51
|
Valle-Casuso JC, González-Sánchez A, Medina JM, Tabernero A. HIF-1 and c-Src mediate increased glucose uptake induced by endothelin-1 and connexin43 in astrocytes. PLoS One 2012; 7:e32448. [PMID: 22384254 PMCID: PMC3285680 DOI: 10.1371/journal.pone.0032448] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/31/2012] [Indexed: 11/19/2022] Open
Abstract
In previous work we showed that endothelin-1 (ET-1) increases the rate of glucose uptake in astrocytes, an important aspect of brain function since glucose taken up by astrocytes is used to supply the neurons with metabolic substrates. In the present work we sought to identify the signalling pathway responsible for this process in primary culture of rat astrocytes. Our results show that ET-1 promoted an increase in the transcription factor hypoxia-inducible factor-1α (HIF-1α) in astrocytes, as shown in other cell types. Furthermore, HIF-1α-siRNA experiments revealed that HIF-1α participates in the effects of ET-1 on glucose uptake and on the expression of GLUT-1, GLUT-3, type I and type II hexokinase. We previously reported that these effects of ET-1 are mediated by connexin43 (Cx43), the major gap junction protein in astrocytes. Indeed, our results show that silencing Cx43 increased HIF-1α and reduced the effect of ET-1 on HIF-1α, indicating that the effect of ET-1 on HIF-1α is mediated by Cx43. The activity of oncogenes such as c-Src can up-regulate HIF-1α. Since Cx43 interacts with c-Src, we investigated the participation of c-Src in this pathway. Interestingly, both the treatment with ET-1 and with Cx43-siRNA increased c-Src activity. In addition, when c-Src activity was inhibited neither ET-1 nor silencing Cx43 were able to up-regulate HIF-1α. In conclusion, our results suggest that ET-1 by down-regulating Cx43 activates c-Src, which in turn increases HIF-1α leading to the up-regulation of the machinery required to take up glucose in astrocytes. Cx43 expression can be reduced in response not only to ET-1 but also to various physiological and pathological stimuli. This study contributes to the identification of the signalling pathway evoked after Cx43 down-regulation that results in increased glucose uptake in astrocytes. Interestingly, this is the first evidence linking Cx43 to HIF-1, which is a master regulator of glucose metabolism.
Collapse
Affiliation(s)
| | | | | | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
52
|
Gerhart SV, Eble DM, Burger RM, Oline SN, Vacaru A, Sadler KC, Jefferis R, Iovine MK. The Cx43-like connexin protein Cx40.8 is differentially localized during fin ontogeny and fin regeneration. PLoS One 2012; 7:e31364. [PMID: 22347467 PMCID: PMC3275562 DOI: 10.1371/journal.pone.0031364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022] Open
Abstract
Connexins (Cx) are the subunits of gap junctions, membraneous protein channels that permit the exchange of small molecules between adjacent cells. Cx43 is required for cell proliferation in the zebrafish caudal fin. Previously, we found that a Cx43-like connexin, cx40.8, is co-expressed with cx43 in the population of proliferating cells during fin regeneration. Here we demonstrate that Cx40.8 exhibits novel differential subcellular localization in vivo, depending on the growth status of the fin. During fin ontogeny, Cx40.8 is found at the plasma membrane, but Cx40.8 is retained in the Golgi apparatus during regeneration. We next identified a 30 amino acid domain of Cx40.8 responsible for its dynamic localization. One possible explanation for the differential localization is that Cx40.8 contributes to the regulation of Cx43 in vivo, perhaps modifying channel activity during ontogenetic growth. However, we find that the voltage-gating properties of Cx40.8 are similar to Cx43. Together our findings reveal that Cx40.8 exhibits differential subcellular localization in vivo, dependent on a discrete domain in its carboxy terminus. We suggest that the dynamic localization of Cx40.8 differentially influences Cx43-dependent cell proliferation during ontogeny and regeneration.
Collapse
Affiliation(s)
- Sarah V. Gerhart
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Diane M. Eble
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - R. Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Stefan N. Oline
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Ana Vacaru
- Department of Medicine-Division of Liver Disease, Department of Regenerative and Developmental Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Kirsten C. Sadler
- Department of Medicine-Division of Liver Disease, Department of Regenerative and Developmental Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Rebecca Jefferis
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
53
|
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium into the basal and the apical (adluminal) compartments. Meiosis I and II, spermiogenesis, and spermiation all take place in a specialized microenvironment behind the BTB in the apical compartment, but spermatogonial renewal and differentiation and cell cycle progression up to the preleptotene spermatocyte stage take place outside of the BTB in the basal compartment of the epithelium. However, the BTB is not a static ultrastructure. Instead, it undergoes extensive restructuring during the seminiferous epithelial cycle of spermatogenesis at stage VIII to allow the transit of preleptotene spermatocytes at the BTB. Yet the immunological barrier conferred by the BTB cannot be compromised, even transiently, during the epithelial cycle to avoid the production of antibodies against meiotic and postmeiotic germ cells. Studies have demonstrated that some unlikely partners, namely adhesion protein complexes (e.g., occludin-ZO-1, N-cadherin-β-catenin, claudin-5-ZO-1), steroids (e.g., testosterone, estradiol-17β), nonreceptor protein kinases (e.g., focal adhesion kinase, c-Src, c-Yes), polarity proteins (e.g., PAR6, Cdc42, 14-3-3), endocytic vesicle proteins (e.g., clathrin, caveolin, dynamin 2), and actin regulatory proteins (e.g., Eps8, Arp2/3 complex), are working together, apparently under the overall influence of cytokines (e.g., transforming growth factor-β3, tumor necrosis factor-α, interleukin-1α). In short, a "new" BTB is created behind spermatocytes in transit while the "old" BTB above transiting cells undergoes timely degeneration, so that the immunological barrier can be maintained while spermatocytes are traversing the BTB. We also discuss recent findings regarding the molecular mechanisms by which environmental toxicants (e.g., cadmium, bisphenol A) induce testicular injury via their initial actions at the BTB to elicit subsequent damage to germ-cell adhesion, thereby leading to germ-cell loss, reduced sperm count, and male infertility or subfertility. Moreover, we also critically evaluate findings in the field regarding studies on drug transporters in the testis and discuss how these influx and efflux pumps regulate the entry of potential nonhormonal male contraceptives to the apical compartment to exert their effects. Collectively, these findings illustrate multiple potential targets are present at the BTB for innovative contraceptive development and for better delivery of drugs to alleviate toxicant-induced reproductive dysfunction in men.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
54
|
Hervé JC, Derangeon M, Sarrouilhe D, Giepmans BNG, Bourmeyster N. Gap junctional channels are parts of multiprotein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1844-65. [PMID: 22197781 DOI: 10.1016/j.bbamem.2011.12.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Gap junctional channels are a class of membrane channels composed of transmembrane channel-forming integral membrane proteins termed connexins, innexins or pannexins that mediate direct cell-to-cell or cell-to extracellular medium communication in almost all animal tissues. The activity of these channels is tightly regulated, particularly by intramolecular modifications as phosphorylations of proteins and via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signaling enzymes, substrates, and potential effectors (such as channels) into multiprotein signaling complexes that may be anchored to the cytoskeleton. Protein-protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulations). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and highlights the function of these protein-protein interactions in cell physiology and aberrant function in diseases. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France.
| | | | | | | | | |
Collapse
|
55
|
Rhett JM, Gourdie RG. The perinexus: a new feature of Cx43 gap junction organization. Heart Rhythm 2011; 9:619-23. [PMID: 21978964 DOI: 10.1016/j.hrthm.2011.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Indexed: 11/24/2022]
Affiliation(s)
- Joshua Matthew Rhett
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
56
|
Leithe E, Sirnes S, Fykerud T, Kjenseth A, Rivedal E. Endocytosis and post-endocytic sorting of connexins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1870-9. [PMID: 21996040 DOI: 10.1016/j.bbamem.2011.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/19/2011] [Accepted: 09/28/2011] [Indexed: 12/15/2022]
Abstract
The connexins constitute a family of integral membrane proteins that form intercellular channels, enabling adjacent cells in solid tissues to directly exchange ions and small molecules. These channels assemble into distinct plasma membrane domains known as gap junctions. Gap junction intercellular communication plays critical roles in numerous cellular processes, including control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are dynamic plasma membrane domains, and there is increasing evidence that modulation of endocytosis and post-endocytic trafficking of connexins are important mechanisms for regulating the level of functional gap junctions at the plasma membrane. The emerging picture is that multiple pathways exist for endocytosis and sorting of connexins to lysosomes, and that these pathways are differentially regulated in response to physiological and pathophysiological stimuli. Recent studies suggest that endocytosis and lysosomal degradation of connexins is controlled by a complex interplay between phosphorylation and ubiquitination. This review summarizes recent progress in understanding the molecular mechanisms involved in endocytosis and post-endocytic sorting of connexins, and the relevance of these processes to the regulation of gap junction intercellular communication under normal and pathophysiological conditions. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Cancer Prevention, Oslo University Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
57
|
Cyr DG. Connexins and pannexins: Coordinating cellular communication in the testis and epididymis. SPERMATOGENESIS 2011; 1:325-338. [PMID: 22332116 DOI: 10.4161/spmg.1.4.18948] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/21/2011] [Accepted: 11/07/2011] [Indexed: 12/15/2022]
Abstract
Gap junctions and connexins are critical for coordinating cellular functions in complex epithelia. In recent years there has been increased interest in understanding the regulation and function of gap junctions in both the testis and epididymis. Studies in transgenic mice in which connexin 43 (Cx43) is mutated or is knocked down only in Sertoli cells have demonstrated the essential role of Cx43 in spermatogenesis and differentiation of Sertoli cells. In the epididymis developmental studies have shown a role for numerous connexins in the differentiation of epithelial cells and communication between the basal cells and both principal and clear cells. In both tissues several factors, such thyroid hormones and androgens, are important in regulating expression and function of connexins. Pannexins, which form cellular channels but are structurally similar to gap junction proteins, have been identified in both testis and epididymis and, in the epididymis, are regulated by androgens. The objective of this review is to summarize the advances that have been made on the role and regulation of connexins and pannexins in the testis and epididymis and their implication in spermatogenesis and sperm maturation.
Collapse
Affiliation(s)
- Daniel G Cyr
- INRS-Institut Armand Frappier; University of Quebec; Laval, QC Canada
| |
Collapse
|
58
|
Pointis G, Gilleron J, Carette D, Segretain D. Testicular connexin 43, a precocious molecular target for the effect of environmental toxicants on male fertility. SPERMATOGENESIS 2011; 1:303-317. [PMID: 22332114 DOI: 10.4161/spmg.1.4.18392] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 02/08/2023]
Abstract
Many recent epidemiological, clinical and experimental findings support the hypothesis that environmental toxicants are responsible for the increasing male reproductive disorders (congenital malformations, declining sperm counts and testicular cancer) over the past 20 years. It has also been reported that exposure to these toxicants, during critical periods of development (fetal and neonatal), represents a more considerable risk for animals and humans than exposure during adulthood. However, the molecular targets for these chemicals have not been clearly identified. Recent studies showed that a family of transmembranous proteins, named connexins, regulates numerous physiological processes involved in testicular development and function, such as Sertoli and germ cell proliferation, differentiation, germ cell migration and apoptosis. In the testis, knockout strategy revealed that connexin 43, the predominant connexin in this organ, is essential for spermatogenesis. In addition, there is evidence that many environmental toxicants could alter testicular connexin 43 by dysregulation of numerous mechanisms controlling its function. In the present work, we propose first to give an overview of connexin expression and intercellular gap junction coupling in the developing fetal and neonatal testes. Second, we underline the impact of maternally chemical exposure on connexin 43 expression in the perinatal developing testis. Lastly, we attempt to link this precocious effect to male offspring fertility.
Collapse
|
59
|
Wu XF, Liu WT, Liu YP, Huang ZJ, Zhang YK, Song XJ. Reopening of ATP-sensitive potassium channels reduces neuropathic pain and regulates astroglial gap junctions in the rat spinal cord. Pain 2011; 152:2605-2615. [PMID: 21907492 DOI: 10.1016/j.pain.2011.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/26/2011] [Accepted: 08/02/2011] [Indexed: 01/27/2023]
Abstract
Adenosine triphosphate-sensitive potassium (K(ATP)) channels are suggested to be involved in pathogenesis of neuropathic pain, but remain underinvestigated in primary afferents and in the spinal cord. We examined alterations of K(ATP) channels in rat spinal cord and tested whether and how they could contribute to neuropathic pain. The results showed that protein expression for K(ATP) channel subunits SUR1, SUR2, and Kir6.1, but not Kir6.2, were significantly downregulated and associated with thermal hyperalgesia and mechanical allodynia after sciatic nerve injury. Spinal administration of a K(ATP) channel opener cromakalim (CRO, 5, 10, and 20 μg, respectively) prevented or suppressed, in a dose-dependent manner, the hyperalgesia and allodynia. Nerve injury also significantly increased expression and phosphorylation of connexin 43, an astroglial gap junction protein. Such an increase of phosphorylation of connexin 43 was inhibited by CRO treatment. Furthermore, preadministration of an astroglial gap junction decoupler carbenoxolone (10 μg) completely reversed the inhibitory effects of CRO treatment on the hyperalgesia and allodynia and phosphorylation of NR1 and NR2B receptors and the subsequent activation of Ca(2+)-dependent signals Ca(2+)/calmodulin-dependent kinase II and cyclic adenosine monophosphate (cAMP) response element binding protein. These findings suggest that nerve injury-induced downregulation of the K(ATP) channels in the spinal cord may interrupt the astroglial gap junctional function and contribute to neuropathic pain, thus the K(ATP) channels opener can reduce neuropathic pain probably partly via regulating the astroglial gap junctions. This study may provide a new strategy for treating neuropathic pain using K(ATP) channel openers in the clinic.
Collapse
Affiliation(s)
- Xue-Feng Wu
- Department of Neurobiology, Parker University Research Institute, Dallas, TX, USA State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
60
|
Lazarowski ER, Sesma JI, Seminario-Vidal L, Kreda SM. Molecular mechanisms of purine and pyrimidine nucleotide release. ADVANCES IN PHARMACOLOGY 2011; 61:221-61. [PMID: 21586361 DOI: 10.1016/b978-0-12-385526-8.00008-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Given the widespread importance of purinergic receptor-evoked signaling, understanding how ATP and other nucleotides are released from cells in a regulated manner is an essential physiological question. Nonlytic release of ATP, UTP, UDP-glucose, and other nucleotides occurs in all cell types and tissues via both constitutive mechanisms, that is, in the absence of external stimuli, and to a greater extent in response to biochemical or mechanical/physical stimuli. However, a molecular understanding of the processes regulating nucleotide release has only recently begun to emerge. It is generally accepted that nucleotide release occurs in two different scenarios, exocytotic release from the secretory pathway or via conductive/transport mechanisms, and a critical review of our current understanding of these mechanisms is presented in this chapter.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Cystic Fibrosis/Pulmonary Research & Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, USA
| | | | | | | |
Collapse
|
61
|
Palatinus JA, Rhett JM, Gourdie RG. The connexin43 carboxyl terminus and cardiac gap junction organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1831-43. [PMID: 21856279 DOI: 10.1016/j.bbamem.2011.08.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 12/09/2022]
Abstract
The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Joseph A Palatinus
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
62
|
Gilleron J, Carette D, Fiorini C, Dompierre J, Macia E, Denizot JP, Segretain D, Pointis G. The large GTPase dynamin2: A new player in connexin 43 gap junction endocytosis, recycling and degradation. Int J Biochem Cell Biol 2011; 43:1208-17. [DOI: 10.1016/j.biocel.2011.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
63
|
Gilleron J, Carette D, Fiorini C, Benkdane M, Segretain D, Pointis G. Connexin 43 gap junction plaque endocytosis implies molecular remodelling of ZO-1 and c-Src partners. Commun Integr Biol 2011; 2:104-6. [PMID: 19704902 DOI: 10.4161/cib.7626] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 11/19/2022] Open
Abstract
Gap junctions, through their constitutive proteins, connexins (Cx), are involved in several processes including regulation of cellular proliferation, tissue differentiation, homeostasis and neoplasic transformation. Internalization of the gap junction plaque to form annular gap junction is a dynamic process, which present similarities with endocytosis, and participates in the control of gap junction coupling. Cx43 exhibits dynamic trafficking that needs sequential implication of a large number of protein partners. We have recently shown that ZO-1 localized in both sides of the gap junction plaque was restricted to one side during internalization. The dissociation between ZO-1 and Cx43 particularly occurred on the face where c-Src specifically associated with Cx43 and was abnormally accelerated in response to a carcinogen. In this addendum we summarize and further discuss these results.
Collapse
|
64
|
Then C, Bergler T, Jeblick R, Jung B, Banas B, Krämer BK. Hypertonic stress promotes the upregulation and phosphorylation of zonula occludens 1. Nephron Clin Pract 2011; 119:p11-21. [PMID: 21734410 DOI: 10.1159/000327567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Tight junction molecules form a barrier between adjacent cells and mediate the cells' ability to develop membranes that constitute boundaries of different compartments within the body. Membranes with selective ion and water passage are important for the electrolyte and water homeostasis in the kidney. Due to their role in the urinary concentration process, renal medullary cells are exposed to hyperosmotic stress. Therefore, we were interested in the question of how mouse inner medullary collecting duct cells (mIMCD3) manage to maintain their cell-cell contacts, despite hypertonicity-induced cell shrinkage. Employing mRNA expression analysis, we found that the zonula occludens type 1 (Zo-1), multi-PDZ domain protein 1 (MUPP1) and cortactin mRNA levels were upregulated in a tonicity-dependent manner. Using Western blot analysis, immunoprecipitation and immunofluorescence, we show that the Zo-1 protein is upregulated, phosphorylated and linked to the actin cytoskeleton in response to hypertonic stress. After cell exposure to hypertonicity, rearrangement of the actin cytoskeleton resulted in a stronger colocalization of actin fibres with Zo-1. Urea, which generates hyperosmolality, but no transcellular gradient, did not induce changes in Zo-1 protein expression or actin rearrangement. This data indicates that Zo-1 is a response protein to inner medullary tonicity and that extracellular stressors can promote Zo-1 protein expression, tyrosine phosphorylation and cytoskeleton association.
Collapse
Affiliation(s)
- Cornelia Then
- Department of Internal Medicine II, University Medical Center, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
65
|
Remo BF, Qu J, Volpicelli FM, Giovannone S, Shin D, Lader J, Liu FY, Zhang J, Lent DS, Morley GE, Fishman GI. Phosphatase-resistant gap junctions inhibit pathological remodeling and prevent arrhythmias. Circ Res 2011; 108:1459-66. [PMID: 21527737 DOI: 10.1161/circresaha.111.244046] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Posttranslational phosphorylation of connexin43 (Cx43) has been proposed as a key regulatory event in normal cardiac gap junction expression and pathological gap junction remodeling. Nonetheless, the role of Cx43 phosphorylation in the context of the intact organism is poorly understood. OBJECTIVE To establish whether specific Cx43 phosphorylation events influence gap junction expression and pathological remodeling. METHODS AND RESULTS We generated Cx43 germline knock-in mice in which serines 325/328/330 were replaced with phosphomimetic glutamic acids (S3E) or nonphosphorylatable alanines (S3A). The S3E mice were resistant to acute and chronic pathological gap junction remodeling and displayed diminished susceptibility to the induction of ventricular arrhythmias. Conversely, the S3A mice showed deleterious effects on cardiac gap junction formation and function, developed electric remodeling, and were highly susceptible to inducible arrhythmias. CONCLUSIONS These data demonstrate a mechanistic link between posttranslational phosphorylation of Cx43 and gap junction formation, remodeling, and arrhythmic susceptibility.
Collapse
Affiliation(s)
- Benjamin F Remo
- Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Ave, Smilow 801, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Segretain D, Zeghimi A, Carette D, Carpentier F, Dompierre J, Gilleron J, Pointis G. Connexines testiculaires: marqueurs physiopathologiques et cibles potentielles aux toxiques environnementaux. Basic Clin Androl 2011. [DOI: 10.1007/s12610-011-0123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Résumé
Les jonctions communicantes et leurs protéines constitutives, les connexines (Cxs), sont des constituants nécessaires à la cohésion tissulaire et reconnus comme suppresseurs de tumeurs. Le but de la présente revue est de faire le point sur l’organisation et le rôle des Cxs au sein du testicule et d’analyser leur expression en physiopathologie testiculaire. Organisées en structures hexamèriques formant un canal reliant directement les cytoplasmes des cellules adjacentes, les Cxs sont impliquées dans de nombreux processus physiologiques tels que la prolifération et la différenciation cellulaires. Le maintien d’une balance entre prolifération, différenciation et apoptose est un équilibre primordial évitant une prolifération cellulaire anarchique, risque de cancer. La spermatogenèse est un modèle sophistiqué de prolifération et de différenciation des cellules germinales dans lequel les Cxs jouent un rôle essentiel. Il est acquis qu’une altération de l’expression membranaire des Cxs est l’un des signes avant-coureurs de la cinétique tumorale germinale, et il a été suggéré que les toxiques environnementaux qui, dans leur grande majorité, affectent l’expression de ces protéines, puissent être impliqués dans le développement de cette pathologie. La recherche de molécules capables de freiner les effets délétères de toxiques carcinogènes sur les Cxs semble être à l’heure actuelle une voie intéressante ouvrant de nouvelles perspectives en santé humaine.
Collapse
|
67
|
Rhett JM, Jourdan J, Gourdie RG. Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol Biol Cell 2011; 22:1516-28. [PMID: 21411628 PMCID: PMC3084674 DOI: 10.1091/mbc.e10-06-0548] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cx43 gap junctions (GJs) are integral to the function of the mammalian heart. It is shown that ZO-1 dynamically regulates the transition between Cx43 connexons and GJ intercellular channels, determining the balance of connexon-mediated cell permeability to GJ communication. Importantly, a novel domain proximal to GJs is identified—the perinexus. Connexin 43 (Cx43) is a gap junction (GJ) protein widely expressed in mammalian tissues that mediates cell-to-cell coupling. Intercellular channels comprising GJ aggregates form from docking of paired connexons, with one each contributed by apposing cells. Zonula occludens-1 (ZO-1) binds the carboxy terminus of Cx43, and we have previously shown that inhibition of the Cx43/ZO-1 interaction increases GJ size by 48 h. Here we demonstrated that increases in GJ aggregation occur within 2 h (∼Cx43 half-life) following disruption of Cx43/ZO-1. Immunoprecipitation and Duolink protein–protein interaction assays indicated that inhibition targets ZO-1 binding with Cx43 in GJs as well as connexons in an adjacent domain that we term the “perinexus.” Consistent with GJ size increases being matched by decreases in connexons, inhibition of Cx43/ZO-1 reduced the extent of perinexal interaction, increased the proportion of connexons docked in GJs relative to undocked connexons in the plasma membrane, and increased GJ intercellular communication while concomitantly decreasing hemichannel-mediated membrane permeance in contacting, but not noncontacting, cells. ZO-1 small interfering RNA and overexpression experiments verified that loss and gain of ZO-1 function govern the transition of connexons into GJs. It is concluded that ZO-1 regulates the rate of undocked connexon aggregation into GJs, enabling dynamic partitioning of Cx43 channel function between junctional and proximal nonjunctional domains of plasma membrane.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
68
|
Lie PPY, Cheng CY, Mruk DD. The biology of the desmosome-like junction a versatile anchoring junction and signal transducer in the seminiferous epithelium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:223-69. [PMID: 21199783 PMCID: PMC4381909 DOI: 10.1016/b978-0-12-385859-7.00005-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian spermatogenesis, a complex process that involves the movement of developing germ cells across the seminiferous epithelium, entails extensive restructuring of Sertoli-Sertoli and Sertoli-germ cell junctions. Presently, it is not entirely clear how zygotene spermatocytes gain entry into the adluminal compartment of the seminiferous epithelium, which is sealed off from the systemic circulation by the Sertoli cell component of the blood-testis barrier, without compromising barrier integrity. To begin to address this question, it is critical that we first have a good understanding of the biology and the regulation of different types of Sertoli-Sertoli and Sertoli-germ cell junctions in the testis. Supported by recent studies in the field, we discuss how crosstalk between different types of junctions contributes to their restructuring during germ cell movement across the blood-testis barrier. We place special emphasis on the emerging role of desmosome-like junctions as signal transducers during germ cell movement across the seminiferous epithelium.
Collapse
Affiliation(s)
- Pearl P Y Lie
- Population Council, Center for Biomedical Research, New York, New York, USA
| | | | | |
Collapse
|
69
|
Martinez G, de Iongh R. The lens epithelium in ocular health and disease. Int J Biochem Cell Biol 2010; 42:1945-63. [PMID: 20883819 DOI: 10.1016/j.biocel.2010.09.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/19/2010] [Accepted: 09/20/2010] [Indexed: 01/11/2023]
|
70
|
Pointis G, Gilleron J, Carette D, Segretain D. Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1607-20. [PMID: 20403873 DOI: 10.1098/rstb.2009.0114] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a highly regulated process of germ cell proliferation and differentiation, starting from spermatogonia to spermatocytes and giving rise to spermatids, the future spermatozoa. In addition to endocrine regulation, testicular cell-cell interactions are essential for spermatogenesis. This precise control is mediated through paracrine/autocrine pathways, direct intercellular contacts and through intercellular communication channels, consisting of gap junctions and their constitutive proteins, the connexins. Gap junctions are localized between adjacent Leydig cells, between Sertoli cells and between Sertoli cells and specific germ cells. This review focuses on the distribution of connexins within the seminiferous epithelium, their participation in gap junction channel formation, the control of their expression and the physiological relevance of these junctions in both the Sertoli-Sertoli cell functional synchronization and the Sertoli-germ cell dialogue. In this review, we also discuss the potential implication of disrupted connexin in testis cancer, since impaired expression of connexin has been described as a typical feature of tumoral proliferation.
Collapse
Affiliation(s)
- Georges Pointis
- INSERM U 895, Team 5 Physiopathology of Germ Cell Control: Genomic and Non-genomic Mechanisms, Bâtiment Universitaire ARCHIMED, C3M, 151 route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | | | | | | |
Collapse
|
71
|
Herrero-González S, Gangoso E, Giaume C, Naus CC, Medina JM, Tabernero A. Connexin43 inhibits the oncogenic activity of c-Src in C6 glioma cells. Oncogene 2010; 29:5712-23. [PMID: 20676131 DOI: 10.1038/onc.2010.299] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the characteristics of gliomas is a decrease in the expression of connexin43, a protein that forms gap junctions. Restoring connexin43 expression in glioma cells reduces their exacerbated rate of cell growth, although it is not yet known how connexin43 modifies the expression of genes involved in cell proliferation. Here, we show that restoring connexin43 to C6 glioma cells impedes their progression from G0/G1 to the S phase of the cell cycle by reducing retinoblastoma phosphorylation and cyclin E expression through the upregulation of p21 and p27. Interestingly, connexin43 diminishes the oncogenic activity of c-Src exhibited by glioma cells. By studying a Tyr247 and Tyr265 mutant connexin43, we show that these residues are required for connexin43 to inhibit c-Src activity and cell proliferation. In conclusion, by acting as a substrate of c-Src, connexin43 reduces its oncogenic activity and decreases the rate of glioma cell proliferation, potentially an early step in the antiproliferative effects of connexin43. Although c-Src is known to phosphorylate connexin43, this study provides the first evidence that connexin43 can also inhibit c-Src activity.
Collapse
Affiliation(s)
- S Herrero-González
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
72
|
Carette D, Gilleron J, Segretain D, Pointis G. Heteromeric connexin 43/connexin 33 complex endocytosis: A connexin phosphorylation independent mechanism. Biochimie 2010; 92:555-9. [DOI: 10.1016/j.biochi.2010.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
|
73
|
Abstract
Gap junctions (GJs) allow direct communication between cells. In the heart, GJs mediate the electrical coupling of cardiomyocytes and as such dictate the speed and direction of cardiac conduction. A prominent feature of acquired structural heart disease is remodeling of GJ protein expression and localization concomitant with increased susceptibility to lethal arrhythmias, leading many to hypothesize that the two are causally linked. Detailed understanding of the cellular mechanisms that regulate GJ localization and function within cardiomyocytes may therefore uncover potential therapeutic strategies for a significant clinical problem. This review will outline our current understanding of GJ cell biology with the intent of highlighting cellular mechanisms responsible for GJ remodeling associated with cardiac disease.
Collapse
|
74
|
Olk S, Zoidl G, Dermietzel R. Connexins, cell motility, and the cytoskeleton. ACTA ACUST UNITED AC 2010; 66:1000-16. [PMID: 19544403 DOI: 10.1002/cm.20404] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Connexins (Cx) comprise a family of transmembrane proteins, which form intercellular channels between plasma membranes of two adjoining cells, commonly known as gap junctions. Recent reports revealed that Cx proteins interact with diverse cellular components to form a multiprotein complex, which has been termed "Nexus". Potential interaction partners include proteins such as cytoskeletal proteins, scaffolding proteins, protein kinases and phosphatases. These interactions allow correct subcellular localization of Cxs and functional regulation of gap junction-mediated intercellular communication. Evidence is accruing that Cxs might have channel-independent functions, which potentially include regulation of cell migration, cell polarization and growth control. In the current review, we summarize recent knowledge on Cx interactions with cytoskeletal proteins and highlight some aspects of their role in cellular motility.
Collapse
Affiliation(s)
- Stephan Olk
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | | | | |
Collapse
|
75
|
Pidoux G, Gerbaud P, Gnidehou S, Grynberg M, Geneau G, Guibourdenche J, Carette D, Cronier L, Evain-Brion D, Malassiné A, Frendo JL. ZO-1 is involved in trophoblastic cell differentiation in human placenta. Am J Physiol Cell Physiol 2010; 298:C1517-26. [PMID: 20200207 DOI: 10.1152/ajpcell.00484.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trophoblastic cell-cell fusion is an essential event required during human placental development. Several membrane proteins have been described to be directly involved in this process, including connexin 43 (Cx43), syncytin 1 (Herv-W env), and syncytin 2 (Herv-FRD env glycoprotein). Recently, zona occludens (ZO) proteins (peripheral membrane proteins associated with tight junctions, adherens junctions, and gap junctions) were shown to be involved in mouse placental development. Moreover, zona occludens 1 (ZO-1) was localized mainly at the intercellular boundaries between human trophoblastic cells. Therefore the role of ZO-1 in the dynamic process of human trophoblastic cell-cell fusion was investigated using primary trophoblastic cells in culture. In vitro as in situ, ZO-1 was localized mainly at the intercellular boundaries between trophoblastic cells where its expression substantially decreased during differentiation and during fusion. At the same time, Cx43 was localized at the interface of trophoblastic cells and its expression increased during differentiation. To determine a functional role for ZO-1 during trophoblast differentiation, small interfering RNA (siRNA) was used to knock down ZO-1 expression. Cytotrophoblasts treated with ZO-1 siRNA fused poorly, but interestingly, decreased Cx43 expression without altering the functionality of trophoblastic cell-cell communication as measured by relative permeability time constant determined using gap-FRAP experiments. Because kinetics of Cx43 and ZO-1 proteins show a mirror image, a potential association of these two proteins was investigated. By using coimmunoprecipitation experiments, a physical interaction between ZO-1 and Cx43 was demonstrated. These results demonstrate that a decrease in ZO-1 expression reduces human trophoblast cell-cell fusion and differentiation.
Collapse
Affiliation(s)
- Guillaume Pidoux
- Institut National de la Santé et de la Recherche Médicale, U767, Paris, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Crosstalk between desmoglein-2/desmocollin-2/Src kinase and coxsackie and adenovirus receptor/ZO-1 protein complexes, regulates blood-testis barrier dynamics. Int J Biochem Cell Biol 2010; 42:975-86. [PMID: 20188849 DOI: 10.1016/j.biocel.2010.02.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/26/2010] [Accepted: 02/08/2010] [Indexed: 11/22/2022]
Abstract
Morphological studies in the testis reported the presence of 'desmosome-like' junctions between Sertoli cells at the blood-testis barrier, whose function is also constituted by tight junctions and basal ectoplasmic specializations. Unfortunately, little is known about the role of desmosomes in blood-testis barrier dynamics. This study aims to fill this gap with the functional investigation of two desmosomal cadherins, desmoglein-2 and desmocollin-2, by their specific knockdown in Sertoli cells cultured in vitro. Reminiscent of the blood-testis barrier in vivo, desmosome-like structures were visible by electron microscopy when Sertoli cells were cultured at high density, thereby forming a polarized epithelium with functional cell junctions. At this point, we opted to focus our efforts on desmoglein-2 and desmocollin-2 based on results which illustrated desmosomal mRNAs to be expressed by Sertoli and germ cells, as well as on results which illustrated desmoglein-2 to co-immunoprecipitate with plakoglobin, c-Src and desmocollin-2. Simultaneous knockdown of desmoglein-2 and desmocollin-2 not only led to a reduction in and mislocalization of zonula occludens-1, but also perturbed the localization of c-Src and coxsackie and adenovirus receptor at the cell-cell interface, resulting in disruption of tight junction permeability barrier. We hereby propose a novel regulatory protein complex composed of desmoglein-2, desmocollin-2, c-Src, coxsackie and adenovirus receptor and zonula occludens-1 at the blood-testis barrier.
Collapse
|
77
|
Laird DW. The gap junction proteome and its relationship to disease. Trends Cell Biol 2010; 20:92-101. [DOI: 10.1016/j.tcb.2009.11.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 02/07/2023]
|
78
|
Tramoni M, Gilleron J, Tahiri K, Carette D, Corvol MT, Segretain D, Pointis G, Savouret JF. Contraceptive steroids from pharmaceutical waste perturbate junctional communication in Sertoli cells. Biochimie 2009; 91:1366-75. [DOI: 10.1016/j.biochi.2009.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 11/16/2022]
|
79
|
Gilleron J, Carette D, Carpentier F, Segretain D, Pointis G. Three-dimensional analysis of connexin43 gap junction in the ex vivo rat seminiferous tubules: Short-term effects of hormonal effectors. Microsc Res Tech 2009; 72:845-55. [DOI: 10.1002/jemt.20731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
80
|
Acute internalization of gap junctions in vascular endothelial cells in response to inflammatory mediator-induced G-protein coupled receptor activation. FEBS Lett 2008; 582:4039-46. [PMID: 18992245 DOI: 10.1016/j.febslet.2008.10.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 11/21/2022]
Abstract
During the inflammatory response, activation of G-protein coupled receptors (GPCRs) by inflammatory mediators rapidly leads to inhibition of gap junction intercellular communication (GJIC); however, the steps that lead to this inhibition are not known. Combining high-resolution fluorescence microscopy and functional assays, we found that activation of the GPCRs PAR-1 and ET(A/B) by their natural inflammatory mediator agonists, thrombin and endothelin-1, resulted in rapid and acute internalization of gap junctions (GJs) that coincided with the inhibition of GJIC followed by increased vascular permeability. The endocytosis protein clathrin and the scaffold protein ZO-1 appeared to be involved in GJ internalization, and ZO-1 was partially displaced from GJs during the internalization process. These findings demonstrate that GJ internalization is an efficient mechanism for modulating GJIC in inflammatory response.
Collapse
|