51
|
Costa R, Remigante A, Civello DA, Bernardinelli E, Szabó Z, Morabito R, Marino A, Sarikas A, Patsch W, Paulmichl M, Janáky T, Miseta A, Nagy T, Dossena S. O-GlcNAcylation Suppresses the Ion Current IClswell by Preventing the Binding of the Protein ICln to α-Integrin. Front Cell Dev Biol 2020; 8:607080. [PMID: 33330510 PMCID: PMC7717961 DOI: 10.3389/fcell.2020.607080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022] Open
Abstract
O-GlcNAcylation is a post-translational modification of proteins that controls a variety of cellular processes, is chronically elevated in diabetes mellitus, and may contribute to the progression of diabetic complications, including diabetic nephropathy. Our previous work showed that increases in the O-GlcNAcylation of cellular proteins impair the homeostatic reaction of the regulatory volume decrease (RVD) after cell swelling by an unknown mechanism. The activation of the swelling-induced chloride current IClswell is a key step in RVD, and ICln, a ubiquitous protein involved in the activation of IClswell, is O-GlcNAcylated. Here, we show that experimentally increased O-GlcNAcylation of cellular proteins inhibited the endogenous as well as the ICln-induced IClswell current and prevented RVD in a human renal cell line, while decreases in O-GlcNAcylation augmented the current magnitude. In parallel, increases or decreases in O-GlcNAcylation, respectively, weakened or stabilized the binding of ICln to the intracellular domain of α-integrin, a process that is essential for the activation of IClswell. Mutation of the putative YinOYang site at Ser67 rendered the ICln-induced IClswell current unresponsive to O-GlcNAc variations, and the ICln interaction with α-integrin insensitive to O-GlcNAcylation. In addition, exposure of cells to a hypotonic solution reduced the O-GlcNAcylation of cellular proteins. Together, these findings show that O-GlcNAcylation affects RVD by influencing IClswell and further indicate that hypotonicity may activate IClswell by reducing the O-GlcNAcylation of ICln at Ser67, therefore permitting its binding to α-integrin. We propose that disturbances in the regulation of cellular volume may contribute to disease in settings of chronically elevated O-GlcNAcylation, including diabetic nephropathy.
Collapse
Affiliation(s)
- Roberta Costa
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Alessia Remigante
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Davide A Civello
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Zoltán Szabó
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Markus Paulmichl
- Department of Personalized Medicine, Humanomed, Klagenfurt, Austria
| | - Tamás Janáky
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
52
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
53
|
Zhu WZ, El-Nachef D, Yang X, Ledee D, Olson AK. O-GlcNAc Transferase Promotes Compensated Cardiac Function and Protein Kinase A O-GlcNAcylation During Early and Established Pathological Hypertrophy From Pressure Overload. J Am Heart Assoc 2020; 8:e011260. [PMID: 31131693 PMCID: PMC6585351 DOI: 10.1161/jaha.118.011260] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Protein posttranslational modifications by O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) increase with cardiac hypertrophy, yet the functional effects of these changes are incompletely understood. In other organs, O‐GlcNAc promotes adaptation to acute physiological stressors; however, prolonged O‐GlcNAc elevations are believed to be detrimental. We hypothesize that early O‐GlcNAcylation improves cardiac function during initial response to pressure overload hypertrophy, but that sustained elevations during established pathological hypertrophy negatively impact cardiac function by adversely affecting calcium handling proteins. Methods and Results Transverse aortic constriction or sham surgeries were performed on littermate controls or cardiac‐specific, inducible O‐GlcNAc transferase knockout (OGTKO) mice to reduce O‐GlcNAc levels. O‐GlcNAc transferase deficiency was induced at different times. To evaluate the initial response to pressure overload, OGTKO was completed preoperatively and mice were followed for 2 weeks post‐surgery. To assess prolonged O‐GlcNAcylation during established hypertrophy, OGTKO was performed starting 18 days after surgery and mice were followed until 6 weeks post‐surgery. In both groups, OGTKO with transverse aortic constriction caused significant left ventricular dysfunction. OGTKO did not affect levels of the calcium handling protein SERCA2a. OGTKO reduced phosphorylation of phospholamban and cardiac troponin I, which would negatively impact cardiac function. O‐GlcNAcylation of protein kinase A catalytic subunit, a kinase for phospholamban, decreased with OGTKO. Conclusions O‐GlcNAcylation promotes compensated cardiac function in both early and established pathological hypertrophy. We identified a novel O‐GlcNAcylation of protein kinase A catalytic subunit, which may regulate calcium handling and cardiac function.
Collapse
Affiliation(s)
- Wei-Zhong Zhu
- 1 Center for Integrative Brain Research Seattle Children's Research Institute Seattle WA
| | - Danny El-Nachef
- 2 Division of Cardiology Department of Medicine University of Washington Seattle WA
| | - Xiulan Yang
- 3 Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine Department of Pathology University of Washington Seattle WA
| | - Dolena Ledee
- 1 Center for Integrative Brain Research Seattle Children's Research Institute Seattle WA.,4 Division of Cardiology Department of Pediatrics University of Washington Seattle WA
| | - Aaron K Olson
- 1 Center for Integrative Brain Research Seattle Children's Research Institute Seattle WA.,4 Division of Cardiology Department of Pediatrics University of Washington Seattle WA
| |
Collapse
|
54
|
Identification of critical enzymes in the salmon louse chitin synthesis pathway as revealed by RNA interference-mediated abrogation of infectivity. Int J Parasitol 2020; 50:873-889. [PMID: 32745476 DOI: 10.1016/j.ijpara.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/10/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Treatment of infestation by the ectoparasite Lepeophtheirus salmonis relies on a small number of chemotherapeutant treatments that currently meet with limited success. Drugs targeting chitin synthesis have been largely successful against terrestrial parasites where the pathway is well characterised. However, a comparable approach against salmon lice has been, until recently, less successful, likely due to a poor understanding of the chitin synthesis pathway. Post-transcriptional silencing of genes by RNA interference (RNAi) is a powerful method for evaluation of protein function in non-model organisms and has been successfully applied to the salmon louse. In the present study, putative genes coding for enzymes involved in L. salmonis chitin synthesis were characterised after knockdown by RNAi. Nauplii I stage L. salmonis were exposed to double-stranded (ds) RNA specific for several putative non-redundant points in the pathway: glutamine: fructose-6-phosphate aminotransferase (LsGFAT), UDP-N-acetylglucosamine pyrophosphorylase (LsUAP), N-acetylglucosamine phosphate mutase (LsAGM), chitin synthase 1 (LsCHS1), and chitin synthase 2 (LsCHS2). Additionally, we targeted three putative chitin deacetylases (LsCDA4557, 5169 and 5956) by knockdown. Successful knockdown was determined after moulting to the copepodite stage by real-time quantitative PCR (RT-qPCR), while infectivity potential (the number of attached chalimus II compared with the initial number of larvae in the system) was measured after exposure to Atlantic salmon and subsequent development on their host. Compared with controls, infectivity potential was not compromised in dsAGM, dsCHS2, dsCDA4557, or dsCDA5169 groups. In contrast, there was a significant effect in the dsUAP-treated group. However, of most interest was the treatment with dsGFAT, dsCHS1, dsCHS1+2, and dsCDA5956, which resulted in complete abrogation of infectivity, despite apparent compensatory mechanisms in the chitin synthesis pathway as detected by qPCR. There appeared to be a common phenotypic effect in these groups, characterised by significant aberrations in appendage morphology and an inability to swim. Ultrastructurally, dsGFAT showed a significantly distorted procuticle without distinct exo/endocuticle and intermittent electron dense (i.e. chitin) inclusions, and together with dsUAP and dsCHS1, indicated delayed entry to the pre-moult phase.
Collapse
|
55
|
Jian Y, Xu Z, Xu C, Zhang L, Sun X, Yang D, Wang S. The Roles of Glycans in Bladder Cancer. Front Oncol 2020; 10:957. [PMID: 32596162 PMCID: PMC7303958 DOI: 10.3389/fonc.2020.00957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer is one of the most common malignant tumors of the urogenital system with high morbidity and mortality worldwide. Early diagnosis and personalized treatment are the keys to successful bladder cancer treatment. Due to high postoperative recurrence rates and poor prognosis, it is urgent to find suitable therapeutic targets and biomarkers. Glycans are one of the four biological macromolecules in the cells of an organism, along with proteins, nucleic acids, and lipids. Glycans play important roles in nascent peptide chain folding, protein processing, and translation, cell-to-cell adhesion, receptor-ligand recognition, and binding and cell signaling. Glycans are mainly divided into N-glycans, O-glycans, proteoglycans, and glycosphingolipids. The focus of this review is the discussion of glycans related to bladder cancer. Additionally, this review also addresses the clinical value of glycans in the diagnosis and treatment of bladder cancer. Abnormal glycans are likely to be potential biomarkers for bladder cancer.
Collapse
Affiliation(s)
- Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Zhongyang Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Chunyan Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| |
Collapse
|
56
|
Abstract
The Hippo pathway plays a crucial role in maintaining tissue homeostasis. Generally, activated Hippo pathway effectors, YAP/TAZ, induce the transcription of their negative regulators, NF2 and LATS2, and this negative feedback loop maintains homeostasis of the Hippo pathway. However, YAP and TAZ are consistently hyperactivated in various cancer cells, enhancing tumor growth. Our study found that LATS2, a direct-inhibiting kinase of YAP/TAZ and a core component of the negative feedback loop in the Hippo pathway, is modified with O-GlcNAc. LATS2 O-GlcNAcylation inhibited its activity by interrupting the interaction with the MOB1 adaptor protein, thereby activating YAP and TAZ to promote cell proliferation. Thus, our study suggests that LATS2 O-GlcNAcylation is deeply involved in Hippo pathway dysregulation in cancer cells. The Hippo pathway controls organ size and tissue homeostasis by regulating cell proliferation and apoptosis. The LATS-mediated negative feedback loop prevents excessive activation of the effectors YAP/TAZ, maintaining homeostasis of the Hippo pathway. YAP and TAZ are hyperactivated in various cancer cells which lead to tumor growth. Aberrantly increased O-GlcNAcylation has recently emerged as a cause of hyperactivation of YAP in cancer cells. However, the mechanism, which induces hyperactivation of TAZ and blocks LATS-mediated negative feedback, remains to be elucidated in cancer cells. This study found that in breast cancer cells, abnormally increased O-GlcNAcylation hyperactivates YAP/TAZ and inhibits LATS2, a direct negative regulator of YAP/TAZ. LATS2 is one of the newly identified O-GlcNAcylated components in the MST-LATS kinase cascade. Here, we found that O-GlcNAcylation at LATS2 Thr436 interrupted its interaction with the MOB1 adaptor protein, which connects MST to LATS2, leading to activation of YAP/TAZ by suppressing LATS2 kinase activity. LATS2 is a core component in the LATS-mediated negative feedback loop. Thus, this study suggests that LATS2 O-GlcNAcylation is deeply involved in tumor growth by playing a critical role in dysregulation of the Hippo pathway in cancer cells.
Collapse
|
57
|
Increased O-GlcNAcylation rapidly decreases GABA AR currents in hippocampus but depresses neuronal output. Sci Rep 2020; 10:7494. [PMID: 32366857 PMCID: PMC7198489 DOI: 10.1038/s41598-020-63188-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
O-GlcNAcylation, a post-translational modification involving O-linkage of β-N-acetylglucosamine to Ser/Thr residues on target proteins, is increasingly recognized as a critical regulator of synaptic function. Enzymes that catalyze O-GlcNAcylation are found at both presynaptic and postsynaptic sites, and O-GlcNAcylated proteins localize to synaptosomes. An acute increase in O-GlcNAcylation can affect neuronal communication by inducing long-term depression (LTD) of excitatory transmission at hippocampal CA3-CA1 synapses, as well as suppressing hyperexcitable circuits in vitro and in vivo. Despite these findings, to date, no studies have directly examined how O-GlcNAcylation modulates the efficacy of inhibitory neurotransmission. Here we show an acute increase in O-GlcNAc dampens GABAergic currents onto principal cells in rodent hippocampus likely through a postsynaptic mechanism, and has a variable effect on the excitation/inhibition balance. The overall effect of increased O-GlcNAc is reduced synaptically-driven spike probability via synaptic depression and decreased intrinsic excitability. Our results position O-GlcNAcylation as a novel regulator of the overall excitation/inhibition balance and neuronal output.
Collapse
|
58
|
Abstract
O-Linked N-acetyl glucosamine (O-GlcNAc) is a protein modification found on thousands of nuclear, cytosolic, and mitochondrial proteins. Many O-GlcNAc sites occur in proximity to protein sites that are likewise modified by phosphorylation. While several studies have uncovered crosstalk between these two signaling modifications on individual proteins and pathways, an understanding of the role of O-GlcNAc in regulating kinases, the enzymes that install the phosphate modification, is still emerging. Here we review recent methods to profile the O-GlcNAc modification on a global scale that have revealed more than 100 kinases are modified by O-GlcNAc and highlight existing studies about regulation of these kinases by O-GlcNAc. Continuing efforts to profile the O-GlcNAc proteome and understand the role of O-GlcNAc on kinases will reveal new mechanisms of regulation and potential avenues for manipulation of the signaling mechanisms at the intersection of O-GlcNAc and phosphorylation.
Collapse
Affiliation(s)
- Paul A. Schwein
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
59
|
Goth CK, Petäjä-Repo UE, Rosenkilde MM. G Protein-Coupled Receptors in the Sweet Spot: Glycosylation and other Post-translational Modifications. ACS Pharmacol Transl Sci 2020; 3:237-245. [PMID: 32296765 DOI: 10.1021/acsptsci.0c00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/11/2022]
Abstract
Post-translational modifications (PTMs) are a fundamental phenomenon across all classes of life and several hundred different types have been identified. PTMs contribute widely to the biological functions of proteins and greatly increase their diversity. One important class of proteins regulated by PTMs, is the cell surface expressed G protein-coupled receptors (GPCRs). While most PTMs have been shown to exert distinct biological functions, we are only beginning to approach the complexity that the potential interplay between different PTMs may have on biological functions and their regulation. Importantly, PTMs and their potential interplay represent an appealing mechanism for cell and tissue specific regulation of GPCR function and may partially contribute to functional selectivity of some GPCRs. In this review we highlight examples of PTMs located in GPCR extracellular domains, with special focus on glycosylation and the potential interplay with other close-by PTMs such as tyrosine sulfation, proteolytic cleavage, and phosphorylation.
Collapse
Affiliation(s)
- Christoffer K Goth
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK 2200, Denmark
| | - Ulla E Petäjä-Repo
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, FI-90014, Finland
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK 2200, Denmark
| |
Collapse
|
60
|
Nie H, Ju H, Fan J, Shi X, Cheng Y, Cang X, Zheng Z, Duan X, Yi W. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun 2020; 11:36. [PMID: 31911580 PMCID: PMC6946671 DOI: 10.1038/s41467-019-13601-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Many cancer cells display enhanced glycolysis and suppressed mitochondrial metabolism. This phenomenon, known as the Warburg effect, is critical for tumor development. However, how cancer cells coordinate glucose metabolism through glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle is largely unknown. We demonstrate here that phosphoglycerate kinase 1 (PGK1), the first ATP-producing enzyme in glycolysis, is reversibly and dynamically modified with O-linked N-acetylglucosamine (O-GlcNAc) at threonine 255 (T255). O-GlcNAcylation activates PGK1 activity to enhance lactate production, and simultaneously induces PGK1 translocation into mitochondria. Inside mitochondria, PGK1 acts as a kinase to inhibit pyruvate dehydrogenase (PDH) complex to reduce oxidative phosphorylation. Blocking T255 O-GlcNAcylation of PGK1 decreases colon cancer cell proliferation, suppresses glycolysis, enhances the TCA cycle, and inhibits tumor growth in xenograft models. Furthermore, PGK1 O-GlcNAcylation levels are elevated in human colon cancers. This study highlights O-GlcNAcylation as an important signal for coordinating glycolysis and the TCA cycle to promote tumorigenesis.
Collapse
Affiliation(s)
- Hao Nie
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences; The First Affiliated Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Haixing Ju
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, 310022, Hangzhou, China
| | - Jiayi Fan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences; The First Affiliated Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoliu Shi
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences; The First Affiliated Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Yaxian Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences; The First Affiliated Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Zhiguo Zheng
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, 310022, Hangzhou, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences; The First Affiliated Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
61
|
Sun C, Lan W, Li B, Zuo R, Xing H, Liu M, Li J, Yao Y, Wu J, Tang Y, Liu H, Zhou Y. Glucose regulates tissue-specific chondro-osteogenic differentiation of human cartilage endplate stem cells via O-GlcNAcylation of Sox9 and Runx2. Stem Cell Res Ther 2019; 10:357. [PMID: 31779679 PMCID: PMC6883626 DOI: 10.1186/s13287-019-1440-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The degenerative disc disease (DDD) is a major cause of low back pain. The physiological low-glucose microenvironment of the cartilage endplate (CEP) is disrupted in DDD. Glucose influences protein O-GlcNAcylation via the hexosamine biosynthetic pathway (HBP), which is the key to stem cell fate. Thiamet-G is an inhibitor of O-GlcNAcase for accumulating O-GlcNAcylated proteins while 6-diazo-5-oxo-L-norleucine (DON) inhibits HBP. Mechanisms of DDD are incompletely understood but include CEP degeneration and calcification. We aimed to identify the molecular mechanisms of glucose in CEP calcification in DDD. METHODS We assessed normal and degenerated CEP tissues from patients, and the effects of chondrogenesis and osteogenesis of the CEP were determined by western blot and immunohistochemical staining. Cartilage endplate stem cells (CESCs) were induced with low-, normal-, and high-glucose medium for 21 days, and chondrogenic and osteogenic differentiations were measured by Q-PCR, western blot, and immunohistochemical staining. CESCs were induced with low-glucose and high-glucose medium with or without Thiamet-G or DON for 21 days, and chondrogenic and osteogenic differentiations were measured by Q-PCR, western blot, and immunohistochemical staining. Sox9 and Runx2 O-GlcNAcylation were measured by immunofluorescence. The effects of O-GlcNAcylation on the downstream genes of Sox9 and Runx2 were determined by Q-PCR and western blot. RESULTS Degenerated CEPs from DDD patients lost chondrogenesis, acquired osteogenesis, and had higher protein O-GlcNAcylation level compared to normal CEPs from LVF patients. CESC chondrogenic differentiation gradually decreased while osteogenic differentiation gradually increased from low- to high-glucose differentiation medium. Furthermore, Thiamet-G promoted CESC osteogenic differentiation and inhibited chondrogenic differentiation in low-glucose differentiation medium; however, DON acted opposite role in high-glucose differentiation medium. Interestingly, we found that Sox9 and Runx2 were O-GlcNAcylated in differentiated CESCs. Finally, O-GlcNAcylation of Sox9 and Runx2 decreased chondrogenesis and increased osteogenesis in CESCs. CONCLUSIONS Our findings demonstrate the effect of glucose concentration on regulating the chondrogenic and osteogenic differentiation potential of CESCs and provide insight into the mechanism of how glucose concentration regulates Sox9 and Runx2 O-GlcNAcylation to affect the differentiation of CESCs, which may represent a target for CEP degeneration therapy.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Weiren Lan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bin Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rui Zuo
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yuan Yao
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Junlong Wu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yu Tang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Huan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Southwest Medical University, Lu Zhou, 646000, Sichuan, People's Republic of China.
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
62
|
McArdle Disease: New Insights into Its Underlying Molecular Mechanisms. Int J Mol Sci 2019; 20:ijms20235919. [PMID: 31775340 PMCID: PMC6929006 DOI: 10.3390/ijms20235919] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 01/05/2023] Open
Abstract
McArdle disease, also known as glycogen storage disease type V (GSDV), is characterized by exercise intolerance, the second wind phenomenon, and high serum creatine kinase activity. Here, we recapitulate PYGM mutations in the population responsible for this disease. Traditionally, McArdle disease has been considered a metabolic myopathy caused by the lack of expression of the muscle isoform of the glycogen phosphorylase (PYGM). However, recent findings challenge this view, since it has been shown that PYGM is present in other tissues than the skeletal muscle. We review the latest studies about the molecular mechanism involved in glycogen phosphorylase activity regulation. Further, we summarize the expression and functional significance of PYGM in other tissues than skeletal muscle both in health and McArdle disease. Furthermore, we examine the different animal models that have served as the knowledge base for better understanding of McArdle disease. Finally, we give an overview of the latest state-of-the-art clinical trials currently being carried out and present an updated view of the current therapies.
Collapse
|
63
|
Pyo KE, Kim CR, Lee M, Kim JS, Kim KI, Baek SH. ULK1 O-GlcNAcylation Is Crucial for Activating VPS34 via ATG14L during Autophagy Initiation. Cell Rep 2019; 25:2878-2890.e4. [PMID: 30517873 DOI: 10.1016/j.celrep.2018.11.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/04/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
Unc-51-like-kinase 1 (ULK1) is a target of both the mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK), whose role is to facilitate the initiation of autophagy in response to starvation. Upon glucose starvation, dissociation of mTOR from ULK1 and phosphorylation by AMPK leads to the activation of ULK1 activity. Here, we provide evidence that ULK1 is the attachment of O-linked N-acetylglucosamine (O-GlcNAcylated) on the threonine 754 site by O-linked N-acetylglucosamine transferase (OGT) upon glucose starvation. ULK1 O-GlcNAcylation occurs after dephosphorylation of adjacent mTOR-dependent phosphorylation on the serine 757 site by protein phosphatase 1 (PP1) and phosphorylation by AMPK. ULK1 O-GlcNAcylation is crucial for binding and phosphorylation of ATG14L, allowing the activation of lipid kinase VPS34 and leading to the production of phosphatidylinositol-(3)-phosphate (PI(3)P), which is required for phagophore formation and initiation of autophagy. Our findings provide insights into the crosstalk between dephosphorylation and O-GlcNAcylation during autophagy and specify a molecular framework for potential therapeutic intervention in autophagy-related diseases.
Collapse
Affiliation(s)
- Ki Eun Pyo
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Chang Rok Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Minkyoung Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
64
|
Zhu G, Qian M, Lu L, Chen Y, Zhang X, Wu Q, Liu Y, Bian Z, Yang Y, Guo S, Wang J, Pan Q, Sun F. O-GlcNAcylation of YY1 stimulates tumorigenesis in colorectal cancer cells by targeting SLC22A15 and AANAT. Carcinogenesis 2019; 40:1121-1131. [PMID: 30715269 DOI: 10.1093/carcin/bgz010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Emerging studies have revealed that O-GlcNAcylation plays pivotal roles in the tumorigenesis of colorectal cancers (CRCs). However, the underlying mechanism still remains largely unknown. Here, we demonstrated that Yin Yang 1 (YY1) was O-GlcNAcylated by O-GlcNAc transferase (OGT) and O-GlcNAcylation of YY1 could increase the protein expression by enhancing its stability. O-GlcNAcylation facilitated transformative phenotypes of CRC cell in a YY1-dependent manner. Also, O-GlcNAcylation stimulates YY1-dependent transcriptional activity. Besides, we also identified the oncoproteins, SLC22A15 and AANAT, which were regulated by YY1 directly, are responsible for the YY1 stimulated tumorigenesis. Furthermore, we identified the main putative O-GlcNAc site of YY1 at Thr236, and mutating of this site decreased the pro-tumorigenic capacities of YY1. We concluded that O-GlcNAcylation of YY1 stimulates tumorigenesis in CRC cells by targeting SLC22A15 and AANAT, suggesting that YY1 O-GlcNAcylation might be a potential effective therapeutic target for treating CRC.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Middle Yanchang Road, Shanghai, China
| | - Mingping Qian
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Liesheng Lu
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yan Chen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Middle Yanchang Road, Shanghai, China
| | - Xiao Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Middle Yanchang Road, Shanghai, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Middle Yanchang Road, Shanghai, China
| | - Ya Liu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Middle Yanchang Road, Shanghai, China
| | - Zhixuan Bian
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Middle Yanchang Road, Shanghai, China
| | - Yueyue Yang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Middle Yanchang Road, Shanghai, China
| | - Susu Guo
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Middle Yanchang Road, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Middle Yanchang Road, Shanghai, China
| | - Qiuhui Pan
- Department of Clinical Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Middle Yanchang Road, Shanghai, China
| |
Collapse
|
65
|
Chen Y, Zhao X, Wu H. Metabolic Stress and Cardiovascular Disease in Diabetes Mellitus: The Role of Protein O-GlcNAc Modification. Arterioscler Thromb Vasc Biol 2019; 39:1911-1924. [PMID: 31462094 DOI: 10.1161/atvbaha.119.312192] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian cells metabolize glucose primarily for energy production, biomass synthesis, and posttranslational glycosylation; and maintaining glucose metabolic homeostasis is essential for normal physiology of cells. Impaired glucose homeostasis leads to hyperglycemia, a hallmark of diabetes mellitus. Chronically increased glucose in diabetes mellitus promotes pathological changes accompanied by impaired cellular function and tissue damage, which facilitates the development of cardiovascular complications, the major cause of morbidity and mortality of patients with diabetes mellitus. Emerging roles of glucose metabolism via the hexosamine biosynthesis pathway (HBP) and increased protein modification via O-linked β-N-acetylglucosamine (O-GlcNAcylation) have been demonstrated in diabetes mellitus and implicated in the development of diabetic cardiovascular complications. This review will discuss the biological outcomes of the glucose metabolism via the hexosamine biogenesis pathway and protein O-GlcNAcylation in regulating cellular homeostasis, and highlight the regulations and contributions of elevated O-GlcNAcylation to the pathogenesis of diabetic cardiovascular disease.
Collapse
Affiliation(s)
- Yabing Chen
- From the Department of Pathology (Y.C.), University of Alabama at Birmingham.,Birmingham Veterans Affairs Medical Center, Research Division (Y.C.), Birmingham, Alabama
| | - Xinyang Zhao
- Biochemistry (X.Z.), University of Alabama at Birmingham
| | - Hui Wu
- Pediatric Dentistry (H.W.), University of Alabama at Birmingham
| |
Collapse
|
66
|
Xu S, Xiao J, Yin F, Guo X, Xing L, Xu Y, Chong K. The Protein Modifications of O-GlcNAcylation and Phosphorylation Mediate Vernalization Response for Flowering in Winter Wheat. PLANT PHYSIOLOGY 2019; 180:1436-1449. [PMID: 31061102 PMCID: PMC6752917 DOI: 10.1104/pp.19.00081] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/23/2019] [Indexed: 05/11/2023]
Abstract
O-GlcNAcylation and phosphorylation are two posttranslational modifications that antagonistically regulate protein function. However, the regulation of and the cross talk between these two protein modifications are poorly understood in plants. Here we investigated the role of O-GlcNAcylation during vernalization, a process whereby prolonged cold exposure promotes flowering in winter wheat (Triticum aestivum), and analyzed the dynamic profile of O-GlcNAcylated and phosphorylated proteins in response to vernalization. Altering O-GlcNAc signaling by chemical inhibitors affected the vernalization response, modifying the expression of VRN genes and subsequently affecting flowering transition. Over a vernalization time-course, O-GlcNAcylated and phosphorylated peptides were enriched from winter wheat plumules by Lectin weak affinity chromatography and iTRAQ-TiO2, respectively. Subsequent mass spectrometry and gene ontology term enrichment analysis identified 168 O-GlcNAcylated proteins that are mainly involved in responses to abiotic stimulus and hormones, metabolic processing, and gene expression; and 124 differentially expressed phosphorylated proteins that participate in translation, transcription, and metabolic processing. Of note, 31 vernalization-associated proteins were identified that carried both phosphorylation and O-GlcNAcylation modifications, of which the majority (97%) exhibited the coexisting module and the remainder exhibited the potential competitive module. Among these, TaGRP2 was decorated with dynamic O-GlcNAcylation (S87) and phosphorylation (S152) modifications, and the mutation of S87 and S152 affected the binding of TaGRP2 to the RIP3 motif of TaVRN1 in vitro. Our data suggest that a dynamic network of O-GlcNAcylation and phosphorylation at key pathway nodes regulate the vernalization response and mediate flowering in wheat.
Collapse
Affiliation(s)
- Shujuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Yin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijing Xing
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
67
|
Craveur P, Narwani TJ, Rebehmed J, de Brevern AG. Investigation of the impact of PTMs on the protein backbone conformation. Amino Acids 2019; 51:1065-1079. [DOI: 10.1007/s00726-019-02747-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/18/2019] [Indexed: 12/17/2022]
|
68
|
Tsatsanis A, Dickens S, Kwok JCF, Wong BX, Duce JA. Post Translational Modulation of β-Amyloid Precursor Protein Trafficking to the Cell Surface Alters Neuronal Iron Homeostasis. Neurochem Res 2019; 44:1367-1374. [PMID: 30796750 PMCID: PMC6525264 DOI: 10.1007/s11064-019-02747-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/16/2022]
Abstract
Cell surface β-Amyloid precursor protein (APP) is known to have a functional role in iron homeostasis through stabilising the iron export protein ferroportin (FPN). Mechanistic evidence of this role has previously only been provided through transcriptional or translational depletion of total APP levels. However, numerous post-translational modifications of APP are reported to regulate the location and trafficking of this protein to the cell surface. Stable overexpressing cell lines were generated that overexpressed APP with disrupted N-glycosylation (APPN467K and APPN496K) or ectodomain phosphorylation (APPS206A); sites selected for their proximity to the FPN binding site on the E2 domain of APP. We hypothesise that impaired N-glycosylation or phosphorylation of APP disrupts the functional location on the cell surface or binding to FPN to consequentially alter intracellular iron levels through impaired cell surface FPN stability. Outcomes confirm that these post-translational modifications are essential for the correct location of APP on the cell surface and highlight a novel mechanism by which the cell can modulate iron homeostasis. Further interrogation of other post-translational processes to APP is warranted in order to fully understand how each modification plays a role on regulating intracellular iron levels in health and disease.
Collapse
Affiliation(s)
- Andrew Tsatsanis
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | - Stuart Dickens
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | - Jessica C F Kwok
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | - Bruce X Wong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
- The ALBORADO Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - James A Duce
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK.
- The ALBORADO Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, UK.
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
69
|
Dierschke SK, Miller WP, Favate JS, Shah P, Imamura Kawasawa Y, Salzberg AC, Kimball SR, Jefferson LS, Dennis MD. O-GlcNAcylation alters the selection of mRNAs for translation and promotes 4E-BP1-dependent mitochondrial dysfunction in the retina. J Biol Chem 2019; 294:5508-5520. [PMID: 30733333 PMCID: PMC6462503 DOI: 10.1074/jbc.ra119.007494] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/31/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetes promotes the posttranslational modification of proteins by O-linked addition of GlcNAc (O-GlcNAcylation) to Ser/Thr residues of proteins and thereby contributes to diabetic complications. In the retina of diabetic mice, the repressor of mRNA translation, eIF4E-binding protein 1 (4E-BP1), is O-GlcNAcylated, and sequestration of the cap-binding protein eukaryotic translation initiation factor (eIF4E) is enhanced. O-GlcNAcylation has also been detected on several eukaryotic translation initiation factors and ribosomal proteins. However, the functional consequence of this modification is unknown. Here, using ribosome profiling, we evaluated the effect of enhanced O-GlcNAcylation on retinal gene expression. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation. The principal effect of TMG on retinal gene expression was observed in ribosome-associated mRNAs (i.e. mRNAs undergoing translation), as less than 1% of mRNAs exhibited changes in abundance. Remarkably, ∼19% of the transcriptome exhibited TMG-induced changes in ribosome occupancy, with 1912 mRNAs having reduced and 1683 mRNAs having increased translational rates. In the retina, the effect of O-GlcNAcase inhibition on translation of specific mitochondrial proteins, including superoxide dismutase 2 (SOD2), depended on 4E-BP1/2. O-GlcNAcylation enhanced cellular respiration and promoted mitochondrial superoxide levels in WT cells, and 4E-BP1/2 deletion prevented O-GlcNAcylation-induced mitochondrial superoxide in cells in culture and in the retina. The retina of diabetic WT mice exhibited increased reactive oxygen species levels, an effect not observed in diabetic 4E-BP1/2-deficient mice. These findings provide evidence for a mechanism whereby diabetes-induced O-GlcNAcylation promotes oxidative stress in the retina by altering the selection of mRNAs for translation.
Collapse
Affiliation(s)
- Sadie K Dierschke
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - William P Miller
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - John S Favate
- the Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Premal Shah
- the Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Yuka Imamura Kawasawa
- the Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, and
| | - Anna C Salzberg
- the Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Scot R Kimball
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Leonard S Jefferson
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Michael D Dennis
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
70
|
Igual MO, Nunes PS, da Costa RM, Mantoani SP, Tostes RC, Carvalho I. Novel glucopyranoside C2-derived 1,2,3-triazoles displaying selective inhibition of O-GlcNAcase (OGA). Carbohydr Res 2019; 471:43-55. [DOI: 10.1016/j.carres.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 01/13/2023]
|
71
|
She N, Zhao Y, Hao J, Xie S, Wang C. Uridine diphosphate release mechanism in O-N-acetylglucosamine (O-GlcNAc) transferase catalysis. Biochim Biophys Acta Gen Subj 2018; 1863:609-622. [PMID: 30550897 DOI: 10.1016/j.bbagen.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 01/17/2023]
Abstract
O-linked N-acetylglucosamine transferase (OGT) is an essential enzyme that catalyzes the covalent bonding of N-acetylglucosamine (GlcNAc) to the hydroxyl group of a serine or threonine in the target protein. It plays an important role in many important cellular physiological catalytic reactions. Here, we determine the binding mode and the binding free energy of the OGT product (uridine diphosphate, UDP) as well as the hydrogen-bond-dependent release mechanism using extensive molecular dynamic simulations. The Lys634, Asn838, Gln839, Lys842, His901, and Asp925 residues were identified to play a major role in the UDP stabilization in the active site of OGT, where hydrogen bonding and π-π interactions mainly occur. The calculations on the mutant forms support our results. Sixteen possible release channels were identified while the two most favorable channels were determined using random acceleration molecular dynamics (RAMD) simulations combined with the constant velocity pulling (PCV) method. The thermodynamic and dynamic properties as along with the corresponding mechanism were determined and discussed according to the umbrella sampling technique. For the most optimal channel, the main free energy barrier is 13 kcal/mol, which probably originates from the hydrogen bonds between UDP and the Ala896 and Asp925 residues. Moreover, the unstable hydrogen bonds and the rollback of the ligand likely cause the other two small obstacles. This work clarifies the ligand transport mechanism in the OGT enzymatic process and is a great resource for designing inhibitors based on UDP or UDP-GlcNAc.
Collapse
Affiliation(s)
- Nai She
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Jingjing Hao
- People's Hospital of Kaifeng, Kaifeng 475004, China
| | - Songqiang Xie
- Pharmaceutical College, Henan University, Kaifeng 475004, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
72
|
Nuti F, Gallo A, Real-Fernandez F, Crulli M, Rentier C, Piarulli F, Peroni E, Rossi G, Traldi P, Rovero P, Lapolla A, Papini AM. Antibodies to post-translationally modified mitochondrial peptide PDC-E2(167-184) in type 1 diabetes. Arch Biochem Biophys 2018; 659:66-74. [PMID: 30266625 DOI: 10.1016/j.abb.2018.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mitochondria play a role in type 1 diabetes (T1D) particularly in the treatment and prevention of disorder consequences. Due to their demonstrated role in diabetes pathology, mitochondrial proteins can be an interesting starting point to study candidate antigens in T1D. We investigated the role of relevant post-translational modifications (PTM) on a synthetic mitochondrial peptide as putative antigen. METHODS The antibody response in T1D was evaluated by solid phase-ELISA using a collection of synthetic peptides bearing different PTMs. We investigated the role of lipoylation, phosphorylation, and glycosylation. The PTMs were introduced at position 173 of the mitochondrial pyruvate dehydrogenase E2 complex peptide PDC-E2(167-184) and at position 7 of a structure-based designed β-turn peptide as an irrelevant sequence to investigate the role of the specific PDC-E2 peptide sequence. RESULTS IgM titres in 31 T1D patients were higher than IgGs to all the synthetic PTM peptides. Results demonstrated the crucial role of lysine lipoamide, serine O-phosphorylation, and O-glycosylation into the PDC-E2(167-184) peptide sequence for IgM antibody recognition. CONCLUSIONS Results highlight the importance of immune dysregulation in T1D, furthermore, if confirmed in a large number of patients, they will contribute to add novel diagnostic markers for the understanding the physiopathology of the disease.
Collapse
Affiliation(s)
- Francesca Nuti
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Alessandra Gallo
- Department of Medicine, University of Padova, Diabetology and Dietetics, ULSS 6 Euganea, Via dei Colli, 35143, Padova, Italy
| | - Feliciana Real-Fernandez
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy; Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Martina Crulli
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Cedric Rentier
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy; Platform of Peptide and Protein Chemistry and Biology - PeptLab@UCP and Laboratory of Chemical Biology EA4505, Université Paris-Seine, 5 Mail Gay-Lussac, 95031, Cergy-Pontoise CEDEX, France
| | - Francesco Piarulli
- Department of Medicine, University of Padova, Diabetology and Dietetics, ULSS 6 Euganea, Via dei Colli, 35143, Padova, Italy
| | - Elisa Peroni
- Platform of Peptide and Protein Chemistry and Biology - PeptLab@UCP and Laboratory of Chemical Biology EA4505, Université Paris-Seine, 5 Mail Gay-Lussac, 95031, Cergy-Pontoise CEDEX, France
| | - Giada Rossi
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica, Città della Speranza, Via Nicolò Giustiniani, 2, 35128 Padova, Italy
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Annunziata Lapolla
- Department of Medicine, University of Padova, Diabetology and Dietetics, ULSS 6 Euganea, Via dei Colli, 35143, Padova, Italy.
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy; Platform of Peptide and Protein Chemistry and Biology - PeptLab@UCP and Laboratory of Chemical Biology EA4505, Université Paris-Seine, 5 Mail Gay-Lussac, 95031, Cergy-Pontoise CEDEX, France.
| |
Collapse
|
73
|
Ding N, Peng P, Chu YJ, Wang JJ, Chen SY, Arulthas R, Deng YQ. The effects of O-GlcNAc alteration on Alzheimer-like neurodegeneration in SK-N-SH cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 162:243-248. [DOI: 10.5507/bp.2018.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 07/17/2018] [Indexed: 11/23/2022] Open
|
74
|
Consumption of a high fat diet promotes protein O-GlcNAcylation in mouse retina via NR4A1-dependent GFAT2 expression. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3568-3576. [PMID: 30254013 DOI: 10.1016/j.bbadis.2018.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 01/30/2023]
Abstract
The incidence of type 2 diabetes, the most common cause of diabetic retinopathy (DR), is rapidly on the rise in developed countries due to overconsumption of calorie rich diets. Using an animal model of diet-induced obesity/pre-diabetes, we evaluated the impact of a diet high in saturated fat (HFD) on O-GlcNAcylation of retinal proteins, as dysregulated O-GlcNAcylation contributes to diabetic complications and evidence supports a role in DR. Protein O-GlcNAcylation was increased in the retina of mice fed a HFD as compared to littermates receiving control chow. Similarly, O-GlcNAcylation was elevated in retinal Müller cells in culture exposed to the saturated fatty acid palmitate or the ceramide analog Cer6. One potential mechanism responsible for elevated O-GlcNAcylation is increased flux through the hexosamine biosynthetic pathway (HBP). Indeed, inhibition of the pathway's rate-limiting enzyme glutamine-fructose-6-phosphate amidotransferase (GFAT) prevented Cer6-induced O-GlcNAcylation. Importantly, expression of the mRNA encoding GFAT2, but not GFAT1 was elevated in both the retina of mice fed a HFD and in retinal cells in culture exposed to palmitate or Cer6. Notably, expression of nuclear receptor subfamily 4 group A member 1 (NR4A1) was increased in the retina of mice fed a HFD and NR4A1 expression was sufficient to promote GFAT2 mRNA expression and O-GlcNAcylation in retinal cells in culture. Whereas palmitate or Cer6 addition to culture medium enhanced NR4A1 and GFAT2 expression, chemical inhibition of NR4A1 transactivation repressed Cer6-induced GFAT2 mRNA expression. Overall, the results support a model wherein HFD increases retinal protein O-GlcNAcylation by promoting NR4A1-dependent GFAT2 expression.
Collapse
|
75
|
O-GlcNAc Signaling Orchestrates the Regenerative Response to Neuronal Injury in Caenorhabditis elegans. Cell Rep 2018; 24:1931-1938.e3. [DOI: 10.1016/j.celrep.2018.07.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/07/2018] [Accepted: 07/22/2018] [Indexed: 12/19/2022] Open
|
76
|
Fourneau J, Canu MH, Cieniewski-Bernard C, Bastide B, Dupont E. Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/O-GlcNAcylation interplay. J Neurochem 2018; 147:240-255. [DOI: 10.1111/jnc.14474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Fourneau
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | - Marie-Hélène Canu
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | | | - Bruno Bastide
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | - Erwan Dupont
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| |
Collapse
|
77
|
Deracinois B, Camoin L, Lambert M, Boyer JB, Dupont E, Bastide B, Cieniewski-Bernard C. O-GlcNAcylation site mapping by (azide-alkyne) click chemistry and mass spectrometry following intensive fractionation of skeletal muscle cells proteins. J Proteomics 2018; 186:83-97. [DOI: 10.1016/j.jprot.2018.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/13/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
|
78
|
Silibinin Ameliorates O-GlcNAcylation and Inflammation in a Mouse Model of Nonalcoholic Steatohepatitis. Int J Mol Sci 2018; 19:ijms19082165. [PMID: 30042374 PMCID: PMC6121629 DOI: 10.3390/ijms19082165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
The mechanisms underlying the progression to non-alcoholic steatohepatitis (NASH) remain to be elucidated. In the present study, we aimed to identify the proteins involved in the pathogenesis of liver tissue inflammation and to investigate the effects of silibinin, a natural polyphenolic flavonoid, on steatohepatitis. We performed comparative proteomic analysis using methionine and choline-deficient (MCD) diet-induced NASH model mice. Eighteen proteins were identified from the two-dimensional proteomic analysis, which are not only differentially expressed, but also significantly improved, by silibinin treatment. Interestingly, seven of these proteins, including keratin cytoskeletal 8 and 18, peroxiredoxin-4, and protein disulfide isomerase, are known to undergo GlcNAcylation modification, most of which are related to structural and stress-related proteins in NASH model animals. Thus, we primarily focused on how the GlcNAc modification of these proteins is involved in the progression to NASH. Remarkably, silibinin treatment alleviates the severity of hepatic inflammation along with O-GlcNAcylation in steatohepatitis. In particular, the reduction of inflammation by silibinin is due to the inhibition of the O-GlcNAcylation-dependent NF-κB-signaling pathway. Therefore, silibinin is a promising therapeutic agent for hyper-O-GlcNAcylation as well as NASH.
Collapse
|
79
|
Tramutola A, Sharma N, Barone E, Lanzillotta C, Castellani A, Iavarone F, Vincenzoni F, Castagnola M, Butterfield DA, Gaetani S, Cassano T, Perluigi M, Di Domenico F. Proteomic identification of altered protein O-GlcNAcylation in a triple transgenic mouse model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3309-3321. [PMID: 30031227 DOI: 10.1016/j.bbadis.2018.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/16/2018] [Indexed: 12/23/2022]
Abstract
PET scan analysis demonstrated the early reduction of cerebral glucose metabolism in Alzheimer disease (AD) patients that can make neurons vulnerable to damage via the alteration of the hexosamine biosynthetic pathway (HBP). Defective HBP leads to flawed protein O-GlcNAcylation coupled, by a mutual inverse relationship, with increased protein phosphorylation on Ser/Thr residues. Altered O-GlcNAcylation of Tau and APP have been reported in AD and is closely related with pathology onset and progression. In addition, type 2 diabetes patients show an altered O-GlcNAcylation/phosphorylation that might represent a link between metabolic defects and AD progression. Our study aimed to decipher the specific protein targets of altered O-GlcNAcylation in brain of 12-month-old 3×Tg-AD mice compared with age-matched non-Tg mice. Hence, we analysed the global O-GlcNAc levels, the levels and activity of OGT and OGA, the enzymes controlling its cycling and protein specific O-GlcNAc levels using a bi-dimensional electrophoresis (2DE) approach. Our data demonstrate the alteration of OGT and OGA activation coupled with the decrease of total O-GlcNAcylation levels. Data from proteomics analysis led to the identification of several proteins with reduced O-GlcNAcylation levels, which belong to key pathways involved in the progression of AD such as neuronal structure, protein degradation and glucose metabolism. In parallel, we analysed the O-GlcNAcylation/phosphorylation ratio of IRS1 and AKT, whose alterations may contribute to insulin resistance and reduced glucose uptake. Our findings may contribute to better understand the role of altered protein O-GlcNAcylation profile in AD, by possibly identifying novel mechanisms of disease progression related to glucose hypometabolism.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Nidhi Sharma
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy; Universidad Autònoma de Chile, Instituto de Ciencias Biomédicas, Facultad de alud, Providencia, Santiago, Chile
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Castellani
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Federica Iavarone
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Federica Vincenzoni
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Massimo Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
80
|
Too sweet to resist: Control of immune cell function by O-GlcNAcylation. Cell Immunol 2018; 333:85-92. [PMID: 29887419 DOI: 10.1016/j.cellimm.2018.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/31/2022]
Abstract
O-linked β-N-acetyl glucosamine modification (O-GlcNAcylation) is a dynamic, reversible posttranslational modification of cytoplasmic and nuclear proteins. O-GlcNAcylation depends on nutrient availability and the hexosamine biosynthetic pathway (HBP), which produces the donor substrate UDP-GlcNAc. O-GlcNAcylation is mediated by a single enzyme, O-GlcNAc transferase (OGT), which adds GlcNAc and another enzyme, O-GlcNAcase (OGA), which removes O-GlcNAc from proteins. O-GlcNAcylation controls vital cellular processes including transcription, translation, the cell cycle, metabolism, and cellular stress. Aberrant O-GlcNAcylation has been implicated in various pathologies including Alzheimer's disease, diabetes, obesity, and cancer. Growing evidences indicate that O-GlcNAcylation plays crucial roles in regulating immunity and inflammatory responses, especially under hyperglycemic conditions. This review will highlight the emerging functions of O-GlcNAcylation in mammalian immunity under physiological and various pathological conditions.
Collapse
|
81
|
Liu W, Han G, Yin Y, Jiang S, Yu G, Yang Q, Yu W, Ye X, Su Y, Yang Y, Hart GW, Sun H. AANL (Agrocybe aegerita lectin 2) is a new facile tool to probe for O-GlcNAcylation. Glycobiology 2018; 28:363-373. [PMID: 29562282 PMCID: PMC6454498 DOI: 10.1093/glycob/cwy029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 03/10/2018] [Accepted: 03/16/2018] [Indexed: 01/26/2023] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAcylation) is an important post-translational modification on serine or threonine of proteins, mainly observed in nucleus or cytoplasm. O-GlcNAcylation regulates many cell processes, including transcription, cell cycle, neural development and nascent polypeptide chains stabilization. However, the facile identification of O-GlcNAc is a major bottleneck in O-GlcNAcylation research. Herein, we report that a lectin, Agrocybe aegerita GlcNAc-specific lectin (AANL), also reported as AAL2, can be used as a powerful probe for O-GlcNAc identification. Glycan array analyses and surface plasmon resonance (SPR) assays show that AANL binds to GlcNAc with a dissociation constant (KD) of 94.6 μM, which is consistent with the result tested through isothiocyanate (ITC) assay reported before (Jiang S, Chen Y, Wang M, Yin Y, Pan Y, Gu B, Yu G, Li Y, Wong BH, Liang Y, et al. 2012. A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine. Biochem J. 443:369-378.). Confocal imaging shows that AANL co-localizes extensively with NUP62, a heavily O-GlcNAcylated and abundant nuclear pore glycoprotein. Furthermore, O-GlcNAc-modified peptides could be effectively enriched in the late flow-through peak from simple samples by using affinity columns Sepharose 4B-AANL or POROS-AANL. Therefore, using AANL affinity column, we identified 28 high-confidence O-linked HexNAc-modified peptides mapped on 17 proteins involving diverse cellular progresses, including transcription, hydrolysis progress, urea cycle, alcohol metabolism and cell cycle. And most importantly, major proteins and sites were not annotated in the dbOGAP database. These results suggest that the AANL lectin is a new useful tool for enrichment and identification of O-GlcNAcylated proteins and peptides.
Collapse
Affiliation(s)
- Wei Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Guanghui Han
- Department of Biological Chemistry, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yalin Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Shuai Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Guojun Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Qing Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Wenhui Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Xiangdong Ye
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Yanting Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Yajun Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Gerald W Hart
- Department of Biological Chemistry, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hui Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
- Hubei Province key Laboratory of Allergy and Immunology
- Key laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan 430071, Hubei Province, P. R. China
| |
Collapse
|
82
|
|
83
|
Martínez‐Turiño S, Pérez JDJ, Hervás M, Navajas R, Ciordia S, Udeshi ND, Shabanowitz J, Hunt DF, García JA. Phosphorylation coexists with O-GlcNAcylation in a plant virus protein and influences viral infection. MOLECULAR PLANT PATHOLOGY 2018; 19:1427-1443. [PMID: 29024291 PMCID: PMC5895533 DOI: 10.1111/mpp.12626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Phosphorylation and O-GlcNAcylation are two widespread post-translational modifications (PTMs), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus which infects a wide range of plant species. O-GlcNAcylation of the capsid protein (CP) of PPV has been studied extensively, and some evidence of CP phosphorylation has also been reported. Here, we use proteomics analyses to demonstrate that PPV CP is phosphorylated in vivo at the N-terminus and the beginning of the core region. In contrast with the 'yin-yang' mechanism that applies to some mammalian proteins, PPV CP phosphorylation affects residues different from those that are O-GlcNAcylated (serines Ser-25, Ser-81, Ser-101 and Ser-118). Our findings show that PPV CP can be concurrently phosphorylated and O-GlcNAcylated at nearby residues. However, an analysis using a differential proteomics strategy based on iTRAQ (isobaric tags for relative and absolute quantitation) showed a significant enhancement of phosphorylation at Ser-25 in virions recovered from O-GlcNAcylation-deficient plants, suggesting that crosstalk between O-GlcNAcylation and phosphorylation in PPV CP takes place. Although the preclusion of phosphorylation at the four identified phosphotarget sites only had a limited impact on viral infection, the mimicking of phosphorylation prevents PPV infection in Prunus persica and weakens infection in Nicotiana benthamiana and other herbaceous hosts, prompting the emergence of potentially compensatory second mutations. We postulate that the joint action of phosphorylation and O-GlcNAcylation in the N-proximal segment of CP allows a fine-tuning of protein stability, providing the amount of CP required in each step of viral infection.
Collapse
Affiliation(s)
- Sandra Martínez‐Turiño
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB‐CSIC), Campus Universidad Autónoma de MadridMadrid 28049Spain
| | - José De Jesús Pérez
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB‐CSIC), Campus Universidad Autónoma de MadridMadrid 28049Spain
- Present address:
División de Biología MolecularInstituto Potosino de Investigación Científica y Tecnológica A.C.Camino a la Presa San José 2055San Luis PotosíSLPMéxico
| | - Marta Hervás
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB‐CSIC), Campus Universidad Autónoma de MadridMadrid 28049Spain
| | - Rosana Navajas
- Proteomics UnitCentro Nacional de Biotecnología (CNB‐CSIC), ProteoRed ISCIIIMadrid 28049Spain
| | - Sergio Ciordia
- Proteomics UnitCentro Nacional de Biotecnología (CNB‐CSIC), ProteoRed ISCIIIMadrid 28049Spain
| | - Namrata D. Udeshi
- Department of ChemistryUniversity of VirginiaCharlottesvilleVA 22904USA
- Present address:
Proteomics Platform, The Broad Institute of MIT and Harvard, 7 Cambridge Center, Room 5033CambridgeMA 02142USA
| | | | - Donald F. Hunt
- Department of ChemistryUniversity of VirginiaCharlottesvilleVA 22904USA
| | - Juan Antonio García
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB‐CSIC), Campus Universidad Autónoma de MadridMadrid 28049Spain
| |
Collapse
|
84
|
Smet-Nocca C, Page A, Cantrelle FX, Nikolakaki E, Landrieu I, Giannakouros T. The O-β-linked N-acetylglucosaminylation of the Lamin B receptor and its impact on DNA binding and phosphorylation. Biochim Biophys Acta Gen Subj 2018; 1862:825-835. [PMID: 29337275 DOI: 10.1016/j.bbagen.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/24/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
Lamin B Receptor (LBR) is an integral protein of the interphase inner nuclear membrane that is implicated in chromatin anchorage to the nuclear envelope. Phosphorylation of a stretch of arginine-serine (RS) dipeptides in the amino-terminal nucleoplasmic domain of LBR regulates the interactions of the receptor with other nuclear proteins, DNA and RNA and thus modulates tethering of heterochromatin to the nuclear envelope. While phosphorylation has been extensively studied, very little is known about other post-translational modifications of the protein. There is only one report on the O-β-linked N-acetyl-glucosaminylation (O-GlcNAcylation) of a serine residue downstream of the RS domain of rat LBR. In the present study we identify additional O-GlcNAcylation sites by using as substrates of O-β-N-acetylglucosaminyltransferase (OGT) a set of peptides containing the entire LBR RS domain or parts of it as well as flanking sequences. The in vitro activity of OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Furthermore, we provide evidence that O-GlcNAcylation hampers DNA binding while it marginally affects RS domain phosphorylation mediated by SRPK1, Akt2 and cdk1 kinases. GENERAL SIGNIFICANCE Our methodology providing a quantitative description of O-GlcNAc patterns based on a combination of mass spectrometry and high resolution NMR spectroscopy on short peptide substrates allows subsequent functional analyses. Hence, our approach is of general interest to a wide audience of biologists aiming at deciphering the functional role of O-GlcNAc glycosylation and its crosstalk with phosphorylation.
Collapse
Affiliation(s)
- Caroline Smet-Nocca
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France.
| | - Adeline Page
- Proteomics Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - François-Xavier Cantrelle
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Isabelle Landrieu
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
85
|
O-GlcNAcylation affects β-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer. Exp Cell Res 2018; 364:42-49. [PMID: 29391154 DOI: 10.1016/j.yexcr.2018.01.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 01/14/2023]
Abstract
O-GlcNAcylation, the addition of β-N-acetylglucosamine (O-GlcNAc) moiety to Ser/Thr residues, is a sensor of the cell metabolic state. Cancer diseases such as colon, lung and breast cancer, possess deregulated O-GlcNAcylation. Studies during the last decade revealed that O-GlcNAcylation is implicated in cancer tumorigenesis and proliferation. The Wnt/β-catenin signaling pathway and cadherin-mediated adhesion are also implicated in epithelial-mesenchymal transition (EMT), a key cellular process in invasion and cancer metastasis. Often, deregulation of the Wnt pathway is caused by altered phosphorylation of its components. Specifically, phosphorylation of Ser or Thr residues of β-catenin affects its location and interaction with E-cadherin, thus facilitating cell-cell adhesion. Consistent with previous studies, the current study indicates that β-catenin is O-GlcNAcylated. To test the effect of O-GlcNAcylation on cell motility and how O-GlcNAcylation might affect β-catenin and E-cadherin functions, the enzyme machinery of O-GlcNAcylation was modulated either with chemical inhibitors or by gene silencing. When O-GlcNAcase (OGA) was inhibited, a global elevation of protein O-GlcNAcylation and increase in the expression of E-cadherin and β-catenin were noted. Concomitantly with enhanced O-GlcNAcylation, β-catenin transcriptional activity were elevated. Additionally, fibroblast cell motility was enhanced. Stable silenced cell lines with adenoviral OGA or adenoviral O-GlcNAc transferase (OGT) were established. Consistent with the results obtained by OGA chemical inhibition by TMG, OGT-silencing led to a significant reduction in β-catenin level. In vivo, murine orthotropic colorectal cancer model indicates that elevated O-GlcNAcylation leads to increased mortality rate, tumor and metastasis development. However, reduction in O-GlcNAcylation promoted survival that could be attributed to attenuated tumor and metastasis development. The results described herein provide circumstantial clues that O-GlcNAcylation deregulates β-catenin and E-cadherin expression and activity in fibroblast cell lines and this might influence EMT and cell motility, which may further influence tumor development and metastasis.
Collapse
|
86
|
Woo CM, Lund PJ, Huang AC, Davis MM, Bertozzi CR, Pitteri SJ. Mapping and Quantification of Over 2000 O-linked Glycopeptides in Activated Human T Cells with Isotope-Targeted Glycoproteomics (Isotag). Mol Cell Proteomics 2018; 17:764-775. [PMID: 29351928 DOI: 10.1074/mcp.ra117.000261] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/20/2017] [Indexed: 01/12/2023] Open
Abstract
Post-translational modifications (PTMs) on proteins often function to regulate signaling cascades, with the activation of T cells during an adaptive immune response being a classic example. Mounting evidence indicates that the modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc), the only mammalian glycan found on nuclear and cytoplasmic proteins, helps regulate T cell activation. Yet, a mechanistic understanding of how O-GlcNAc functions in T cell activation remains elusive, partly because of the difficulties in mapping and quantifying O-GlcNAc sites. Thus, to advance insight into the role of O-GlcNAc in T cell activation, we performed glycosite mapping studies via direct glycopeptide measurement on resting and activated primary human T cells with a technique termed Isotope Targeted Glycoproteomics. This approach led to the identification of 2219 intact O-linked glycopeptides across 1045 glycoproteins. A significant proportion (>45%) of the identified O-GlcNAc sites lie near or coincide with a known phosphorylation site, supporting the potential for PTM crosstalk. Consistent with other studies, we find that O-GlcNAc sites in T cells lack a strict consensus sequence. To validate our results, we employed gel shift assays based on conjugating mass tags to O-GlcNAc groups. Notably, we observed that the transcription factors c-JUN and JUNB show higher levels of O-GlcNAc glycosylation and higher levels of expression in activated T cells. Overall, our findings provide a quantitative characterization of O-GlcNAc glycoproteins and their corresponding modification sites in primary human T cells, which will facilitate mechanistic studies into the function of O-GlcNAc in T cell activation.
Collapse
Affiliation(s)
| | - Peder J Lund
- §Microbiology & Immunology, and.,‖Interdepartmental Program in Immunology
| | | | - Mark M Davis
- §Microbiology & Immunology, and.,‡‡Howard Hughes Medical Institute; Stanford University, Stanford, California 94305
| | - Carolyn R Bertozzi
- From the ‡Departments of Chemistry.,‡‡Howard Hughes Medical Institute; Stanford University, Stanford, California 94305
| | | |
Collapse
|
87
|
Kim M, Kim YS, Kim H, Kang MY, Park J, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Park JK, Cho JW, Shin JK, Choi WS. O-linked N-acetylglucosamine transferase promotes cervical cancer tumorigenesis through human papillomaviruses E6 and E7 oncogenes. Oncotarget 2018; 7:44596-44607. [PMID: 27331873 PMCID: PMC5190121 DOI: 10.18632/oncotarget.10112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/01/2016] [Indexed: 12/03/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) increases O-GlcNAc modification (O-GlcNAcylation), and transcriptional co-regulator host cell factor 1 (HCF-1) is one of OGT targets. High-risk Human Papillomaviruses (HPVs) encode E6 and E7 oncoproteins, which promote cervical cancer. Here, we tested whether O-GlcNAc modification of HCF-1 affects HPV E6 and E7 expressions and tumorigenesis of cervical cancer. We found that depleting OGT with OGT-specific shRNA significantly decreased levels of E6 and E7 oncoproteins, and cervical cancer tumorigenesis, while OGT overexpression greatly increased levels of E6 and E7 oncoproteins. Notably, OGT overexpression caused dose-dependent increases in the transcriptional activity of E6 and E7, and this activity was decreased when HCF-1 was depleted with HCF-1-specific siRNA. Moreover, OGT depletion reduced proliferation, invasion, and metastasis in cervical cancer cells. Further, high glucose enhanced the interaction between OGT and HCF-1, paralleling increased levels of E6 and E7 in cervical cancer cells. Most importantly, we found that reducing OGT in HeLa cells caused decreased tumor growth in vivo. These findings identify OGT as a novel cellular factor involved in E6 and E7 expressions and cervical cancer tumorigenesis, suggesting that targeting OGT in cervical cancer may have potential therapeutic benefit.
Collapse
Affiliation(s)
- Minjun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Yoon Sook Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Hwajin Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Min Young Kang
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Jeongsook Park
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Ji Kwon Park
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Jin Won Cho
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Jeong Kyu Shin
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| |
Collapse
|
88
|
Liu Y, Lu Z, Shi Y, Sun F. AMOT is required for YAP function in high glucose induced liver malignancy. Biochem Biophys Res Commun 2018; 495:1555-1561. [DOI: 10.1016/j.bbrc.2017.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/02/2017] [Indexed: 12/25/2022]
|
89
|
Lopez Aguilar A, Gao Y, Hou X, Lauvau G, Yates JR, Wu P. Profiling of Protein O-GlcNAcylation in Murine CD8 + Effector- and Memory-like T Cells. ACS Chem Biol 2017; 12:3031-3038. [PMID: 29125738 DOI: 10.1021/acschembio.7b00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During an acute infection, antigenic stimulation leads to activation, expansion, and differentiation of naïve CD8+ T cells, first into cytotoxic effector cells and eventually into long-lived memory cells. T cell antigen receptors (TCRs) detect antigens on antigen-presenting cells (APCs) in the form of antigenic peptides bound to major histocompatibility complex I (MHC-I)-encoded molecules and initiate TCR signal transduction network. This process is mediated by phosphorylation of many intracellular signaling proteins. Protein O-GlcNAc modification is another post-translational modification involved in this process, which often has either reciprocal or synergistic roles with phosphorylation. In this study, using a chemoenzymatic glycan labeling technique and proteomics analysis, we compared protein O-GlcNAcylation of murine effector and memory-like CD8+ T cells differentiated in vitro. By quantitative proteomics analysis, we identified 445 proteins that are significantly regulated in either effector- or memory-like T cell subsets. Furthermore, qualitative and quantitative analysis identified highly regulated protein clusters that suggest involvement of this post-translational modification in specific cellular processes. In effector-like T cells, protein O-GlcNAcylation is heavily involved in transcriptional and translational processes that drive fast effector T cells proliferation. During the formation of memory-like T cells, protein O-GlcNAcylation is involved in a more specific, perhaps more targeted regulation of transcription, mRNA processing, and translation. Significantly, O-GlcNAc plays a critical role as part of the "histone code" in both CD8+ T cells subgroups.
Collapse
Affiliation(s)
- Aime Lopez Aguilar
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yu Gao
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Xiaomeng Hou
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gregoire Lauvau
- Department
of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - John R. Yates
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
90
|
Miura T, Kume M, Kawamura T, Yamamoto K, Hamakubo T, Nishihara S. O-GlcNAc on PKCζ Inhibits the FGF4-PKCζ-MEK-ERK1/2 Pathway via Inhibition of PKCζ Phosphorylation in Mouse Embryonic Stem Cells. Stem Cell Reports 2017; 10:272-286. [PMID: 29249667 PMCID: PMC5768893 DOI: 10.1016/j.stemcr.2017.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) differentiate into multiple cell types during organismal development. Fibroblast growth factor 4 (FGF4) signaling induces differentiation from ESCs via the phosphorylation of downstream molecules such as mitogen-activated protein kinase/extracellular signal-related kinase (MEK) and extracellular signal-related kinase 1/2 (ERK1/2). The FGF4-MEK-ERK1/2 pathway is inhibited to maintain ESCs in the undifferentiated state. However, the inhibitory mechanism of the FGF4-MEK-ERK1/2 pathway in ESCs is uncharacterized. O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a post-translational modification characterized by the attachment of a single N-acetylglucosamine (GlcNAc) to the serine and threonine residues of nuclear or cytoplasmic proteins. Here, we showed that the O-GlcNAc on the phosphorylation site of PKCζ inhibits PKCζ phosphorylation (activation) and, consequently, the FGF4-PKCζ-MEK-ERK1/2 pathway in ESCs. Our results demonstrate the mechanism for the maintenance of the undifferentiated state of ESCs via the inhibition of the FGF4-PKCζ-MEK-ERK1/2 pathway by O-GlcNAcylation on PKCζ. PKCζ activates the MEK-ERK1/2 pathway by FGF4 stimulation O-GlcNAc on the phosphorylation site of PKCζ inhibits PKCζ activation in ESCs FGF4-PKCζ-MEK-ERK1/2 pathway is inhibited by O-GlcNAc on PKCζ in ESCs
Collapse
Affiliation(s)
- Taichi Miura
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan; National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masahiko Kume
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Takeshi Kawamura
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Takao Hamakubo
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
91
|
Aguilar AL, Hou X, Wen L, Wang PG, Wu P. A Chemoenzymatic Histology Method for O-GlcNAc Detection. Chembiochem 2017; 18:2416-2421. [PMID: 29044951 PMCID: PMC5771404 DOI: 10.1002/cbic.201700515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Indexed: 12/18/2022]
Abstract
Modification of nuclear and cytoplasmic proteins by the addition or removal of O-GlcNAc dynamically impacts multiple biological processes. Here, we present the development of a chemoenzymatic histology method for the detection of O-GlcNAc in tissue specimens. We applied this method to screen murine organs, uncovering specific O-GlcNAc distribution patterns in different tissue structures. We then utilized our histology method for O-GlcNAc detection in human brain specimens from healthy donors and donors with Alzheimer's disease and found higher levels of O-GlcNAc in specimens from healthy donors. We also performed an analysis using a multiple cancer tissue array, uncovering different O-GlcNAc levels between healthy and cancerous tissues, as well as different O-GlcNAc cellular distributions within certain tissue specimens. This chemoenzymatic histology method therefore holds great potential for revealing the biology of O-GlcNAc in physiopathological processes.
Collapse
Affiliation(s)
- Aime Lopez Aguilar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xiaomeng Hou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30303, USA
| | - Peng G Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30303, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
92
|
Tao T, He Z, Shao Z, Lu H. TAB3 O-GlcNAcylation promotes metastasis of triple negative breast cancer. Oncotarget 2017; 7:22807-18. [PMID: 27009840 PMCID: PMC5008402 DOI: 10.18632/oncotarget.8182] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022] Open
Abstract
O-GlcNAcylation is a post-translational modification that regulates a broad range of nuclear and cytoplasmic proteins and is emerging as a key regulator of various biological processes. Although previous studies have shown that increased levels of global O-GlcNAcylation and O-GlcNActransferase are linked to the incidence of metastasis in triple negative breast cancer (TNBC) patients, the molecular basis behind this is not fully understood. In this study, we have determined that the TAK1 binding protein 3 (TAB3) was O-GlcNAcylated at Ser408 by OGT in the TNBC, which was required for its Thr404 phosphorylation, TAK1 activation and downstream nuclear factor kappa B (NF-κB) activation in TNBC. O-GlcNAcylation of TAB3 was induced by p38 MAPK and it in turn enhances the TAK1 mediated p38MAPK activation, which forms the positive feedback loop in TAB3mediated NF-κB activation. In TNBC, TAB3O-GlcNAcylationmediated cell migration and invasion by activating its downstream NF-κB. The expression of TAB3 O-GlcNAcylation increased in TNBC patients, and it was significantly correlated with poor prognoses of the patients. Our study provides insights into the mechanism of TAB3 regulating activity and suggests its important implications in TNBC metastasis.
Collapse
Affiliation(s)
- Tao Tao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China.,Department of Chemistry, Fudan University, Shanghai 200433, P.R. China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, P.R. China
| | - Zhiming Shao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China.,Department of Chemistry, Fudan University, Shanghai 200433, P.R. China.,Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
93
|
Hwang H, Rhim H. Functional significance of O-GlcNAc modification in regulating neuronal properties. Pharmacol Res 2017; 129:295-307. [PMID: 29223644 DOI: 10.1016/j.phrs.2017.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022]
Abstract
Post-translational modifications (PTMs) covalently modify proteins and diversify protein functions. Along with protein phosphorylation, another common PTM is the addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and/or threonine residues. O-GlcNAc modification is similar to phosphorylation in that it occurs to serine and threonine residues and cycles on and off with a similar time scale. However, a striking difference is that the addition and removal of the O-GlcNAc moiety on all substrates are mediated by the two enzymes regardless of proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. O-GlcNAcylation can interact or potentially compete with phosphorylation on serine and threonine residues, and thus serves as an important molecular mechanism to modulate protein functions and activation. However, it has been challenging to address the role of O-GlcNAc modification in regulating protein functions at the molecular level due to the lack of convenient tools to determine the sites and degrees of O-GlcNAcylation. Studies in this field have only begun to expand significantly thanks to the recent advances in detection and manipulation methods such as quantitative proteomics and highly selective small-molecule inhibitors for OGT and OGA. Interestingly, multiple brain regions, especially hippocampus, express high levels of both OGT and OGA, and a number of neuron-specific proteins have been reported to undergo O-GlcNAcylation. This review aims to discuss the recent updates concerning the impacts of O-GlcNAc modification on neuronal functions at multiple levels ranging from intrinsic neuronal properties to synaptic plasticity and animal behaviors.
Collapse
Affiliation(s)
- Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
94
|
Chen R, Gong P, Tao T, Gao Y, Shen J, Yan Y, Duan C, Wang J, Liu X. O-GlcNAc Glycosylation of nNOS Promotes Neuronal Apoptosis Following Glutamate Excitotoxicity. Cell Mol Neurobiol 2017; 37:1465-1475. [PMID: 28238085 DOI: 10.1007/s10571-017-0477-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/17/2017] [Indexed: 01/11/2023]
Abstract
Ischemic stroke is a dominant health problem with extremely high rates of mortality and disability. The main mechanism of neuronal injury after stroke is excitotoxicity, during which the activation of neuronal nitric oxide synthase (nNOS) exerts a vital role. However, directly blocking N-methyl-D-aspartate receptors or nNOS can lead to severe undesirable effects since they have crucial physiological functions in the central nervous system. Here, we report that nNOS undergoes O-linked-β-N-acetylglucosamine (O-GlcNAc) modification via interacting with O-GlcNAc transferase, and the O-GlcNAcylation of nNOS remarkably increases during glutamate-induced excitotoxicity. In addition, eliminating the O-GlcNAcylation of nNOS protects neurons from apoptosis during glutamate stimulation by decreasing the formation of nNOS-postsynaptic density protein 95 complexes. Taken together, our data suggest a novel function of the O-GlcNAcylation of nNOS in neuronal apoptosis during glutamate excitotoxicity, suggesting a novel therapy strategy for ischemic stroke.
Collapse
Affiliation(s)
- Rongrong Chen
- Department of Geriatric Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Peipei Gong
- Department of Neurosurgery, Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yilu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yaohua Yan
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chengwei Duan
- Department of Science and Education, Second People's Hospital of Nantong, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jun Wang
- Department of Geriatric Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Xiaojuan Liu
- Department of Pathogen Biology, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
95
|
Yurko NM, Manley JL. The RNA polymerase II CTD "orphan" residues: Emerging insights into the functions of Tyr-1, Thr-4, and Ser-7. Transcription 2017; 9:30-40. [PMID: 28771071 DOI: 10.1080/21541264.2017.1338176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of a unique repeated heptad sequence of the consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. An important function of the CTD is to couple transcription with RNA processing reactions that occur during the initiation, elongation, and termination phases of transcription. During this transcription cycle, the CTD is subject to extensive modification, primarily phosphorylation, on its non-proline residues. Reversible phosphorylation of Ser2 and Ser5 is well known to play important and general functions during transcription in all eukaryotes. More recent studies have enhanced our understanding of Tyr1, Thr4, and Ser7, and what have been previously characterized as unknown or specialized functions for these residues has changed to a more fine-detailed map of transcriptional regulation that highlights similarities as well as significant differences between organisms. Here, we review recent findings on the function and modification of these three residues, which further illustrate the importance of the CTD in precisely modulating gene expression.
Collapse
Affiliation(s)
- Nathan M Yurko
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - James L Manley
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| |
Collapse
|
96
|
Wang X, Zhou X, Li G, Zhang Y, Wu Y, Song W. Modifications and Trafficking of APP in the Pathogenesis of Alzheimer's Disease. Front Mol Neurosci 2017; 10:294. [PMID: 28966576 PMCID: PMC5605621 DOI: 10.3389/fnmol.2017.00294] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is the leading cause of dementia. Neuritic plaque, one of the major characteristics of AD neuropathology, mainly consists of amyloid β (Aβ) protein. Aβ is derived from amyloid precursor protein (APP) by sequential cleavages of β- and γ-secretase. Although APP upregulation can promote AD pathogenesis by facilitating Aβ production, growing evidence indicates that aberrant post-translational modifications and trafficking of APP play a pivotal role in AD pathogenesis by dysregulating APP processing and Aβ generation. In this report, we reviewed the current knowledge of APP modifications and trafficking as well as their role in APP processing. More importantly, we discussed the effect of aberrant APP modifications and trafficking on Aβ generation and the underlying mechanisms, which may provide novel strategies for drug development in AD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Xuan Zhou
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Gongying Li
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical UniversityJining, China
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British ColumbiaVancouver, BC, Canada
| | - Yili Wu
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical UniversityJining, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British ColumbiaVancouver, BC, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
97
|
Yang Y, Gu Y, Wan B, Ren X, Guo LH. Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation. Biosens Bioelectron 2017; 95:94-99. [DOI: 10.1016/j.bios.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 12/01/2022]
|
98
|
Souza-Silva L, Alves-Lopes R, Silva Miguez J, Dela Justina V, Neves KB, Mestriner FL, Tostes RDC, Giachini FR, Lima VV. Glycosylation with O-linked β-N-acetylglucosamine induces vascular dysfunction via production of superoxide anion/reactive oxygen species. Can J Physiol Pharmacol 2017; 96:232-240. [PMID: 28793197 DOI: 10.1139/cjpp-2017-0225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overproduction of superoxide anion (•O2-) and O-linked β-N-acetylglucosamine (O-GlcNAc) modification in the vascular system are contributors to endothelial dysfunction. This study tested the hypothesis that increased levels of O-GlcNAc-modified proteins contribute to •O2- production via activation of NADPH oxidase, resulting in impaired vasodilation. Rat aortic segments and vascular smooth muscle cells (VSMCs) were incubated with vehicle (methanol) or O-(2-acetamido-2-deoxy-d-glucopyranosylidenamino) N-phenylcarbamate (PUGNAc) (100 μM). PUGNAc produced a time-dependent increase in O-GlcNAc levels in VSMC and decreased endothelium-dependent relaxation, which was prevented by apocynin and tiron, suggesting that •O2- contributes to endothelial dysfunction under augmented O-GlcNAc levels. Aortic segments incubated with PUGNAc also exhibited increased levels of reactive oxygen species, assessed by dihydroethidium fluorescence, and augmented •O2- production, determined by lucigenin-enhanced chemiluminescence. Additionally, PUGNAc treatment increased Nox-1 and Nox-4 protein expression in aortas and VSMCs. Translocation of the p47phox subunit from the cytosol to the membrane was greater in aortas incubated with PUGNAc. VSMCs displayed increased p22phox protein expression after PUGNAc incubation, suggesting that NADPH oxidase is activated in conditions where O-GlcNAc protein levels are increased. In conclusion, O-GlcNAc levels reduce endothelium-dependent relaxation by overproduction of •O2- via activation of NADPH oxidase. This may represent an additional mechanism by which augmented O-GlcNAc levels impair vascular function.
Collapse
Affiliation(s)
- Leonardo Souza-Silva
- a Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Rheure Alves-Lopes
- b Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil.,c Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Jéssica Silva Miguez
- a Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Vanessa Dela Justina
- a Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Karla Bianca Neves
- b Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil.,c Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Fabíola Leslie Mestriner
- b Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Rita de Cassia Tostes
- b Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernanda Regina Giachini
- a Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Victor Vitorino Lima
- a Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| |
Collapse
|
99
|
Badgett MJ, Boyes B, Orlando R. Predicting the Retention Behavior of Specific O-Linked Glycopeptides. J Biomol Tech 2017; 28:122-126. [PMID: 28785176 DOI: 10.7171/jbt.17-2803-003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O-Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O-glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O-N-acetylgalactosamine (O-GalNAc), O-N-acetylglucosamine (O-GlcNAc), and O-fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications.
Collapse
Affiliation(s)
- Majors J Badgett
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA; and
| | - Barry Boyes
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA; and.,Advanced Materials Technology, Wilmington, Delaware 19810, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA; and
| |
Collapse
|
100
|
Shi J, Tomašič T, Sharif S, Brouwer AJ, Anderluh M, Ruijtenbeek R, Pieters RJ. Peptide microarray analysis of the cross-talk between O-GlcNAcylation and tyrosine phosphorylation. FEBS Lett 2017; 591:1872-1883. [DOI: 10.1002/1873-3468.12708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/31/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jie Shi
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| | | | - Suhela Sharif
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| | - Arwin J. Brouwer
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| | | | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
- PamGene International BV; ‘s-Hertogenbosch The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology and Drug Discovery; Utrecht Institute for Pharmaceutical Sciences, Utrecht University; Utrecht The Netherlands
| |
Collapse
|