51
|
Under Pressure: Mechanical Stress Management in the Nucleus. Cells 2016; 5:cells5020027. [PMID: 27314389 PMCID: PMC4931676 DOI: 10.3390/cells5020027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
Cells are constantly adjusting to the mechanical properties of their surroundings, operating a complex mechanochemical feedback, which hinges on mechanotransduction mechanisms. Whereas adhesion structures have been shown to play a central role in mechanotransduction, it now emerges that the nucleus may act as a mechanosensitive structure. Here, we review recent advances demonstrating that mechanical stress emanating from the cytoskeleton can activate pathways in the nucleus which eventually impact both its structure and the transcriptional machinery.
Collapse
|
52
|
Uzer G, Thompson WR, Sen B, Xie Z, Yen SS, Miller S, Bas G, Styner M, Rubin CT, Judex S, Burridge K, Rubin J. Cell Mechanosensitivity to Extremely Low-Magnitude Signals Is Enabled by a LINCed Nucleus. Stem Cells 2016; 33:2063-76. [PMID: 25787126 DOI: 10.1002/stem.2004] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/19/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022]
Abstract
A cell's ability to recognize and adapt to the physical environment is central to its survival and function, but how mechanical cues are perceived and transduced into intracellular signals remains unclear. In mesenchymal stem cells (MSCs), high-magnitude substrate strain (HMS, ≥2%) effectively suppresses adipogenesis via induction of focal adhesion (FA) kinase (FAK)/mTORC2/Akt signaling generated at FAs. Physiologic systems also rely on a persistent barrage of low-level signals to regulate behavior. Exposing MSC to extremely low-magnitude mechanical signals (LMS) suppresses adipocyte formation despite the virtual absence of substrate strain (<0.001%), suggesting that LMS-induced dynamic accelerations can generate force within the cell. Here, we show that MSC response to LMS is enabled through mechanical coupling between the cytoskeleton and the nucleus, in turn activating FAK and Akt signaling followed by FAK-dependent induction of RhoA. While LMS and HMS synergistically regulated FAK activity at the FAs, LMS-induced actin remodeling was concentrated at the perinuclear domain. Preventing nuclear-actin cytoskeleton mechanocoupling by disrupting linker of nucleoskeleton and cytoskeleton (LINC) complexes inhibited these LMS-induced signals as well as prevented LMS repression of adipogenic differentiation, highlighting that LINC connections are critical for sensing LMS. In contrast, FAK activation by HMS was unaffected by LINC decoupling, consistent with signal initiation at the FA mechanosome. These results indicate that the MSC responds to its dynamic physical environment not only with "outside-in" signaling initiated by substrate strain, but vibratory signals enacted through the LINC complex enable matrix independent "inside-inside" signaling.
Collapse
Affiliation(s)
- Gunes Uzer
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William R Thompson
- School of Physical Therapy, Indiana University, Indianapolis, Indiana, USA
| | - Buer Sen
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhihui Xie
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sherwin S Yen
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sean Miller
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Guniz Bas
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, State University of New York, Stony Brook, New York, USA
| | - Stefan Judex
- Department of Biomedical Engineering, State University of New York, Stony Brook, New York, USA
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
53
|
Abstract
Mechanoresponses in mesenchymal stem cells (MSCs) guide both differentiation and function. In this review, we focus on advances in0 our understanding of how the cytoplasmic cytoskeleton, nuclear envelope and nucleoskeleton, which are connected via LINC (Linker of Nucleoskeleton and Cytoskeleton) complexes, are emerging as an integrated dynamic signaling platform to regulate MSC mechanobiology. This dynamic interconnectivity affects mechanical signaling and transfer of signals into the nucleus. In this way, nuclear and LINC-mediated cytoskeletal connectivity play a critical role in maintaining mechanical signaling that affects MSC fate by serving as both mechanosensory and mechanoresponsive structures. We review disease and age related compromises of LINC complexes and nucleoskeleton that contribute to the etiology of musculoskeletal diseases. Finally we invite the idea that acquired dysfunctions of LINC might be a contributing factor to conditions such as aging, microgravity and osteoporosis and discuss potential mechanical strategies to modulate LINC connectivity to combat these conditions.
Collapse
|
54
|
Crowder SW, Leonardo V, Whittaker T, Papathanasiou P, Stevens MM. Material Cues as Potent Regulators of Epigenetics and Stem Cell Function. Cell Stem Cell 2016; 18:39-52. [PMID: 26748755 PMCID: PMC5409508 DOI: 10.1016/j.stem.2015.12.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biophysical signals act as potent regulators of stem cell function, lineage commitment, and epigenetic status. In recent years, synthetic biomaterials have been used to study a wide range of outside-in signaling events, and it is now well appreciated that material cues modulate the epigenome. Here, we review the role of extracellular signals in guiding stem cell behavior via epigenetic regulation, and we stress the role of physicochemical material properties as an often-overlooked modulator of intracellular signaling. We also highlight promising new research tools for ongoing interrogation of the stem cell-material interface.
Collapse
Affiliation(s)
- Spencer W Crowder
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Vincent Leonardo
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Thomas Whittaker
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Peter Papathanasiou
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| |
Collapse
|
55
|
Espigat-Georger A, Dyachuk V, Chemin C, Emorine L, Merdes A. Nuclear alignment in myotubes requires centrosome proteins recruited by nesprin-1. J Cell Sci 2016; 129:4227-4237. [DOI: 10.1242/jcs.191767] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/26/2016] [Indexed: 01/26/2023] Open
Abstract
Myotubes are syncytial cells, generated by fusion of myoblasts. Among the numerous nuclei in myotubes of skeletal muscle fibres, the majority are equidistantly positioned at the periphery, except for clusters of multiple nuclei underneath the motor endplate. The correct positioning of nuclei is thought to be important for muscle function and requires nesprin-1, a protein of the nuclear envelope. Consistently, mice lacking functional nesprin-1 show defective nuclear positioning and mimic aspects of Emery-Dreifuss muscular dystrophy. In this study, we perform siRNA experiments in C2C12 myoblasts undergoing differentiation, demonstrating that the positioning of nuclei requires PCM-1, a protein of the centrosome that relocalizes to the nuclear envelope at the onset of differentiation, dependent on the presence of nesprin-1. PCM-1 itself is required for recruiting proteins of the dynein/dynactin complex and of kinesin motor complexes. This suggests that microtubule motors that are attached to the nuclear envelope support the movement of nuclei along microtubules, to ensure correct positioning in the myotube.
Collapse
Affiliation(s)
- Aude Espigat-Georger
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062 Toulouse, France
| | - Vyacheslav Dyachuk
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062 Toulouse, France
| | - Cécile Chemin
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062 Toulouse, France
| | - Laurent Emorine
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062 Toulouse, France
| | - Andreas Merdes
- Centre de Biologie du Développement, Université Paul Sabatier/CNRS, 31062 Toulouse, France
| |
Collapse
|
56
|
Kelkar P, Walter A, Papadopoulos S, Mroß C, Munck M, Peche VS, Noegel AA. Nesprin-2 mediated nuclear trafficking and its clinical implications. Nucleus 2015; 6:479-89. [PMID: 26645154 PMCID: PMC4915507 DOI: 10.1080/19491034.2015.1128608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nuclear translocation of proteins has a crucial role in the pathogenesis of cancer, Alzheimer disease and viral infections. A complete understanding of nuclear trafficking mechanisms is therefore necessary in order to establish effective intervention strategies. Here we elucidate the role of Nesprin-2 in Ca2+/Calmodulin mediated nuclear transport. Nesprin-2 is an actin-binding nuclear envelope (NE) protein with roles in maintaining nuclear structure and location, regulation of transcription and mechanotransduction. Upon depletion of Nesprin-2 using shRNA, HaCaT cells show abnormal localization of the shuttling proteins BRCA1 and NF-κB. We show that their nuclear transport is unlikely due to the canonical RAN mediated nuclear import, but rather to a RAN independent Ca2+/Calmodulin driven mechanism involving Nesprin-2. We report novel interactions between the actin-binding domain of Nesprin-2 and Calmodulin and between the NLS containing region of BRCA1 and Calmodulin. Strikingly, displacing Nesprins from the NE resulted in increased steady state Ca2+ concentrations in the cytoplasm suggesting a previously unidentified role of Nesprins in Ca2+ regulation. On comparing Nesprin-2 and BRCA1 localization in the ovarian cancer cell lines SKOV-3 and Caov-3, Nesprin-2 and BRCA1 were localized to the NE envelope and the nucleus in SKOV-3, respectively, and to the cytoplasm in Caov-3 cells. Fibroblasts obtained from EDMD5 (Emery Dreifuss muscular dystrophy) patients showed loss of Nesprin-2 from the nuclear envelope, corresponding reduced nuclear localization of BRCA1 and enhanced cytoplasmic Ca2+. Taken together, the data suggests a novel role of Nesprin-2 in Ca2+/Calmodulin mediated nuclear trafficking and provides new insights which can guide future therapies.
Collapse
Affiliation(s)
- Pranav Kelkar
- a Institute for Biochemistry I; Medical Faculty; University of Cologne ; Köln , Germany.,b Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne ; Köln , Germany.,c Center for Molecular Medicine; University of Cologne ; Köln , Germany
| | - Anna Walter
- d Institute of Vegetative Physiology; Medical Faculty; University of Cologne ; Köln ; Germany
| | - Symeon Papadopoulos
- d Institute of Vegetative Physiology; Medical Faculty; University of Cologne ; Köln ; Germany
| | - Carmen Mroß
- a Institute for Biochemistry I; Medical Faculty; University of Cologne ; Köln , Germany.,b Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne ; Köln , Germany.,c Center for Molecular Medicine; University of Cologne ; Köln , Germany
| | - Martina Munck
- a Institute for Biochemistry I; Medical Faculty; University of Cologne ; Köln , Germany.,b Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne ; Köln , Germany.,c Center for Molecular Medicine; University of Cologne ; Köln , Germany
| | - Vivek S Peche
- a Institute for Biochemistry I; Medical Faculty; University of Cologne ; Köln , Germany.,b Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne ; Köln , Germany.,c Center for Molecular Medicine; University of Cologne ; Köln , Germany
| | - Angelika A Noegel
- a Institute for Biochemistry I; Medical Faculty; University of Cologne ; Köln , Germany.,b Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne ; Köln , Germany.,c Center for Molecular Medicine; University of Cologne ; Köln , Germany
| |
Collapse
|
57
|
Kanellos G, Zhou J, Patel H, Ridgway RA, Huels D, Gurniak CB, Sandilands E, Carragher NO, Sansom OJ, Witke W, Brunton VG, Frame MC. ADF and Cofilin1 Control Actin Stress Fibers, Nuclear Integrity, and Cell Survival. Cell Rep 2015; 13:1949-64. [PMID: 26655907 PMCID: PMC4678118 DOI: 10.1016/j.celrep.2015.10.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/21/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022] Open
Abstract
Genetic co-depletion of the actin-severing proteins ADF and CFL1 triggers catastrophic loss of adult homeostasis in multiple tissues. There is impaired cell-cell adhesion in skin keratinocytes with dysregulation of E-cadherin, hyperproliferation of differentiated cells, and ultimately apoptosis. Mechanistically, the primary consequence of depleting both ADF and CFL1 is uncontrolled accumulation of contractile actin stress fibers associated with enlarged focal adhesions at the plasma membrane, as well as reduced rates of membrane protrusions. This generates increased intracellular acto-myosin tension that promotes nuclear deformation and physical disruption of the nuclear lamina via the LINC complex that normally connects regulated actin filaments to the nuclear envelope. We therefore describe a pathway involving the actin-severing proteins ADF and CFL1 in regulating the dynamic turnover of contractile actin stress fibers, and this is vital to prevent the nucleus from being damaged by actin contractility, in turn preserving cell survival and tissue homeostasis.
Collapse
Affiliation(s)
- Georgios Kanellos
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Jing Zhou
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Hitesh Patel
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David Huels
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Christine B Gurniak
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Emma Sandilands
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Margaret C Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
58
|
Pasch E, Link J, Beck C, Scheuerle S, Alsheimer M. The LINC complex component Sun4 plays a crucial role in sperm head formation and fertility. Biol Open 2015; 4:1792-802. [PMID: 26621829 PMCID: PMC4736043 DOI: 10.1242/bio.015768] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LINC complexes are evolutionarily conserved nuclear envelope bridges, physically connecting the nucleus to the peripheral cytoskeleton. They are pivotal for dynamic cellular and developmental processes, like nuclear migration, anchoring and positioning, meiotic chromosome movements and maintenance of cell polarity and nuclear shape. Active nuclear reshaping is a hallmark of mammalian sperm development and, by transducing cytoskeletal forces to the nuclear envelope, LINC complexes could be vital for sperm head formation as well. We here analyzed in detail the behavior and function of Sun4, a bona fide testis-specific LINC component. We demonstrate that Sun4 is solely expressed in spermatids and there localizes to the posterior nuclear envelope, likely interacting with Sun3/Nesprin1 LINC components. Our study revealed that Sun4 deficiency severely impacts the nucleocytoplasmic junction, leads to mislocalization of other LINC components and interferes with the formation of the microtubule manchette, which finally culminates in a globozoospermia-like phenotype. Together, our study provides direct evidence for a critical role of LINC complexes in mammalian sperm head formation and male fertility.
Collapse
Affiliation(s)
- Elisabeth Pasch
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg D-97074, Germany
| | - Jana Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg D-97074, Germany
| | - Carolin Beck
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg D-97074, Germany
| | - Stefanie Scheuerle
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg D-97074, Germany
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg D-97074, Germany
| |
Collapse
|
59
|
Almeida FV, Walko G, McMillan JR, McGrath JA, Wiche G, Barber AH, Connelly JT. The cytolinker plectin regulates nuclear mechanotransduction in keratinocytes. J Cell Sci 2015; 128:4475-86. [PMID: 26527396 DOI: 10.1242/jcs.173435] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/26/2015] [Indexed: 01/14/2023] Open
Abstract
The transmission of mechanical forces to the nucleus is important for intracellular positioning, mitosis and cell motility, yet the contribution of specific components of the cytoskeleton to nuclear mechanotransduction remains unclear. In this study, we examine how crosstalk between the cytolinker plectin and F-actin controls keratin network organisation and the 3D nuclear morphology of keratinocytes. Using micro-patterned surfaces to precisely manipulate cell shape, we find that cell adhesion and spreading regulate the size and shape of the nucleus. Disruption of the keratin cytoskeleton through loss of plectin facilitated greater nuclear deformation, which depended on acto-myosin contractility. Nuclear morphology did not depend on direct linkage of the keratin cytoskeleton with the nuclear membrane, rather loss of plectin reduced keratin filament density around the nucleus. We further demonstrate that keratinocytes have abnormal nuclear morphologies in the epidermis of plectin-deficient, epidermolysis bullosa simplex patients. Taken together, our data demonstrate that plectin is an essential regulator of nuclear morphology in vitro and in vivo and protects the nucleus from mechanical deformation.
Collapse
Affiliation(s)
- Filipe V Almeida
- School of Engineering and Materials Science, Queen Mary, University of London, London, E1 4NS UK Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, E1 2AT UK
| | - Gernot Walko
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, SE1 9RT UK
| | - James R McMillan
- The National Diagnostic EB Laboratory, Viapath, St Thomas' Hospital, London, SE1 7EH UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London (Guy's Campus), London, SE1 9RT UK
| | - Gerhard Wiche
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
| | - Asa H Barber
- School of Engineering and Materials Science, Queen Mary, University of London, London, E1 4NS UK
| | - John T Connelly
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, E1 2AT UK
| |
Collapse
|
60
|
Li P, Noegel AA. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export. Nucleic Acids Res 2015; 43:9874-88. [PMID: 26476453 PMCID: PMC4787764 DOI: 10.1093/nar/gkv1058] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/01/2015] [Indexed: 11/12/2022] Open
Abstract
Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153.
Collapse
Affiliation(s)
- Ping Li
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| |
Collapse
|
61
|
Patel JT, Bottrill A, Prosser SL, Jayaraman S, Straatman K, Fry AM, Shackleton S. Mitotic phosphorylation of SUN1 loosens its connection with the nuclear lamina while the LINC complex remains intact. Nucleus 2015; 5:462-73. [PMID: 25482198 PMCID: PMC4164488 DOI: 10.4161/nucl.36232] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
At the onset mitosis in higher eukaryotes, the nuclear envelope (NE) undergoes dramatic deconstruction to allow separation of duplicated chromosomes. Studies have shown that during this process of nuclear envelope breakdown (NEBD), the extensive protein networks of the nuclear lamina are disassembled through phosphorylation of lamins and several inner nuclear membrane (INM) proteins. The LINC complex, composed of SUN and nesprin proteins, is involved in multiple interactions at the NE and plays vital roles in nuclear and cellular mechanics by connecting the nucleus to the cytoskeleton. Here, we show that SUN1, located in the INM, undergoes mitosis-specific phosphorylation on at least 3 sites within its nucleoplasmic N-terminus. We further identify Cdk1 as the kinase responsible for serine 48 and 333 phosphorylation, while serine 138 is phosphorylated by Plk1. In mitotic cells, SUN1 loses its interaction with N-terminal domain binding partners lamin A/C, emerin, and short nesprin-2 isoforms. Furthermore, a triple phosphomimetic SUN1 mutant displays increased solubility and reduced retention at the NE. In contrast, the central LINC complex interaction between the SUN1 C-terminus and the KASH domain of nesprin-2 is maintained during mitosis. Together, these data support a model whereby mitotic phosphorylation of SUN1 disrupts interactions with nucleoplasmic binding partners, promoting disassembly of the nuclear lamina and, potentially, its chromatin interactions. At the same time, our data add to an emerging picture that the core LINC complex plays an active role in NEBD.
Collapse
Affiliation(s)
- Jennifer T Patel
- a Department of Biochemistry; University of Leicester; Leicester, UK
| | | | | | | | | | | | | |
Collapse
|
62
|
Meinke P, Schirmer EC. LINC'ing form and function at the nuclear envelope. FEBS Lett 2015; 589:2514-21. [PMID: 26096784 DOI: 10.1016/j.febslet.2015.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 11/15/2022]
Abstract
The nuclear envelope is an amazing piece of engineering. On one hand it is built like a mediaeval fortress with filament systems reinforcing its membrane walls and its double membrane structure forming a lumen like a castle moat. On the other hand its structure can adapt while maintaining its integrity like a reed bending in a river. Like a fortress it has guarded drawbridges in the nuclear pore complexes, but also has other mechanical means of communication. All this is enabled largely because of the LINC complex, a multi-protein structure that connects the intermediate filament nucleoskeleton across the lumen of the double membrane nuclear envelope to multiple cytoplasmic filament systems that themselves could act simultaneously both like mediaeval buttresses and like lines on a suspension bridge. Although many details of the greater LINC structure remain to be discerned, a number of recent findings are giving clues as to how its structural organization can yield such striking dynamic yet stable properties. Combining double- and triple-helical coiled-coils, intrinsic disorder and order, tissue-specific components, and intermediate filaments enables these unique properties.
Collapse
Affiliation(s)
- Peter Meinke
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
63
|
Razafsky D, Hodzic D. A variant of Nesprin1 giant devoid of KASH domain underlies the molecular etiology of autosomal recessive cerebellar ataxia type I. Neurobiol Dis 2015; 78:57-67. [PMID: 25843669 DOI: 10.1016/j.nbd.2015.03.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022] Open
Abstract
Nonsense mutations across the whole coding sequence of Syne1/Nesprin1 have been linked to autosomal recessive cerebellar ataxia Type I (ARCA1). However, nothing is known about the molecular etiology of this late-onset debilitating pathology. In this work, we report that Nesprin1 giant is specifically expressed in CNS tissues. We also identified a CNS-specific splicing event that leads to the abundant expression of a KASH-LESS variant of Nesprin1 giant (KLNes1g) in the cerebellum. KLNes1g displayed a noncanonical localization at glomeruli of cerebellar mossy fibers whereas Nesprin2 exclusively decorated the nuclear envelope of all cerebellar neurons. In immunogold electron microscopy, KLNes1g colocalized both with synaptic vesicles within mossy fibers and with dendritic membranes of cerebellar granule neurons. We further identified vesicle- and membrane-associated proteins in KLNes1g immunoprecipitates. Together, our results suggest that the loss of function of KLNes1g resulting from Nesprin1 nonsense mutations underlies the molecular etiology of ARCA1.
Collapse
Affiliation(s)
- David Razafsky
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid, St Louis, MO 63110, USA
| | - Didier Hodzic
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid, St Louis, MO 63110, USA.
| |
Collapse
|
64
|
Zhou X, Graumann K, Meier I. The plant nuclear envelope as a multifunctional platform LINCed by SUN and KASH. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1649-59. [PMID: 25740919 DOI: 10.1093/jxb/erv082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The nuclear envelope (NE) is a double membrane system enclosing the genome of eukaryotes. Besides nuclear pore proteins, which form channels at the NE, nuclear membranes are populated by a collection of NE proteins that perform various cellular functions. However, in contrast to well-conserved nuclear pore proteins, known NE proteins share little homology between opisthokonts and plants. Recent studies on NE protein complexes formed by Sad1/UNC-84 (SUN) and Klarsicht/ANC-1/Syne-1 Homology (KASH) proteins have advanced our understanding of plant NE proteins and revealed their function in anchoring other proteins at the NE, nuclear shape determination, nuclear positioning, anti-pathogen defence, root development, and meiotic chromosome organization. In this review, we discuss the current understanding of plant SUN, KASH, and other related NE proteins, and compare their function with the opisthokont counterparts.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 OBP, UK
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
65
|
Versaevel M, Braquenier JB, Riaz M, Grevesse T, Lantoine J, Gabriele S. Super-resolution microscopy reveals LINC complex recruitment at nuclear indentation sites. Sci Rep 2014; 4:7362. [PMID: 25482017 PMCID: PMC4258653 DOI: 10.1038/srep07362] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/19/2014] [Indexed: 01/12/2023] Open
Abstract
Increasing evidences show that the actin cytoskeleton is a key parameter of the nuclear remodeling process in response to the modifications of cellular morphology. However, detailed information on the interaction between the actin cytoskeleton and the nuclear lamina was still lacking. We addressed this question by constraining endothelial cells on rectangular fibronectin-coated micropatterns and then using Structured Illumination Microscopy (SIM) to observe the interactions between actin stress fibers, nuclear lamina and LINC complexes at a super-resolution scale. Our results show that tension in apical actin stress fibers leads to deep nuclear indentations that significantly deform the nuclear lamina. Interestingly, indented nuclear zones are characterized by a local enrichment of LINC complexes, which anchor apical actin fibers to the nuclear lamina. Moreover, our findings indicate that nuclear indentations induce the formation of segregated domains of condensed chromatin. However, nuclear indentations and condensed chromatin domains are not irreversible processes and both can relax in absence of tension in apical actin stress fibers.
Collapse
Affiliation(s)
- Marie Versaevel
- Mechanobiology &Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc B-7000 Mons, Belgium
| | | | - Maryam Riaz
- Mechanobiology &Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc B-7000 Mons, Belgium
| | - Thomas Grevesse
- Mechanobiology &Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc B-7000 Mons, Belgium
| | - Joséphine Lantoine
- Mechanobiology &Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc B-7000 Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology &Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc B-7000 Mons, Belgium
| |
Collapse
|
66
|
Meinke P, Mattioli E, Haque F, Antoku S, Columbaro M, Straatman KR, Worman HJ, Gundersen GG, Lattanzi G, Wehnert M, Shackleton S. Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet 2014; 10:e1004605. [PMID: 25210889 PMCID: PMC4161305 DOI: 10.1371/journal.pgen.1004605] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
Proteins of the nuclear envelope (NE) are associated with a range of inherited disorders, most commonly involving muscular dystrophy and cardiomyopathy, as exemplified by Emery-Dreifuss muscular dystrophy (EDMD). EDMD is both genetically and phenotypically variable, and some evidence of modifier genes has been reported. Six genes have so far been linked to EDMD, four encoding proteins associated with the LINC complex that connects the nucleus to the cytoskeleton. However, 50% of patients have no identifiable mutations in these genes. Using a candidate approach, we have identified putative disease-causing variants in the SUN1 and SUN2 genes, also encoding LINC complex components, in patients with EDMD and related myopathies. Our data also suggest that SUN1 and SUN2 can act as disease modifier genes in individuals with co-segregating mutations in other EDMD genes. Five SUN1/SUN2 variants examined impaired rearward nuclear repositioning in fibroblasts, confirming defective LINC complex function in nuclear-cytoskeletal coupling. Furthermore, myotubes from a patient carrying compound heterozygous SUN1 mutations displayed gross defects in myonuclear organization. This was accompanied by loss of recruitment of centrosomal marker, pericentrin, to the NE and impaired microtubule nucleation at the NE, events that are required for correct myonuclear arrangement. These defects were recapitulated in C2C12 myotubes expressing exogenous SUN1 variants, demonstrating a direct link between SUN1 mutation and impairment of nuclear-microtubule coupling and myonuclear positioning. Our findings strongly support an important role for SUN1 and SUN2 in muscle disease pathogenesis and support the hypothesis that defects in the LINC complex contribute to disease pathology through disruption of nuclear-microtubule association, resulting in defective myonuclear positioning. Emery-Dreifuss muscular dystrophy (EDMD) is an inherited disorder involving muscle wasting and weakness, accompanied by cardiac defects. The disease is variable in its severity and also in its genetic cause. So far, 6 genes have been linked to EDMD, most encoding proteins that form a structural network that supports the nucleus of the cell and connects it to structural elements of the cytoplasm. This network is particularly important in muscle cells, providing resistance to mechanical strain. Weakening of this network is thought to contribute to development of muscle disease in these patients. Despite rigorous screening, at least 50% of patients with EDMD have no detectable mutation in the 6 known genes. We therefore undertook screening and identified mutations in two additional genes that encode other components of the nuclear structural network, SUN1 and SUN2. Our findings add to the genetic complexity of this disease since some individuals carry mutations in more than one gene. We also show that the mutations disrupt connections between the nucleus and the structural elements of cytoplasm, leading to mis-positioning and clustering of nuclei in muscle cells. This nuclear mis-positioning is likely to be another factor contributing to pathogenesis of EDMD.
Collapse
Affiliation(s)
- Peter Meinke
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Elisabetta Mattioli
- National Research Council of Italy - CNR - Institute for Molecular Genetics, Unit of Bologna IOR, Bologna, Italy
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Farhana Haque
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Susumu Antoku
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Marta Columbaro
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Kees R. Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Howard J. Worman
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Giovanna Lattanzi
- National Research Council of Italy - CNR - Institute for Molecular Genetics, Unit of Bologna IOR, Bologna, Italy
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Manfred Wehnert
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sue Shackleton
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
67
|
Chapman MA, Zhang J, Banerjee I, Guo LT, Zhang Z, Shelton GD, Ouyang K, Lieber RL, Chen J. Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle. Hum Mol Genet 2014; 23:5879-92. [PMID: 24943590 DOI: 10.1093/hmg/ddu310] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network. Thus, we hypothesize that both of these factors play a key role in skeletal muscle function. To examine this question, we utilized global ablation murine models of nesprin 1, desmin or both nesprin 1 and desmin. Herein, we have created the nesprin-desmin double-knockout (DKO) mouse, eliminating a major fraction of nuclear-cytoskeletal connections and enabling understanding of the importance of nuclear anchorage in skeletal muscle. Globally, DKO mice are marked by decreased lifespan, body weight and muscle strength. With regard to skeletal muscle, DKO myonuclear anchorage was dramatically decreased compared with wild-type, nesprin 1(-/-) and desmin(-/-) mice. Additionally, nuclear-cytoskeletal strain transmission was decreased in DKO skeletal muscle. Finally, loss of nuclear anchorage in DKO mice coincided with a fibrotic response as indicated by increased collagen and extracellular matrix deposition and increased passive mechanical properties of muscle bundles. Overall, our data demonstrate that nesprin 1 and desmin serve redundant roles in nuclear anchorage and that the loss of nuclear anchorage in skeletal muscle results in a pathological response characterized by increased tissue fibrosis and mechanical stiffness.
Collapse
Affiliation(s)
| | | | | | - Ling T Guo
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zhiwei Zhang
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Road, Changsha, Hunan 410011, P.R. China and
| | - G Diane Shelton
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kunfu Ouyang
- Department of Medicine, School of Chemical Biology and Biotechnology, Peking University, Shenzhen 518055, P.R. China
| | - Richard L Lieber
- Department of Bioengineering and Department of Orthopaedic Surgery, University of California San Diego, and Department of Veteran's Affairs, 9500 Gilman Drive, La Jolla, CA 92093-0863, USA
| | | |
Collapse
|
68
|
González-Granado JM, Silvestre-Roig C, Rocha-Perugini V, Trigueros-Motos L, Cibrián D, Morlino G, Blanco-Berrocal M, Osorio FG, Freije JMP, López-Otín C, Sánchez-Madrid F, Andrés V. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal 2014; 7:ra37. [PMID: 24757177 DOI: 10.1126/scisignal.2004872] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In many cell types, nuclear A-type lamins regulate multiple cellular functions, including higher-order genome organization, DNA replication and repair, gene transcription, and signal transduction; however, their role in specialized immune cells remains largely unexplored. We showed that the abundance of A-type lamins was almost negligible in resting naïve T lymphocytes, but was increased upon activation of the T cell receptor (TCR). The increase in lamin-A was an early event that accelerated formation of the immunological synapse between T cells and antigen-presenting cells. Polymerization of F-actin in T cells is a critical step for immunological synapse formation, and lamin-A interacted with the linker of nucleoskeleton and cytoskeleton (LINC) complex to promote F-actin polymerization. We also showed that lamin-A expression accelerated TCR clustering and led to enhanced downstream signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, as well as increased target gene expression. Pharmacological inhibition of the ERK pathway reduced lamin-A-dependent T cell activation. Moreover, mice lacking lamin-A in immune cells exhibited impaired T cell responses in vivo. These findings underscore the importance of A-type lamins for TCR activation and identify lamin-A as a previously unappreciated regulator of the immune response.
Collapse
Affiliation(s)
- José María González-Granado
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Silvestre-Roig
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Vera Rocha-Perugini
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Laia Trigueros-Motos
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Danay Cibrián
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Giulia Morlino
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Marta Blanco-Berrocal
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fernando Garcia Osorio
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo-IUOPA, Oviedo, Spain
| | | | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo-IUOPA, Oviedo, Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Vicente Andrés
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
69
|
Duong NT, Morris GE, Lam LT, Zhang Q, Sewry CA, Shanahan CM, Holt I. Nesprins: tissue-specific expression of epsilon and other short isoforms. PLoS One 2014; 9:e94380. [PMID: 24718612 PMCID: PMC3981789 DOI: 10.1371/journal.pone.0094380] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/15/2014] [Indexed: 11/22/2022] Open
Abstract
Nesprin-1-giant and nesprin-2-giant regulate nuclear positioning by the interaction of their C-terminal KASH domains with nuclear membrane SUN proteins and their N-terminal calponin-homology domains with cytoskeletal actin. A number of short isoforms lacking the actin-binding domains are produced by internal promotion. We have evaluated the significance of these shorter isoforms using quantitative RT-PCR and western blotting with site-specific monoclonal antibodies. Within a complete map of nesprin isoforms, we describe two novel nesprin-2 epsilon isoforms for the first time. Epsilon isoforms are similar in size and structure to nesprin-1-alpha. Expression of nesprin isoforms was highly tissue-dependent. Nesprin-2-epsilon-1 was found in early embryonic cells, while nesprin-2-epsilon-2 was present in heart and other adult tissues, but not skeletal muscle. Some cell lines lack shorter isoforms and express only one of the two nesprin genes, suggesting that either of the giant nesprins is sufficient for basic cell functions. For the first time, localisation of endogenous nesprin away from the nuclear membrane was shown in cells where removal of the KASH domain by alternative splicing occurs. By distinguishing between degradation products and true isoforms on western blots, it was found that previously-described beta and gamma isoforms are expressed either at only low levels or with a limited tissue distribution. Two of the shortest alpha isoforms, nesprin-1-alpha-2 and nesprin-2-alpha-1, were found almost exclusively in cardiac and skeletal muscle and a highly conserved and alternatively-spliced exon, available in both nesprin genes, was always included in these tissues. These "muscle-specific" isoforms are thought to form a complex with emerin and lamin A/C at the inner nuclear membrane and mutations in all three proteins cause Emery-Dreifuss muscular dystrophy and/or inherited dilated cardiomyopathy, disorders in which only skeletal muscle and/or heart are affected.
Collapse
Affiliation(s)
- Nguyen Thuy Duong
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
- Institute of Genome Research (IGR), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Glenn E. Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| | - Le Thanh Lam
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| | - Qiuping Zhang
- Cardiovascular Division, James Black Centre, King’s College, London, United Kingdom
| | - Caroline A. Sewry
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
- Dubowitz Neuromuscular Centre, Institute for Child Health and Great Ormond Street Hospital, London, United Kingdom
| | | | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
70
|
Stroud MJ, Banerjee I, Veevers J, Chen J. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 2014; 114:538-48. [PMID: 24481844 DOI: 10.1161/circresaha.114.301236] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of proteins within the inner and the outer nuclear membranes, connects the nuclear lamina to the cytoskeleton. The importance of this complex has been highlighted by the discovery of mutations in genes encoding LINC complex proteins, which cause skeletal or cardiac myopathies. Herein, this review summarizes structure, function, and interactions of major components of the LINC complex, highlights how mutations in these proteins may lead to cardiac disease, and outlines future challenges in the field.
Collapse
Affiliation(s)
- Matthew J Stroud
- From the Department of Cardiology, University of California San Diego School of Medicine, La Jolla, CA
| | | | | | | |
Collapse
|
71
|
Liggett JL, Zhang X, Eling TE, Baek SJ. Anti-tumor activity of non-steroidal anti-inflammatory drugs: cyclooxygenase-independent targets. Cancer Lett 2014; 346:217-24. [PMID: 24486220 DOI: 10.1016/j.canlet.2014.01.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 12/27/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are used extensively for analgesic and antipyretic treatments. In addition, NSAIDs reduce the risk and mortality to several cancers. Their mechanisms in anti-tumorigenesis are not fully understood, but both cyclooxygenase (COX)-dependent and -independent pathways play a role. We and others have been interested in elucidating molecular targets of NSAID-induced apoptosis. In this review, we summarize updated literature regarding cellular and molecular targets modulated by NSAIDs. Among those NSAIDs, sulindac sulfide and tolfenamic acid are emphasized in this review because these two drugs have been well investigated for their anti-tumorigenic activity in many different types of cancer.
Collapse
Affiliation(s)
- Jason L Liggett
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 USA
| | - Xiaobo Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Thomas E Eling
- Laboratory of Molecular Carcinogenesis, National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 USA.
| |
Collapse
|
72
|
Stewart CL, Burke B. The missing LINC: a mammalian KASH-domain protein coupling meiotic chromosomes to the cytoskeleton. Nucleus 2014; 5:3-10. [PMID: 24637401 DOI: 10.4161/nucl.27819] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pairing of homologous chromosome is a unique event in meiosis that is essential for both haploidization of the genome and genetic recombination. Rapid chromosome movements during meiotic prophase are a key feature of the pairing process. This is usually telomere-led, and in metazoans is dependent upon microtubules and dynein. Chromosome movements culminate in the formation of a meiotic "bouquet" in which nuclear envelope-associated telomeres are clustered at the centrosomal pole of the nucleus. Bouquet formation is thought to facilitate homolog pairing. Recent studies reveal that coupling of telomeres to cytoplasmic dynein is mediated by SUN1 in the inner nuclear membrane (INM) and KASH5 a novel protein of the outer nuclear membrane (ONM). Together SUN1 and KASH5 assemble to form a transluminal LINC (linker of the nucleoskeleton and cytoskeleton) complex that spans both nuclear membranes. SUN1 forms attachment sites for telomeres at the INM while KASH5 functions as a dynein adaptor at the ONM. In mice deficient in KASH5, homologous chromosome pairing does not occur. The result is that meiosis is arrested at the leptotene/zygotene stage of meiotic prophase 1, and as a consequence both male and female mice are infertile. This study demonstrates an essential role for dynein directed telomere movement during meiotic prophase.
Collapse
Affiliation(s)
| | - Brian Burke
- Institute of Medical Biology; Immunos; Singapore
| |
Collapse
|
73
|
|
74
|
Razafsky D, Wirtz D, Hodzic D. Nuclear envelope in nuclear positioning and cell migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:471-90. [PMID: 24563361 PMCID: PMC4310828 DOI: 10.1007/978-1-4899-8032-8_21] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hauling and anchoring the nucleus within immobile or motile cells, tissues, and/or syncytia represents a major challenge. In the past 15 years, Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes) have emerged as evolutionary-conserved molecular devices that span the nuclear envelope and provide interacting interfaces for cytoskeletal networks and molecular motors to the nuclear envelope. Here, we review the molecular composition of LINC complexes and focus on how their genetic alteration in vivo has provided a wealth of information related to the relevance of nuclear positioning during tissue development and homeostasis with a special emphasis on the central nervous system. As it may be relevant for metastasis in a range of cancers, the involvement of LINC complexes in migration of nonneuronal cells via its interaction with the perinuclear actin cap will also be developed.
Collapse
Affiliation(s)
- David Razafsky
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences, 660 South Euclid Ave, St Louis, MO, 63110, USA
| | - Denis Wirtz
- The Johns Hopkins University, Department of Chemical and Biomolecular engineering, 3400 North Charles St., Baltimore, MD, 21218, USA
| | - Didier Hodzic
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences, 660 South Euclid Ave, St Louis, MO, 63110, USA
| |
Collapse
|
75
|
Jahed Z, Shams H, Mehrbod M, Mofrad MRK. Mechanotransduction pathways linking the extracellular matrix to the nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:171-220. [PMID: 24725427 DOI: 10.1016/b978-0-12-800180-6.00005-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells contain several mechanosensing components that transduce mechanical signals into biochemical cascades. During cell-ECM adhesion, a complex network of molecules mechanically couples the extracellular matrix (ECM), cytoskeleton, and nucleoskeleton. The network comprises transmembrane receptor proteins and focal adhesions, which link the ECM and cytoskeleton. Additionally, recently identified protein complexes extend this linkage to the nucleus by linking the cytoskeleton and the nucleoskeleton. Despite numerous studies in this field, due to the complexity of this network, our knowledge of the mechanisms of cell-ECM adhesion at the molecular level remains remarkably incomplete. Herein, we present a review of the structures of key molecules involved in cell-ECM adhesion, along with an evaluation of their predicted roles in mechanical sensing. Additionally, specific binding events prompted by force-induced conformational changes of each molecule are discussed. Finally, we propose a model for the biomechanical events prominent in cell-ECM adhesion.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mehrdad Mehrbod
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA.
| |
Collapse
|
76
|
Abstract
Despite decades of research, cancer metastasis remains an incompletely understood process that is as complex as it is devastating. In recent years, there has been an increasing push to investigate the biomechanical aspects of tumorigenesis, complementing the research on genetic and biochemical changes. In contrast to the high genetic variability encountered in cancer cells, almost all metastatic cells are subject to the same physical constraints as they leave the primary tumor, invade surrounding tissues, transit through the circulatory system, and finally infiltrate new tissues. Advances in live cell imaging and other biophysical techniques, including measurements of subcellular mechanics, have yielded stunning new insights into the physics of cancer cells. While much of this research has been focused on the mechanics of the cytoskeleton and the cellular microenvironment, it is now emerging that the mechanical properties of the cell nucleus and its connection to the cytoskeleton may play a major role in cancer metastasis, as deformation of the large and stiff nucleus presents a substantial obstacle during the passage through the dense interstitial space and narrow capillaries. Here, we present an overview of the molecular components that govern the mechanical properties of the nucleus, and we discuss how changes in nuclear structure and composition observed in many cancers can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between nuclear mechanics and metastatic progression may have powerful implications in cancer diagnostics and therapy and may reveal novel therapeutic targets for pharmacological inhibition of cancer cell invasion.
Collapse
Affiliation(s)
- Celine Denais
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA,
| | | |
Collapse
|
77
|
Evans DE, Pawar V, Smith SJ, Graumann K. Protein interactions at the higher plant nuclear envelope: evidence for a linker of nucleoskeleton and cytoskeleton complex. FRONTIERS IN PLANT SCIENCE 2014; 5:183. [PMID: 24847341 PMCID: PMC4019843 DOI: 10.3389/fpls.2014.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/17/2014] [Indexed: 05/20/2023]
Abstract
Following the description of SAD1/UNC84 (SUN) domain proteins in higher plants, evidence has rapidly increased that plants contain a functional linker of nucleoskeleton and cytoskeleton (LINC) complex bridging the nuclear envelope (NE). While the SUN domain proteins appear to be highly conserved across kingdoms, other elements of the complex are not and some key components and interactions remain to be identified. This mini review examines components of the LINC complex, including proteins of the SUN domain family and recently identified plant Klarsicht/Anc/Syne-1 homology (KASH) domain proteins. First of these to be described were WIPs (WPP domain interacting proteins), which act as protein anchors in the outer NE. The plant KASH homologs are C-terminally anchored membrane proteins with the extreme C-terminus located in the nuclear periplasm; AtWIPs contain a highly conserved X-VPT motif at the C-terminus in contrast to PPPX in opisthokonts. The role of the LINC complex in organisms with a cell wall, and description of further LINC complex components will be considered, together with other potential plant-specific functions.
Collapse
Affiliation(s)
- David E. Evans
- *Correspondence: David E. Evans, Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK e-mail:
| | | | | | | |
Collapse
|
78
|
Cartwright S, Karakesisoglou I. Nesprins in health and disease. Semin Cell Dev Biol 2013; 29:169-79. [PMID: 24374011 DOI: 10.1016/j.semcdb.2013.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/29/2013] [Accepted: 12/15/2013] [Indexed: 01/20/2023]
Abstract
LINC (Linker of Nucleoskeleton and Cytoskeleton) complex is an evolutionary conserved structure that spans the entire nuclear envelope (NE), and integrates the nuclear interior with the cytoskeleton, in order to support a diverse array of fundamental biological processes. Key components of the LINC complex are the nesprins (Nuclear Envelope SPectrin Repeat proteINS) that were initially described as large integral NE proteins. However, nesprin genes are complex and generate many variants, which occupy various sub-cellular compartments suggesting additional functions. Hence, the potential involvement of nesprins in disease has expanded immensely on what we already know. That is, nesprins are implicated in diseases such as cancer, myopathies, arthrogryposis, neurological disorders and hearing loss. Here we review nesprins by providing an in depth account of their structure, molecular interactions and cellular functions with relevance to their potential roles in disease. Specifically, we speculate about possible pathomechanisms underlying nesprin-associated diseases.
Collapse
Affiliation(s)
- Sarah Cartwright
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
79
|
Koch AJ, Holaska JM. Emerin in health and disease. Semin Cell Dev Biol 2013; 29:95-106. [PMID: 24365856 DOI: 10.1016/j.semcdb.2013.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/02/2013] [Accepted: 12/15/2013] [Indexed: 12/27/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the genes encoding emerin, lamins A and C and FHL1. Additional EDMD-like syndromes are caused by mutations in nesprins and LUMA. This review will specifically focus on emerin function and the current thinking for how loss or mutations in emerin cause EDMD. Emerin is a well-conserved, ubiquitously expressed protein of the inner nuclear membrane. Emerin has been shown to have diverse functions, including the regulation of gene expression, cell signaling, nuclear structure and chromatin architecture. This review will focus on the relationships between these functions and the EDMD disease phenotype. Additionally it will highlight open questions concerning emerin's roles in cell and nuclear biology and disease.
Collapse
Affiliation(s)
- Adam J Koch
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - James M Holaska
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Developmental, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
80
|
Davies RG, Wagstaff KM, McLaughlin EA, Loveland KL, Jans DA. The BRCA1-binding protein BRAP2 can act as a cytoplasmic retention factor for nuclear and nuclear envelope-localizing testicular proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3436-3444. [DOI: 10.1016/j.bbamcr.2013.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 01/07/2023]
|
81
|
Abstract
The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics.
Collapse
Affiliation(s)
- Jan Lammerding
- Brigham and Women's Hospital/Harvard Medical School, Cambridge, Massachusetts, USA.
| |
Collapse
|
82
|
Liggett JL, Choi CK, Donnell RL, Kihm KD, Kim JS, Min KW, Noegel AA, Baek SJ. Nonsteroidal anti-inflammatory drug sulindac sulfide suppresses structural protein Nesprin-2 expression in colorectal cancer cells. Biochim Biophys Acta Gen Subj 2013; 1840:322-31. [PMID: 24080406 DOI: 10.1016/j.bbagen.2013.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/22/2013] [Accepted: 09/20/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are well known for treating inflammatory disease and have been reported to have anti-tumorigenic effects. Their mechanisms are not fully understood, but both cyclooxygenase (COX) dependent and independent pathways are involved. Our goal was to shed further light on COX-independent activity. METHODS Human colorectal cancer cells were observed under differential interference contrast microscopy (DICM), fluorescent microscopy, and micro-impedance measurement. Microarray analysis was performed using HCT-116 cells treated with sulindac sulfide (SS). PCR and Western blots were performed to confirm the microarray data and immunohistochemistry was performed to screen for Nesprin-2 expression. Micro-impedance was repeating including Nesprin-2 knock-down by siRNA. RESULTS HCT-116 cells treated with SS showed dramatic morphological changes under DICM and fluorescent microscopy, as well as weakened cellular adhesion as measured by micro-impedance. Nesprin-2 was selected from two independent microarrays, based on its novelty in relation to cancer and its role in cell organization. SS diminished Nesprin-2 mRNA expression as assessed by reverse transcriptase and real time PCR. Various other NSAIDs were also tested and demonstrated that inhibition of Nesprin-2 mRNA was not unique to SS. Additionally, immunohistochemistry showed higher levels of Nesprin-2 in many tumors in comparison with normal tissues. Further micro-impedance experiments on cells with reduced Nesprin-2 expression showed a proportional loss of cellular adhesion. CONCLUSIONS Nesprin-2 is down-regulated by NSAIDs and highly expressed in many cancers. GENERAL SIGNIFICANCE Our data suggest that Nesprin-2 may be a potential novel oncogene in human cancer cells and NSAIDs could decrease its expression.
Collapse
Affiliation(s)
- Jason L Liggett
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Horn HF, Kim DI, Wright GD, Wong ESM, Stewart CL, Burke B, Roux KJ. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. ACTA ACUST UNITED AC 2013; 202:1023-39. [PMID: 24062341 PMCID: PMC3787381 DOI: 10.1083/jcb.201304004] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complex of KASH5 and Sun1 is required for meiotic homologous chromosome pairing through the coupling of telomere attachment sites to cytoplasmic dynein and microtubules. Chromosome pairing is an essential meiotic event that ensures faithful haploidization and recombination of the genome. Pairing of homologous chromosomes is facilitated by telomere-led chromosome movements and formation of a meiotic bouquet, where telomeres cluster to one pole of the nucleus. In metazoans, telomere clustering is dynein and microtubule dependent and requires Sun1, an inner nuclear membrane protein. Here we provide a functional analysis of KASH5, a mammalian dynein-binding protein of the outer nuclear membrane that forms a meiotic complex with Sun1. This protein is related to zebrafish futile cycle (Fue), a nuclear envelope (NE) constituent required for pronuclear migration. Mice deficient in this Fue homologue are infertile. Males display meiotic arrest in which pairing of homologous chromosomes fails. These findings demonstrate that telomere attachment to the NE is insufficient to promote pairing and that telomere attachment sites must be coupled to cytoplasmic dynein and the microtubule system to ensure meiotic progression.
Collapse
Affiliation(s)
- Henning F Horn
- Laborotory of Nuclear Dynamics and Architecture, 2 Laboratory of Developmental and Regenerative Biology, and 3 IMB Microscopy Unit, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
| | | | | | | | | | | | | |
Collapse
|
84
|
Yang L, Munck M, Swaminathan K, Kapinos LE, Noegel AA, Neumann S. Mutations in LMNA modulate the lamin A--Nesprin-2 interaction and cause LINC complex alterations. PLoS One 2013; 8:e71850. [PMID: 23977161 PMCID: PMC3748058 DOI: 10.1371/journal.pone.0071850] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/03/2013] [Indexed: 11/29/2022] Open
Abstract
Background In eukaryotes the genetic material is enclosed by a continuous membrane system, the nuclear envelope (NE). Along the NE specific proteins assemble to form meshworks and mutations in these proteins have been described in a group of human diseases called laminopathies. Laminopathies include lipodystrophies, muscle and cardiac diseases as well as metabolic or progeroid syndromes. Most laminopathies are caused by mutations in the LMNAgene encoding lamins A/C. Together with Nesprins (Nuclear Envelope Spectrin Repeat Proteins) they are core components of the LINC complex (Linker of Nucleoskeleton and Cytoskeleton). The LINC complex connects the nucleoskeleton and the cytoskeleton and plays a role in the transfer of mechanically induced signals along the NE into the nucleus, and its components have been attributed functions in maintaining nuclear and cellular organization as well as signal transduction. Results Here we narrowed down the interaction sites between lamin A and Nesprin-2 to aa 403–425 in lamin A and aa 6146–6347 in Nesprin-2. Laminopathic mutations in and around the involved region of lamin A (R401C, G411D, G413C, V415I, R419C, L421P, R427G, Q432X) modulate the interaction with Nesprin-2 and this may contribute to the disease phenotype. The most notable mutation is the lamin A mutation Q432X that alters LINC complex protein assemblies and causes chromosomal and transcription factor rearrangements. Conclusion Mutations in Nesprin-2 and lamin A are characterised by complex genotype phenotype relations. Our data show that each mutation in LMNAanalysed here has a distinct impact on the interaction among both proteins that substantially explains how distinct mutations in widely expressed genes lead to the formation of phenotypically different diseases.
Collapse
Affiliation(s)
- Liu Yang
- Institute for Biochemistry I, Medical Faculty, University of Cologne, and Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Martina Munck
- Institute for Biochemistry I, Medical Faculty, University of Cologne, and Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Karthic Swaminathan
- Institute for Biochemistry I, Medical Faculty, University of Cologne, and Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Larisa E. Kapinos
- Biozentrum and the Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Angelika A. Noegel
- Institute for Biochemistry I, Medical Faculty, University of Cologne, and Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
- * E-mail: (AAN); (SN)
| | - Sascha Neumann
- Institute for Biochemistry I, Medical Faculty, University of Cologne, and Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
- * E-mail: (AAN); (SN)
| |
Collapse
|
85
|
Abstract
Nuclear envelope
spectrin-repeat
proteins (Nesprins), are a novel family of
nuclear and cytoskeletal proteins with rapidly expanding roles as intracellular scaffolds
and linkers. Originally described as proteins that localise to the nuclear envelope (NE)
and establish nuclear-cytoskeletal connections, nesprins have now been found to comprise a
diverse spectrum of tissue specific isoforms that localise to multiple sub-cellular
compartments. Here, we describe how nesprins are necessary in maintaining cellular
architecture by acting as essential scaffolds and linkers at both the NE and other
sub-cellular domains. More importantly, we speculate how nesprin mutations may disrupt
tissue specific nesprin scaffolds and explain the tissue specific nature of many
nesprin-associated diseases, including laminopathies.
Collapse
|
86
|
Vergé V, Lozano JC, Schatt P, Peaucellier G. SGEBP, a giant protein from starfish oocytes able to interact with ERK. Mol Reprod Dev 2013; 80:816-25. [PMID: 23794267 DOI: 10.1002/mrd.22210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/14/2013] [Indexed: 11/12/2022]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is a key regulator of animal meiotic divisions. It involves cascades of kinases whose specificity has been shown to depend on binding proteins acting as scaffolds. We searched for proteins interacting with starfish extracellular signal-regulated kinase (ERK) using the yeast two-hybrid system. An interacting clone was found to encode the 5' region of a giant 16.7-kb transcript encoded by an intronless gene. The corresponding 630-kDa protein could not be detected by Western blot, but the meiotic spindle was labelled by immunolocalization with an antibody against the ERK-binding domain. A related gene was found in the genome of another starfish species, and similarities were also found to a 42.9-kb open reading frame in the sea urchin genome. Yet, no conserved protein-binding domain was detected in the amino acid sequence(s) compared to all the known motifs. Structure prediction software indicated that the encoded proteins are probably disordered while a query of the disordered protein database indicated some similarity with vertebrates microtubule-associated protein 2 (MAP2). This predicts that SGEBP may function as a space-filling polymer, having a role in both cytoskeleton organization and ERK targeting.
Collapse
Affiliation(s)
- Valérie Vergé
- UPMC Univ Paris 06, Laboratoire Arago, Avenue Fontaulé, BP44F-66650, Banyuls/mer, France
| | | | | | | |
Collapse
|
87
|
Kim DH, Chambliss AB, Wirtz D. The multi-faceted role of the actin cap in cellular mechanosensation and mechanotransduction. SOFT MATTER 2013; 9:5516-5523. [PMID: 23930135 PMCID: PMC3733260 DOI: 10.1039/c3sm50798j] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The perinuclear actin cap (or actin cap) is a recently characterized cytoskeletal organelle composed of thick, parallel, and highly contractile acto-myosin filaments that are specifically anchored to the apical surface of the interphase nucleus. The actin cap is present in a wide range of adherent eukaryotic cells, but is disrupted in several human diseases, including laminopathies and cancer. Through its large terminating focal adhesions and anchorage to the nuclear lamina and nuclear envelope through LINC complexes, the perinuclear actin cap plays a critical role both in mechanosensation and mechanotransduction, the ability of cells to sense changes in matrix compliance and to respond to mechanical forces, respectively.
Collapse
Affiliation(s)
- Dong-Hwee Kim
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA ; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
88
|
Ketema M, Kreft M, Secades P, Janssen H, Sonnenberg A. Nesprin-3 connects plectin and vimentin to the nuclear envelope of Sertoli cells but is not required for Sertoli cell function in spermatogenesis. Mol Biol Cell 2013; 24:2454-66. [PMID: 23761073 PMCID: PMC3727937 DOI: 10.1091/mbc.e13-02-0100] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nesprin-3 regulates perinuclear localization of plectin and vimentin in Sertoli cells but is dispensable for Sertoli cell function in spermatogenesis. In addition, nuclear positioning and anchorage are not disturbed in nesprin-3–knockout mice. Nesprin-3 is a nuclear envelope protein that connects the nucleus to intermediate filaments by interacting with plectin. To investigate the role of nesprin-3 in the perinuclear localization of plectin, we generated nesprin-3–knockout mice and examined the effects of nesprin-3 deficiency in different cell types and tissues. Nesprin-3 and plectin are coexpressed in a variety of tissues, including peripheral nerve and muscle. The expression level of nesprin-3 in skeletal muscle is very low and decreases during myoblast differentiation in vitro. Of interest, plectin was concentrated at the nuclear envelope in only a few cell types. This was most prominent in Sertoli cells of the testis, in which nesprin-3 is required for the localization of both plectin and vimentin at the nuclear perimeter. Testicular morphology and the position of the nucleus in Sertoli cells were normal, however, in the nesprin-3–knockout mice and the mice were fertile. Furthermore, nesprin-3 was not required for the polarization and migration of mouse embryonic fibroblasts. Thus, although nesprin-3 is critical for the localization of plectin to the nuclear perimeter of Sertoli cells, the resulting link between the nuclear envelope and the intermediate filament system seems to be dispensable for normal testicular morphology and spermatogenesis.
Collapse
Affiliation(s)
- Mirjam Ketema
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
89
|
Rothballer A, Kutay U. The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin. Chromosoma 2013; 122:415-29. [PMID: 23736899 PMCID: PMC3777164 DOI: 10.1007/s00412-013-0417-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/30/2022]
Abstract
The nuclear envelope (NE) is connected to the different types of cytoskeletal elements by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes exist from yeast to humans, and have preserved their general architecture throughout evolution. They are composed of SUN and KASH domain proteins of the inner and the outer nuclear membrane, respectively. These SUN–KASH bridges are used for the transmission of forces across the NE and support diverse biological processes. Here, we review the function of SUN and KASH domain proteins in various unicellular and multicellular species. Specifically, we discuss their influence on nuclear morphology and cytoskeletal organization. Further, emphasis is given on the role of LINC complexes in nuclear anchorage and migration as well as in genome organization.
Collapse
Affiliation(s)
- Andrea Rothballer
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| |
Collapse
|
90
|
Structural bioinformatics of the general transcription factor TFIID. Biochimie 2013; 95:680-91. [DOI: 10.1016/j.biochi.2012.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022]
|
91
|
Imbalzano KM, Cohet N, Wu Q, Underwood JM, Imbalzano AN, Nickerson JA. Nuclear shape changes are induced by knockdown of the SWI/SNF ATPase BRG1 and are independent of cytoskeletal connections. PLoS One 2013; 8:e55628. [PMID: 23405182 PMCID: PMC3566038 DOI: 10.1371/journal.pone.0055628] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/02/2013] [Indexed: 11/24/2022] Open
Abstract
Changes in nuclear morphology occur during normal development and have been observed during the progression of several diseases. The shape of a nucleus is governed by the balance of forces exerted by nuclear-cytoskeletal contacts and internal forces created by the structure of the chromatin and nuclear envelope. However, factors that regulate the balance of these forces and determine nuclear shape are poorly understood. The SWI/SNF chromatin remodeling enzyme ATPase, BRG1, has been shown to contribute to the regulation of overall cell size and shape. Here we document that immortalized mammary epithelial cells show BRG1-dependent nuclear shape changes. Specifically, knockdown of BRG1 induced grooves in the nuclear periphery that could be documented by cytological and ultrastructural methods. To test the hypothesis that the observed changes in nuclear morphology resulted from altered tension exerted by the cytoskeleton, we disrupted the major cytoskeletal networks and quantified the frequency of BRG1-dependent changes in nuclear morphology. The results demonstrated that disruption of cytoskeletal networks did not change the frequency of BRG1-induced nuclear shape changes. These findings suggest that BRG1 mediates control of nuclear shape by internal nuclear mechanisms that likely control chromatin dynamics.
Collapse
Affiliation(s)
- Karen M Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | | | | | | | | |
Collapse
|
92
|
Rothballer A, Schwartz TU, Kutay U. LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. Nucleus 2013; 4:29-36. [PMID: 23324460 PMCID: PMC3585024 DOI: 10.4161/nucl.23387] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell.
Collapse
|
93
|
Cellular and Molecular Biology of Neuronal Dystonin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:85-120. [DOI: 10.1016/b978-0-12-405210-9.00003-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
94
|
Abstract
Gametogenesis combines two important features: reduction of the genome content from diploid to haploid by carefully partitioning chromosomes, and the subsequent differentiation into fertilization-competent gametes, which in males is characterized by profound nuclear restructuring. These are quite difficult tasks and require a tight coordination of different cellular mechanisms. Recent studies in the field established a key role for LINC complexes in both meiosis and sperm head formation. LINC complexes comprise SUN and KASH domain proteins that form nuclear envelope (NE) bridges, linking the nucleoskeleton to the cytoskeleton. They are well known for their crucial roles in diverse cellular and developmental processes, such as nuclear positioning and cell polarization. In this review, we highlight key roles ascribed to LINC complexes and to the nucleocytoskeletal connection in gametogenesis. First, we give a short overview about the general features of LINC components and the profound reorganization of the NE in germ cells. We then focus on specific roles of LINC complexes in meiotic chromosome dynamics and their impact on pairing, synapsis, and recombination. Finally, we provide an update of the mechanisms controlling sperm head formation and discuss the role of sperm-specific LINC complexes in nuclear shaping and their relation to specialized cytoskeletal structures that form concurrently with nuclear restructuring and sperm elongation.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Department of Physiology, Wayne State University Medical School, Detroit, Michigan, USA
| | | | | |
Collapse
|
95
|
Lu W, Schneider M, Neumann S, Jaeger VM, Taranum S, Munck M, Cartwright S, Richardson C, Carthew J, Noh K, Goldberg M, Noegel AA, Karakesisoglou I. Nesprin interchain associations control nuclear size. Cell Mol Life Sci 2012; 69:3493-509. [PMID: 22653047 PMCID: PMC11114684 DOI: 10.1007/s00018-012-1034-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 04/26/2012] [Accepted: 05/14/2012] [Indexed: 12/12/2022]
Abstract
Nesprins-1/-2/-3/-4 are nuclear envelope proteins, which connect nuclei to the cytoskeleton. The largest nesprin-1/-2 isoforms (termed giant) tether F-actin through their N-terminal actin binding domain (ABD). Nesprin-3, however, lacks an ABD and associates instead to plectin, which binds intermediate filaments. Nesprins are integrated into the outer nuclear membrane via their C-terminal KASH-domain. Here, we show that nesprin-1/-2 ABDs physically and functionally interact with nesprin-3. Thus, both ends of nesprin-1/-2 giant are integrated at the nuclear surface: via the C-terminal KASH-domain and the N-terminal ABD-nesprin-3 association. Interestingly, nesprin-2 ABD or KASH-domain overexpression leads to increased nuclear areas. Conversely, nesprin-2 mini (contains the ABD and KASH-domain but lacks the massive nesprin-2 giant rod segment) expression yields smaller nuclei. Nuclear shrinkage is further enhanced upon nesprin-3 co-expression or microfilament depolymerization. Our findings suggest that multivariate intermolecular nesprin interactions with the cytoskeleton form a lattice-like filamentous network covering the outer nuclear membrane, which determines nuclear size.
Collapse
Affiliation(s)
- Wenshu Lu
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Maria Schneider
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Sascha Neumann
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Verena-Maren Jaeger
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Surayya Taranum
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Martina Munck
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Sarah Cartwright
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Christine Richardson
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - James Carthew
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Kowoon Noh
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Martin Goldberg
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Angelika A. Noegel
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | | |
Collapse
|
96
|
Elhanany-Tamir H, Yu YV, Shnayder M, Jain A, Welte M, Volk T. Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. ACTA ACUST UNITED AC 2012; 198:833-46. [PMID: 22927463 PMCID: PMC3432764 DOI: 10.1083/jcb.201204102] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The KASH proteins Klar and MSP-300 cooperate to promote even myonuclear spacing by linking the MSP-300 nuclear ring to the astral microtubule network. Striated muscle fibers are characterized by their tightly organized cytoplasm. Here, we show that the Drosophila melanogaster KASH proteins Klarsicht (Klar) and MSP-300 cooperate in promoting even myonuclear spacing by mediating a tight link between a newly discovered MSP-300 nuclear ring and a polarized network of astral microtubules (aMTs). In either klar or msp-300ΔKASH, or in klar and msp-300 double heterozygous mutants, the MSP-300 nuclear ring and the aMTs retracted from the nuclear envelope, abrogating this even nuclear spacing. Anchoring of the myonuclei to the core acto-myosin fibrillar compartment was mediated exclusively by MSP-300. This protein was also essential for promoting even distribution of the mitochondria and ER within the muscle fiber. Larval locomotion is impaired in both msp-300 and klar mutants, and the klar mutants were rescued by muscle-specific expression of Klar. Thus, our results describe a novel mechanism of nuclear spacing in striated muscles controlled by the cooperative activity of MSP-300, Klar, and astral MTs, and demonstrate its physiological significance.
Collapse
Affiliation(s)
- Hadas Elhanany-Tamir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
97
|
Sosa BA, Rothballer A, Kutay U, Schwartz TU. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 2012; 149:1035-47. [PMID: 22632968 DOI: 10.1016/j.cell.2012.03.046] [Citation(s) in RCA: 290] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/02/2012] [Accepted: 03/27/2012] [Indexed: 01/28/2023]
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.
Collapse
Affiliation(s)
- Brian A Sosa
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
98
|
Rajgor D, Mellad JA, Autore F, Zhang Q, Shanahan CM. Multiple novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds. PLoS One 2012; 7:e40098. [PMID: 22768332 PMCID: PMC3388047 DOI: 10.1371/journal.pone.0040098] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/31/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Nesprins (Nuclear envelope spectrin-repeat proteins) are a novel family of giant spectrin-repeat containing proteins. The nesprin-1 and nesprin-2 genes consist of 146 and 116 exons which encode proteins of ∼1mDa and ∼800 kDa is size respectively when all the exons are utilised in translation. However emerging data suggests that the nesprins have multiple alternative start and termination sites throughout their genes allowing the generation of smaller isoforms. RESULTS In this study we set out to identify novel alternatively transcribed nesprin variants by screening the EST database and by using RACE analysis to identify cDNA ends. These two methods provided potential hits for alternative start and termination sites that were validated by PCR and DNA sequencing. We show that these alternative sites are not only expressed in a tissue specific manner but by combining different sites together it is possible to create a wide array of nesprin variants. By cloning and expressing small novel nesprin variants into human fibroblasts and U2OS cells we show localization to actin stress-fibres, focal adhesions, microtubules, the nucleolus, nuclear matrix and the nuclear envelope (NE). Furthermore we show that the sub-cellular localization of individual nesprin variants can vary depending on the cell type, suggesting any single nesprin variant may have different functions in different cell types. CONCLUSIONS These studies suggest nesprins act as highly versatile tissue specific intracellular protein scaffolds and identify potential novel functions for nesprins beyond cytoplasmic-nuclear coupling. These alternate functions may also account for the diverse range of disease phenotypes observed when these genes are mutated.
Collapse
Affiliation(s)
- Dipen Rajgor
- Cardiovascular Division, James Black Centre, King’s College London, London, United Kingdom
| | - Jason A. Mellad
- Cardiovascular Division, James Black Centre, King’s College London, London, United Kingdom
| | - Flavia Autore
- The Randall Division of Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London, United Kingdom
| | - Qiuping Zhang
- Cardiovascular Division, James Black Centre, King’s College London, London, United Kingdom
| | - Catherine M. Shanahan
- Cardiovascular Division, James Black Centre, King’s College London, London, United Kingdom
| |
Collapse
|
99
|
Wilson MH, Holzbaur ELF. Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells. J Cell Sci 2012; 125:4158-69. [PMID: 22623723 DOI: 10.1242/jcs.108688] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic interactions with the cytoskeleton drive the movement and positioning of nuclei in many cell types. During muscle cell development, myoblasts fuse to form syncytial myofibers with nuclei positioned regularly along the length of the cell. Nuclear translocation in developing myotubes requires microtubules, but the mechanisms involved have not been elucidated. We find that as nuclei actively translocate through the cell, they rotate in three dimensions. The nuclear envelope, nucleoli and chromocenters within the nucleus rotate together as a unit. Both translocation and rotation require an intact microtubule cytoskeleton, which forms a dynamic bipolar network around nuclei. The plus- and minus-end-directed microtubule motor proteins, kinesin-1 and dynein, localize to the nuclear envelope in myotubes. Kinesin-1 localization is mediated at least in part by interaction with klarsicht/ANC-1/Syne homology (KASH) proteins. Depletion of kinesin-1 abolishes nuclear rotation and significantly inhibits nuclear translocation, resulting in the abnormal aggregation of nuclei at the midline of the myotube. Dynein depletion also inhibits nuclear dynamics, but to a lesser extent, leading to altered spacing between adjacent nuclei. Thus, oppositely directed motors acting from the surface of the nucleus drive nuclear motility in myotubes. The variable dynamics observed for individual nuclei within a single myotube are likely to result from the stochastic activity of competing motors interacting with a complex bipolar microtubule cytoskeleton that is also continuously remodeled as the nuclei move. The three-dimensional rotation of myotube nuclei may facilitate their motility through the complex and crowded cellular environment of the developing muscle cell, allowing for proper myonuclear positioning.
Collapse
Affiliation(s)
- Meredith H Wilson
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, D400 Richards Building, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|
100
|
Khatau SB, Kusuma S, Hanjaya-Putra D, Mali P, Cheng L, Lee JSH, Gerecht S, Wirtz D. The differential formation of the LINC-mediated perinuclear actin cap in pluripotent and somatic cells. PLoS One 2012; 7:e36689. [PMID: 22574215 PMCID: PMC3344930 DOI: 10.1371/journal.pone.0036689] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/12/2012] [Indexed: 12/22/2022] Open
Abstract
The actin filament cytoskeleton mediates cell motility and adhesion in somatic cells. However, whether the function and organization of the actin network are fundamentally different in pluripotent stem cells is unknown. Here we show that while conventional actin stress fibers at the basal surface of cells are present before and after onset of differentiation of mouse (mESCs) and human embryonic stem cells (hESCs), actin stress fibers of the actin cap, which wrap around the nucleus, are completely absent from undifferentiated mESCs and hESCs and their formation strongly correlates with differentiation. Similarly, the perinuclear actin cap is absent from human induced pluripotent stem cells (hiPSCs), while it is organized in the parental lung fibroblasts from which these hiPSCs are derived and in a wide range of human somatic cells, including lung, embryonic, and foreskin fibroblasts and endothelial cells. During differentiation, the formation of the actin cap follows the expression and proper localization of nuclear lamin A/C and associated linkers of nucleus and cytoskeleton (LINC) complexes at the nuclear envelope, which physically couple the actin cap to the apical surface of the nucleus. The differentiation of hESCs is accompanied by the progressive formation of a perinuclear actin cap while induced pluripotency is accompanied by the specific elimination of the actin cap, and that, through lamin A/C and LINC complexes, this actin cap is involved in progressively shaping the nucleus of hESCs undergoing differentiation. While, the localization of lamin A/C at the nuclear envelope is required for perinuclear actin cap formation, it is not sufficient to control nuclear shape.
Collapse
Affiliation(s)
- Shyam B. Khatau
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences – Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sravanti Kusuma
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences – Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Donny Hanjaya-Putra
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences – Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Prashant Mali
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Linzhao Cheng
- Institute for Cell Engineering and Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jerry S. H. Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Strategic Scientific Initiatives, Office of the Director, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences – Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences – Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|