifer Armon
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Hideki Enomoto
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Robert O. Heuckeroth
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| |
Collapse
|
63
|
Nagy N, Goldstein AM. Intestinal coelomic transplants: a novel method for studying enteric nervous system development. Cell Tissue Res 2006; 326:43-55. [PMID: 16736197 DOI: 10.1007/s00441-006-0207-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 03/23/2006] [Indexed: 11/30/2022]
Abstract
Normal development of the enteric nervous system (ENS) requires the coordinated activity of multiple proteins to regulate the migration, proliferation, and differentiation of enteric neural crest cells. Much of our current knowledge of the molecular regulation of ENS development has been gained from transgenic mouse models and cultured neural crest cells. We have developed a method for studying the molecular basis of ENS formation complementing these techniques. Aneural quail or mouse hindgut, isolated prior to the arrival of neural crest cells, was transplanted into the coelomic cavity of a host chick embryo. Neural crest cells from the chick host migrated to and colonized the grafted hindgut. Thorough characterization of the resulting intestinal chimeras was performed by using immunohistochemistry and vital dye labeling to determine the origin of the host-derived cells, their pattern of migration, and their capacity to differentiate. The formation of the ENS in the intestinal chimeras was found to recapitulate many aspects of normal ENS development. The host-derived cells arose from the vagal neural crest and populated the graft in a rostral-to-caudal wave of migration, with the submucosal plexus being colonized first. These crest-derived cells differentiated into neurons and glial cells, forming ganglionated plexuses grossly indistinguishable from normal ENS. The resulting plexuses were specific to the grafted hindgut, with quail grafts developing two ganglionated plexuses, but mouse grafts developing only a single myenteric plexus. We discuss the advantages of intestinal coelomic transplants for studying ENS development.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
64
|
Stanchina L, Baral V, Robert F, Pingault V, Lemort N, Pachnis V, Goossens M, Bondurand N. Interactions between Sox10, Edn3 and Ednrb during enteric nervous system and melanocyte development. Dev Biol 2006; 295:232-49. [PMID: 16650841 DOI: 10.1016/j.ydbio.2006.03.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 03/20/2006] [Accepted: 03/21/2006] [Indexed: 12/11/2022]
Abstract
The requirement for SOX10 and endothelin-3/EDNRB signalling pathway during enteric nervous system (ENS) and melanocyte development, as well as their alterations in Waardenburg-Hirschsprung disease (hypopigmentation, deafness and absence of enteric ganglia) are well established. Here, we analysed the genetic interactions between these genes during ENS and melanocyte development. Through phenotype analysis of Sox10;Ednrb and Sox10;Edn3 double mutants, we show that a coordinate and balanced interaction between these molecules is required for normal ENS and melanocyte development. Indeed, double mutants present with a severe increase in white spotting, absence of melanocytes within the inner ear, and in the stria vascularis in particular, and more severe ENS defects. Moreover, we show that partial loss of Ednrb in Sox10 heterozygous mice impairs colonisation of the gut by enteric crest cells at all stages observed. However, compared to single mutants, we detected no apoptosis, cell proliferation or overall neuronal or glial differentiation defects in neural crest cells within the stomach of double mutants, but apoptosis was increased in vagal neural crest cells outside of the gut. These data will contribute to the understanding of the molecular basis of ENS, pigmentation and hearing defects observed in mouse mutants and patients carrying SOX10, EDN3 and EDNRB mutations.
Collapse
Affiliation(s)
- Laure Stanchina
- INSERM, U654, Bases moléculaires et cellulaires des maladies génétiques, Hôpital Henri Mondor, Creteil, F-94000, France; Université Paris 12, Faculté de Médecine, IFR10, Créteil, F-94000, France
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Takaki M, Nakayama S, Misawa H, Nakagawa T, Kuniyasu H. In vitro formation of enteric neural network structure in a gut-like organ differentiated from mouse embryonic stem cells. Stem Cells 2006; 24:1414-22. [PMID: 16527901 DOI: 10.1634/stemcells.2005-0394] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using an embryoid body (EB) culture system, we developed a functional organ-like cluster--a "gut"--from mouse embryonic stem (ES) cells (ES gut). Each ES gut exhibited spontaneous contractions but did not exhibit distinct peristalsis-like movements. In these spontaneously contracting ES guts, dense distributions of interstitial cells of Cajal (c-kit [a transmembrane receptor that has tyrosine kinase activity]-positive cells; gut pacemaker cells) and smooth muscle cells were discernibly identified; however, enteric neural ganglia were absent in the spontaneously differentiated ES gut. By adding brain-derived neurotrophic factor (BDNF) only during EB formation, we for the first time succeeded in in vitro formation of enteric neural ganglia with connecting nerve fiber tracts (enteric nervous system [ENS]) in the ES gut. The ES gut with ENS exhibited strong peristalsis-like movements. During EB culture in BDNF(+) medium, we detected each immunoreactivity associated with the trk proto-oncogenes (trkB; BDNF receptors) and neural crest marker, proto-oncogene tyrosine-protein kinase receptor ret precursor (c-ret), p75, or sox9. These results indicated that the present ENS is differentiated from enteric neural crest-derived cells. Moreover, focal stimulation of ES guts with ENS elicited propagated increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) at single or multiple sites that were attenuated by atropine or abolished by tetrodotoxin. These results suggest in vitro formation of physiologically functioning enteric cholinergic excitatory neurons. We for the first time succeeded in the differentiation of functional neurons in ENS by exogenously adding BDNF in the ES gut, resulting in generation of distinct peristalsis-like movements.
Collapse
Affiliation(s)
- Miyako Takaki
- Department of Physiology II, Nara Medical University, School of Medicine, Kashihara, Japan.
| | | | | | | | | |
Collapse
|
66
|
Nagy N, Goldstein AM. Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev Biol 2006; 293:203-17. [PMID: 16519884 DOI: 10.1016/j.ydbio.2006.01.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/30/2006] [Accepted: 01/31/2006] [Indexed: 11/24/2022]
Abstract
Neural crest cells (NCC) migrate, proliferate, and differentiate within the wall of the gastrointestinal tract to give rise to the neurons and glial cells of the enteric nervous system (ENS). The intestinal microenvironment is critical in this process and endothelin-3 (ET3) is known to have an essential role. Mutations of this gene cause distal intestinal aganglionosis in rodents, but its mechanism of action is poorly understood. We find that inhibition of ET3 signaling in cultured avian intestine also leads to hindgut aganglionosis. The aim of this study was to determine the role of ET3 during formation of the avian hindgut ENS. To answer this question, we created chick-quail intestinal chimeras by transplanting preganglionic quail hindguts into the coelomic cavity of chick embryos. The quail grafts develop two ganglionated plexuses of differentiated neurons and glial cells originating entirely from the host neural crest. The presence of excess ET3 in the grafts results in a significant increase in ganglion cell number, while inhibition of endothelin receptor-B (EDNRB) leads to severe hypoganglionosis. The ET3-induced hyperganglionosis is associated with an increase in enteric crest cell proliferation. Using hindgut explants cultured in collagen gel, we find that ET3 also inhibits neuronal differentiation in the ENS. Finally, ET3, which is strongly expressed in the ceca, inhibits the chemoattraction of NCC to glial-derived neurotrophic factor (GDNF). Our results demonstrate multiple roles for ET3 signaling during ENS development in the avian hindgut, where it influences NCC proliferation, differentiation, and migration.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Warren 1153, Boston, MA 02114, USA
| | | |
Collapse
|
67
|
Khan H, Naylor RJ, Tuladhar BR. Pharmacological characterization of endothelin receptors-mediated contraction in the mouse isolated proximal and distal colon. Br J Pharmacol 2006; 147:607-11. [PMID: 16432510 PMCID: PMC1751337 DOI: 10.1038/sj.bjp.0706657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/20/2005] [Accepted: 12/13/2005] [Indexed: 01/23/2023] Open
Abstract
The study investigated the role of endothelin (ET) and the ET receptor subtypes ET(A) and ET(B) in mediating longitudinal contraction in the mouse proximal and distal colon. Cumulative concentration-response curves to a range of ET agonists (ET-1, ET-2, ET-3, (Ala(1,3,11,13)) ET and IRL 1620) were established by administering concentrations ranging from 0.01 nM to 0.3 microM. Concentration-response curves to ET-1, which exhibits a high affinity for both ET(A) and ET(B) receptor subtypes, were also established in the presence of the ET(A) antagonist BMS 182874 and the ET(B) antagonist IRL1038. The addition of the selective ET(A) receptor antagonist BMS 182874 caused a rightward shift of the concentration-response curve to ET-1 in both sections of the colon. The ET(B) receptor antagonist IRL1038 (0.3-1 microM) did not significantly effect the response to ET-1 in the proximal colon but caused a significant decrease in response towards higher concentrations ranges (>or=3 nM) in the distal colon. A comparison of the concentration-response curves to ET-1, ET-2 and ET-3 showed a rank order of potency ET-1>or=ET-2>>ET-3 in the proximal colon and ET-1>or=ET-2>or=ET-3 in the distal colon. The selective ET(B) receptor agonists, (Ala(1,3,11,13)) ET and IRL 1620 did not produce any response in the proximal sections of the colon but produced a smaller contraction in the distal segments. The data indicate that ET can contract the proximal tissues of the mouse colon predominantly via ET(A) receptors and in the distal tissues via ET(A) and ET(B) receptors.
Collapse
Affiliation(s)
- Humaira Khan
- School of Pharmacy, University of Bradford, Richmond Road, Bradford, W. Yorkshire BD7 1DP
| | - Robert J Naylor
- School of Pharmacy, University of Bradford, Richmond Road, Bradford, W. Yorkshire BD7 1DP
| | - Bishwa R Tuladhar
- School of Pharmacy, University of Bradford, Richmond Road, Bradford, W. Yorkshire BD7 1DP
| |
Collapse
|
68
|
Goldstein AM. Molecular Basis of Hirschsprung’s Disease and Other Congenital Enteric Neuropathies. SEMINARS IN COLON AND RECTAL SURGERY 2006. [DOI: 10.1053/j.scrs.2006.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
69
|
Wu CY, Kaur C, Lu J, Cao Q, Guo CH, Zhou Y, Sivakumar V, Ling EA. Transient expression of endothelins in the amoeboid microglial cells in the developing rat brain. Glia 2006; 54:513-25. [PMID: 16897776 DOI: 10.1002/glia.20402] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amoeboid microglial cells (AMC) which transiently exist in the corpus callosum in the postnatal rat brain expressed endothelins (ETs), specifically endothelin-1 (ET-1) and ET3 as revealed by real time RT-PCR. ET immunoreactive AMC occurred in large numbers at birth, but were progressively reduced with age and were undetected in 14 days. In rats subjected to hypoxia exposure, ET immunoexpression in AMC was reduced but the incidence of apoptotic cells was not increased when compared with the control suggesting that this was due to its downregulation that may help regulate the constriction of blood vessels bearing ET-A receptor. AMC were endowed ET-B receptor indicating that ET released by the cells may also act via an autocrine manner. In microglia activated by lipopolysaccharide (LPS), ET-1 mNA expression coupled with that of monocyte chemoattractant protein (MCP-1) and stromal derived factor-1 (SDF-1) was markedly increased; ET-3 mRNA, however, remained unaffected. AMC exposed to oxygen glucose deprivation (OGD) in vitro resulted in increase in both ET-1 and ET-3 mRNA expression. It is suggested that the downregulated ETs expression in vivo of AMC subjected to hypoxia as opposed to its upregulated expression in vitro may be due to the complexity of the brain tissue. Furthermore, the differential ET-1 and ET-3 mRNA expression in LPS and OGD treatments may be due to different signaling pathways independently regulating the two isoforms. The present novel finding has added microglia as a new cellular source of ET that may take part in multiple functions including regulating vascular constriction and chemokines release.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/embryology
- Brain/growth & development
- Brain/ultrastructure
- Cell Differentiation/physiology
- Cell Movement/physiology
- Cells, Cultured
- Down-Regulation/physiology
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Endothelin-3/genetics
- Endothelin-3/metabolism
- Endothelins/genetics
- Endothelins/metabolism
- Female
- Gene Expression Regulation, Developmental/physiology
- Hypoxia-Ischemia, Brain/genetics
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/physiopathology
- Male
- Microcirculation/embryology
- Microcirculation/growth & development
- Microcirculation/metabolism
- Microglia/metabolism
- Microglia/ultrastructure
- Microscopy, Electron, Transmission
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Endothelin/metabolism
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Chun-Yun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Vohra BPS, Planer W, Armon J, Fu M, Jain S, Heuckeroth RO. Reduced endothelin converting enzyme-1 and endothelin-3 mRNA in the developing bowel of male mice may increase expressivity and penetrance of Hirschsprung disease–like distal intestinal aganglionosis. Dev Dyn 2006; 236:106-17. [PMID: 17131407 DOI: 10.1002/dvdy.21028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hirschsprung disease (distal intestinal aganglionosis, HSCR) is a multigenic disorder with incomplete penetrance, variable expressivity, and a strong male gender bias. Recent studies demonstrated that these genetic patterns arise because gene interactions determine whether enteric nervous system (ENS) precursors successfully proliferate and migrate into the distal bowel. We now demonstrate that male gender bias in the extent of distal intestinal aganglionosis occurs in mice with Ret dominant-negative mutations (RetDN) that mimic human HSCR. We hypothesized that male gender bias could result from reduced expression of a gene already known to be essential for ENS development. Using quantitative real-time polymerase chain reaction (PCR) we demonstrated reduced levels of endothelin converting enzyme-1 and endothelin-3 mRNA in the male mouse bowel at the time that ENS precursors migrate into the colon. Other HSCR-associated genes are expressed at comparable levels in male and female mice. Testosterone and Mullerian inhibiting substance had no deleterious effect on ENS precursor development, but adding EDN3 peptide to E11.5 male RetDN heterozygous mouse gut explants in organ culture significantly increased the rate of ENS precursor migration through the bowel.
Collapse
Affiliation(s)
- Bhupinder P S Vohra
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
71
|
Faure C, Chalazonitis A, Rhéaume C, Bouchard G, Sampathkumar SG, Yarema KJ, Gershon MD. Gangliogenesis in the enteric nervous system: Roles of the polysialylation of the neural cell adhesion molecule and its regulation by bone morphogenetic protein-4. Dev Dyn 2006; 236:44-59. [PMID: 16958105 DOI: 10.1002/dvdy.20943] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neural crest-derived cells that colonize the fetal bowel become patterned into two ganglionated plexuses. The hypothesis that bone morphogenetic proteins (BMPs) promote ganglionation by regulating neural cell adhesion molecule (NCAM) polysialylation was tested. Transcripts encoding the sialyltransferases, ST8Sia IV (PST) and ST8Sia II (STX), which polysialylate NCAM, were detectable in fetal rat gut by E12 but were downregulated postnatally. PSA-NCAM-immunoreactive neuron numbers, but not those of NCAM, were developmentally regulated similarly. Circular smooth muscle was transiently (E16-20) PSA-NCAM-immunoreactive when it is traversed by migrating precursors of submucosal neurons. Neurons developing in vitro from crest-derived cells immunoselected at E12 with antibodies to p75(NTR) expressed NCAM and PSA-NCAM. BMP-4 promoted neuronal NCAM polysialylation and clustering. N-butanoylmannosamine, which blocks NCAM polysialylation, but not N-propanoylmannosamine, which does not, interfered with BMP-4-induced neuronal clustering. Observations suggest that BMP signaling enhances NCAM polysialylation, which allows precursors to migrate and form ganglionic aggregates during the remodeling of the developing ENS.
Collapse
Affiliation(s)
- Christophe Faure
- Division of Gastroenterology, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
72
|
Goldstein AM, Brewer KC, Doyle AM, Nagy N, Roberts DJ. BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system. Mech Dev 2005; 122:821-33. [PMID: 15905074 DOI: 10.1016/j.mod.2005.03.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/16/2005] [Accepted: 03/17/2005] [Indexed: 12/23/2022]
Abstract
The enteric nervous system (ENS) is derived from neural crest cells that migrate along the gastrointestinal tract to form a network of neurons and glia that are essential for regulating intestinal motility. Despite the number of genes known to play essential roles in ENS development, the molecular etiology of congenital disorders affecting this process remains largely unknown. To determine the role of bone morphogenetic protein (BMP) signaling in ENS development, we first examined the expression of bmp2, bmp4, and bmprII during hindgut development and find these strongly expressed in the ENS. Moreover, functional BMP signaling, demonstrated by the expression of phosphorylated Smad1/5/8, is present in the enteric ganglia. Inhibition of BMP activity by noggin misexpression within the developing gut, both in ovo and in vitro, inhibits normal migration of enteric neural crest cells. BMP inhibition also leads to hypoganglionosis and failure of enteric ganglion formation, with crest cells unable to cluster into aggregates. Abnormalities of migration and ganglion formation are the hallmarks of two human intestinal disorders, Hirschsprung's disease and intestinal neuronal dysplasia. Our results support an essential role for BMP signaling in these aspects of ENS development and provide a basis for further investigation of these proteins in the etiology of neuro-intestinal disorders.
Collapse
Affiliation(s)
- Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
73
|
Tsai YH, Gariepy CE. Dynamic changes in the proximal gut neural crest stem cell population are associated with successful development of the distal enteric nervous system in rats. Pediatr Res 2005; 58:636-43. [PMID: 16189186 DOI: 10.1203/01.pdr.0000180552.12737.9f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Loss of signaling through the endothelin-B receptor (ET(B)) leads to failure of vagal neural crest (NC) cell colonization of the developing gut and causes congenital distal intestinal aganglionosis [Hirschsprung disease (HSCR)] in humans and other mammals. Several studies suggest that cell-cell interactions and the number of NC cells behind the wavefront may play an important role in successful gut colonization. We compared the number and progression of enteric nervous system stem cells in the wild-type (WT) and HSCR rat gut using whole-mount immunohistochemistry for p75, culture and isolation of NC stem cells (NCSCs) by flow cytometry. Isolation and culture demonstrates that NCSCs enter the WT cecum between embryonic day (E) 13.5 and E14.5, and the number of NCSC in the colon significantly increases after E15.5. These findings are consistent with the caudal progression of the NC-cell wavefront by whole-mount staining. During the period of WT colonic colonization of the proximal colon, we found significant differences in the small bowel NCSC pool between WT and HSCR rats. Whereas the proximal gut NCSC pool in WT rats is increasing behind the colonization wavefront, no such change occurs in the proximal NCSC pool in HSCR rats. Dynamic changes in the NCSC pool occur behind the NC colonization wavefront in the gut of WT rats. The absence of these changes in the HSCR rat may contribute to distal aganglionosis.
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, 48109, USA
| | | |
Collapse
|
74
|
Druckenbrod NR, Epstein ML. The pattern of neural crest advance in the cecum and colon. Dev Biol 2005; 287:125-33. [PMID: 16197939 DOI: 10.1016/j.ydbio.2005.08.040] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Revised: 08/19/2005] [Accepted: 08/22/2005] [Indexed: 11/21/2022]
Abstract
Neural crest cells leave the hindbrain, enter the gut mesenchyme at the pharynx, and migrate as strands of cells to the terminal bowel to form the enteric nervous system. We generated embryos containing fluorescent enteric neural crest-derived cells (ENCCs) by mating Wnt1-Cre mice with Rosa-floxed-YFP mice and investigated ENCC behavior in the intact gut of mouse embryos using time-lapse fluorescent microscopy. With respect to the entire gut, we have found that ENCCs in the cecum and proximal colon behave uniquely. ENCCs migrating caudally through either the ileum, or caudal colon, are gradually advancing populations of strands displaying largely unpredictable local trajectories. However, in the cecum, advancing ENCCs pause for approximately 12 h, and then display an invariable pattern of migration to distinct regions of the cecum and proximal colon. In addition, while most ENCCs migrating through other regions of the gut remain interconnected as strands; ENCCs initially migrating through the cecum and proximal colon fragment from the main population and advance as isolated single cells. These cells aggregate into groups isolated from the main network, and eventually extend strands themselves to reestablish a network in the mid-colon. As the advancing network of ENCCs reaches the terminal bowel, strands of sacral crest cells extend, and intersect with vagal crest to bridge the small space between. We found a relationship between ENCC number, interaction, and migratory behavior by utilizing endogenously isolated strands and by making cuts along the ENCC wavefront. Depending on the number of cells, the ENCCs aggregated, proliferated, and extended strands to advance the wavefront. Our results show that interactions between ENCCs are important for regulating behaviors necessary for their advancement.
Collapse
Affiliation(s)
- Noah R Druckenbrod
- Department of Anatomy, and Neuroscience Training Program, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | |
Collapse
|
75
|
Milla PJ. The influence of Hox genes and three intercellular signaling pathways on enteric neuromuscular development. J Pediatr Gastroenterol Nutr 2005; 41 Suppl 1:S3. [PMID: 16131958 DOI: 10.1097/01.scs.0000180284.13247.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Peter J Milla
- Gastroenterology Unit, Institute of Child Health, University College London, London, U.K.
| |
Collapse
|
76
|
Young HM, Turner KN, Bergner AJ. The location and phenotype of proliferating neural-crest-derived cells in the developing mouse gut. Cell Tissue Res 2005; 320:1-9. [PMID: 15714282 DOI: 10.1007/s00441-004-1057-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 11/22/2004] [Indexed: 11/30/2022]
Abstract
Neural crest cells that originate in the caudal hindbrain migrate into and along the developing gastrointestinal tract to form the enteric nervous system. While they are migrating, neural-crest-derived cells are also proliferating. Previous studies have shown that the expression of glial-derived neurotrophic factor (GDNF) and endothelin-3 is highest in the embryonic caecum, and that GDNF alone or in combination with endothelin-3 promotes the proliferation of enteric neural-crest-derived cells in vitro. However, whether neural proliferative zones, like those in the central nervous system, are found along the developing gut is unknown. We used a fluorescent nucleic acid stain to identify dividing cells or BrdU labelling (2 h after administration of BrdU to the mother), combined with antibodies specific to neural crest cells to determine the percentage of proliferating crest-derived cells in various gut regions of embryonic day 11.5 (E11.5) and E12.5 mice. The rate of proliferation of crest-derived cells did not vary significantly in different regions of the gut (including the caecum) or at different distances from the migratory wavefront of vagal crest-derived cells. The phenotype of mitotic enteric crest-derived cells was also examined. Cells expressing the pan-neuronal markers, neurofilament-M and Hu, or the glial marker, S100b, were observed undergoing mitosis. However, no evidence was found for proliferation of cells expressing neuron-type-specific markers, such as nitric oxide synthase (at E12.5) or calcitonin gene-related peptide (at E18.5). Thus, for enteric neurons, exit from the cell cycle appears to occur after the expression of pan-neuronal proteins but prior to the expression of markers of terminally differentiated neurons.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
77
|
Fu M, Lui VCH, Sham MH, Pachnis V, Tam PKH. Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut. ACTA ACUST UNITED AC 2004; 166:673-84. [PMID: 15337776 PMCID: PMC2172437 DOI: 10.1083/jcb.200401077] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enteric neural crest cells (NCCs) migrate and colonize the entire gut and proliferate and differentiate into neurons and glia of the enteric nervous system in vertebrate embryos. We have investigated the mitogenic and morphogenic functions of Sonic hedgehog (Shh) on enteric NCCs in cell and organ culture. Enteric NCCs expressed Shh receptor Patched and transcripts encoding the Shh signal transducer (Gli1). Shh promoted the proliferation and inhibited the differentiation of NCCs. The pro-neurogenic effect of glial cell line–derived neurotrophic factor (GDNF) on NCCs was abolished by Shh. In gut explants, NCCs migrated from the explants onto the adjacent substratum if GDNF was added, whereas addition of Shh abolished this migration. Neuronal differentiation and coalescence of neural crest–derived cells into myenteric plexuses in explants was repressed by the addition of Shh. Our data suggest that Shh controls the proliferation and differentiation of NCCs and modulates the responsiveness of NCCs toward GDNF inductions.
Collapse
Affiliation(s)
- Ming Fu
- Department of Surgery, The University of Hong Kong, 21 Sassoon Rd., Pokfulam, Hong Kong, HKSAR China
| | | | | | | | | |
Collapse
|
78
|
Gershon MD, Ratcliffe EM. Developmental biology of the enteric nervous system: pathogenesis of Hirschsprung's disease and other congenital dysmotilities. Semin Pediatr Surg 2004; 13:224-35. [PMID: 15660316 PMCID: PMC2835989 DOI: 10.1053/j.sempedsurg.2004.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michael D Gershon
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, 630 West 268th Street, New York, NY 10032, USA.
| | | |
Collapse
|
79
|
Yan H, Bergner AJ, Enomoto H, Milbrandt J, Newgreen DF, Young HM. Neural cells in the esophagus respond to glial cell line-derived neurotrophic factor and neurturin, and are RET-dependent. Dev Biol 2004; 272:118-33. [PMID: 15242795 DOI: 10.1016/j.ydbio.2004.04.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 04/12/2004] [Accepted: 04/12/2004] [Indexed: 11/22/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is expressed in the gastrointestinal tract of the developing mouse and appears to play an important role in the migration of enteric neuron precursors into and along the small and large intestines. Two other GDNF family members, neurturin and artemin, are also expressed in the developing gut although artemin is only expressed in the esophagus. We examined the effects of GDNF, neurturin, and artemin on neural crest cell migration and neurite outgrowth in explants of mouse esophagus, midgut, and hindgut. Both GDNF and neurturin induced neural crest cell migration and neurite outgrowth in all regions examined. In the esophagus, the effect of GDNF on migration and neurite outgrowth declined with age between E11.5 and E14.5, but neurturin still had a strong neurite outgrowth effect at E14.5. Artemin did not promote neural migration or neurite outgrowth in any region investigated. The effects of GDNF family ligands are mediated by the Ret tyrosine kinase. We examined the density of neurons in the esophagus of Ret-/- mice, which lack neurons in the small and large intestines. The density of esophageal neurons in Ret-/- mice was only about 4% of the density of esophageal neurons in Ret+/- and Ret+/+ mice. These results show that GDNF and neurturin promote migration and neurite outgrowth of crest-derived cells in the esophagus as well as the intestine. Moreover, like intestinal neurons, the development of esophageal neurons is largely Ret-dependent.
Collapse
Affiliation(s)
- Hui Yan
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, 3010 Victoria, Australia
| | | | | | | | | | | |
Collapse
|
80
|
Young HM, Bergner AJ, Anderson RB, Enomoto H, Milbrandt J, Newgreen DF, Whitington PM. Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev Biol 2004; 270:455-73. [PMID: 15183726 DOI: 10.1016/j.ydbio.2004.03.015] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 03/03/2004] [Accepted: 03/05/2004] [Indexed: 01/26/2023]
Abstract
Neural crest-derived cells that form the enteric nervous system undergo an extensive migration from the caudal hindbrain to colonize the entire gastrointestinal tract. Mice in which the expression of GFP is under the control of the Ret promoter were used to visualize neural crest-derived cell migration in the embryonic mouse gut in organ culture. Time-lapse imaging revealed that GFP(+) crest-derived cells formed chains that displayed complicated patterns of migration, with sudden and frequent changes in migratory speed and trajectories. Some of the leading cells and their processes formed a scaffold along which later cells migrated. To examine the effect of population size on migratory behavior, a small number of the most caudal GFP(+) cells were isolated from the remainder of the population. The isolated cells migrated slower than cells in large control populations, suggesting that migratory behavior is influenced by cell number and cell-cell contact. Previous studies have shown that neurons differentiate among the migrating cell population, but it is unclear whether they migrate. The phenotype of migrating cells was examined. Migrating cells expressed the neural crest cell marker, Sox10, but not neuronal markers, indicating that the majority of migratory cells observed did not have a neuronal phenotype.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, 3010 Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Multiple neural and non-neural cell types arise from the neural crest (NC) in vertebrate embryos. Recent work has provided evidence for multipotent stem cells and intermediate precursors in the early NC cell population as well as in various NC derivatives in embryos and even in adult. Advances have been made towards understanding how cytokines, regulatory genes and cell-cell interactions cooperate to control commitment and differentiation to pigment cells, glia and neurone subtypes. In addition, NC cell fates appeared to be unstable, as differentiated NC cells can reverse to multipotent precursors and transdifferentiate in vitro.
Collapse
Affiliation(s)
- Nicole M Le Douarin
- Laboratoire d'Embryologie Cellulaire et Moléculaire, CNRS UMR 7128, 49bis, avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne cedex, France.
| | | |
Collapse
|
82
|
Zhu L, Lee HO, Jordan CS, Cantrell VA, Southard-Smith EM, Shin MK. Spatiotemporal regulation of endothelin receptor-B by SOX10 in neural crest-derived enteric neuron precursors. Nat Genet 2004; 36:732-7. [PMID: 15170213 DOI: 10.1038/ng1371] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2003] [Accepted: 04/01/2004] [Indexed: 12/23/2022]
Abstract
Hirschsprung disease (HSCR) is a multigenic, congenital disorder that affects 1 in 5,000 newborns and is characterized by the absence of neural crest-derived enteric ganglia in the colon. One of the primary genes affected in HSCR encodes the G protein-coupled endothelin receptor-B (EDNRB). The expression of Ednrb is required at a defined time period during the migration of the precursors of the enteric nervous system (ENS) into the colon. In this study, we describe a conserved spatiotemporal ENS enhancer of Ednrb. This 1-kb enhancer is activated as the ENS precursors approach the colon, and partial deletion of this enhancer at the endogenous Ednrb locus results in pigmented mice that die postnatally from megacolon. We identified binding sites for SOX10, an SRY-related transcription factor associated with HSCR, in the Ednrb ENS enhancer, and mutational analyses of these sites suggested that SOX10 may have multiple roles in regulating Ednrb in the ENS.
Collapse
Affiliation(s)
- Lei Zhu
- Cellular and Developmental Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
83
|
Kapur RP, Gershon MD, Milla PJ, Pachnis V. The influence of Hox genes and three intercellular signalling pathways on enteric neuromuscular development. Neurogastroenterol Motil 2004; 16 Suppl 1:8-13. [PMID: 15065997 DOI: 10.1111/j.1743-3150.2004.00467.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Normal intestinal motility requires orderly development of the complex nerve plexuses and smooth muscular layers in the gut wall. Organization of these structures results, in part, from cell autonomous programmes directed by transcription factors, which orchestrate appropriate temporal and spatial expression of specific target genes. Hox proteins appear to function in combination to dictate regional codes that establish major structural landmarks in the gut such as sphincters and muscle layers. These codes are translated in part by intercellular signals, which allow populations of cells in the embryonic gut wall to alter the developmental fate of their neighbours. Some of the best characterized intercellular signalling pathways involved in enteric neurodevelopment are mediated by GDNF/GFRa1/RET, EDN3/ENDRB, and NETRINS/DCC. These signals affect enteric neural precursors as they colonize the gut, and perturbations of these molecules are associated with various types of intestinal neuropathology.
Collapse
Affiliation(s)
- R P Kapur
- Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, USA.
| | | | | | | |
Collapse
|
84
|
Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 2004; 40:905-16. [PMID: 14659090 DOI: 10.1016/s0896-6273(03)00730-x] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) in vertebrates is derived mainly from vagal neural crest cells that enter the foregut and colonize the entire wall of the gastrointestinal tract. Failure to completely colonize the gut results in the absence of enteric ganglia (Hirschsprung's disease). Two signaling systems mediated by RET and EDNRB have been identified as critical players in enteric neurogenesis. We demonstrate that interaction between these signaling pathways controls ENS development throughout the intestine. Activation of EDNRB specifically enhances the effect of RET signaling on the proliferation of uncommitted ENS progenitors. In addition, we reveal novel antagonistic roles of these pathways on the migration of ENS progenitors. Protein kinase A is a key component of the molecular mechanisms that integrate signaling by the two receptors. Our data provide strong evidence that the coordinate and balanced interaction between receptor tyrosine kinases and G protein-coupled receptors controls the development of the nervous system in mammals.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Enteric Nervous System/cytology
- Enteric Nervous System/embryology
- Enteric Nervous System/metabolism
- Enteric Nervous System/physiology
- Gene Expression Regulation, Developmental/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-ret
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Endothelin B/biosynthesis
- Receptor, Endothelin B/genetics
- Receptor, Endothelin B/physiology
- Receptors, Endothelin/biosynthesis
- Receptors, Endothelin/genetics
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction/physiology
- Stem Cells/metabolism
- Stem Cells/physiology
Collapse
Affiliation(s)
- Amanda Barlow
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
85
|
Kruger GM, Mosher JT, Tsai YH, Yeager KJ, Iwashita T, Gariepy CE, Morrison SJ. Temporally distinct requirements for endothelin receptor B in the generation and migration of gut neural crest stem cells. Neuron 2004; 40:917-29. [PMID: 14659091 DOI: 10.1016/s0896-6273(03)00727-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Loss of Endothelin-3/Endothelin receptor B (EDNRB) signaling leads to aganglionosis of the distal gut (Hirschsprung's disease), but it is unclear whether it is required primarily for neural crest progenitor maintenance or migration. Ednrb-deficient gut neural crest stem cells (NCSCs) were reduced to 40% of wild-type levels by embryonic day 12.5 (E12.5), but no further depletion of NCSCs was subsequently observed. Undifferentiated NCSCs persisted in the proximal guts of Ednrb-deficient rats throughout fetal and postnatal development but exhibited migration defects after E12.5 that prevented distal gut colonization. EDNRB signaling may be required to modulate the response of neural crest progenitors to migratory cues, such as glial cell line-derived neurotrophic factor (GDNF). This migratory defect could be bypassed by transplanting wild-type NCSCs directly into the aganglionic region of the Ednrb(sl/sl) gut, where they engrafted and formed neurons as efficiently as in the wild-type gut.
Collapse
Affiliation(s)
- Genevieve M Kruger
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Farlie PG, McKeown SJ, Newgreen DF. The neural crest: Basic biology and clinical relationships in the craniofacial and enteric nervous systems. ACTA ACUST UNITED AC 2004; 72:173-89. [PMID: 15269891 DOI: 10.1002/bdrc.20013] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The highly migratory, mesenchymal neural crest cell population was discovered over 100 years ago. Proposals of these cells' origin within the neuroepithelium, and of the tissues they gave rise to, initiated decades-long heated debates, since these proposals challenged the powerful germ-layer theory. Having survived this storm, the neural crest is now regarded as a pluripotent stem cell population that makes vital contributions to an astounding array of both neural and non-neural organ systems. The earliest model systems for studying the neural crest were amphibian, and these pioneering contributions have been ably refined and extended by studies in the chick, mouse, and more recently the fish to provide detailed understanding of the cellular and molecular mechanisms regulating and regulated by the neural crest. The key questions regarding control of craniofacial morphogenesis and innervation of the gut illustrate the wide range of developmental contexts in which the neural crest plays an important role. These questions also focus attention on common issues such as the role of growth factor signaling in neural crest cell development and highlight the central role of the neural crest in human congenital disease.
Collapse
Affiliation(s)
- Peter G Farlie
- Embryology Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
| | | | | |
Collapse
|
87
|
Chalazonitis A. Neurotrophin-3 in the development of the enteric nervous system. PROGRESS IN BRAIN RESEARCH 2004; 146:243-63. [PMID: 14699968 DOI: 10.1016/s0079-6123(03)46016-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To date, the only neurotrophin that has been shown to influence the development of the enteric nervous system (ENS) is neurotrophin-3 (NT-3). NT-3 plays an essential role in the development of both the neural-crest-derived peripheral nervous system and the central nervous system (i.e., Chalazonitis, 1996, Mol. Neurobiol., 12: 39-53; Sieber-Blum, 1999, Neurotrophins and the Neural Crest, CRC Press, Boca Raton). This review integrates data obtained from our laboratory and from our collaboration with other investigators that demonstrate a late-acting role for NT-3 in the development of enteric neurons in vitro and in vivo. Studies of the biological actions of NT-3 on enteric neuronal precursors in vitro demonstrate that NT-3 acts directly on the precursor cells and that it also acts in combination with other neurotrophic factors such as glial cell line-derived neurotrophic factor and a ciliary neurotrophic factor-like molecule, to promote the survival and differentiation of enteric neurons and glia. Importantly, bone morphogenetic protein-2 (BMP-2) and BMP-4, members of the transforming growth factor-beta (TGF-beta) superfamily, regulate the onset of action of NT-3 during fetal gut development. Analyzes performed on mice deficient in the genes encoding NT-3 or its transducing tyrosine kinase receptor, TrkC, and conversely on transgenic mice that overexpress NT-3 substantiate a physiological role for NT-3 in the development and maintenance of a subset of enteric neurons. There is loss of neurons in both the myenteric and submucosal plexuses of mice lacking NT-3/TrkC signaling and selective hyperplasia in the myenteric plexus of mice overexpressing NT-3. Analyzes performed on transgenic mice that overexpress noggin, a specific BMP-4 antagonist, show significant decreases in the density of TrkC-expressing neurons but significant increase in overall neuronal density of both plexuses. Conversely, overexpression of BMP-4 is sufficient to produce, an increase in the proportion of TrkC-expressing neurons in both plexuses. Overall, our data point to a regulatory role of BMP-4 in the responses of subsets of myenteric and submucosal neurons to NT-3. NT-3 is required for the differentiation, maintenance and proper physiological function of late-developing enteric neurons that are important for the control of gut peristalsis.
Collapse
Affiliation(s)
- Alcmène Chalazonitis
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, 630W, 168th Street, New York, NY 10032, USA.
| |
Collapse
|
88
|
Fu M, Lui VCH, Sham MH, Cheung ANY, Tam PKH. HOXB5 expression is spatially and temporarily regulated in human embryonic gut during neural crest cell colonization and differentiation of enteric neuroblasts. Dev Dyn 2003; 228:1-10. [PMID: 12950074 DOI: 10.1002/dvdy.10350] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HOX genes from paralogous groups 4 and 5 are particularly relevant to the gut neuromusculature development because these genes are expressed at the splanchnic mesoderm surrounding the gut diverticulum, and at the level of the neural tube from where the vagal neural crest cells (NCCs) originate. In this study, we examined the migration and differentiation of NCCs, and investigated the expression patterns of HOXB5 in human embryonic guts. Human embryos of gestational week-4 to -8.5 were studied. Vagal NCCs enter the esophagus, migrate, and colonize the entire gut in a rostrocaudal manner between week-4 and week-7. The migrating NCCs in gut express HOXB5. Two separate and discontinuous mesenchymal expression domains of HOXB5 were detected in the gut: the distal domain preceding the migratory NCCs; and the proximal domain overlapping with the NCCs. The two expression domains shift caudally in parallel with the rostrocaudal migration of NCCs between week-4 and week-5. Neuron and glia differentiation of NCCs are concomitant with HOXB5 down-regulation in NCCs and the mesenchyme. By week-7, myenteric plexuses have formed; HOXB5 expression is switched on in the plexuses. We found that (1) the migratory route of NCCs in human embryonic gut was similar to that in mice and chicks; and (2) the expression pattern of HOXB5 correlated with the migration and differentiation of NCCs, suggesting a regulatory role of HOXB5 in the development of NCCs.
Collapse
Affiliation(s)
- Ming Fu
- Department of Surgery, University of Hong Kong Medical Centre, Queen Mary Hospital, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
89
|
Woodward MN, Sidebotham EL, Connell MG, Kenny SE, Vaillant CR, Lloyd DA, Edgar DH. Analysis of the effects of endothelin-3 on the development of neural crest cells in the embryonic mouse gut. J Pediatr Surg 2003; 38:1322-8. [PMID: 14523813 DOI: 10.1016/s0022-3468(03)00389-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND/PURPOSE Mutations in the endothelin-3 (ET-3) and endothelin-B receptor (EDNR-B) genes cause terminal colonic aganglionosis in mice and are linked to Hirschsprung's disease. These experiments are designed to determine if the development of terminal enteric ganglia depends on changes in proliferation, apoptosis, or differentiation of enteric neural crest (NC) cells in response to ET-3. METHODS Gut from embryonic lethal-spotted mice (lacking ET-3) and controls were investigated in vivo. NC-derived cells were identified immunohistochemically and their proliferation, apoptosis and differentiation monitored by bromodeoxyuridine incorporation, the terminal deoxytransferase poly dU nick end labelling (TUNEL) reaction, and appearance of neuronal nitric oxide synthase (NOS), respectively. RESULTS No differences in apoptosis or proliferation of NC cells were apparent between lethal-spotted embryos and controls. Although no temporal differences in the differentiation of NOS neurones were evident, these cells appeared more cranially in the gut in the absence of ET-3 than in controls. CONCLUSIONS ET-3 has no detectable influence on proliferation, apoptosis, or timing of differentiation of NC-derived cells in the gut. However, the more proximal location of differentiated neurones in the absence of ET-3 is consistent with a restricted role in migration of NC-derived cells.
Collapse
Affiliation(s)
- Mark N Woodward
- Department of Child Health, the University of Liverpool, Liverpool, England, UK
| | | | | | | | | | | | | |
Collapse
|
90
|
Affiliation(s)
- Cheryl E Gariepy
- Department of Pediatrics and Communicable Diseases, Division of Gastroenterology, University of Michigan, 1150 W Medical Center Dr, A520 MSRBI, Ann Arbor, MI 48109-0656, USA.
| |
Collapse
|
91
|
Lee HO, Levorse JM, Shin MK. The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev Biol 2003; 259:162-75. [PMID: 12812796 DOI: 10.1016/s0012-1606(03)00160-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the genes encoding endothelin receptor-B (Ednrb) and its ligand endothelin-3 (Edn3) affect the development of two neural crest-derived cell types, melanocytes and enteric neurons. EDNRB signaling is exclusively required between E10.5 and E12.5 during the migratory phase of melanoblast and enteric neuroblast development. To determine the fate of Ednrb-expressing cells during this critical period, we generated a strain of mice with the bacterial beta-galactosidase (lacZ) gene inserted downstream of the endogenous Ednrb promoter. The expression of the lacZ gene was detected in melanoblasts and precursors of the enteric neuron system (ENS), as well as other neural crest cells and nonneural crest-derived lineages. By comparing Ednrb(lacZ)/+ and Ednrb(lacZ)/Ednrb(lacZ) embryos, we determined that the Ednrb pathway is not required for the initial specification and dispersal of melanoblasts and ENS precursors from the neural crest progenitors. Rather, the EDNRB-mediated signaling is required for the terminal migration of melanoblasts and ENS precursors, and this pathway is not required for the survival of the migratory cells.
Collapse
Affiliation(s)
- Hyung-Ok Lee
- Cell and Developmental Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
92
|
Ballard VLT, Mikawa T. Constitutive expression of preproendothelin in the cardiac neural crest selectively promotes expansion of the adventitia of the great vessels in vivo. Dev Biol 2002; 251:167-77. [PMID: 12413906 DOI: 10.1006/dbio.2002.0818] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac neural crest cells are essential for normal development of the great vessels and the heart, giving rise to a range of cell types, including both neuronal and non-neuronal adventitial cells and smooth muscle. Endothelin (ET) signaling plays an important role in the development of cardiac neural crest cell lineages, yet the underlying mechanisms that act to control their migration, differentiation, and proliferation remain largely unclear. We examined the expression patterns of the receptor, ET(A), and the ET-specific converting enzyme, ECE-1, in the pharyngeal arches and great vessels of the developing chick embryo. In situ hybridization analysis revealed that, while ET(A) is expressed in the pharyngeal arch mesenchyme, populated by cardiac neural crest cells, ECE-1 expression is localized to the outermost ectodermal cells of the arches and then to the innermost endothelial cells of the great vessels. This dynamic pattern of expression suggests that only a subpopulation of neural crest cells in these regions is responsive to ET signaling at particular developmental time points. To test this, retroviral gene delivery was used to constitutively express preproET-1, a precursor of mature ET-1 ligand, in the cardiac neural crest. This resulted in a selective expansion of the outermost, adventitial cell population in the great vessels. In contrast, neither differentiation nor proliferation of neural crest-derived smooth muscle cells was significantly affected. These results suggest that constitutive expression of exogenous preproET-1 in the cardiac neural crest results in expansion restricted to an adventitial cell population of the developing great vessels.
Collapse
Affiliation(s)
- Victoria L T Ballard
- Department of Cell Biology, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
93
|
Ward SM, Gershon MD, Keef K, Bayguinov YR, Nelson C, Sanders KM. Interstitial cells of Cajal and electrical activity in ganglionic and aganglionic colons of mice. Am J Physiol Gastrointest Liver Physiol 2002; 283:G445-56. [PMID: 12121893 DOI: 10.1152/ajpgi.00475.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An antibody directed against Kit protein was used to investigate the distribution of interstitial cells of Cajal (ICC) within the murine colon. The ICC density was greatest in the proximal colon and decreased along its length. The distribution of the different classes of ICC in the aganglionic colons of lethal spotted (ls/ls) mice was found to be similar in age-matched wild-type controls. There were marked differences in the electrical activities of the colons from ls/ls mutants compared with wild-type controls. In ls/ls aganglionic colons, the circular muscle was electrically quiescent compared with the spontaneous spiking electrical activity of wild-type tissues. In ls/ls aganglionic colons, postjunctional neural responses were greatly affected. Inhibitory junction potentials were absent or excitatory junction potentials inhibited by atropine were observed. In conclusion, the distribution of ICC in the ganglionic and aganglionic regions of the colons from ls/ls mutants appeared similar to that of wild-type controls. The electrical activity and neural responses of the circular layer are significantly different in aganglionic segments of ls/ls mutants.
Collapse
Affiliation(s)
- Sean M Ward
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno 89557, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Newgreen D, Young HM. Enteric nervous system: development and developmental disturbances--part 2. Pediatr Dev Pathol 2002; 5:329-49. [PMID: 12016531 DOI: 10.1007/s10024-002-0002-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2001] [Accepted: 08/01/2001] [Indexed: 01/26/2023]
Abstract
This review, which is presented in two parts, summarizes and synthesizes current views on the genetic, molecular, and cell biological underpinnings of the early embryonic phases of enteric nervous system (ENS) formation and its defects. Accurate descriptions of the phenotype of ENS dysplasias, and knowledge of genes which, when mutated, give rise to the disorders (see Part 1 in the previous issue of this journal), are not sufficient to give a real understanding of how these abnormalities arise. The often indirect link between genotype and phenotype must be sought in the early embryonic development of the ENS. Therefore, in this, the second part, we provide a description of the development of the ENS, concentrating mainly on the origin of the ENS precursor cells and on the cell migration by which they become distributed throughout the gastrointestinal tract. This section also includes experimental evidence on the controls of ENS formation derived from classic embryological, cell culture, and molecular genetic approaches. In addition, for reasons of completeness, we also briefly describe the origins of the interstitial cells of Cajal, a cell population closely related anatomically and functionally to the ENS. Finally, a brief sketch is presented of current notions on the developmental processes between the genes and the morphogenesis of the ENS, and of the means by which the known genetic abnormalities might result in the ENS phenotype observed in Hirschsprung's disease.
Collapse
Affiliation(s)
- Donald Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Victoria, Australia.
| | | |
Collapse
|
95
|
Fiorica-Howells E, Hen R, Gingrich J, Li Z, Gershon MD. 5-HT(2A) receptors: location and functional analysis in intestines of wild-type and 5-HT(2A) knockout mice. Am J Physiol Gastrointest Liver Physiol 2002; 282:G877-93. [PMID: 11960784 DOI: 10.1152/ajpgi.00435.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The distribution and function of the 5-hydroxytryptamine (5-HT(2A)) receptor were investigated in the intestines of wild-type (5-HT(2A) +/+) and knockout (5-HT(2A) -/-) mice. In 5-HT(2A) +/+ mice, rats, and guinea pigs, 5-HT(2A) receptor immunoreactivity was found on circular and longitudinal smooth muscle cells, neurons, enterocytes, and Paneth cells. Muscular 5-HT(2A) receptors were concentrated in caveolae; neuronal 5-HT(2A) receptors were found intracellularly and on the plasma membranes of nerve cell bodies and axons. Neuronal 5-HT(2A) immunoreactivity was detected as early as E14 in ganglia, intravillus nerves, and the deep muscle plexus. The 5-HT(2A) -/- colon did not express 5-HT(2A) receptors and did not contract in response to exogenous 5-HT. 5-HT(2A) -/- enterocytes were smaller, Paneth cells fewer, and muscle layers thinner (and showed degeneration) compared with those of 5-HT(2A) +/+ littermates. The 5-HT(2A) receptor may thus be required for the maintenance and/or development of enteric neuroeffectors and other enteric functions, although gastrointestinal and colonic transit times in 5-HT(2A) -/- and +/+ mice did not differ significantly.
Collapse
MESH Headings
- Animals
- Enterocytes/chemistry
- Enterocytes/pathology
- Enterocytes/ultrastructure
- Female
- Fetus/cytology
- Gastric Emptying/physiology
- Gastrointestinal Motility/physiology
- Immunohistochemistry
- Intestines/chemistry
- Intestines/innervation
- Intestines/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Immunoelectron
- Muscle, Smooth/chemistry
- Muscle, Smooth/innervation
- Muscle, Smooth/pathology
- Myenteric Plexus/chemistry
- Myenteric Plexus/ultrastructure
- Paneth Cells/chemistry
- Paneth Cells/pathology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A
- Receptors, Serotonin/analysis
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
Collapse
Affiliation(s)
- Elena Fiorica-Howells
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
96
|
Abstract
This review, which is presented in two parts, summarizes and synthesizes current views on the genetic, molecular, and cell biological underpinnings of the early embryonic phases of enteric nervous system (ENS) formation and its defects. In the first part, we describe the critical features of two principal abnormalities of ENS development: Hirschsprung's disease (HSCR) and intestinal neuronal dysplasia type B (INDB) in humans, and the similar abnormalities in animals. These represent the extremes of the diagnostic spectrum: HSCR has agreed and unequivocal diagnostic criteria, whereas the diagnosis and even existence of INDB as a clinical entity is highly controversial. The difficulties in diagnosis and treatment of both these conditions are discussed. We then review the genes now known which, when mutated or deleted, may cause defects of ENS development. Many of these genetic abnormalities in animal models give a phenotype similar or identical to HSCR, and were discovered by studies of humans and of mouse mutants with similar defects. The most important of these genes are those coding for molecules in the GDNF intercellular signaling system, and those coding for molecules in the ET-3 signaling system. However, a range of other genes for different signaling systems and for transcription factors also disturb ENS formation when they are deleted or mutated. In addition, a large proportion of HSCR cases have not been ascribed to the currently known genes, suggesting that additional genes for ENS development await discovery.
Collapse
Affiliation(s)
- Donald Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Victoria, Australia
| | | |
Collapse
|
97
|
Abstract
Development of the ENS requires the function of a diverse set of genes encoding transcription factors, signaling molecules, and their receptors. Mutations of these genes result in altered ENS function in animals and humans. In particular, such mutations have been shown to contribute to many cases of Hirschsprung's disease. Elucidation of the mechanisms of ENS development and function allow the development of new approaches to the diagnosis, therapy, and prevention of human disorders of gastrointestinal motility.
Collapse
Affiliation(s)
- Michael D Bates
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
98
|
Abstract
Hirschsprung disease is the most common congenital malformation of the enteric nervous system. Phenotypic expression is variable because of incomplete penetrance, and the pathogenesis is multifactorial. Although mutations of the RET tyrosine kinase gene remain the most commonly identified cause, there are now eight separate human gene loci identified whose mutations result in this disease. Analysis of these gene products in experimental animal models and cell systems has led to an increasing elucidation of the signaling pathways that are in operation during specific embryonic time stages and that direct the spatial arrangements and differentiation of enteric neuroblasts. Mutation analysis through in vitro cell expression studies has led to detailed descriptions of the affected microdomains of signal pathway receptors and the cellular pathogenesis of abnormal signaling that leads to apoptosis of developing neurons before the completion of enteric nervous system development. The full description of the pathogenesis of this disorder awaits the definition of new genetic loci, multiple gene interactions, and the acknowledgment of random events that may lead to aganglionosis of the distal bowel.
Collapse
Affiliation(s)
- William M Belknap
- Section of Pediatric Gastroenterology, Department of Pediatrics, Henry Ford Health System, Detroit, Michigan 48202, USA.
| |
Collapse
|
99
|
Abstract
The goals of this review are to summarize some of the novel observations on the genetic and molecular basis of enteric nervous system disorders, with particular emphasis on the relevance of these observations to the practicing neurogastroenterologist. In the last two decades, there has been a greater understanding of genetic loci involved in congenital forms of pseudo-obstruction and Hirschsprung's disease; and the contribution of endothelins and nuclear transcription factors to the development of the enteric nervous system. In addition, clarification of the molecules involved in the activation of the peristaltic reflex, the disorders of the interstitial cells of Cajal, the clinical manifestations of mitochondrial cytopathies affecting the gut, and the application of neurotrophic factors for disorders of colonic function have impacted on practical management of patients with gut dysmotility.
Collapse
Affiliation(s)
- M Camilleri
- Enteric Neuroscience Program, Gastroenterology Research Unit, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA.
| |
Collapse
|
100
|
Affiliation(s)
- C E Gariepy
- Department of Pediatrics, Pediatric Gastroenterology and Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9063, USA.
| |
Collapse
|