51
|
p130Cas scaffolds the signalosome to direct adaptor-effector cross talk during Kaposi's sarcoma-associated herpesvirus trafficking in human microvascular dermal endothelial cells. J Virol 2014; 88:13858-78. [PMID: 25253349 DOI: 10.1128/jvi.01674-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. IMPORTANCE Eukaryotic cell adaptor molecules, without any intrinsic enzymatic activity, are well known to allow a great diversity of specific and coordinated protein-protein interactions imparting signal amplification to different networks for physiological and pathological signaling. They are involved in integrating signals from growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. The present study identifies human microvascular dermal endothelial (HMVEC-d) cellular scaffold protein p130Cas (Crk-associated substrate) as a platform to promote Kaposi's sarcoma-associated herpesvirus (KSHV) trafficking. Early during KSHV de novo infection, p130Cas associates with lipid rafts and scaffolds EphrinA2 (EphA2)-associated critical adaptor members to downstream effector molecules, promoting successful nuclear delivery of the KSHV genome. Hence, simultaneous targeting of the receptor EphA2 and scaffolding action of p130Cas can potentially uncouple the signal cross talk of the KSHV entry-associated upstream signal complex from the immediate downstream trafficking-associated signalosome, consequently routing KSHV toward lysosomal degradation and eventually blocking KSHV infection and associated malignancies.
Collapse
|
52
|
Brignone MS, Lanciotti A, Visentin S, De Nuccio C, Molinari P, Camerini S, Diociaiuti M, Petrini S, Minnone G, Crescenzi M, Laudiero LB, Bertini E, Petrucci TC, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 modulates endosomal pH and protein trafficking in astrocytes: relevance to MLC disease pathogenesis. Neurobiol Dis 2014; 66:1-18. [PMID: 24561067 PMCID: PMC4003525 DOI: 10.1016/j.nbd.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 11/28/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in the gene encoding MLC1, a membrane protein mainly expressed in astrocytes in the central nervous system. Although MLC1 function is unknown, evidence is emerging that it may regulate ion fluxes. Using biochemical and proteomic approaches to identify MLC1 interactors and elucidate MLC1 function we found that MLC1 interacts with the vacuolar ATPase (V-ATPase), the proton pump that regulates endosomal acidity. Because we previously showed that in intracellular organelles MLC1 directly binds Na, K-ATPase, which controls endosomal pH, we studied MLC1 endosomal localization and trafficking and MLC1 effects on endosomal acidity and function using human astrocytoma cells overexpressing wild-type (WT) MLC1 or MLC1 carrying pathological mutations. We found that WT MLC1 is abundantly expressed in early (EEA1(+), Rab5(+)) and recycling (Rab11(+)) endosomes and uses the latter compartment to traffic to the plasma membrane during hyposmotic stress. We also showed that WT MLC1 limits early endosomal acidification and influences protein trafficking in astrocytoma cells by stimulating protein recycling, as revealed by FITC-dextran measurement of endosomal pH and transferrin protein recycling assay, respectively. WT MLC1 also favors recycling to the plasma-membrane of the TRPV4 cation channel which cooperates with MLC1 to activate calcium influx in astrocytes during hyposmotic stress. Although MLC disease-causing mutations differentially affect MLC1 localization and trafficking, all the mutated proteins fail to influence endosomal pH and protein recycling. This study demonstrates that MLC1 modulates endosomal pH and protein trafficking suggesting that alteration of these processes contributes to MLC pathogenesis.
Collapse
Affiliation(s)
- Maria S Brignone
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Lanciotti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Sergio Visentin
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Chiara De Nuccio
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Paola Molinari
- Department of Pharmacology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Serena Camerini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Marco Diociaiuti
- Department of Technology and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefania Petrini
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Gaetana Minnone
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Marco Crescenzi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Luisa Bracci Laudiero
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy; Institute of Translational Pharmacology, CNR, Via del Fosso Cavaliere 100, 00133 Rome, Italy.
| | - Enrico Bertini
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Tamara C Petrucci
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elena Ambrosini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
53
|
Goitre L, De Luca E, Braggion S, Trapani E, Guglielmotto M, Biasi F, Forni M, Moglia A, Trabalzini L, Retta SF. KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun. Free Radic Biol Med 2014; 68:134-47. [PMID: 24291398 PMCID: PMC3994518 DOI: 10.1016/j.freeradbiomed.2013.11.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 01/04/2023]
Abstract
Loss-of-function mutations in the KRIT1 gene (CCM1) have been associated with the pathogenesis of cerebral cavernous malformations (CCM), a major cerebrovascular disease. However, KRIT1 functions and CCM pathogenetic mechanisms remain incompletely understood. Indeed, recent experiments in animal models have clearly demonstrated that the homozygous loss of KRIT1 is not sufficient to induce CCM lesions, suggesting that additional factors are necessary to cause CCM disease. Previously, we found that KRIT1 is involved in the maintenance of the intracellular reactive oxygen species (ROS) homeostasis to prevent ROS-induced cellular dysfunctions, including a reduced ability to maintain a quiescent state. Here, we show that KRIT1 loss of function leads to enhanced expression and phosphorylation of the redox-sensitive transcription factor c-Jun, as well as induction of its downstream target COX-2, in both cellular models and human CCM tissues. Furthermore, we demonstrate that c-Jun upregulation can be reversed by either KRIT1 re-expression or ROS scavenging, whereas KRIT1 overexpression prevents forced upregulation of c-Jun induced by oxidative stimuli. Taken together with the reported role of c-Jun in vascular dysfunctions triggered by oxidative stress, our findings shed new light on the molecular mechanisms underlying KRIT1 function and CCM pathogenesis.
Collapse
Affiliation(s)
- Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy
| | - Elisa De Luca
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy
| | - Stefano Braggion
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy
| | | | - Fiorella Biasi
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy
| | - Marco Forni
- EuroClone SpA Research Laboratory, Torino, Italy
| | - Andrea Moglia
- Department of Agriculture, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco (Torino), Italy
| | - Lorenza Trabalzini
- Department of Biotechnologies, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy.
| |
Collapse
|
54
|
Janczar S, Graham JS, Paige AJW, Gabra H. Targeting locoregional peritoneal dissemination in ovarian cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.4.2.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
55
|
Goitre L, Retta SF. Combined pulldown and time-lapse microscopy studies for determining the role of Rap1 in the crosstalk between integrins and cadherins. Methods Mol Biol 2014; 1120:177-195. [PMID: 24470026 DOI: 10.1007/978-1-62703-791-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The coordinate modulation of the cellular functions of cadherins and integrins plays an essential role in fundamental physiological and pathological processes, including morphogenesis, tissue differentiation and renewal, wound healing, immune surveillance, inflammatory response, tumor progression, and metastasis. Recent findings state the molecular mechanisms underlying the fine-balanced relationship between cadherins and integrins. In particular, some of the novel results recently obtained raise the possibility of a pivotal role for the small GTPase Rap1 in the functional crosstalk between cadherins and integrins. Considering the importance of the molecular signalling triggered by Rap1, here we provide protocols to study this small GTPase in signalling pathways involving cadherins and integrins.
Collapse
Affiliation(s)
- Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | | |
Collapse
|
56
|
Abstract
The Ras-related GTPase Rap has been implicated in multiple cellular functions. In particular, Rap1 is a crucial regulator of both inside-out integrin activation and outside-in E-cadherin-mediated signaling. Thus, Rap1 was proposed as a fundamental regulator of the cross talk between cadherins and integrins. We provide microscopic techniques to study subcellular localization of Rap1 protein in the crosstalk between integrins and cadherins.
Collapse
|
57
|
p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:409-32. [PMID: 23481205 DOI: 10.1016/b978-0-12-394311-8.00018-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
p120 catenin is the best studied member of a subfamily of proteins that associate with the cadherin juxtamembrane domain to suppress cadherin endocytosis. p120 also recruits the minus ends of microtubules to the cadherin complex, leading to junction maturation. In addition, p120 regulates the activity of Rho family GTPases through multiple interactions with Rho GEFs, GAPs, Rho GTPases, and their effectors. Nuclear signaling is affected by the interaction of p120 with Kaiso, a transcription factor regulating Wnt-responsive genes as well as transcriptionally repressing methylated promoters. Multiple alternatively spliced p120 isoforms and complex phosphorylation events affect these p120 functions. In cancer, reduced p120 expression correlates with reduced E-cadherin function and with tumor progression. In contrast, in tumor cells that have lost E-cadherin expression, p120 promotes cell invasion and anchorage-independent growth. Furthermore, p120 is required for Src-induced oncogenic transformation and provides a potential target for future therapeutic interventions.
Collapse
|
58
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
59
|
Tsygankova OM, Wang H, Meinkoth JL. Tumor cell migration and invasion are enhanced by depletion of Rap1 GTPase-activating protein (Rap1GAP). J Biol Chem 2013; 288:24636-46. [PMID: 23864657 DOI: 10.1074/jbc.m113.464594] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The functional significance of the widespread down-regulation of Rap1 GTPase-activating protein (Rap1GAP), a negative regulator of Rap activity, in human tumors is unknown. Here we show that human colon cancer cells depleted of Rap1GAP are endowed with more aggressive migratory and invasive properties. Silencing Rap1GAP enhanced the migration of confluent and single cells. In the latter, migration distance, velocity, and directionality were increased. Enhanced migration was a consequence of increased endogenous Rap activity as silencing Rap expression selectively abolished the migration of Rap1GAP-depleted cells. ROCK-mediated cell contractility was suppressed in Rap1GAP-depleted cells, which exhibited a spindle-shaped morphology and abundant membrane protrusions. Tumor cells can switch between Rho/ROCK-mediated contractility-based migration and Rac1-mediated mesenchymal motility. Strikingly, the migration of Rap1GAP-depleted, but not control cells required Rac1 activity, suggesting that loss of Rap1GAP alters migratory mechanisms. Inhibition of Rac1 activity restored membrane blebbing and increased ROCK activity in Rap1GAP-depleted cells, suggesting that Rac1 contributes to the suppression of contractility. Collectively, these findings identify Rap1GAP as a critical regulator of aggressive tumor cell behavior and suggest that the level of Rap1GAP expression influences the migratory mechanisms that are operative in tumor cells.
Collapse
Affiliation(s)
- Oxana M Tsygankova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6061, USA
| | | | | |
Collapse
|
60
|
Birukova AA, Tian X, Tian Y, Higginbotham K, Birukov KG. Rap-afadin axis in control of Rho signaling and endothelial barrier recovery. Mol Biol Cell 2013; 24:2678-88. [PMID: 23864716 PMCID: PMC3756920 DOI: 10.1091/mbc.e13-02-0098] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This study describes the novel role of Rap1 as a molecular switch for down-regulation of the Rho-dependent pathway of agonist-induced endothelial hyperpermeability. The Rho-Rap-Rac autoregulation loop may represent a fundamental mechanism of homeostasis and be critical for reestablishment of cell monolayer integrity in pathological conditions. Activation of the Rho GTPase pathway determines endothelial cell (EC) hyperpermeability after injurious stimuli. To date, feedback mechanisms of Rho down-regulation critical for barrier restoration remain poorly understood. We tested a hypothesis that Rho down-regulation and barrier recovery of agonist-stimulated ECs is mediated by the Ras family GTPase Rap1. Thrombin-induced EC permeability driven by rapid activation of the Rho GTPase pathway was followed by Src kinase–dependent phosphorylation of the Rap1-specific guanine nucleotide exchange factor (GEF) C3G, activation of Rap1, and initiation of EC barrier recovery. Knockdown experiments showed that Rap1 activation was essential for down-regulation of Rho signaling and actin stress fiber dissolution. Rap1 activation also enhanced interaction between adherens junction (AJ) proteins VE-cadherin and p120-catenin and stimulated AJ reannealing mediated by the Rap1 effector afadin. This mechanism also included Rap1-dependent membrane translocation of the Rac1-specific GEF Tiam1 and activation of Rac1-dependent peripheral cytoskeletal dynamics, leading to resealing of intercellular gaps. These data demonstrate that activation of the Rap1-afadin axis is a physiological mechanism driving restoration of barrier integrity in agonist-stimulated EC monolayers via negative-feedback regulation of Rho signaling, stimulation of actin peripheral dynamics, and reestablishment of cell–cell adhesive complexes.
Collapse
Affiliation(s)
- Anna A Birukova
- Department of Medicine, Section of Pulmonary and Critical Medicine, Lung Injury Center, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
61
|
N-cadherin regulates spatially polarized signals through distinct p120ctn and β-catenin-dependent signalling pathways. Nat Commun 2013; 4:1589. [PMID: 23481397 PMCID: PMC3602931 DOI: 10.1038/ncomms2560] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/29/2013] [Indexed: 12/18/2022] Open
Abstract
The spatial distribution of molecular signals within cells is crucial for cellular functions. Here, as a model to study the polarized spatial distribution of molecular activities, we used cells on micro-patterned strips of fibronectin with one end free and the other end contacting a neighboring cell. Phosphoinositide 3-kinase (PI3K) and the small GTPase Rac display greater activity at the free end, whereas myosin II light chain (MLC) and actin filaments are enriched near the intercellular junction. PI3K and Rac polarization depend specifically on the N-cadherin-p120ctn complex, whereas MLC and actin filament polarization depend on the N-cadherin-β-catenin complex. Integrins promote high PI3K/Rac activities at the free end, and the N-cadherin–p120ctn complex excludes integrin α5 at the junctions to suppress local PI3K and Rac activity. We hence conclude that N-cadherin couples with distinct effectors to polarize PI3K/Rac and MLC/actin filaments in migrating cells.
Collapse
|
62
|
Takino J, Nagamine K, Hori T. Ras guanyl nucleotide releasing protein 2 affects cell viability and cell-matrix adhesion in ECV304 endothelial cells. Cell Adh Migr 2013; 7:262-6. [PMID: 23563504 DOI: 10.4161/cam.24082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ras guanyl nucleotide releasing proteins (RasGRPs) are guanine nucleotide exchange factors that activate Ras and Rap. We recently reported that xrasgrp2, which is a homolog of the human rasgrp2, plays a role in vasculogenesis and/or angiogenesis during early development of Xenopus embryos. However, the function of RasGRP2 in human vascular endothelium remains unknown. Therefore we aimed to analyze the function of human RasGRP2 in vascular endothelial cells. RasGRP2 overexpression did not increase Ras activation. However, it slightly increased Ras expression and increased proliferation in ECV304 cells. Furthermore, RasGRP2 overexpression increased Rap1 activation and cell-matrix adhesion in ECV304 cells. These data demonstrate that RasGRP2 increases cell viability and cell-matrix adhesion through increased Ras expression and Rap1 activation, respectively, in endothelial cells.
Collapse
Affiliation(s)
- Junichi Takino
- Laboratory of Biochemistry, Hiroshima International University, Hiroshima, Japan
| | | | | |
Collapse
|
63
|
Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 2013; 126:393-401. [PMID: 23525005 DOI: 10.1242/jcs.100115] [Citation(s) in RCA: 468] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
E-cadherin is a single-pass transmembrane protein that mediates homophilic cell-cell interactions. Tumour progression is often associated with the loss of E-cadherin function and the transition to a more motile and invasive phenotype. This requires the coordinated regulation of both E-cadherin-mediated cell-cell adhesions and integrin-mediated adhesions that contact the surrounding extracellular matrix (ECM). Regulation of both types of adhesion is dynamic as cells respond to external cues from the tumour microenvironment that regulate polarity, directional migration and invasion. Here, we review the mechanisms by which tumour cells control the cross-regulation between dynamic E-cadherin-mediated cell-cell adhesions and integrin-mediated cell-matrix contacts, which govern the invasive and metastatic potential of tumours. In particular, we will discuss the role of the adhesion-linked kinases Src, focal adhesion kinase (FAK) and integrin-linked kinase (ILK), and the Rho family of GTPases.
Collapse
Affiliation(s)
- Marta Canel
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | | | | | | |
Collapse
|
64
|
E-cadherin expression in the epithelial components of mammary phyllodes tumors. Hum Pathol 2012; 43:2117-23. [DOI: 10.1016/j.humpath.2012.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/20/2022]
|
65
|
Oldenburger A, Maarsingh H, Schmidt M. Multiple facets of cAMP signalling and physiological impact: cAMP compartmentalization in the lung. Pharmaceuticals (Basel) 2012; 5:1291-331. [PMID: 24281338 PMCID: PMC3816672 DOI: 10.3390/ph5121291] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022] Open
Abstract
Therapies involving elevation of the endogenous suppressor cyclic AMP (cAMP) are currently used in the treatment of several chronic inflammatory disorders, including chronic obstructive pulmonary disease (COPD). Characteristics of COPD are airway obstruction, airway inflammation and airway remodelling, processes encompassed by increased airway smooth muscle mass, epithelial changes, goblet cell and submucosal gland hyperplasia. In addition to inflammatory cells, airway smooth muscle cells and (myo)fibroblasts, epithelial cells underpin a variety of key responses in the airways such as inflammatory cytokine release, airway remodelling, mucus hypersecretion and airway barrier function. Cigarette smoke, being next to environmental pollution the main cause of COPD, is believed to cause epithelial hyperpermeability by disrupting the barrier function. Here we will focus on the most recent progress on compartmentalized signalling by cAMP. In addition to G protein-coupled receptors, adenylyl cyclases, cAMP-specific phospho-diesterases (PDEs) maintain compartmentalized cAMP signalling. Intriguingly, spatially discrete cAMP-sensing signalling complexes seem also to involve distinct members of the A-kinase anchoring (AKAP) superfamily and IQ motif containing GTPase activating protein (IQGAPs). In this review, we will highlight the interaction between cAMP and the epithelial barrier to retain proper lung function and to alleviate COPD symptoms and focus on the possible molecular mechanisms involved in this process. Future studies should include the development of cAMP-sensing multiprotein complex specific disruptors and/or stabilizers to orchestrate cellular functions. Compartmentalized cAMP signalling regulates important cellular processes in the lung and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Anouk Oldenburger
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | | | | |
Collapse
|
66
|
Li L, Bennett SAL, Wang L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr 2012; 6:59-70. [PMID: 22647941 PMCID: PMC3364139 DOI: 10.4161/cam.19583] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The survival, proliferation, self-renewal and differentiation of human pluripotent stem cells (hPSCs, including human embryonic stem cells and human induced pluripotent stem cells) involve a number of processes that require cell-cell and cell-matrix interactions. The cell adhesion molecules (CAMs), a group of cell surface proteins play a pivotal role in mediating such interactions. Recent studies have provided insights into the essential roles and mechanisms of CAMs in the regulation of hPSC fate decisions. Here, we review the latest research progress in this field and focus on how E-cadherin and several other important CAMs including classic cadherins, Ig-superfamily CAMs, integrins and heparin sulfate proteoglycans control survival and differentiation of hPSCs.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | | | | |
Collapse
|
67
|
Identification of the Kelch family protein Nd1-L as a novel molecular interactor of KRIT1. PLoS One 2012; 7:e44705. [PMID: 22970292 PMCID: PMC3435375 DOI: 10.1371/journal.pone.0044705] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/06/2012] [Indexed: 11/19/2022] Open
Abstract
Loss-of-function mutations of the KRIT1 gene (CCM1) have been associated with the Cerebral Cavernous Malformation (CCM) disease, which is characterized by serious alterations of brain capillary architecture. The KRIT1 protein contains multiple interaction domains and motifs, suggesting that it might act as a scaffold for the assembly of functional protein complexes involved in signaling networks. In previous work, we defined structure-function relationships underlying KRIT1 intramolecular and intermolecular interactions and nucleocytoplasmic shuttling, and found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. Here we report the identification of the Kelch family protein Nd1-L as a novel molecular interactor of KRIT1. This interaction was discovered through yeast two-hybrid screening of a mouse embryo cDNA library, and confirmed by pull-down and co-immunoprecipitation assays of recombinant proteins, as well as by co-immunoprecipitation of endogenous proteins in human endothelial cells. Furthermore, using distinct KRIT1 isoforms and mutants, we defined the role of KRIT1 domains in the Nd1-L/KRIT1 interaction. Finally, functional assays showed that Nd1-L may contribute to the regulation of KRIT1 nucleocytoplasmic shuttling and cooperate with KRIT1 in modulating the expression levels of the antioxidant protein SOD2, opening a novel avenue for future mechanistic studies. The identification of Nd1-L as a novel KRIT1 interacting protein provides a novel piece of the molecular puzzle involving KRIT1 and suggests a potential functional cooperation in cellular responses to oxidative stress, thus expanding the framework of molecular complexes and mechanisms that may underlie the pathogenesis of CCM disease.
Collapse
|
68
|
Banerjee R, Russo N, Liu M, Van Tubergen E, D'Silva NJ. Rap1 and its regulatory proteins: the tumor suppressor, oncogene, tumor suppressor gene axis in head and neck cancer. Small GTPases 2012; 3:192-7. [PMID: 22684501 DOI: 10.4161/sgtp.20413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer, globally. Previously, we showed that Rap1GAP is a tumor suppressor gene that inhibits tumor growth, but promotes invasion in SCCHN. In this work, we discuss the role of Rap1 and Rap1GAP in SCCHN progression in the context of a microRNA-oncogene-tumor suppressor gene axis, and investigate the role of Rap1GAP in EZH2-mediated invasion. Loss of expression of microRNA-101 in SCCHN leads to upregulation of EZH2, a histone methyltransferase. Overexpression of EZH2 silences Rap1GAP via methylation, thereby promoting activation of its target, Rap1. This microRNA-controlled activation of Rap1, via EZH2-mediated silencing of Rap1GAP, is a novel mechanism of Rap1 regulation. In two independent SCCHN cell lines, downregulation of EZH2 inhibits proliferation and invasion. In both cell lines, stable knockdown of EZH2 (shEZH2) recovers Rap1GAP expression and inhibits proliferation. However, siRNA-mediated knockdown of Rap1GAP in these cells rescues proliferation but not invasion. Thus, EZH2 promotes proliferation and invasion via Rap1GAP-dependent and -independent mechanisms, respectively. Although the studies presented here are in the context of SCCHN, our results may have broader implications, given that Rap1GAP acts as a tumor suppressor in pancreatic cancer, thyroid cancer, and melanoma.
Collapse
Affiliation(s)
- Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
69
|
Shao X, Miao M, Qi X, Chen Z. Ras-proximate-1 GTPase-activating protein and Rac2 may play pivotal roles in the initial development of myelodysplastic syndrome. Oncol Lett 2012; 4:289-298. [PMID: 22844372 DOI: 10.3892/ol.2012.736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/09/2012] [Indexed: 11/06/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a stem cell disease that has a characteristic morphological dysplasia. Adhesion molecules and the Wnt signaling pathway are mostly involved with the self-renewal, proliferation and differentiation of hematopoietic stem cells (HSCs) while Rho GTPases are closely correlated with the cytoskeleton and therefore cell morphology. To gain insight into the poorly understood pathophysiology of MDS, the present study focused on analyzing the gene expression profiles of these molecules with whole genomic array using CD34(+) cells from MDS patients. These profiles showed that N-cadherin, E-cadherin and c-myc binding protein tended to be downregulated, whereas β-catenin, Ras-proximate-1 GTPase-activating protein (Rap1GAP), c-myc promoter binding protein, Rac1, Rac2 and CDC42 tended to be upregulated. However, no change in the expression of genes involved in the canonical Wnt signaling pathway, with the exception of β-catenin, was observed. The array results were confirmed by real-time quantitative polymerase chain reaction (RQ-PCR) using CD34(+) cells from a cohort of patients with MDS-refractory anemia (RA) [WHO (2008) RCUD, RCMD and MDS-U] who had normal karyotypes. Only Rap1GAP and Rac2 showed higher expression levels when mononuclear cells were used from another group of patients with MDS-RA [WHO (2008) RCUD, RCMD and MDS-U] who also had normal karyotypes. We believe that the cadherin-β-catenin-c-myc signaling axis is crucial in the hematopoiesis of HSCs in the early stages of MDS. In addition, Ras-proximate-1 (Rap1), which is negatively regulated by Rap1GAP, may serve as an initiator of this axis through interplay with cadherin. This pathway is strengthened by the upregulation of Rac2, which may allow the nuclear translocation of β-catenin. The aberrant expression of Rho GTPases may also be responsible for the dysplasia characteristics observed in MDS. This study provides vital and new insights into the pathophysiology of MDS. The two small G proteins, Rap1GAP and Rac2, may act as new molecular markers for the diagnosis of MDS.
Collapse
Affiliation(s)
- Xuejun Shao
- The First Affiliated Hospital, Soochow University, Jiangsu Institute of Hematology, Jiangsu, P.R. China
| | | | | | | |
Collapse
|
70
|
Tsang JYS, Mendoza P, Lam CCF, Yu AMC, Putti TC, Karim RZ, Scolyer RA, Lee CS, Tan PH, Tse GM. Involvement of α- and β-catenins and E-cadherin in the development of mammary phyllodes tumours. Histopathology 2012; 61:667-74. [DOI: 10.1111/j.1365-2559.2012.04271.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
71
|
Epifano C, Perez-Moreno M. Crossroads of integrins and cadherins in epithelia and stroma remodeling. Cell Adh Migr 2012; 6:261-73. [PMID: 22568988 DOI: 10.4161/cam.20253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adhesion events mediated by cadherin and integrin adhesion receptors have fundamental roles in the maintenance of the physiological balance of epithelial tissues, and it is well established that perturbations in their normal functional activity and/or changes in their expression are associated with tumorigenesis. Over the last decades, increasing evidence of a dynamic collaborative interaction between these complexes through their shared interactions with cytoskeletal proteins and common signaling pathways has emerged not only as an important regulator of several aspects of epithelial cell behavior, but also as a coordinated adhesion module that senses and transmits signals from and to the epithelia surrounding microenvironment. The tight regulation of their crosstalk is particularly important during epithelial remodeling events that normally take place during morphogenesis and tissue repair, and when defective it leads to cell transformation and aggravated responses of the tumor microenvironment that contribute to tumorigenesis. In this review we highlight some of the interactions that regulate their crosstalk and how this could be implicated in regulating signals across epithelial tissues to sustain homeostasis.
Collapse
Affiliation(s)
- Carolina Epifano
- Epithelial Cell Biology Group, BBVA Foundation-Cancer Cell Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | |
Collapse
|
72
|
Abstract
Migration is a key cellular process, involved during morphogenetic movements as well as in the adult where it participates in immune cell trafficking, wound healing or tumour invasion. As they migrate, cells interact with a microenvironment composed of extracellular matrix and neighbouring cells. Cell-cell adhesions ensure tissue integrity while they allow migration of single or grouped cells within this tissue. Cadherin and nectin-based adherens junctions are key players in intercellular interactions. They are used as adhesive complexes whose mechanical properties improve cell coordination during collective migration and promote cell motility on cadherin substrates. In addition, adherens junctions transduce signals that actively participate in the control of directed cell migration, by providing polarity cues and also participating in contact inhibition of motility.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur, Cell Polarity and Migration Group and CNRS URA 2582, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France,
| |
Collapse
|
73
|
Armstrong SM, Khajoee V, Wang C, Wang T, Tigdi J, Yin J, Kuebler WM, Gillrie M, Davis SP, Ho M, Lee WL. Co-regulation of transcellular and paracellular leak across microvascular endothelium by dynamin and Rac. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:1308-1323. [PMID: 22203054 DOI: 10.1016/j.ajpath.2011.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 11/23/2011] [Accepted: 12/02/2011] [Indexed: 12/23/2022]
Abstract
Increased permeability of the microvascular endothelium to fluids and proteins is the hallmark of inflammatory conditions such as sepsis. Leakage can occur between (paracellular) or through (transcytosis) endothelial cells, yet little is known about whether these pathways are linked. Understanding the regulation of microvascular permeability is essential for the identification of novel therapies to combat inflammation. We investigated whether transcytosis and paracellular leakage are co-regulated. Using molecular and pharmacologic approaches, we inhibited transcytosis of albumin in primary human microvascular endothelium and measured paracellular permeability. Blockade of transcytosis induced a rapid increase in paracellular leakage that was not explained by decreases in caveolin-1 or increases in activity of nitric oxide synthase. The effect required caveolin-1 but was observed in cells depleted of clathrin, indicating that it was not due to the general inhibition of endocytosis. Inhibiting transcytosis by dynamin blockade increased paracellular leakage concomitantly with the loss of cortical actin from the plasma membrane and the displacement of active Rac from the plasmalemma. Importantly, inhibition of paracellular leakage by sphingosine-1-phosphate, which activates Rac and induces cortical actin, caused a significant increase in transcytosis of albumin in vitro and in an ex vivo whole-lung model. In addition, dominant-negative Rac significantly diminished albumin uptake by endothelia. Our findings indicate that transcytosis and paracellular permeability are co-regulated through a signaling pathway linking dynamin, Rac, and actin.
Collapse
Affiliation(s)
- Susan M Armstrong
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vahid Khajoee
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Changsen Wang
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Tieling Wang
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jayesh Tigdi
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jun Yin
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mark Gillrie
- Departments of Microbiology and Infectious Diseases and Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shevaun P Davis
- Departments of Microbiology and Infectious Diseases and Medicine, University of Calgary, Calgary, Alberta, Canada
| | - May Ho
- Departments of Microbiology and Infectious Diseases and Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Warren L Lee
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Division of Respirology and Interdepartmental Division of Critical Care Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
74
|
Molecular Crosstalk between Integrins and Cadherins: Do Reactive Oxygen Species Set the Talk? JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:807682. [PMID: 22203898 PMCID: PMC3238397 DOI: 10.1155/2012/807682] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022]
Abstract
The coordinate modulation of the cellular functions of cadherins and integrins plays an essential role in fundamental physiological and pathological processes, including morphogenesis, tissue differentiation and renewal, wound healing, immune surveillance, inflammatory response, tumor progression, and metastasis. However, the molecular mechanisms underlying the fine-tuned functional communication between cadherins and integrins are still elusive. This paper focuses on recent findings towards the involvement of reactive oxygen species (ROS) in the regulation of cell adhesion and signal transduction functions of integrins and cadherins, pointing to ROS as emerging strong candidates for modulating the molecular crosstalk between cell-matrix and cell-cell adhesion receptors.
Collapse
|
75
|
Weber GF, Bjerke MA, DeSimone DW. Integrins and cadherins join forces to form adhesive networks. J Cell Sci 2011; 124:1183-93. [PMID: 21444749 DOI: 10.1242/jcs.064618] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell-cell and cell-extracellular-matrix (cell-ECM) adhesions have much in common, including shared cytoskeletal linkages, signaling molecules and adaptor proteins that serve to regulate multiple cellular functions. The term 'adhesive crosstalk' is widely used to indicate the presumed functional communication between distinct adhesive specializations in the cell. However, this distinction is largely a simplification on the basis of the non-overlapping subcellular distribution of molecules that are involved in adhesion and adhesion-dependent signaling at points of cell-cell and cell-substrate contact. The purpose of this Commentary is to highlight data that demonstrate the coordination and interdependence of cadherin and integrin adhesions. We describe the convergence of adhesive inputs on cell signaling pathways and cytoskeletal assemblies involved in regulating cell polarity, migration, proliferation and survival, differentiation and morphogenesis. Cell-cell and cell-ECM adhesions represent highly integrated networks of protein interactions that are crucial for tissue homeostasis and the responses of individual cells to their adhesive environments. We argue that the machinery of adhesion in multicellular tissues comprises an interdependent network of cell-cell and cell-ECM interactions and signaling responses, and not merely crosstalk between spatially and functionally distinct adhesive specializations within cells.
Collapse
Affiliation(s)
- Gregory F Weber
- Department of Cell Biology, School of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
76
|
Gloerich M, Bos JL. Regulating Rap small G-proteins in time and space. Trends Cell Biol 2011; 21:615-23. [PMID: 21820312 DOI: 10.1016/j.tcb.2011.07.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 11/25/2022]
Abstract
Signaling by the small G-protein Rap is under tight regulation by its GEFs and GAPs. These are multi-domain proteins that are themselves controlled by distinct upstream pathways, and thus couple different extra- and intracellular cues to Rap. The individual RapGEFs and RapGAPs are, in addition, targeted to specific cellular locations by numerous anchoring mechanisms and, consequently, may control different pools of Rap. Here, we review the various activating signals and targeting mechanisms of these proteins and discuss their contribution to the spatiotemporal regulation and biological functions of the Rap proteins.
Collapse
Affiliation(s)
- Martijn Gloerich
- Molecular Cancer Research, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
77
|
Signalling to actin: role of C3G, a multitasking guanine-nucleotide-exchange factor. Biosci Rep 2011; 31:231-44. [PMID: 21366540 DOI: 10.1042/bsr20100094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
C3G (Crk SH3-domain-binding guanine-nucleotide-releasing factor) is a ubiquitously expressed member of a class of molecules called GEFs (guanine-nucleotide-exchange factor) that activate small GTPases and is involved in pathways triggered by a variety of signals. It is essential for mammalian embryonic development and many cellular functions in adult tissues. C3G participates in regulating functions that require cytoskeletal remodelling such as adhesion, migration, maintenance of cell junctions, neurite growth and vesicle traffic. C3G is spatially and temporally regulated to act on Ras family GTPases Rap1, Rap2, R-Ras, TC21 and Rho family member TC10. Increased C3G protein levels are associated with differentiation of various cell types, indicating an important role for C3G in cellular differentiation. In signalling pathways, C3G serves functions dependent on catalytic activity as well as protein interaction and can therefore integrate signals necessary for the execution of more than one cellular function. This review summarizes our current knowledge of the biology of C3G with emphasis on its role as a transducer of signals to the actin cytoskeleton. Deregulated C3G may also contribute to pathogenesis of human disorders and therefore could be a potential therapeutic target.
Collapse
|
78
|
Vuchak LA, Tsygankova OM, Meinkoth JL. Rap1GAP impairs cell-matrix adhesion in the absence of effects on cell-cell adhesion. Cell Adh Migr 2011; 5:323-31. [PMID: 21785277 DOI: 10.4161/cam.5.4.17041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The significance of the widespread downregulation of Rap1GAP in human tumors is unknown. In previous studies we demonstrated that silencing Rap1GAP expression in human colon cancer cells resulted in sustained increases in Rap activity, enhanced spreading on collagen and the weakening of cell-cell contacts. The latter finding was unexpected based on the role of Rap1 in strengthening cell-cell adhesion and reports that Rap1GAP impairs cell-cell adhesion. We now show that Rap1GAP is a more effective inhibitor of cell-matrix compared to cell-cell adhesion. Overexpression of Rap1GAP in human colon cancer cells impaired Rap2 activity and the ability of cells to spread and migrate on collagen IV. Under the same conditions, Rap1GAP had no effect on cell-cell adhesion. Overexpression of Rap1GAP did not enhance the dissociation of cell aggregates nor did it impair the accumulation of β-catenin and E-cadherin at cell-cell contacts. To further explore the role of Rap1GAP in the regulation of cell-cell adhesion, Rap1GAP was overexpressed in non-transformed thyroid epithelial cells. Although the formation of cell-cell contacts required Rap1, overexpression of Rap1GAP did not impair cell-cell adhesion. These data indicate that transient, modest expression of Rap1GAP is compatible with cell-cell adhesion and that the role of Rap1GAP in the regulation of cell-cell adhesion may be more complex than is currently appreciated.
Collapse
Affiliation(s)
- Lisa A Vuchak
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
79
|
Canel M, Serrels A, Anderson KI, Frame MC, Brunton VG. Use of photoactivation and photobleaching to monitor the dynamic regulation of E-cadherin at the plasma membrane. Cell Adh Migr 2011; 4:491-501. [PMID: 20595808 DOI: 10.4161/cam.4.4.12661] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The dynamic control of E-cadherin is critical for establishing and maintaining cell-cell junctions in epithelial cells. The concentration of E-cadherin molecules at adherens junctions (AJs) is regulated by lateral movement of E-cadherin within the plasma membrane and endocytosis. Here we set out to study the interplay between these processes and their contribution to E-cadherin dynamics. Using photoactivation (PA) and fluorescence recovery after photobleaching (FRAP) we were able to monitor the fate of E-cadherin molecules within the plasma membrane. Our results suggest that the motility of E-cadherin within, and away from, the cell surface are not exclusive or independent mechanisms and there is a fine balance between the two which when perturbed can have dramatic effects on the regulation of AJs.
Collapse
Affiliation(s)
- Marta Canel
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
80
|
Abstract
Vascular endothelial growth factor (VEGF) acting through VEGF receptor 2 (VEGFR2) on endothelial cells (ECs) is a key regulator of angiogenesis, a process essential for wound healing and tumor metastasis. Rap1a and Rap1b, 2 highly homologous small G proteins, are both required for angiogenesis in vivo and for normal EC responses to VEGF. Here we sought to determine the mechanism through which Rap1 promotes VEGF-mediated angiogenesis. Using lineage-restricted Rap1-knockout mice we show that Rap1-deficiency in endothelium leads to defective angiogenesis in vivo, in a dose-dependent manner. Using ECs obtained from Rap1-deficient mice we demonstrate that Rap1b promotes VEGF-VEGFR2 kinase activation and regulates integrin activation. Importantly, the Rap1b-dependent VEGF-VEGFR2 activation is in part mediated via integrin α(v)β(3). Furthermore, in an in vivo model of zebrafish angiogenesis, we demonstrate that Rap1b is essential for the sprouting of intersomitic vessels, a process known to be dependent on VEGF signaling. Using 2 distinct pharmacologic VEGFR2 inhibitors we show that Rap1b and VEGFR2 act additively to control angiogenesis in vivo. We conclude that Rap1b promotes VEGF-mediated angiogenesis by promoting VEGFR2 activation in ECs via integrin α(v)β(3). These results provide a novel insight into the role of Rap1 in VEGF signaling in ECs.
Collapse
|
81
|
Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst. Nature 2010; 467:854-8. [PMID: 20944747 PMCID: PMC5831355 DOI: 10.1038/nature09446] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 08/23/2010] [Indexed: 11/08/2022]
Abstract
Bacillus anthracis is the causative agent of anthrax in humans and other mammals. In lethal systemic anthrax, proliferating bacilli secrete large quantities of the toxins lethal factor (LF) and oedema factor (EF), leading to widespread vascular leakage and shock. Whereas host targets of LF (mitogen-activated protein-kinase kinases) and EF (cAMP-dependent processes) have been implicated in the initial phase of anthrax, less is understood about toxin action during the final stage of infection. Here we use Drosophila melanogaster to identify the Rab11/Sec15 exocyst, which acts at the last step of endocytic recycling, as a novel target of both EF and LF. EF reduces levels of apically localized Rab11 and indirectly blocks vesicle formation by its binding partner and effector Sec15 (Sec15-GFP), whereas LF acts more directly to reduce Sec15-GFP vesicles. Convergent effects of EF and LF on Rab11/Sec15 inhibit expression of and signalling by the Notch ligand Delta and reduce DE-cadherin levels at adherens junctions. In human endothelial cells, the two toxins act in a conserved fashion to block formation of Sec15 vesicles, inhibit Notch signalling, and reduce cadherin expression at adherens junctions. This coordinated disruption of the Rab11/Sec15 exocyst by anthrax toxins may contribute to toxin-dependent barrier disruption and vascular dysfunction during B. anthracis infection.
Collapse
|
82
|
Abstract
Recent investigations have increasingly focussed attention on the roles of intracellular vesicle trafficking in the regulation of epithelial polarity and transformation. Rab25, an epithelial-specific member of the Rab family of small GTPases, has been associated with several epithelial cancers. Whereas Rab25 overexpression is associated with ovarian cancer aggressive behaviour, Rab25 expression is decreased in human colon cancers independent of stage. Recent studies of mouse models of intestinal and colonic neoplasia have demonstrated that Rab25 deficiency markedly promotes the development of neoplasia. Some of these effects appear related to alterations in β1-integrin trafficking to the cell surface. These findings all suggest that Rab25 is a tumour suppressor for colonic neoplasia.
Collapse
|
83
|
Todorović V, Desai BV, Patterson MJS, Amargo EV, Dubash AD, Yin T, Jones JCR, Green KJ. Plakoglobin regulates cell motility through Rho- and fibronectin-dependent Src signaling. J Cell Sci 2010; 123:3576-86. [PMID: 20876660 DOI: 10.1242/jcs.070391] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously showed that the cell-cell junction protein plakoglobin (PG) not only suppresses motility of keratinocytes in contact with each other, but also, unexpectedly, of single cells. Here we show that PG deficiency results in extracellular matrix (ECM)-dependent disruption of mature focal adhesions and cortical actin organization. Plating PG⁻/⁻ cells onto ECM deposited by PG+/⁻ cells partially restored normal cell morphology and inhibited PG⁻/⁻ cell motility. In over 70 adhesion molecules whose expression we previously showed to be altered in PG⁻/⁻ cells, a substantial decrease in fibronectin (FN) in PG⁻/⁻ cells stood out. Re-introduction of PG into PG⁻/⁻ cells restored FN expression, and keratinocyte motility was reversed by plating PG⁻/⁻ cells onto FN. Somewhat surprisingly, based on previously reported roles for PG in regulating gene transcription, PG-null cells exhibited an increase, not a decrease, in FN promoter activity. Instead, PG was required for maintenance of FN mRNA stability. PG⁻/⁻ cells exhibited an increase in activated Src, one of the kinases controlled by FN, a phenotype reversed by plating PG⁻/⁻ cells on ECM deposited by PG+/⁻ keratinocytes. PG⁻/⁻ cells also exhibited Src-independent activation of the small GTPases Rac1 and RhoA. Both Src and RhoA inhibition attenuated PG⁻/⁻ keratinocyte motility. We propose a novel role for PG in regulating cell motility through distinct ECM-Src and RhoGTPase-dependent pathways, influenced in part by PG-dependent regulation of FN mRNA stability.
Collapse
Affiliation(s)
- Viktor Todorović
- Department of Pathology, 303 E. Chicago Avenue, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Watanabe T, Sato K, Kaibuchi K. Cadherin-mediated intercellular adhesion and signaling cascades involving small GTPases. Cold Spring Harb Perspect Biol 2010; 1:a003020. [PMID: 20066109 DOI: 10.1101/cshperspect.a003020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epithelia form physical barriers that separate the internal milieu of the body from its external environment. The biogenesis of functional epithelia requires the precise coordination of many cellular processes. One of the key events in epithelial biogenesis is the establishment of cadherin-dependent cell-cell contacts, which initiate morphological changes and the formation of other adhesive structures. Cadherin-mediated adhesions generate intracellular signals that control cytoskeletal reorganization, polarity, and vesicle trafficking. Among such signaling pathways, those involving small GTPases play critical roles in epithelial biogenesis. Assembly of E-cadherin activates several small GTPases and, in turn, the activated small GTPases control the effects of E-cadherin-mediated adhesions on epithelial biogenesis. Here, we focus on small GTPase signaling at E-cadherin-mediated epithelial junctions.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
85
|
Papusheva E, Heisenberg CP. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO J 2010; 29:2753-68. [PMID: 20717145 DOI: 10.1038/emboj.2010.182] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/09/2010] [Indexed: 12/17/2022] Open
Abstract
Integrin- and cadherin-mediated adhesion is central for cell and tissue morphogenesis, allowing cells and tissues to change shape without loosing integrity. Studies predominantly in cell culture showed that mechanosensation through adhesion structures is achieved by force-mediated modulation of their molecular composition. The specific molecular composition of adhesion sites in turn determines their signalling activity and dynamic reorganization. Here, we will review how adhesion sites respond to mecanical stimuli, and how spatially and temporally regulated signalling from different adhesion sites controls cell migration and tissue morphogenesis.
Collapse
|
86
|
Lampugnani MG, Orsenigo F, Rudini N, Maddaluno L, Boulday G, Chapon F, Dejana E. CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci 2010; 123:1073-80. [PMID: 20332120 DOI: 10.1242/jcs.059329] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Little is known about the molecular mechanisms that regulate the organization of vascular lumen. In this paper we show that lumen formation correlates with endothelial polarization. Adherens junctions (AJs) and VE-cadherin (VEC, encoded by CDH5) are required for endothelial apicobasal polarity in vitro and during embryonic development. Silencing of CDH5 gene expression leads to abrogation of endothelial polarity accompanied by strong alterations in lumenal structure. VEC co-distributes with members of the Par polarity complex (Par3 and PKCzeta) and is needed for activation of PKCzeta. CCM1 is encoded by the CCM1 gene, which is mutated in 60% of patients affected by cerebral cavernous malformation (CCM). The protein interacts with VEC and directs AJ organization and AJ association with the polarity complex, both in cell-culture models and in human CCM1 lesions. Both VEC and CCM1 control Rap1 concentration at cell-cell junctions. We propose that VEC, CCM1 and Rap1 form a signaling complex. In the absence of any of these proteins, AJs are dismantled, cell polarity is lost and vascular lumenal structure is severely altered.
Collapse
|
87
|
Kümper S, Ridley AJ. p120ctn and P-cadherin but not E-cadherin regulate cell motility and invasion of DU145 prostate cancer cells. PLoS One 2010; 5:e11801. [PMID: 20668551 PMCID: PMC2910720 DOI: 10.1371/journal.pone.0011801] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 06/29/2010] [Indexed: 11/30/2022] Open
Abstract
Background Adherens junctions consist of transmembrane cadherins, which interact intracellularly with p120ctn, ß-catenin and α-catenin. p120ctn is known to regulate cell-cell adhesion by increasing cadherin stability, but the effects of other adherens junction components on cell-cell adhesion have not been compared with that of p120ctn. Methodology/Principal Findings We show that depletion of p120ctn by small interfering RNA (siRNA) in DU145 prostate cancer and MCF10A breast epithelial cells reduces the expression levels of the adherens junction proteins, E-cadherin, P-cadherin, ß-catenin and α-catenin, and induces loss of cell-cell adhesion. p120ctn-depleted cells also have increased migration speed and invasion, which correlates with increased Rap1 but not Rac1 or RhoA activity. Downregulation of P-cadherin, β-catenin and α-catenin but not E-cadherin induces a loss of cell-cell adhesion, increased migration and enhanced invasion similar to p120ctn depletion. However, only p120ctn depletion leads to a decrease in the levels of other adherens junction proteins. Conclusions/Significance Our data indicate that P-cadherin but not E-cadherin is important for maintaining adherens junctions in DU145 and MCF10A cells, and that depletion of any of the cadherin-associated proteins, p120ctn, ß-catenin or α-catenin, is sufficient to disrupt adherens junctions in DU145 cells and increase migration and cancer cell invasion.
Collapse
Affiliation(s)
- Sandra Kümper
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
88
|
KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS One 2010; 5:e11786. [PMID: 20668652 PMCID: PMC2910502 DOI: 10.1371/journal.pone.0011786] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 06/25/2010] [Indexed: 01/06/2023] Open
Abstract
KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions.
Collapse
|
89
|
Zeckey C, Dahm M, Wallrath A, Herr M, Walter Kunz H, Vahl CF, Horn S. Synthetic (glyco-)peptides of the homophilic recognition domain of E-cadherin lead to increased E-cadherin mRNA synthesis and are inductors of cell differentiation in primary lung cancer cell lines. Pathol Res Pract 2010; 206:450-7. [PMID: 20403671 DOI: 10.1016/j.prp.2010.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
E-cadherin is one of the critical molecules involved in the metastatic process in many types of cancer. Once combined, E-cadherin exceeds the amount of membranous E-cadherin on the cellular surface by activation of intracellular signaling cascades. Studies on transformed keratinocytes of the HaCat cell line showed induction of differentiation by synthetical partial structures of the homophilic binding region of E-cadherin. The knowledge of effects in lung cancer cells is sparse. Therefore, the effects in primary lung cancer cell lines were investigated. Four primary lung cancer cell lines were incubated for 3, 6, 12, 15, 18, and 24h with synthetic partial structures (peptide and glycopeptide). The control substance was sodium butyrate. mRNA was isolated, and relative quantification of E-cadherin was performed using the Real-Time PCR. During the stimulation period, morphologic pictures were taken, and immunohistochemical staining of membranous E-cadherin was performed. Life/dead assays were used to display cell vitality. The intracellular E-cadherin mRNA amount was increased after incubation with the synthetic partial structures. Life/dead assays showed improved survival and integrated cell/cell bindings after stimulation with the partial structures. Increased cell mortality was revealed after sodium butyrate incubation. An effect mediated via E-cadherin on the cellular surface is proposed. The two synthetic partial structures of the homophilic binding region of E-cadherin increased the intracellular E-cadherin mRNA amount, cell-cell bindings, and survival of the tumor cells. Extracellular binding by synthetic partial structures to the binding region may have a beneficial influence on tumor progression in the metastatic process.
Collapse
Affiliation(s)
- Christian Zeckey
- Department of Cardio-Thoracic and Vascular Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
90
|
Regulation of angiogenesis by a small GTPase Rap1. Vascul Pharmacol 2010; 53:1-10. [DOI: 10.1016/j.vph.2010.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/20/2010] [Accepted: 03/11/2010] [Indexed: 01/09/2023]
|
91
|
Mitra A, Radha V. F-actin-binding domain of c-Abl regulates localized phosphorylation of C3G: role of C3G in c-Abl-mediated cell death. Oncogene 2010; 29:4528-42. [PMID: 20581864 DOI: 10.1038/onc.2010.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The c-Abl tyrosine kinase maintains cellular homeostasis through its ability to regulate apoptosis and actin dynamics. In vivo, c-Abl activity is stringently regulated and mechanisms involved are not fully understood. Here, we identified the Rap1 guanine nucleotide exchange factor, C3G (RapGEF1), as a substrate and an effector of c-Abl-mediated functions. Ectopic expression of c-Abl in mammalian cell lines, known to induce apoptosis, resulted in phosphorylation of endogenous C3G on Y504 coincident with cell detachment and chromatin condensation. Phosphorylation of C3G coincided with restricted c-Abl activation in regions rich in actin, and was dependent on cellular F-actin dynamics. Unlike C3G or c-Abl, p-C3G was resistant to detergent extraction, suggesting its enhanced affinity for the cytoskeleton. Localized C3G phosphorylation and coincidence with cells undergoing cell death was dependent on F-actin-binding domain (FABD) of c-Abl. Activation of endogenous c-Abl by oxidative stress was associated with phosphorylation of cellular C3G on Y504. Inhibition of C3G expression and function using RNAi or dominant-negative approaches inhibited c-Abl-mediated cell death. These findings identify C3G as a novel target of c-Abl and also show that FABD of c-Abl is essential for regulation of its restricted activation to induce apoptosis.
Collapse
Affiliation(s)
- A Mitra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, India
| | | |
Collapse
|
92
|
Li L, Wang S, Jezierski A, Moalim-Nour L, Mohib K, Parks RJ, Retta SF, Wang L. A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem Cells 2010; 28:247-57. [PMID: 20039365 DOI: 10.1002/stem.289] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Regulatory mechanisms pertaining to the self-renewal of stem cells remain incompletely understood. Here, we show that functional interactions between small GTPase Rap1 and the adhesion molecule E-cadherin uniquely regulate the self-renewal of human embryonic stem cells (hESCs). Inhibition of Rap1 suppresses colony formation and self-renewal of hESCs, whereas overexpression of Rap1 augments hESC clonogenicity. Rap1 does not directly influence the expression of the pluripotency genes Oct4 and Nanog. Instead, it affects the endocytic recycling pathway involved in the formation and maintenance of E-cadherin-mediated cell-cell cohesion, which is essential for the colony formation and self-renewal of hESCs. Conversely, distinct from epithelial cells, disruption of E-cadherin mediated cell-cell adhesions induces lysosome delivery and degradation of Rap1. This in turn leads to a further downregulation of E-cadherin function and a subsequent reduction in hESC clonogenic capacity. These findings provide the first demonstration that the interplay between Rap1 and E-cadherin along the endocytic recycling pathway serves as a timely and efficient mechanism to regulate hESC self-renewal. Given the availability of specific activators for Rap1, this work provides a new perspective to enable better maintenance of human pluripotent stem cells.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Downregulation of Rap1GAP in human tumor cells alters cell/matrix and cell/cell adhesion. Mol Cell Biol 2010; 30:3262-74. [PMID: 20439492 DOI: 10.1128/mcb.01345-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rap1GAP expression is decreased in human tumors. The significance of its downregulation is unknown. We show that Rap1GAP expression is decreased in primary colorectal carcinomas. To elucidate the advantages conferred on tumor cells by loss of Rap1GAP, Rap1GAP expression was silenced in human colon carcinoma cells. Suppressing Rap1GAP induced profound alterations in cell adhesion. Rap1GAP-depleted cells exhibited defects in cell/cell adhesion that included an aberrant distribution of adherens junction proteins. Depletion of Rap1GAP enhanced adhesion and spreading on collagen. Silencing of Rap expression normalized spreading and restored E-cadherin, beta-catenin, and p120-catenin to cell/cell contacts, indicating that unrestrained Rap activity underlies the alterations in cell adhesion. The defects in adherens junction protein distribution required integrin signaling as E-cadherin and p120-catenin were restored at cell/cell contacts when cells were plated on poly-l-lysine. Unexpectedly, Src activity was increased in Rap1GAP-depleted cells. Inhibition of Src impaired spreading and restored E-cadherin at cell/cell contacts. These findings provide the first evidence that Rap1GAP contributes to cell/cell adhesion and highlight a role for Rap1GAP in regulating cell/matrix and cell/cell adhesion. The frequent downregulation of Rap1GAP in epithelial tumors where alterations in cell/cell and cell/matrix adhesion are early steps in tumor dissemination supports a role for Rap1GAP depletion in tumor progression.
Collapse
|
94
|
Park ES, Brown AC, DiFeo MA, Barker TH, Lu H. Continuously perfused, non-cross-contaminating microfluidic chamber array for studying cellular responses to orthogonal combinations of matrix and soluble signals. LAB ON A CHIP 2010; 10:571-580. [PMID: 20162232 DOI: 10.1039/b919294h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a microfluidic cell culture array with unique versatility and parallelization for experimental trials requiring perfusion cultures. Specifically, we realize a rectangular chamber array in a PDMS device with three attributes: (i) continuous perfusion; (ii) flow paths that forbid cross-chamber contamination; and (iii) chamber shielding from direct perfusion to minimize shear-induced cell behaviour. These attributes are made possible by a bridge-and-underpass architecture, where flow streams travel vertically to pass over (or under) channels and on-chip valves. The array is also designed for considerable versatility, providing subarray, row, column, or single chamber addressing. It allows for incubation with adsorbed molecules, perfusion of differing media, seeding or extraction of cells, and assay staining. We use the device to characterize different phenotypes of alveolar epithelial type II (ATII) cells, particularly the extent of epithelial-to-mesenchymal transition (EMT), a highly suspected pathway in tissue regeneration and fibrosis. Cells are cultured on combinations of matrix proteins (fibronectin or laminin by row) and soluble signals (with or without transforming growth factor-beta1 by column) with two repeats per chip. Fluorescent assays are performed in the array to assess viability, cytoskeletal organization, and cell-cell junction formation. Assay and morphological data are used to tease-out effects of cues driving each phenotype, confirming this as an effective and versatile combinatorial screening platform.
Collapse
Affiliation(s)
- Edward S Park
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
95
|
Shirinian M, Popovic M, Grabbe C, Varshney G, Hugosson F, Bos H, Rehmann H, Palmer RH. The Rap1 guanine nucleotide exchange factor C3G is required for preservation of larval muscle integrity in Drosophila melanogaster. PLoS One 2010; 5:e9403. [PMID: 20209136 PMCID: PMC2831063 DOI: 10.1371/journal.pone.0009403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 02/04/2010] [Indexed: 11/18/2022] Open
Abstract
C3G is a guanine nucleotide exchange factor (GEF) and modulator of small G-protein activity, which primarily acts on members of the Rap GTPase subfamily. Via promotion of the active GTP bound conformation of target GTPases, C3G has been implicated in the regulation of multiple cellular and developmental events including proliferation, differentiation and apoptosis. The Drosophila C3G orthologue exhibits a domain organization similar to that of vertebrate C3G. Through deletion of the C3G locus, we have observed that loss of C3G causes semi-lethality, and that escaping adult flies are characterized by a reduction in lifespan and general fitness. In situ hybridization reveals C3G expression in the developing embryonic somatic and visceral muscles, and indeed analysis of C3G mutants suggests essential functions of C3G for normal body wall muscle development during larval stages. C3G mutants display abnormal muscle morphology and attachment, as well as failure to properly localize βPS integrins to muscle attachment sites. Moreover, we show that C3G stimulates guanine nucleotide exchange on Drosophila Rap GTPases in vitro. Taken together, we conclude that Drosophila C3G is a Rap1-specific GEF with important functions in maintaining muscle integrity during larval stages.
Collapse
|
96
|
Yuan L, Fairchild MJ, Perkins AD, Tanentzapf G. Analysis of integrin turnover in fly myotendinous junctions. J Cell Sci 2010; 123:939-46. [PMID: 20179102 DOI: 10.1242/jcs.063040] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transient (short-term) cell adhesion underlies dynamic processes such as cell migration, whereas stable (long-term) cell adhesion maintains tissue architecture. Ongoing adhesion complex turnover is essential for transient cell adhesion, but it is not known whether turnover is also required for maintenance of long-term adhesion. We used fluorescence recovery after photobleaching to analyze the dynamics of an integrin adhesion complex (IAC) in a model of long-term cell-ECM adhesion, myotendinous junctions (MTJs), in fly embryos and larvae. We found that the IAC undergoes turnover in MTJs and that this process is mediated by clathrin-dependent endocytosis. Moreover, the small GTPase Rab5 can regulate the proportion of IAC components that undergo turnover. Also, altering Rab5 activity weakened MTJs, resulting in muscle defects. In addition, growth of MTJs was concomitant with a decrease in the proportion of IAC components undergoing turnover. We propose that IAC turnover is tightly regulated in long-term cell-ECM adhesions to allow normal tissue growth and maintenance.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
97
|
|
98
|
Li CB, Hu LL, Wang ZD, Zhong SQ, Lei L. [Regulation of compaction initiation in mouse embryo]. YI CHUAN = HEREDITAS 2010; 31:1177-84. [PMID: 20042384 DOI: 10.3724/sp.j.1005.2009.01177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Developmental events in preimplantation mouse embryos include the first cleavage, the activation of the embryonic genome, the compaction of the blastomeres to form morula (MO), and the formation of the blastocyst (BL). Compaction, the first cell differentiation event in mammalian development, occurs at the late eight-cell stage in the mouse and may be described in terms of some types of morphological change, which involve reorganization within a cell and intercellular reorganization. Surface microvilli became restricted to a few basal sites and to an externally facing (apical) pole. Prior to compaction, the blastomeres are spherical and lack specialized intercellular junctions. During compaction, the cells were flattened against one another, thus maximizing intercellular contact and obscuring intercellular boundaries. It is believed that the events of compaction have an important influence on the processes involved in blastocyst formation, namely the initiation of inner cell mass and trophectoderm differentiation. The inner cell mass will form the future embryo proper, whereas the trophectoderm cells will form only extraembryonic tissues. Compaction is initiated by E-cadherin mediated cell adhesion, which is regulated post-translationally via protein kinase C. With E-cadherin knock-out, maternal E-cadherin is able to mediate the compaction process at the morula stage. Initial adhesion is mediated by homophilic interactions between E-cadherin extracellular domains.In this review, we attempted to describe this process in detail.
Collapse
Affiliation(s)
- Chao-Bo Li
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, Chin.
| | | | | | | | | |
Collapse
|
99
|
Goto M, Mitra RS, Liu M, Lee J, Henson BS, Carey T, Bradford C, Prince M, Wang CY, Fearon ER, D'Silva NJ. Rap1 stabilizes beta-catenin and enhances beta-catenin-dependent transcription and invasion in squamous cell carcinoma of the head and neck. Clin Cancer Res 2009; 16:65-76. [PMID: 20028760 DOI: 10.1158/1078-0432.ccr-09-1122] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE In head and neck squamous cell carcinoma (HNSCC) cells, Rap1 shuttles between the nucleus and cytoplasm. Prior findings suggested that Rap1 may modulate the beta-catenin-independent Wnt pathway in some settings, but the role of Rap1 in beta-catenin-dependent Wnt signaling remains undefined. EXPERIMENTAL DESIGN AND RESULTS We observed that beta-catenin bound to active Rap1 in vitro and Rap1 activated beta-catenin/T-cell factor (TCF)-dependent transcription. Immunofluorescence studies showed that ectopic expression of Rap1 increased nuclear translocation of beta-catenin. Overexpression of active Rap1 facilitated an increase in beta-catenin-mediated transcription that was abrogated by dominant-negative TCF4. Conversely, small interfering RNA-mediated inhibition of endogenous Rap1 expression inhibited beta-catenin/TCF-mediated transcription as well as invasion of HNSCC. Furthermore, inhibition of Rap1 expression downregulated the expression of matrix metalloproteinase 7, a transcriptional target of beta-catenin/TCF. In HNSCC cells stably transfected with beta-catenin or treated with lithium chloride or Wnt3A to stabilize endogenous beta-catenin, inhibition of Rap1 expression led to decreases in the free pool of beta-catenin. Immunohistochemical studies of tissue from HNSCC patients revealed that increased beta-catenin intensity correlated with higher tumor stage. Furthermore, the prognostic effect of active Rap1 on tumor N stage was found to depend on cytosolic beta-catenin expression (P < 0.013). When beta-catenin is high, higher Rap1GTP intensity is associated with more advanced N stage. CONCLUSIONS The findings suggest that Rap1 enhances beta-catenin stability and nuclear localization. In addition to indicating that Rap1 has a significant role in regulating beta-catenin and beta-catenin-dependent progression to more advanced N-stage lesions, these data highlight Rap1 as a potential therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Mitsuo Goto
- Departments of Periodontics and Oral Medicine and Biologic and Materials Science, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Grandoch M, Roscioni SS, Schmidt M. The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. Br J Pharmacol 2009; 159:265-84. [PMID: 19912228 DOI: 10.1111/j.1476-5381.2009.00458.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic degenerative inflammatory diseases, such as chronic obstructive pulmonary disease and Alzheimer's dementia, afflict millions of people around the world, causing death and debilitation. Despite the global impact of these diseases, there have been few innovative breakthroughs into their cause, treatment or cure. As with many debilitating disorders, chronic degenerative inflammatory diseases may be associated with defective or dysfunctional responses to second messengers, such as cyclic adenosinemonophosphate (cAMP). The identification of the cAMP-activated guanine nucleotide exchange factors for Ras-like GTPases, Epac1 (also known as cAMP-GEF-I) and Epac2 (also known as cAMP-GEF-II), profoundly altered the prevailing assumptions concerning cAMP signalling, which until then had been solely associated with protein kinase A (PKA). Studies of the molecular mechanisms of Epac-related signalling have demonstrated that these novel cAMP sensors regulate many physiological processes either alone and/or in concert with PKA. These include calcium handling, cardiac and smooth muscle contraction, learning and memory, cell proliferation and differentiation, apoptosis, and inflammation. The diverse signalling properties of cAMP might be explained by spatio-temporal compartmentalization, as well as A-kinase anchoring proteins, which seem to coordinate Epac signalling networks. Future research should focus on the Epac-regulated dynamics of cAMP, and, hopefully, the development of compounds that specifically interfere with the Epac signalling system in order to determine the precise significance of Epac proteins in chronic degenerative inflammatory disorders.
Collapse
Affiliation(s)
- Maria Grandoch
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | | | | |
Collapse
|