51
|
Podolnikova NP, O'Toole TE, Haas TA, Lam SCT, Fox JEB, Ugarova TP. Adhesion-induced unclasping of cytoplasmic tails of integrin alpha(IIb)beta3. Biochemistry 2009; 48:617-29. [PMID: 19117493 DOI: 10.1021/bi801751s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integrin alpha(IIb)beta(3) plays a pivotal role in hemostasis and thrombosis by mediating adhesive interactions of platelets. Binding of alpha(IIb)beta(3) to its physiological ligands, immobilized fibrinogen and fibrin, induces outside-in signaling in platelets, leading to their adhesion and spreading even without prior stimulation by agonists. Implicit in these phenomena is a requirement for the linkage between integrins' cytoplasmic tails and intracellular proteins. However, the nature of the initiating signal has not been established. In this study, we examined whether binding of alpha(IIb)beta(3) to immobilized fibrin(ogen), per se, triggers interaction of the integrin with cytoplasmic proteins. Using the integrin-binding skelemin fragment as a marker of exposure of residues involved in the clasp between alpha(IIb) and beta(3) cytoplasmic tails, we showed that its binding site in the membrane-proximal beta(3) 715-730 segment is cryptic and becomes exposed as a result of binding of isolated alpha(IIb)beta(3) to immobilized ligands. Furthermore, the skelemin-like protein present in platelets and CHO cells does not associate with alpha(IIb)beta(3) in resting platelets or suspended alpha(IIb)beta(3)-expressing CHO cells but is recruited to integrin during cell adhesion. In addition, not only beta(3) but also the membrane-proximal 989-1000 segment of the alpha(IIb) cytoplasmic tail binds the skelemin fragment. Finally, the same residues, alpha(IIb) Val(990), alpha(IIb) Arg(995), and beta(3) His(722), involved in the formation of the clasp between the tails are also required for skelemin binding. These studies suggest that ligation of alpha(IIb)beta(3) by immobilized ligands during platelet adhesion induces a transmembrane conformation change in the integrin, resulting in unclasping of the complex between the membrane-proximal parts of cytoplasmic tails, thereby unmasking residues involved in binding the skelemin-like protein. Thus, the junction between alpha(IIb) and beta(3) cytoplasmic tails may contain the critical structural information for the initiation of outside-in signaling.
Collapse
Affiliation(s)
- Nataly P Podolnikova
- Center for Metabolic Biology, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | |
Collapse
|
52
|
Chen S, Lin F, Shin ME, Wang F, Shen L, Hamm HE. RACK1 regulates directional cell migration by acting on G betagamma at the interface with its effectors PLC beta and PI3K gamma. Mol Biol Cell 2008; 19:3909-22. [PMID: 18596232 DOI: 10.1091/mbc.e08-04-0433] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Migration of cells up the chemoattractant gradients is mediated by the binding of chemoattractants to G protein-coupled receptors and activation of a network of coordinated excitatory and inhibitory signals. Although the excitatory process has been well studied, the molecular nature of the inhibitory signals remains largely elusive. Here we report that the receptor for activated C kinase 1 (RACK1), a novel binding protein of heterotrimeric G protein betagamma (G betagamma) subunits, acts as a negative regulator of directed cell migration. After chemoattractant-induced polarization of Jurkat and neutrophil-like differentiated HL60 (dHL60) cells, RACK1 interacts with G betagamma and is recruited to the leading edge. Down-regulation of RACK1 dramatically enhances chemotaxis of cells, whereas overexpression of RACK1 or a fragment of RACK1 that retains G betagamma-binding capacity inhibits cell migration. Further studies reveal that RACK1 does not modulate cell migration through binding to other known interacting proteins such as PKC beta and Src. Rather, RACK1 selectively inhibits G betagamma-stimulated phosphatidylinositol 3-kinase gamma (PI3K gamma) and phospholipase C (PLC) beta activity, due to the competitive binding of RACK1, PI3K gamma, and PLC beta to G betagamma. Taken together, these findings provide a novel mechanism of regulating cell migration, i.e., RACK1-mediated interference with G betagamma-dependent activation of key effectors critical for chemotaxis.
Collapse
Affiliation(s)
- Songhai Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Kiely PA, Baillie GS, Lynch MJ, Houslay MD, O'Connor R. Tyrosine 302 in RACK1 is essential for insulin-like growth factor-I-mediated competitive binding of PP2A and beta1 integrin and for tumor cell proliferation and migration. J Biol Chem 2008; 283:22952-61. [PMID: 18567578 DOI: 10.1074/jbc.m800802200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor (IGF)-I regulates a mutually exclusive interaction of PP2A and beta1 integrin with the WD repeat scaffolding protein RACK1. This interaction is required for the integration of IGF-I receptor (IGF-IR) and adhesion signaling. Here we investigated the nature of the binding site for PP2A and beta1 integrin in RACK1. A WD7 deletion mutant of RACK1 did not associate with PP2A but retained some interaction with beta1 integrin, whereas a WD6/WD7 mutant lost the ability to bind to both PP2A and beta1 integrin. Using immobilized peptide arrays representing the entire RACK1 protein, we identified a common cluster of amino acids (FAGY) at positions 299-302 within WD7 of RACK1 which were essential for binding of both PP2A and beta1 integrin to RACK1. PP2A showed a higher level of association with a peptide in which Tyr-302 was phosphorylated compared with an unphosphorylated peptide, whereas beta1 integrin binding was not affected by phosphorylation. RACK1 mutants in which either the FAGY cluster or Tyr-302 were mutated to AAAF, or Phe, respectively, did not interact with either PP2A or beta1 integrin. These mutants were unable to rescue the decrease in PP2A activity caused by suppression of RACK1 in MCF-7 cells with small interfering RNA. MCF-7 cells and R+ (IGF-IR-overexpressing fibroblasts) expressing these mutants exhibited decreased proliferation and migration, whereas R- cells (IGF-IR null fibroblasts) were unaffected. Taken together, the data demonstrate that Tyr-302 in RACK1 is required for interaction with PP2A and beta1 integrin, for regulation of PP2A activity, and for IGF-I-mediated cell migration and proliferation.
Collapse
Affiliation(s)
- Patrick A Kiely
- Department of Biochemistry, BioSciences Institute, University College Cork, Ireland
| | | | | | | | | |
Collapse
|
54
|
Parent A, Laroche G, Hamelin É, Parent JL. RACK1 Regulates the Cell Surface Expression of the G Protein-Coupled Receptor for Thromboxane A2. Traffic 2008; 9:394-407. [DOI: 10.1111/j.1600-0854.2007.00692.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
55
|
Kadrmas JL, Smith MA, Pronovost SM, Beckerle MC. Characterization of RACK1 function in Drosophila development. Dev Dyn 2007; 236:2207-15. [PMID: 17584887 DOI: 10.1002/dvdy.21217] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Receptor for Activated C Kinase 1 (RACK1) is a cytoplasmic molecular scaffolding protein. Many diverse protein-binding partners involved in key signaling pathways are reported to bind to RACK1, suggesting a role for RACK1 in signal integration. However, because loss-of-function phenotypes for RACK1 in an intact organism have not yet been reported, our current understanding of RACK1 is limited. Using Drosophila melanogaster, we show that RACK1 is expressed at all developmental stages and in many tissues, with specific enrichment in the ovary. By characterizing an allelic series of RACK1 mutants, we demonstrate that RACK1 is essential at multiple steps of Drosophila development, particularly in oogenesis, where somatic RACK1 is required for proper germ-line function.
Collapse
Affiliation(s)
- Julie L Kadrmas
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | |
Collapse
|
56
|
Valerius O, Kleinschmidt M, Rachfall N, Schulze F, López Marín S, Hoppert M, Streckfuss-Bömeke K, Fischer C, Braus GH. The Saccharomyces Homolog of Mammalian RACK1, Cpc2/Asc1p, Is Required for FLO11-dependent Adhesive Growth and Dimorphism. Mol Cell Proteomics 2007; 6:1968-79. [PMID: 17704055 DOI: 10.1074/mcp.m700184-mcp200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nutrient starvation results in the interaction of Saccharomyces cerevisiae cells with each other and with surfaces. Adhesive growth requires the expression of the FLO11 gene regulated by the Ras/cAMP/cAMP-dependent protein kinase, the Kss1p/MAPK, and the Gcn4p/general amino acid control pathway, respectively. Proteomics two-dimensional DIGE experiments revealed post-transcriptionally regulated proteins in response to amino acid starvation including the ribosomal protein Cpc2p/Asc1p. This putative translational regulator is highly conserved throughout the eukaryotic kingdom and orthologous to mammalian RACK1. Deletion of CPC2/ASC1 abolished amino acid starvation-induced adhesive growth and impaired basal expression of FLO11 and its activation upon starvation in haploid cells. In addition, the diploid Flo11p-dependent pseudohyphal growth during nitrogen limitation was CPC2/ASC1-dependent. A more detailed analysis revealed that a CPC2/ASC1 deletion caused increased sensitivity to cell wall drugs suggesting that the gene is required for general cell wall integrity. Phosphoproteome and Western hybridization data indicate that Cpc2p/Asc1p affected the phosphorylation of the translational initiation factors eIF2 alpha and eIF4A and the ribosome-associated complex RAC. A crucial role of Cpc2p/Asc1p at the ribosomal interface coordinating signal transduction, translation initiation, and transcription factor formation was corroborated.
Collapse
Affiliation(s)
- Oliver Valerius
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Doan AT, Huttenlocher A. RACK1 regulates Src activity and modulates paxillin dynamics during cell migration. Exp Cell Res 2007; 313:2667-79. [PMID: 17574549 PMCID: PMC2679865 DOI: 10.1016/j.yexcr.2007.05.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 05/02/2007] [Accepted: 05/02/2007] [Indexed: 12/16/2022]
Abstract
Receptor for Activated C Kinase, RACK1, is an adaptor protein that regulates signaling via Src and PKC-dependent pathways, and has been implicated in cell migration. In this study we demonstrate novel functions for RACK1 in regulating adhesion dynamics during cell migration. We report that cells lacking RACK1 are less motile and show reduced dynamics of paxillin and talin at focal complexes. To investigate the role of the RACK1/Src interactions in adhesion dynamics, we used RACK1 in which the putative Src binding site has been mutated (RACK Y246F). RACK1-deficient cells showed enhanced c-Src activity that was rescued by expression of wild type RACK1, but not by RACK Y246F. Expression of wild type RACK1, but not RACK Y246F, was also able to rescue the adhesion and migration defects observed in the RACK1-deficient cells. Furthermore, our findings indicate that RACK1 functions to regulate paxillin phosphorylation and that its effects on paxillin dynamics require the Src-mediated phosphorylation of tyrosine 31/118 on paxillin. Taken together, these findings support a novel role for RACK1 as a key regulator of cell migration and adhesion dynamics through the regulation of Src activity, and the modulation of paxillin phosphorylation at early adhesions.
Collapse
Affiliation(s)
- Ashley T. Doan
- Department of Pharmacology, University of Wisconsin, 1300 University Avenue, 2765 Medical Sciences Center, Madison, Wisconsin 53706
| | - Anna Huttenlocher
- Department of Pharmacology, University of Wisconsin, 1300 University Avenue, 2765 Medical Sciences Center, Madison, Wisconsin 53706
- Department of Pediatrics, University of Wisconsin, 1300 University Avenue, 2765 Medical Sciences Center, Madison, Wisconsin 53706
- Corresponding author: Anna Huttenlocher, Departments of Pediatrics and Pharmacology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, Phone: 608-265-4642; FAX: 608-262-1257, e-mail:
| |
Collapse
|
58
|
Gatto CL, Walker BJ, Lambert S. Asymmetric ERM activation at the Schwann cell process tip is required in axon-associated motility. J Cell Physiol 2007; 210:122-32. [PMID: 17061246 DOI: 10.1002/jcp.20844] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Axon-associated Schwann cell (SC) motility and process dynamics are crucial in the development and regeneration of the peripheral nervous system (PNS). The bipolar morphology of SCs represents an unexplored conundrum in terms of directed motility. Using fluorescence time-lapse microscopy of transfected SCs within myelinating dorsal root ganglion (DRG) explants, we demonstrate cycling of SCs between bipolar and highly motile, unipolar morphologies as a result of asymmetric process retraction and extension. Unipolar SC motility appears nucleotaxic in nature, similar to the movement of neurons on radial glia during cortical development. We also show that asymmetric process retraction is associated with the activation of ERM (ezrin/radixin/moesin) proteins and subsequent recruitment of ezrin-binding phospho-protein 50 kDa (EBP50) at the retracting process tip. This activation occurs in response to localized synthesis of phosphatidylinositol (4,5)-bisphosphate (PIP2) at this site. Finally, we demonstrate that the activation of ERM proteins at the SC process tip is essential for motility and the maintenance of SC polarity, as ERM disruption yields a dysfunctional, multi-polar cell. These results demonstrate that specializations at the tips of SC processes regulate their dynamics, which in turn is associated with directed motility in these cells.
Collapse
Affiliation(s)
- Cheryl L Gatto
- Department of Cell Biology, Programs in Neuroscience and Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
59
|
Guvakova MA. Insulin-like growth factors control cell migration in health and disease. Int J Biochem Cell Biol 2007; 39:890-909. [PMID: 17113337 DOI: 10.1016/j.biocel.2006.10.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/13/2006] [Accepted: 10/19/2006] [Indexed: 12/30/2022]
Abstract
Insulin-like growth factors I and II (IGF-I and IGF-II) have an ancient origin and play essential roles in fundamental biological processes. Although IGFs are principally known for their roles in regulating cell growth and survival, their ability to influence cell motility is just as significant. In the past 20 years, research has provided indisputable evidence for the regulatory role of IGFs in the migration of various cell types. Cell migration is crucial for reproduction, development, and tissue regeneration; IGFs play an important role in coordinating these processes. Moreover, studies continue to uncover the IGFs' role in stimulating cancer cell migration, invasion and metastasis. This review surveys current knowledge on the cell migration-modulating properties of IGFs and the biochemical pathways by which these peptides regulate cell movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Marina A Guvakova
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
60
|
Kraus S, Gioeli D, Vomastek T, Gordon V, Weber MJ. Receptor for activated C kinase 1 (RACK1) and Src regulate the tyrosine phosphorylation and function of the androgen receptor. Cancer Res 2006; 66:11047-54. [PMID: 17108144 DOI: 10.1158/0008-5472.can-06-0596] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) remains functionally important in the development and progression of prostate cancer even when the disease seems androgen "independent." Because signal transduction by growth factor receptors increases in advanced prostate cancer and is capable of sensitizing the AR to androgen, there is considerable interest in determining the mechanisms by which signaling systems can modulate AR function. We show herein that the adaptor/scaffolding protein receptor for activated C kinase 1 (RACK1), which was previously reported to interact with the AR, modulates the tyrosine phosphorylation of AR and its interaction with the Src tyrosine kinase. We also show that down-regulation of RACK1 by short interfering RNA inhibits growth and stimulates prostate-specific antigen transcription in androgen-treated prostate cancer cells. Our results suggest that RACK1 mediates the cross-talk of AR with additional binding partners, such as Src, and facilitates the tyrosine phosphorylation and transcriptional activity of the AR.
Collapse
Affiliation(s)
- Sarah Kraus
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
61
|
Onishi I, Lin PJC, Diering GH, Williams WP, Numata M. RACK1 associates with NHE5 in focal adhesions and positively regulates the transporter activity. Cell Signal 2006; 19:194-203. [PMID: 16920332 DOI: 10.1016/j.cellsig.2006.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/15/2006] [Accepted: 06/29/2006] [Indexed: 11/29/2022]
Abstract
Na+/H+ exchanger isoform 5 (NHE5) is a brain-enriched NHE that may play important roles in ion homeostasis and cell-volume regulation. However, the regulation mechanism of NHE5 has not been fully elucidated. Here, we show that Receptor for Activated C-kinase 1 (RACK1) directly binds to NHE5 and positively regulates the transporter function. NHE5 co-localized with RACK1 as well as beta1 integrin, paxillin and vinculin, suggesting that NHE5 associates with focal adhesions. By using RACK1 dominant-negative mutants and siRNA, we further show that RACK1 regulates NHE5 both directly and through an integrin-dependent pathway. The NHE5-RACK1 interaction, but not the RACK1-beta1 integrin interaction, was reinforced when cells were spread on an integrin-substrate fibronectin. We propose that RACK1 activates NHE5 both by integrin-dependent and independent pathways, which may coordinate cellular ion homeostasis during cell-matrix adhesion.
Collapse
Affiliation(s)
- Ichiro Onishi
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Canada
| | | | | | | | | |
Collapse
|
62
|
Kiely PA, O'Gorman D, Luong K, Ron D, O'Connor R. Insulin-like growth factor I controls a mutually exclusive association of RACK1 with protein phosphatase 2A and beta1 integrin to promote cell migration. Mol Cell Biol 2006; 26:4041-51. [PMID: 16705158 PMCID: PMC1489096 DOI: 10.1128/mcb.01868-05] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The WD repeat scaffolding protein RACK1 can mediate integration of the insulin-like growth factor I receptor (IGF-IR) and integrin signaling in transformed cells. To address the mechanism of RACK1 function, we searched for regulatory proteins that associate with RACK1 in an IGF-I-dependent manner. The serine threonine phosphatase protein phosphatase 2A (PP2A) was found associated with RACK1 in serum-starved cells, and it dissociated immediately upon stimulation with IGF-I. This dissociation of PP2A from RACK1 and an IGF-I-mediated decrease in cellular PP2A activity did not occur in cells expressing either the serine 1248 or tyrosine 1250/1251 mutants of the IGF-IR that do not interact with RACK1. Recombinant RACK1 could bind to PP2A in vitro and restore phosphatase activity to PP2A from IGF-I-stimulated cells. Ligation of integrins with fibronectin or Matrigel was sufficient to facilitate IGF-I-mediated dissociation of PP2A from RACK1 and also to recruit beta1 integrin as PP2A dissociated. By using TAT-fused N-terminal and C-terminal deletion mutants of RACK1, we determined that both PP2A and beta1 integrin interact in the C terminus of RACK1 within WD repeats 4 to 7. This suggests that integrin ligation displaces PP2A from RACK1. MCF-7 cells overexpressing RACK1 exhibited enhanced motility, which could be reversed by the PP2A inhibitor okadaic acid. Small interfering RNA-mediated suppression of RACK1 also decreased the migratory capacity of DU145 cells. Taken together, our findings indicate that RACK1 enhances IGF-I-mediated cell migration through its ability to exclusively associate with either beta1 integrin or PP2A in a complex at the IGF-IR.
Collapse
Affiliation(s)
- Patrick A Kiely
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | | | | | | | | |
Collapse
|
63
|
Shi T, Duan ZH, Papay R, Pluskota E, Gaivin RJ, de la Motte CA, Plow EF, Perez DM. Novel alpha1-adrenergic receptor signaling pathways: secreted factors and interactions with the extracellular matrix. Mol Pharmacol 2006; 70:129-42. [PMID: 16617165 DOI: 10.1124/mol.105.020735] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
alpha1-Adrenergic receptor (alpha1-ARs) subtypes (alpha1A, alpha1B, and alpha1D) regulate multiple signal pathways, such as phospholipase C, protein kinase C (PKC), and mitogen-activated protein kinases. We employed oligonucleotide microarray technology to explore the effects of both short- (1 h) and long-term (18 h) activation of the alpha1A-AR to enable RNA changes to occur downstream of earlier well characterized signaling pathways, promoting novel couplings. Polymerase chain reaction (PCR) studies confirmed that PKC was a critical regulator of alpha1A-AR-mediated gene expression, and secreted interleukin (IL)-6 also contributed to gene expression alterations. We next focused on two novel signaling pathways that might be mediated through alpha1A-AR stimulation because of the clustering of gene expression changes for cell adhesion/motility (syndecan-4 and tenascin-C) and hyaluronan (HA) signaling. We confirmed that alpha1-ARs induced adhesion in three cell types to vitronectin, an interaction that was also integrin-, FGF7-, and PKC-dependent. alpha1-AR activation also inhibited cell migration, which was integrin- and PKC-independent but still required secretion of FGF7. alpha1-AR activation also increased the expression and deposition of HA, a glycosaminoglycan, which displayed two distinct structures: pericellular coats and long cable structures, as well as increasing expression of the HA receptor, CD44. Long cable structures of HA can bind leukocytes, which this suggests that alpha1-ARs may be involved in proinflammatory responses. Our results indicate alpha1-ARs induce the secretion of factors that interact with the extracellular matrix to regulate cell adhesion, motility and proinflammatory responses through novel signaling pathways.
Collapse
Affiliation(s)
- Ting Shi
- Department of Molecular Cardiology NB50, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Sklan EH, Podoly E, Soreq H. RACK1 has the nerve to act: structure meets function in the nervous system. Prog Neurobiol 2006; 78:117-34. [PMID: 16457939 DOI: 10.1016/j.pneurobio.2005.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 11/20/2005] [Accepted: 12/07/2005] [Indexed: 11/26/2022]
Abstract
The receptor for activated protein kinase C 1 (RACK1) is an intracellular adaptor protein. Accumulating evidence attributes to this member of the tryptophan-aspartate (WD) repeat family the role of regulating several major nervous system pathways. Structurally, RACK1 is a seven-bladed-beta-propeller, interacting with diverse proteins having distinct structural folds. When bound to the IP3 receptor, RACK1 regulates intracellular Ca2+ levels, potentially contributing to processes such as learning, memory and synaptic plasticity. By binding to the NMDA receptor, it dictates neuronal excitation and sensitivity to ethanol. When bound to the stress-induced acetylcholinesterase variant AChE-R, RACK1 is implicated in stress responses and behavior, compatible with reports of RACK1 modulations in brain ageing and in various neurodegenerative diseases. This review sheds new light on both the virtues and the variety of neuronal RACK1 interactions and their physiological consequences.
Collapse
Affiliation(s)
- Ella H Sklan
- The Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
65
|
Ashique AM, Kharazia V, Yaka R, Phamluong K, Peterson AS, Ron D. Localization of the scaffolding protein RACK1 in the developing and adult mouse brain. Brain Res 2006; 1069:31-8. [PMID: 16414032 DOI: 10.1016/j.brainres.2005.11.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 11/20/2022]
Abstract
RACK1 is a multifunctional scaffolding protein known to be involved in the regulation of various signaling cascades in the central nervous system (CNS). In order to gain insight into the neurological functions of RACK1, we examined the expression of RACK1 mRNA and protein during gestation and in the adult mouse brain. Several expression patterns were observed. At embryonic day 11.5 (E11.5), RACK1 is expressed in a high-dorsal to low-ventral gradient throughout the brain. At E13.5, RACK1 is most abundant in the telencephalon. In the developing cortical primordium, RACK1 protein is expressed in a high-rostromidline to low-caudolateral gradient that appears to be regulated post-transcriptionally. At E18.5, RACK1 is expressed most abundantly in layers 1-4 of the cortex, striatum, hippocampus, dentate gyrus and specific thalamic nuclei. In the adult mouse, RACK1 is ubiquitously expressed in neuronal perikarya in most brain regions, with relatively higher levels in hippocampus, olfactory bulb, cortex and cerebellum. Subcellular staining was detected mainly in the cell bodies and extending into dendrites, whereas RACK1 was not present significantly in axonal fibers or nuclei. We also determined brain regions in which RACK1 interacts with one of its binding partners, the betaII isoform of protein kinase C (betaIIPKC). We found that betaIIPKC had a much more restricted expression pattern than RACK1 and overlapped with the scaffolding protein only in certain regions, including the CA1 area of the hippocampus, cerebellum and striatum. Our results suggest an important role for RACK1 during CNS development and support multiple functions of the protein in the adult brain.
Collapse
Affiliation(s)
- A M Ashique
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton St., Suite 200, Emeryville, CA 94608, USA
| | | | | | | | | | | |
Collapse
|
66
|
Zhang W, Zong CS, Hermanto U, Lopez-Bergami P, Ronai Z, Wang LH. RACK1 recruits STAT3 specifically to insulin and insulin-like growth factor 1 receptors for activation, which is important for regulating anchorage-independent growth. Mol Cell Biol 2006; 26:413-24. [PMID: 16382134 PMCID: PMC1346890 DOI: 10.1128/mcb.26.2.413-424.2006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/03/2005] [Accepted: 10/20/2005] [Indexed: 01/30/2023] Open
Abstract
Current understanding of the activation of STATs is through binding between the SH2 domain of STATs and phosphotyrosine of tyrosine kinases. Here we demonstrate a novel role of RACK1 as an adaptor for insulin and insulin-like growth factor 1 receptor (IGF-1R)-mediated STAT3 activation specifically. Intracellular association of RACK1 via its N-terminal WD domains 1 to 4 (WD1-4) with insulin receptor (IR)/IGF-1R is augmented upon respective ligand stimulation, whereas association with STAT3 is constitutive. Purified RACK1 or RACK1 WD1-4 associates directly with purified IR, IGF-1R, and STAT3 in vitro. Insulin induces multiprotein complex formation of RACK1, IR, and STAT3. Overexpression or downregulation of RACK1 greatly enhances or decreases, respectively, IR/IGF-1R-mediated activation of STAT3 and its target gene expression. Site-specific mutants of IR and IGF-1R impaired in RACK1 binding are ineffective in mediating recruitment and activation of STAT3 as well as in insulin- or IGF-1-induced protection of cells from anoikis. RACK1-mediated STAT3 activation is important for insulin and IGF-1-induced anchorage-independent growth in certain ovarian cancer cells. We conclude that RACK1 mediates recruitment of STAT3 to IR and IGF-1R specifically for activation, suggesting a general paradigm for the need of an adaptor in mediating activation of STATs by receptor protein tyrosine kinases.
Collapse
Affiliation(s)
- Weizhou Zhang
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | |
Collapse
|
67
|
Loreni F, Iadevaia V, Tino E, Caldarola S, Amaldi F. RACK1 mRNA translation is regulated via a rapamycin-sensitive pathway and coordinated with ribosomal protein synthesis. FEBS Lett 2005; 579:5517-20. [PMID: 16212959 DOI: 10.1016/j.febslet.2005.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 07/28/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
RACK1 has been shown to interact with several proteins, this suggesting that it may play a central role in cell growth regulation. Some recent articles have described RACK1 as a component of the small ribosomal subunit. To investigate the relationship between RACK1 and ribosome, we analyzed RACK1 mRNA structure and regulation. Translational regulation was studied in HeLa cells subjected to serum or amino acid deprivation and stimulation. The results show that RACK1 mRNA has a 5' terminal oligopyrimidine sequence and that its translation is dependent on the availability of serum and amino acids in exactly the same way as any other vertebrate ribosomal protein mRNA.
Collapse
|
68
|
Mourtada-Maarabouni M, Kirkham L, Farzaneh F, Williams GT. Functional expression cloning reveals a central role for the receptor for activated protein kinase C 1 (RACK1) in T cell apoptosis. J Leukoc Biol 2005; 78:503-14. [PMID: 15870214 DOI: 10.1189/jlb.0205070] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mammalian cDNA expression cloning was used to identify novel genes that regulate apoptosis. Using a functional screen, we identified a partial cDNA for the receptor for activated protein kinase C 1 (RACK1) through selection for resistance to phytohemagglutinin and gamma-irradiation. Expression of this partial cDNA in T cell lines using a mammalian expression vector produced an increase in RACK1 expression and resulted in resistance to dexamethasone- and ultraviolet-induced apoptosis. Down-regulation of RACK1 using RNA interference abolished the resistance of the transfected cells to apoptosis. Overexpression of full-length RACK1 also resulted in the suppression of apoptosis mediated by several apoptotic stimuli, and this effect was quantitatively consistent with the effects of the original cDNA isolated on endogenous RACK1 levels. Together, these findings suggest that RACK1 plays an important role in the intracellular signaling pathways that lead to apoptosis in T cells.
Collapse
|
69
|
Nilsson J, Sengupta J, Frank J, Nissen P. Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Rep 2005; 5:1137-41. [PMID: 15577927 PMCID: PMC1299186 DOI: 10.1038/sj.embor.7400291] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 09/30/2004] [Indexed: 11/08/2022] Open
Abstract
The receptor for activated C-kinase (RACK1) is a scaffold protein that is able to interact simultaneously with several signalling molecules. It binds to protein kinases and membrane-bound receptors in a regulated fashion. Interestingly, RACK1 is also a constituent of the eukaryotic ribosome, and a recent cryo-electron microscopy study localized it to the head region of the 40S subunit in the vicinity of the messenger RNA (mRNA) exit channel. RACK1 recruits activated protein kinase C to the ribosome, which leads to the stimulation of translation through the phosphorylation of initiation factor 6 and, potentially, of mRNA-associated proteins. RACK1 therefore links signal-transduction pathways directly to the ribosome, which allows translation to be regulated in response to cell stimuli. In addition, the fact that RACK1 associates with membrane-bound receptors indicates that it promotes the docking of ribosomes at sites where local translation is required, such as focal adhesions.
Collapse
Affiliation(s)
- Jakob Nilsson
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Jayati Sengupta
- Health Research, Inc., State University of New York at Albany, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Joachim Frank
- Health Research, Inc., State University of New York at Albany, Empire State Plaza, Albany, New York 12201-0509, USA
- Howard Hughes Medical Institute, Wadsworth Center, New York State Department of Health, State University of New York at Albany, Empire State Plaza, Albany, New York 12201-0509, USA
- Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Poul Nissen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
- Tel: +45 89425025; Fax: +45 86123178;
| |
Collapse
|
70
|
Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae. BMC Genomics 2005; 6:5. [PMID: 15651988 PMCID: PMC546002 DOI: 10.1186/1471-2164-6-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 01/14/2005] [Indexed: 01/31/2023] Open
Abstract
Background Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. Results In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. Conclusion The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity.
Collapse
|
71
|
Kiely PA, Leahy M, O'Gorman D, O'Connor R. RACK1-mediated integration of adhesion and insulin-like growth factor I (IGF-I) signaling and cell migration are defective in cells expressing an IGF-I receptor mutated at tyrosines 1250 and 1251. J Biol Chem 2004; 280:7624-33. [PMID: 15611085 DOI: 10.1074/jbc.m412889200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scaffolding protein receptor for activated C kinase (RACK1) has been proposed to mediate the integration of insulin-like growth factor I receptor (IGF-IR) and adhesion signaling. Here we investigated the mechanism of this integration of signaling, by using an IGF-IR mutant (Y1250F/Y1251F) that is deficient in anti-apoptotic and transforming function. RACK1 was found to associate with the IGF-IR only in adherent cells and did not associate with the IGF-IR in nonadherent cells, lymphocytic cells, or cells expressing the Y1250F/Y1251F mutant. In R- cells transiently expressing the Y1250F/Y1251F mutant RACK1 became constitutively associated with beta1 integrin and did not associate with Shc, Src, or Shp2. This was accompanied by the loss of formation of a complex containing the IGF-IR, RACK1, and beta1 integrin; loss of migratory capacity; enhanced Src and FAK activity; enhanced Akt phosphorylation; and decreased p38 mitogen-activated protein kinase activity. Shc was not phosphorylated in response to IGF-I in cells expressing the Y1250F/Y1251F mutant and remained associated with protein phosphatase 2A. Similar alterations in signaling were observed in cells that were stimulated with IGF-I in nonadherent cultures. Our data suggest that disruption of RACK1 scaffolding function in cells expressing the Y1250F/Y1251F mutant results in the loss of adhesion signals that are necessary to regulate Akt activity and to promote turnover of focal adhesions and cell migration.
Collapse
Affiliation(s)
- Patrick A Kiely
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland
| | | | | | | |
Collapse
|
72
|
Arya R, Kedar V, Hwang JR, McDonough H, Li HH, Taylor J, Patterson C. Muscle ring finger protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy. ACTA ACUST UNITED AC 2004; 167:1147-59. [PMID: 15596539 PMCID: PMC2172633 DOI: 10.1083/jcb.200402033] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much effort has focused on characterizing the signal transduction cascades that are associated with cardiac hypertrophy. In spite of this, we still know little about the mechanisms that inhibit hypertrophic growth. We define a novel anti-hypertrophic signaling pathway regulated by muscle ring finger protein-1 (MURF1) that inhibits the agonist-stimulated PKC-mediated signaling response in neonatal rat ventricular myocytes. MURF1 interacts with receptor for activated protein kinase C (RACK1) and colocalizes with RACK1 after activation with phenylephrine or PMA. Coincident with this agonist-stimulated interaction, MURF1 blocks PKCε translocation to focal adhesions, which is a critical event in the hypertrophic signaling cascade. MURF1 inhibits focal adhesion formation, and the activity of downstream effector ERK1/2 is also inhibited in the presence of MURF1. MURF1 inhibits phenylephrine-induced (but not IGF-1–induced) increases in cell size. These findings establish that MURF1 is a key regulator of the PKC-dependent hypertrophic response and can blunt cardiomyocyte hypertrophy, which may have important implications in the pathophysiology of clinical cardiac hypertrophy.
Collapse
Affiliation(s)
- Ranjana Arya
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Buensuceso CS, Obergfell A, Soriani A, Eto K, Kiosses WB, Arias-Salgado EG, Kawakami T, Shattil SJ. Regulation of outside-in signaling in platelets by integrin-associated protein kinase C beta. J Biol Chem 2004; 280:644-53. [PMID: 15536078 DOI: 10.1074/jbc.m410229200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies with inhibitors have implicated protein kinase C (PKC) in the adhesive functions of integrin alpha(IIb)beta(3) in platelets, but the responsible PKC isoforms and mechanisms are unknown. Alpha(IIb)beta(3) interacts directly with tyrosine kinases c-Src and Syk. Therefore, we asked whether alpha(IIb)beta(3) might also interact with PKC. Of the several PKC isoforms expressed in platelets, only PKC beta co-immunoprecipitated with alpha(IIb)beta(3) in response to the interaction of platelets with soluble or immobilized fibrinogen. PKC beta recruitment to alpha(IIb)beta(3) was accompanied by a 9-fold increase in PKC activity in alpha(IIb)beta(3) immunoprecipitates. RACK1, an intracellular adapter for activated PKC beta, also co-immunoprecipitated with alpha(IIb)beta(3), but in this case, the interaction was constitutive. Broad spectrum PKC inhibitors blocked both PKC beta recruitment to alpha(IIb)beta(3) and the spread of platelets on fibrinogen. Similarly, mouse platelets that are genetically deficient in PKC beta spread poorly on fibrinogen, despite normal agonist-induced fibrinogen binding. In a Chinese hamster ovary cell model system, adhesion to fibrinogen caused green fluorescent protein-PKC beta I to associate with alpha(IIb)beta(3) and to co-localize with it at lamellipodial edges. These responses, as well as Chinese hamster ovary cell migration on fibrinogen, were blocked by the deletion of the beta(3) cytoplasmic tail or by co-expression of a RACK1 mutant incapable of binding to beta(3). These studies demonstrate that the interaction of alpha(IIb)beta(3) with activated PKC beta is regulated by integrin occupancy and can be mediated by RACK1 and that the interaction is required for platelet spreading triggered through alpha(IIb)beta(3). Furthermore, the studies extend the concept of alpha(IIb)beta(3) as a scaffold for multiple protein kinases that regulate the platelet actin cytoskeleton.
Collapse
Affiliation(s)
- Charito S Buensuceso
- Hematology-Oncology Division, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
de Bernard M, Cappon A, Del Giudice G, Rappuoli R, Montecucco C. The multiple cellular activities of the VacA cytotoxin of Helicobacter pylori. Int J Med Microbiol 2004; 293:589-97. [PMID: 15149036 DOI: 10.1078/1438-4221-00299] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Helicobacter pylori has elaborated a unique set of virulence factors that allow it to colonize the stomach wall. These factors include urease, helicoidal shape, flagella, adhesion and pro-inflammatory molecules. Here we discuss the molecular and cellular mechanisms of action of the vacuolating cytotoxin VacA. Its activities are discussed in terms of tissue alterations which promote the release of nutrients necessary to the growth and survival of the bacterium in its nutrient-poor ecological niche. This toxin also shows some pro-inflammatory and immunosuppressive activities which may be functional to the establishment of a chronic type of inflammation.
Collapse
Affiliation(s)
- Marina de Bernard
- Dipartimento di Scienze Biomediche, Università di Padova, Istituto Veneto di Medicina Molecolare, Padova, Italy
| | | | | | | | | |
Collapse
|
75
|
Mamidipudi V, Chang BY, Harte RA, Lee KC, Cartwright CA. RACK1 inhibits the serum- and anchorage-independent growth of v-Src transformed cells. FEBS Lett 2004; 567:321-6. [PMID: 15178345 DOI: 10.1016/j.febslet.2004.03.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2004] [Revised: 02/23/2004] [Accepted: 03/26/2004] [Indexed: 11/19/2022]
Abstract
Cancer cells are capable of serum- and anchorage-independent growth, and focus formation on monolayers of normal cells. Previously, we showed that RACK1 inhibits c-Src kinase activity and NIH3T3 cell growth. Here, we show that RACK1 partially inhibits v-Src kinase activity, and the serum- and anchorage-independent growth of v-Src transformed cells, but has no effect on focus formation. RACK1-overexpressing v-Src cells show disassembly of podosomes, which are actin-rich structures that are distinctive to fully transformed cells. Together, our results demonstrate that RACK1 overexpression in v-Src cells partially reverses the transformed phenotype of the cells. Our results identify an endogenous inhibitor of the oncogenic Src tyrosine kinase and of cell transformation.
Collapse
Affiliation(s)
- Vidya Mamidipudi
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
76
|
de Hoog CL, Foster LJ, Mann M. RNA and RNA Binding Proteins Participate in Early Stages of Cell Spreading through Spreading Initiation Centers. Cell 2004; 117:649-62. [PMID: 15163412 DOI: 10.1016/s0092-8674(04)00456-8] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 03/25/2004] [Accepted: 03/29/2004] [Indexed: 01/22/2023]
Abstract
Focal adhesions are specialized attachment and signaling centers that form at sites of cell-matrix contacts. We employed a quantitative mass spectrometry-based method called SILAC to identify and quantify proteins interacting in an attachment-dependent manner with focal adhesion proteins. Subsequent confocal microscopy revealed a previously undescribed structure, which we have termed a spreading initiation center (SIC), existing only in early stages of cell spreading. SICs contain focal adhesion markers, appear to be surrounded by an actin sheath, and, surprisingly, contain numerous RNA binding proteins, ribosomal RNA, and perhaps other RNAs. Interfering with the function of FUS/TLS, hnRNP K, and hnRNP E1 results in increased spreading. Spreading initiation centers are ribonucleoprotein complexes distinct from focal adhesions and demonstrate a role for RNA and RNA binding proteins in the initiation of cell spreading.
Collapse
Affiliation(s)
- Carmen L de Hoog
- Center for Experimental BioInformatics (CEBI), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
77
|
Huang X, Walker JW. Myofilament anchoring of protein kinase C-epsilon in cardiac myocytes. J Cell Sci 2004; 117:1971-8. [PMID: 15039458 DOI: 10.1242/jcs.01044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Regulatory proteins on muscle filaments are substrates for protein kinase C (PKC) but mechanisms underlying activation and translocation of PKC to this non-membrane compartment are poorly understood. Here we demonstrate that the epsilon isoform of PKC (ϵ-PKC) activated by arachidonic acid (AA) binds reversibly to cardiac myofibrils with an EC50 of 86 nM. Binding occurred near the Z-lines giving rise to a striated staining pattern. The delta isoform of PKC (δ-PKC) did not bind to cardiac myofibrils regardless of the activator used, and the alpha isoform (α-PKC) bound only under strong activating conditions. Three established PKC anchoring proteins, filamentous actin (F-actin), the LIM domain protein Cypher-1, and the coatamer protein β′-COP were each tested for their involvement in cytoskeletal anchoring. F-actin bound ϵ-PKC selectively over δ-PKC and α-PKC, but this interaction was readily distinguishable from cardiac myofilament binding in two ways. First, the F-actin/ϵ-PKC interaction was independent of PKC activation, and second, the synthetic hexapeptide LKKQET derived from the C1 region of ϵ-PKC effectively blocked ϵ-PKC binding to F-actin, but was without effect on its binding to cardiac myofilaments. Involvement of Cypher-1 was ruled out on the basis of its absence from detergent-skinned myofibrils that bound ϵ-PKC, despite its presence in intact cardiac myocytes. The ϵ-PKC translocation inhibitor peptide EAVSLKPT reduced activated ϵ-PKC binding to cardiac myofibrils in a concentration dependent manner, suggesting that a RACK2 or a similar protein plays a role in ϵ-PKC anchoring in cardiac myofilaments.
Collapse
Affiliation(s)
- Xupei Huang
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|
78
|
Chen HC, Chen CH, Chuang NN. Differential effects of prenyl pyrophosphates on the phosphatase activity of phosphotyrosyl protein phosphatase. ACTA ACUST UNITED AC 2004; 301:307-16. [PMID: 15039989 DOI: 10.1002/jez.a.20034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phosphotyrosyl protein phosphatase (PTPase) 1B was purified from human placenta. Immunoprecipitation analysis revealed that the isolated PTPase 1B appears as a complex with the receptor for protein kinase C (RACK1) and protein kinase C (PKC)delta. The abilities of PTPase 1B and PKCdelta to associate with RACK1 were reconfirmed by an in vitro reconstitution experiment. The E. coli expressed and biotinylated mice-RACK1-encoded fusion protein was capable of recruiting PTPase 1B and PKCdelta in the antibiotin immunoprecipitate as a complex of PTPase 1B/RACK1/PKCdelta. Thus PTPase 1B enzyme preparation was subjected to further purification by selective binding of PTPase 1B onto PEP(Taxol) affinity column in the absence of ATP. The purified PTPase 1B enzyme exihibited dose-dependent phosphatase activity towards [gamma-(32)P]-ATP labeled mice beta-tubulin-encoded fusion protein. The dephosphorylation reaction with PTPase 1B was enhanced with geranylgeranyl pyrophosphate, but not with farnesyl pyrophosphate. Interestingly, additional incubation of the purified PTPase 1B enzyme preparation with RACK1, geranylgeranyl pyrophosphate failed to modulate the dephosphorylation activity of PTPase 1B. In contrast, the enhancement effect of farnesyl pyrophosphate on the kinase activity of PKCdelta was sustained in the presence of RACK1. That is, farnesyl pyrophosphate may function as a signal to induce the kinase activity of PKCdelta in PTPase 1B/RACK1/PKCdelta complex but geranylgeranyl pyrophosphate may not for PTPase 1B. J. Exp. Zool. 301A:307-316, 2004.
Collapse
Affiliation(s)
- Huei-Chen Chen
- Division of Biochemistry and Molecular Science, Institute of Zoology, Academia Sinica, Nankang 11529, Taipei, Taiwan
| | | | | |
Collapse
|
79
|
Huang CF, Fan JH, Chuang NN. Farnesyl pyrophosphate promotes and is essential for the binding of RACK1 with beta-tubulin. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 298:119-27. [PMID: 12884273 DOI: 10.1002/jez.a.10277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Receptors for activated C kinase (RACKs) are a group of protein kinase C (PKC) binding proteins that have been shown to be crucial in the translocation and subsequent functioning of PKC on activation. RACK1 isolated from BALB/3T3 cells transformed with S-ras(Q61K) exhibits receptor activity for PKCgamma as competent as that of RACK1 from BALB/3T3 cells without transformation. However, the ability of RACK1 from transformed cells to bind with beta-tubulin peptide specific for Taxol (PEPtaxol) is defective. Interestingly, when farnesyl pyrophosphate was added at the submicrogram level, the association between RACK1 and PEPtaxol was enhanced significantly in a dosage-dependent manner. A parallel finding for the enhanced effect of farnesyl pyrophosphate on tubulin binding was established with mice RACK1 expressed in vitro. On the other hand, geranylgeranyl pyrophosphate, and retinoic acid failed to modulate the binding between RACK1 and tubulin. The dissociation of RACK1 and tubulin was not effective at damaging the binding between RACK1 and membrane receptor integrin beta1 in transformed cells. These findings indicate that depletion of farnesyl pyrophosphate provides a mechanism to seal PKC signaling on the membrane with immobile RACK1 and to divert cells to aberrant growth, such as transformation.
Collapse
Affiliation(s)
- Chein-Fuang Huang
- Division of Biochemistry and Molecular Science, Institute of Zoology, Academia Sinica, Nankang 11529, Taipei, Taiwan
| | | | | |
Collapse
|
80
|
Cox EA, Bennin D, Doan AT, O'Toole T, Huttenlocher A. RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site. Mol Biol Cell 2003; 14:658-69. [PMID: 12589061 PMCID: PMC149999 DOI: 10.1091/mbc.e02-03-0142] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mammalian cDNA expression cloning was used to identify novel regulators of integrin-mediated cell-substratum adhesions. Using a focal adhesion morphology screen, we identified a cDNA with homology to a receptor for activated protein kinase C (RACK1) that induced a loss of central focal adhesions and stress fibers in CHO-K1 cells. The identified cDNA was a C-terminal truncated form of RACK1 that had one of the putative protein kinase C binding sites but lacked the region proposed to bind the beta integrin cytoplasmic domain and the tyrosine kinase Src. To investigate the role of RACK1 during cell spreading and migration, we tagged RACK1, a C-terminal truncated RACK1 and a point mutant that does not bind Src (RACK Y246F) with green fluorescent protein and expressed them in CHO-K1 cells. We found that RACK1 regulates the organization of focal adhesions and that it localizes to a subset of nascent focal complexes in areas of protrusion that contain paxillin but not vinculin. We also found that RACK1 regulates cell protrusion and chemotactic migration through its Src binding site. Together, these findings suggest that RACK1 regulates adhesion, protrusion, and chemotactic migration through its interaction with Src.
Collapse
Affiliation(s)
- Elisabeth A Cox
- Departments of Pediatrics and Pharmacology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
81
|
Dell EJ, Connor J, Chen S, Stebbins EG, Skiba NP, Mochly-Rosen D, Hamm HE. The betagamma subunit of heterotrimeric G proteins interacts with RACK1 and two other WD repeat proteins. J Biol Chem 2002; 277:49888-95. [PMID: 12359736 DOI: 10.1074/jbc.m202755200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A yeast two-hybrid approach was used to discern possible new effectors for the betagamma subunit of heterotrimeric G proteins. Three of the clones isolated are structurally similar to Gbeta, each exhibiting the WD40 repeat motif. Two of these proteins, the receptor for activated C kinase 1 (RACK1) and the dynein intermediate chain, co-immunoprecipitate with Gbetagamma using an anti-Gbeta antibody. The third protein, AAH20044, has no known function; however, sequence analysis indicates that it is a WD40 repeat protein. Further investigation with RACK1 shows that it not only interacts with Gbeta(1)gamma(1) but also unexpectedly with the transducin heterotrimer Galpha(t)beta(1)gamma(1). Galpha(t) alone does not interact, but it must contribute to the interaction because the apparent EC(50) value of RACK1 for Galpha(t)beta(1)gamma(1) is 3-fold greater than that for Gbeta(1)gamma(1) (0.1 versus 0.3 microm). RACK1 is a scaffold that interacts with several proteins, among which are activated betaIIPKC and dynamin-1 (1). betaIIPKC and dynamin-1 compete with Gbeta(1)gamma(1) and Galpha(t)beta(1)gamma(1) for interaction with RACK1. These findings have several implications: 1) that WD40 repeat proteins may interact with each other; 2) that Gbetagamma interacts differently with RACK1 than with its other known effectors; and/or 3) that the G protein-RACK1 complex may constitute a signaling scaffold important for intracellular responses.
Collapse
Affiliation(s)
- Edward J Dell
- Institute for Neuroscience and Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60613, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ. The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 2002; 62:1261-73. [PMID: 12435793 DOI: 10.1124/mol.62.6.1261] [Citation(s) in RCA: 304] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Angela McCahill
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | | | | | | |
Collapse
|
83
|
Tcherkasowa AE, Adam-Klages S, Kruse ML, Wiegmann K, Mathieu S, Kolanus W, Krönke M, Adam D. Interaction with factor associated with neutral sphingomyelinase activation, a WD motif-containing protein, identifies receptor for activated C-kinase 1 as a novel component of the signaling pathways of the p55 TNF receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5161-70. [PMID: 12391233 DOI: 10.4049/jimmunol.169.9.5161] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Factor associated with neutral sphingomyelinase activation (FAN) represents a p55 TNFR (TNF-R55)-associated protein essential for the activation of neutral sphingomyelinase. By means of the yeast interaction trap system, we have identified the scaffolding protein receptor for activated C-kinase (RACK)1 as an interaction partner of FAN. Mapping studies in yeast revealed that RACK1 is recruited to the C-terminal WD-repeat region of FAN and binds to FAN through a domain located within WD repeats V to VII of RACK1. Our data indicate that binding of both proteins is not mediated by linear motifs but requires folding into a secondary structure, such as the multibladed propeller characteristic of WD-repeat proteins. The interaction of FAN and RACK1 was verified in vitro by glutathione S-transferase-based coprecipitation assays as well as in eukaryotic cells by coimmunoprecipitation experiments. Colocalization studies in transfected cells suggest that TNF-R55 forms a complex with FAN and that this complex recruits RACK1 to the plasma membrane. Furthermore, activation of N-SMase by TNF was strongly enhanced when RACK1, FAN, and a noncytotoxic TNF-R55 mutant were expressed concurrently, suggesting RACK1 as a modulator of N-SMase activation. Together, these findings implicate RACK1 as a novel component of the signaling pathways of TNF-R55.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- COS Cells
- Cell Line
- Enzyme Activation/genetics
- Enzyme Activation/immunology
- HeLa Cells
- Humans
- Intracellular Fluid/metabolism
- Intracellular Signaling Peptides and Proteins
- Jurkat Cells
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Precipitin Tests
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Interaction Mapping/methods
- Protein Kinase C/chemistry
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Proteins/chemistry
- Proteins/genetics
- Proteins/metabolism
- Receptors for Activated C Kinase
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Repetitive Sequences, Amino Acid
- Signal Transduction/genetics
- Signal Transduction/immunology
- Sphingomyelin Phosphodiesterase/chemistry
- Sphingomyelin Phosphodiesterase/genetics
- Sphingomyelin Phosphodiesterase/metabolism
Collapse
|
84
|
Besson A, Wilson TL, Yong VW. The anchoring protein RACK1 links protein kinase Cepsilon to integrin beta chains. Requirements for adhesion and motility. J Biol Chem 2002; 277:22073-84. [PMID: 11934885 DOI: 10.1074/jbc.m111644200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Integrin affinity is modulated by intracellular signaling cascades, in a process known as "inside-out" signaling, leading to changes in cell adhesion and motility. Protein kinase C (PKC) plays a critical role in integrin-mediated events; however, the mechanism that links PKC to integrins remains unclear. Here, we report that PKCepsilon positively regulates integrin-dependent adhesion, spreading, and motility of human glioma cells. PKCepsilon activation was associated with increased focal adhesion and lamellipodia formation as well as clustering of select integrins, and it is required for phorbol 12-myristate 13-acetate-induced adhesion and motility. We provide novel evidence that the scaffolding protein RACK1 mediates the interaction between integrin beta chain and activated PKCepsilon. Both depletion of RACK1 by antisense strategy and overexpression of a truncated form of RACK1 which lacks the integrin binding region resulted in decreased PKCepsilon-induced adhesion and migration, suggesting that RACK1 links PKCepsilon to integrin beta chains. Altogether, these results provide a novel mechanistic link between PKC activation and integrin-mediated adhesion and motility.
Collapse
Affiliation(s)
- Arnaud Besson
- Department of Oncology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
85
|
Hermanto U, Zong CS, Li W, Wang LH. RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol Cell Biol 2002; 22:2345-65. [PMID: 11884618 PMCID: PMC133698 DOI: 10.1128/mcb.22.7.2345-2365.2002] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insulin-like growth factor I (IGF-I) receptor (IGF-IR) is known to regulate a variety of cellular processes including cell proliferation, cell survival, cell differentiation, and cell transformation. IRS-1 and Shc, substrates of the IGF-IR, are known to mediate IGF-IR signaling pathways such as those of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K), which are believed to play important roles in some of the IGF-IR-dependent biological functions. We used the cytoplasmic domain of IGF-IR in a yeast two-hybrid interaction trap to identify IGF-IR-interacting molecules that may potentially mediate IGF-IR-regulated functions. We identified RACK1, a WD repeat family member and a Gbeta homologue, and demonstrated that RACK1 interacts with the IGF-IR but not with the closely related insulin receptor (IR). In several types of mammalian cells, RACK1 interacted with IGF-IR, protein kinase C, and beta1 integrin in response to IGF-I and phorbol 12-myristate 13-acetate stimulation. Whereas most of RACK1 resides in the cytoskeletal compartment of the cytoplasm, transformation of fibroblasts and epithelial cells by v-Src, oncogenic IR or oncogenic IGF-IR, but not by Ros or Ras, resulted in a significantly increased association of RACK1 with the membrane. We examined the role of RACK1 in IGF-IR-mediated functions by stably overexpressing RACK1 in NIH 3T3 cells that expressed an elevated level of IGF-IR. RACK1 overexpression resulted in reduced IGF-I-induced cell growth in both anchorage-dependent and anchorage-independent conditions. Overexpression of RACK1 also led to enhanced cell spreading, increased stress fibers, and increased focal adhesions, which were accompanied by increased tyrosine phosphorylation of focal adhesion kinase and paxillin. While IGF-I-induced activation of IRS-1, Shc, PI3K, and MAPK pathways was unaffected, IGF-I-inducible beta1 integrin-associated kinase activity and association of Crk with p130(CAS) were significantly inhibited by RACK1 overexpression. In RACK1-overexpressing cells, delayed cell cycle progression in G(1) or G(1)/S was correlated with retinoblastoma protein hypophophorylation, increased levels of p21(Cip1/WAF1) and p27(Kip1), and reduced IGF-I-inducible Cdk2 activity. Reduction of RACK1 protein expression by antisense oligonucleotides prevented cell spreading and suppressed IGF-I-dependent monolayer growth. Our data suggest that RACK1 is a novel IGF-IR signaling molecule that functions as a positive mediator of cell spreading and contact with extracellular matrix, possibly through a novel IGF-IR signaling pathway involving integrin and focal adhesion signaling molecules.
Collapse
Affiliation(s)
- Ulrich Hermanto
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|