51
|
Huang W, Wang G, Lu SE, Kipen H, Wang Y, Hu M, Lin W, Rich D, Ohman-Strickland P, Diehl SR, Zhu P, Tong J, Gong J, Zhu T, Zhang J. Inflammatory and oxidative stress responses of healthy young adults to changes in air quality during the Beijing Olympics. Am J Respir Crit Care Med 2012; 186:1150-9. [PMID: 22936356 DOI: 10.1164/rccm.201205-0850oc] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE Unprecedented pollution control actions during the Beijing Olympics provided a quasi-experimental opportunity to examine biologic responses to drastic changes in air pollution levels. OBJECTIVES To determine whether changes in levels of biomarkers reflecting pulmonary inflammation and pulmonary and systemic oxidative stress were associated with changes in air pollution levels in healthy young adults. METHODS We measured fractional exhaled nitric oxide, a number of exhaled breath condensate markers (H(+), nitrite, nitrate, and 8-isoprostane), and urinary 8-hydroxy-2-deoxyguanosine in 125 participants twice in each of the pre- (high pollution), during- (low pollution), and post-Olympic (high pollution) periods. We measured concentrations of air pollutants near where the participants lived and worked. We used mixed-effects models to estimate changes in biomarker levels across the three periods and to examine whether changes in biomarker levels were associated with changes in pollutant concentrations, adjusting for meteorologic parameters. MEASUREMENTS AND MAIN RESULTS From the pre- to the during-Olympic period, we observed significant and often large decreases (ranging from -4.5% to -72.5%) in levels of all the biomarkers. From the during-Olympic to the post-Olympic period, we observed significant and larger increases (48-360%) in levels of these same biomarkers. Moreover, increased pollutant concentrations were consistently associated with statistically significant increases in biomarker levels. CONCLUSIONS These findings support the important role of oxidative stress and that of pulmonary inflammation in mediating air pollution health effects. The findings demonstrate the utility of novel and noninvasive biomarkers in the general population consisting largely of healthy individuals.
Collapse
Affiliation(s)
- Wei Huang
- College of Environmental Sciences and Engineering and Centre for Environment and Health, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Stockfelt L, Sallsten G, Olin AC, Almerud P, Samuelsson L, Johannesson S, Molnar P, Strandberg B, Almstrand AC, Bergemalm-Rynell K, Barregard L. Effects on airways of short-term exposure to two kinds of wood smoke in a chamber study of healthy humans. Inhal Toxicol 2012; 24:47-59. [PMID: 22220980 DOI: 10.3109/08958378.2011.633281] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Air pollution causes respiratory symptoms and pulmonary disease. Airway inflammation may be involved in the mechanism also for cardiovascular disease. Wood smoke is a significant contributor to air pollution, with complex and varying composition. We examined airway effects of two kinds of wood smoke in a chamber study. MATERIALS AND METHODS Thirteen subjects were exposed to filtered air and to wood smoke from the start-up phase and the burn-out phase of the wood-burning cycle. Levels of PM(2.5) were 295 µg/m(3) and 146 µg/m(3), number concentrations 140 000/cm(3) and 100 000/cm(3). Biomarkers in blood, breath and urine were measured before and on several occasions after exposure. Effects of wood smoke exposure were assessed adjusting for results with filtered air. RESULTS After exposure to wood smoke from the start-up, but not the burn-out session, Clara cell protein 16 (CC16) increased in serum after 4 hours, and in urine the next morning. CC16 showed a clear diurnal variation. Fraction of exhaled nitric oxide (FENO) increased after wood smoke exposure from the burn-out phase, but partly due to a decrease after exposure to filtered air. No other airway markers increased. CONCLUSIONS The results indicate that relatively low levels of wood smoke exposure induce effects on airways. Effects on airway epithelial permeability was shown for the start-up phase of wood burning, while FENO increased after the burn-out session. CC16 seems to be a sensitive marker of effects of air pollution both in serum and urine, but its function and the significance need to be clarified.
Collapse
Affiliation(s)
- Leo Stockfelt
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Hematological, immunological, and cardiovascular changes in individuals residing in a polluted city of India: A study in Delhi. Int J Hyg Environ Health 2012; 215:306-11. [DOI: 10.1016/j.ijheh.2011.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/03/2011] [Accepted: 08/16/2011] [Indexed: 11/17/2022]
|
54
|
Vidotto JP, Pereira LAA, Braga ALF, Silva CA, Sallum AM, Campos LM, Martins LC, Farhat SCL. Atmospheric pollution: influence on hospital admissions in paediatric rheumatic diseases. Lupus 2012; 21:526-33. [DOI: 10.1177/0961203312437806] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: To investigate the lag structure effects from exposure to atmospheric pollution in acute outbursts in hospital admissions of paediatric rheumatic diseases (PRDs). Methods: Morbidity data were obtained from the Brazilian Hospital Information System in seven consecutive years, including admissions due to seven PRDs (juvenile idiopathic arthritis, systemic lupus erythematosus, dermatomyositis, Henoch–Schönlein purpura, polyarteritis nodosa, systemic sclerosis and ankylosing spondylitis). Cases with secondary diagnosis of respiratory diseases were excluded. Daily concentrations of inhaled particulate matter (PM10), sulphur dioxide (SO2) nitrogen dioxide (NO2), ozone (O3) and carbon monoxide (CO) were evaluated. Generalized linear Poisson regression models controlling for short-term trend, seasonality, holidays, temperature and humidity were used. Lag structures and magnitude of air pollutants’ effects were adopted to estimate restricted polynomial distributed lag models. Results: The total number of admissions due to acute outbursts PRD was 1,821. The SO2 interquartile range (7.79 µg/m3) was associated with an increase of 1.98% (confidence interval 0.25–3.69) in the number of hospital admissions due to outcome studied after 14 days of exposure. This effect was maintained until day 17. Of note, the other pollutants, with the exception of O3, showed an increase in the number of hospital admissions from the second week. Conclusion: This study is the first to demonstrate a delayed association between SO2 and PRD outburst, suggesting that oxidative stress reaction could trigger the inflammation of these diseases.
Collapse
Affiliation(s)
- JP Vidotto
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - LAA Pereira
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Environmental Exposure and Risk Assessment Group, Collective Health Post-graduation Program, Universidade Catolica de Santos, Brazil
| | - ALF Braga
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Environmental Exposure and Risk Assessment Group, Collective Health Post-graduation Program, Universidade Catolica de Santos, Brazil
| | - CA Silva
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Paediatric Rheumatology Unit, Children’s Institute, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Division of Rheumatology, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - AM Sallum
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Paediatric Rheumatology Unit, Children’s Institute, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - LM Campos
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Paediatric Rheumatology Unit, Children’s Institute, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - LC Martins
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Environmental Exposure and Risk Assessment Group, Collective Health Post-graduation Program, Universidade Catolica de Santos, Brazil
| | - SCL Farhat
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Paediatric Department, Hospital das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| |
Collapse
|
55
|
Wang T, Lang GD, Moreno-Vinasco L, Huang Y, Goonewardena SN, Peng YJ, Svensson EC, Natarajan V, Lang RM, Linares JD, Breysse PN, Geyh AS, Samet JM, Lussier YA, Dudley S, Prabhakar NR, Garcia JGN. Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels. Am J Respir Cell Mol Biol 2011; 46:524-31. [PMID: 22108299 DOI: 10.1165/rcmb.2011-0213oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mechanistic links between exposure to airborne particulate matter (PM) pollution and the associated increases in cardiovascular morbidity and mortality, particularly in people with congestive heart failure (CHF), have not been identified. To advance understanding of this issue, genetically engineered mice (CREB(A133)) exhibiting severe dilated cardiomyopathic changes were exposed to ambient PM collected in Baltimore. CREB(A133) mice, which display aberrant cardiac physiology and anatomy reminiscent of human CHF, displayed evidence of basal autonomic aberrancies (compared with wild-type mice) with PM exposure via aspiration, producing significantly reduced heart rate variability, respiratory dysynchrony, and increased ventricular arrhythmias. Carotid body afferent nerve responses to hypoxia and hyperoxia-induced respiratory depression were pronounced in PM-challenged CREB(A133) mice, and denervation of the carotid bodies significantly reduced PM-mediated cardiac arrhythmias. Genome-wide expression analyses of CREB(A133) left ventricular tissues demonstrated prominent Na(+) and K(+) channel pathway gene dysregulation. Subsequent PM challenge increased tyrosine phosphorylation and nitration of the voltage-gated type V cardiac muscle α-subunit of the Na(+) channel encoded by SCN5A. Ranolazine, a Na(+) channel modulator that reduces late cardiac Na(+) channel currents, attenuated PM-mediated cardiac arrhythmias and shortened PM-elongated QT intervals in vivo. These observations provide mechanistic insights into the epidemiologic findings in susceptibility of human CHF populations to PM exposure. Our results suggest a multiorgan pathobiology inherent to the CHF phenotype that is exaggerated by PM exposure via heightened carotid body sensitivity and cardiac Na(+) channel dysfunction.
Collapse
Affiliation(s)
- Ting Wang
- Section of Pulmonary, Critical Care, Sleep & Allergy, Department of Medicine, University of Illinois at Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Kuprov RY, Buck D, Pope CA, Eatough DJ, Hansen JC. Design and characterization of a two-stage human subject exposure chamber. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2011; 61:864-871. [PMID: 21874958 DOI: 10.3155/1047-3289.61.8.864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A human subject exposure chamber, designed to hold six to eight subjects, coupled to an approximately 30-m3 Teflon reaction bag was designed and built to provide exposures that mimic the production and photochemical oxidation of atmospheric pollutants resulting from the combustion of coal or wood from a stove. The combustion products are introduced into the Teflon bag under atmospheric conditions. Photochemical oxidation of this mixture is accomplished by exposure to tropospheric sun-like radiation from an array of ultraviolet and black lamps. The aerosol in the Teflon reaction bag is then transferred into the exposure room to maintain a constant, lower exposure level. Continuous and semicontinuous monitoring of the gas and particulate matter (PM) pollution in the exposure room and the reaction bag is accomplished using a suite of instruments. This suite of instruments allows for the measurement of the concentrations of total and nonvolatile PM, nitric oxide, nitrogen dioxide, carbon monoxide, carbon dioxide, and ozone. The concentration of the particles was monitored by an R&P tapered element oscillating microbalance monitor. The chemical composition of the PM and its morphological characterization is accomplished by collecting samples in filter packs and conducting ion chromatography, elemental X-ray fluorescence, and scanning electron microscopy analyses. The concentration and composition of emissions from combustion of wood and coal is described. The results of this study suggest that although the bulk compositions of particulate emissions from the combustion of coal or wood in a stove have many similarities, the wood smoke aerosol is photochemically reactive, whereas the coal smoke aerosol is not.
Collapse
Affiliation(s)
- Roman Y Kuprov
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | |
Collapse
|
57
|
Farhat SCL, Silva CA, Orione MAM, Campos LMA, Sallum AME, Braga ALF. Air pollution in autoimmune rheumatic diseases: a review. Autoimmun Rev 2011; 11:14-21. [PMID: 21763467 DOI: 10.1016/j.autrev.2011.06.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 12/11/2022]
Abstract
Air pollution consists of a heterogeneous mixture of gasses and particles that include carbon monoxide, nitrates, sulfur dioxide, ozone, lead, toxic by-product of tobacco smoke and particulate matter. Oxidative stress and inflammation induced by inhaled pollutants may result in acute and chronic disorders in the respiratory system, as well as contribute to a state of systemic inflammation and autoimmunity. This paper reviews the mechanisms of air contaminants influencing the immune response and autoimmunity, and it focuses on studies of inhaled pollutants triggering and/or exacerbating rheumatic diseases in cities around the world. Remarkably, environmental factors contribute to the onset of autoimmune diseases, especially smoking and occupational exposure to silica in rheumatoid arthritis and systemic lupus erythematosus. Other diseases such as scleroderma may be triggered by the inhalation of chemical solvents, herbicides and silica. Likewise, primary vasculitis associated with anti-neutrophil cytoplasmic antibody (ANCA) may be triggered by silica exposure. Only few studies showed that air pollutants could trigger or exacerbate juvenile idiopathic arthritis and systemic lupus erythematosus. In contrast, no studies of tropospheric pollution triggering inflammatory myopathies and spondyloarthropathies were carried out. In conclusion, air pollution is one of the environmental factors involved in systemic inflammation and autoimmunity. Further studies are needed in order to evaluate air pollutants and their potentially serious effects on autoimmune rheumatic diseases and the mechanisms involved in the onset and the exacerbation of these diseases.
Collapse
Affiliation(s)
- Sylvia C L Farhat
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, University of Sao Paulo Faculty of Medical Sciences, Brazil
| | | | | | | | | | | |
Collapse
|
58
|
Barnett AG, Plonka K, Seow WK, Wilson LA, Hansen C. Increased traffic exposure and negative birth outcomes: a prospective cohort in Australia. Environ Health 2011; 10:26. [PMID: 21453550 PMCID: PMC3083331 DOI: 10.1186/1476-069x-10-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/01/2011] [Indexed: 05/29/2023]
Abstract
BACKGROUND Pregnant women exposed to traffic pollution have an increased risk of negative birth outcomes. We aimed to investigate the size of this risk using a prospective cohort of 970 mothers and newborns in Logan, Queensland. METHODS We examined two measures of traffic: distance to nearest road and number of roads around the home. To examine the effect of distance we used the number of roads around the home in radii from 50 to 500 metres. We examined three road types: freeways, highways and main roads. RESULTS There were no associations with distance to road. A greater number of freeways and main roads around the home were associated with a shorter gestation time. There were no negative impacts on birth weight, birth length or head circumference after adjusting for gestation. The negative effects on gestation were largely due to main roads within 400 metres of the home. For every 10 extra main roads within 400 metres of the home, gestation time was reduced by 1.1% (95% CI: -1.7, -0.5; p-value = 0.001). CONCLUSIONS Our results add weight to the association between exposure to traffic and reduced gestation time. This effect may be due to the chemical toxins in traffic pollutants, or because of disturbed sleep due to traffic noise.
Collapse
Affiliation(s)
- Adrian G Barnett
- School of Public Health & Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Kathryn Plonka
- The University of Queensland, Brisbane, Queensland, Australia
- Queensland Health Metro South Health Service District, Brisbane, Queensland, Australia
| | - W Kim Seow
- The University of Queensland, Brisbane, Queensland, Australia
| | - Lee-Ann Wilson
- School of Public Health & Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Craig Hansen
- The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
59
|
Delfino RJ, Staimer N, Vaziri ND. Air pollution and circulating biomarkers of oxidative stress. AIR QUALITY, ATMOSPHERE, & HEALTH 2011; 4:37-52. [PMID: 23626660 PMCID: PMC3634798 DOI: 10.1007/s11869-010-0095-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations.
Collapse
Affiliation(s)
- Ralph J. Delfino
- Department of Epidemiology, School of Medicine, University of California, Irvine, 100 Theory, Suite 100, Irvine, CA 92617-7555, USA
| | - Norbert Staimer
- Department of Epidemiology, School of Medicine, University of California, Irvine, 100 Theory, Suite 100, Irvine, CA 92617-7555, USA
| | - Nosratola D. Vaziri
- Nephrology and Hypertension Division, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
60
|
Allen RW, Carlsten C, Karlen B, Leckie S, van Eeden S, Vedal S, Wong I, Brauer M. An air filter intervention study of endothelial function among healthy adults in a woodsmoke-impacted community. Am J Respir Crit Care Med 2011; 183:1222-30. [PMID: 21257787 DOI: 10.1164/rccm.201010-1572oc] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Particulate air pollution is associated with cardiovascular morbidity. One hypothesized mechanism involves oxidative stress, systemic inflammation, and endothelial dysfunction. OBJECTIVES To assess an intervention's impact on particle exposures and endothelial function among healthy adults in a woodsmoke-impacted community. We also investigated the underlying role of oxidative stress and inflammation in relation to exposure reductions. METHODS Portable air filters were used in a randomized crossover intervention study of 45 healthy adults exposed to consecutive 7-day periods of filtered and nonfiltered air. MEASUREMENTS AND MAIN RESULTS Reactive hyperemia index was measured as an indicator of endothelial function via peripheral artery tonometry, and markers of inflammation (C-reactive protein, interleukin-6, and band cells) and lipid peroxidation (malondialdehyde and 8-iso-prostaglandin F(2α)) were quantified. Air filters reduced indoor fine particle concentrations by 60%. Filtration was associated with a 9.4% (95% confidence interval, 0.9-18%) increase in reactive hyperemia index and a 32.6% (4.4-60.9%) decrease in C-reactive protein. Decreases in particulate matter and the woodsmoke tracer levoglucosan were associated with reduced band cell counts. There was limited evidence of more pronounced effects on endothelial function and level of systemic inflammation among males, overweight participants, younger participants, and residents of wood-burning homes. No associations were noted for oxidative stress markers. CONCLUSIONS Air filtration was associated with improved endothelial function and decreased concentrations of inflammatory biomarkers but not markers of oxidative stress. Our results support the hypothesis that systemic inflammation and impaired endothelial function, both predictors of cardiovascular morbidity, can be favorably influenced by reducing indoor particle concentrations.
Collapse
Affiliation(s)
- Ryan W Allen
- Simon Fraser University, Faculty of Health Sciences, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Araujo JA. Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. AIR QUALITY, ATMOSPHERE, & HEALTH 2010; 4:79-93. [PMID: 21461032 PMCID: PMC3040314 DOI: 10.1007/s11869-010-0101-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 10/06/2010] [Indexed: 05/18/2023]
Abstract
Air pollution has been associated with significant adverse health effects leading to increased overall morbidity and mortality of worldwide significance. Epidemiological studies have shown that the largest portion of air pollution-related mortality is due to cardiovascular diseases, predominantly those of ischemic nature. Human studies suggest an association with atherosclerosis and increasing experimental animal data support that this association is likely to be causal. While both gasses and particles have been linked to detrimental health effects, more evidence implicates the particulate matter (PM) components as major responsible for a large portion of the proatherogenic effects. Multiple experimental approaches have revealed the ability of PM components to trigger and/or enhance free radical reactions in cells and tissues, both ex vivo as well as in vivo. It appears that exposure to PM leads to the development of systemic prooxidant and proinflammatory effects that may be of great importance in the development of atherosclerotic lesions. This article reviews the epidemiological studies, experimental animal, and cellular data that support the association of air pollutants, especially the particulate components, with systemic oxidative stress, inflammation, and atherosclerosis. It also reviews the use of transcriptomic studies to elucidate molecular pathways of importance in those systemic effects.
Collapse
Affiliation(s)
- Jesus A. Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
- UCLA Division of Cardiology, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 USA
| |
Collapse
|
62
|
Padhy PK, Padhi BK. Effects of biomass combustion smoke on hematological and antioxidant profile among children (8-13 years) in India. Inhal Toxicol 2010; 21:705-11. [PMID: 19555227 DOI: 10.1080/08958370802448961] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The use of solid biomass fuel in traditional stoves has been associated with respiratory symptoms of chronic airway inflammation and higher rates of respiratory infections. The mechanisms of such associations remain unclear. In this study we examine the association between exposures to indoor pollution and the hematological and antioxidant profile in children. We found increases in the respiratory symptoms "cough without cold" [odds ratio (OR) 4.27; 95% confidence interval (CI) 3.00-4.95], "cough in the morning" (OR 3.80; CI 2.40-5.15), and "wheeze" (OR 3.60; CI 2.75-5.0) in children living in homes used solid biomass for cooking after adjustment for potential confounder variables. Children who lived in the households that cook with traditional biomass fuels had low hemoglobin and red blood cell (RBC) values, but raised white blood cell (WBC), neutrophil, and eosinophil counts. Furthermore, we examined the ascorbic acid, superoxide dismutase (SOD), and glutathione/oxidized glutathione (GSH/GSSG) ratio levels in the blood of the subjects and observed low levels of ascorbic acid (AA), SOD, and GSH/GSSG ratio in children lived in biomass used households. These findings suggest that the biomass smoke has the potential to produce oxidative stress and adverse health effects in children. There is much more work needed to confirm our conclusions. Investigating the mechanisms underlying air pollution-induced health problems would allow a more targeted approach to remove the most toxic components of air pollution, and could possibly provide a means to decrease individual sensitivity to air pollution.
Collapse
Affiliation(s)
- Pratap Kumar Padhy
- Centre for Environmental Studies, Visva-Bharati University, Santiniketan, India.
| | | |
Collapse
|
63
|
Zachariah E, Bankapur A, Santhosh C, Valiathan M, Mathur D. Probing oxidative stress in single erythrocytes with Raman Tweezers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 100:113-6. [PMID: 20561796 DOI: 10.1016/j.jphotobiol.2010.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/22/2010] [Accepted: 05/25/2010] [Indexed: 02/05/2023]
|
64
|
Møller P, Loft S. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1126-36. [PMID: 20423813 PMCID: PMC2920082 DOI: 10.1289/ehp.0901725] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 04/27/2010] [Indexed: 04/14/2023]
Abstract
BACKGROUND Air pollution is thought to exert health effects through oxidative stress, which causes damage to DNA and lipids. OBJECTIVE We determined whether levels of oxidatively damaged DNA and lipid peroxidation products in cells or bodily fluids from humans are useful biomarkers of biologically effective dose in studies of the health effects of exposure to particulate matter (PM) from combustion processes. DATA SOURCES We identified publications that reported estimated associations between environmental exposure to PM and oxidative damage to DNA and lipids in PubMed and EMBASE. We also identified publications from reference lists and articles cited in the Web of Science. DATA EXTRACTION For each study, we obtained information on the estimated effect size to calculate the standardized mean difference (unitless) and determined the potential for errors in exposure assessment and analysis of each of the biomarkers, for total and stratified formal meta-analyses. DATA SYNTHESIS In the meta-analysis, the standardized mean differences (95% confidence interval) between exposed and unexposed subjects for oxidized DNA and lipids were 0.53 (0.29-0.76) and 0.73 (0.18-1.28) in blood and 0.52 (0.22-0.82) and 0.49 (0.01-0.97) in urine, respectively. The standardized mean difference for oxidized lipids was 0.64 (0.07-1.21) in the airways. Restricting analyses to studies unlikely to have substantial biomarker or exposure measurement error, studies likely to have biomarker and/or exposure error, or studies likely to have both sources of error resulted in standardized mean differences of 0.55 (0.19-0.90), 0.66 (0.37-0.95), and 0.65 (0.34-0.96), respectively. CONCLUSIONS Exposure to combustion particles is consistenly associated with oxidatively damaged DNA and lipids in humans, suggesting that it is possible to use these measurements as biomarkers of biologically effective dose.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environment Health, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
65
|
Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010; 121:2331-78. [PMID: 20458016 DOI: 10.1161/cir.0b013e3181dbece1] [Citation(s) in RCA: 3854] [Impact Index Per Article: 275.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In 2004, the first American Heart Association scientific statement on "Air Pollution and Cardiovascular Disease" concluded that exposure to particulate matter (PM) air pollution contributes to cardiovascular morbidity and mortality. In the interim, numerous studies have expanded our understanding of this association and further elucidated the physiological and molecular mechanisms involved. The main objective of this updated American Heart Association scientific statement is to provide a comprehensive review of the new evidence linking PM exposure with cardiovascular disease, with a specific focus on highlighting the clinical implications for researchers and healthcare providers. The writing group also sought to provide expert consensus opinions on many aspects of the current state of science and updated suggestions for areas of future research. On the basis of the findings of this review, several new conclusions were reached, including the following: Exposure to PM <2.5 microm in diameter (PM(2.5)) over a few hours to weeks can trigger cardiovascular disease-related mortality and nonfatal events; longer-term exposure (eg, a few years) increases the risk for cardiovascular mortality to an even greater extent than exposures over a few days and reduces life expectancy within more highly exposed segments of the population by several months to a few years; reductions in PM levels are associated with decreases in cardiovascular mortality within a time frame as short as a few years; and many credible pathological mechanisms have been elucidated that lend biological plausibility to these findings. It is the opinion of the writing group that the overall evidence is consistent with a causal relationship between PM(2.5) exposure and cardiovascular morbidity and mortality. This body of evidence has grown and been strengthened substantially since the first American Heart Association scientific statement was published. Finally, PM(2.5) exposure is deemed a modifiable factor that contributes to cardiovascular morbidity and mortality.
Collapse
|
66
|
Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S. Role of oxidative damage in toxicity of particulates. Free Radic Res 2010; 44:1-46. [PMID: 19886744 DOI: 10.3109/10715760903300691] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels of lipid peroxidation products and oxidatively damaged DNA. Biomonitoring studies in humans have shown associations between exposure to air pollution and wood smoke particulates and oxidative damage to DNA, deoxynucleotides and lipids measured in leukocytes, plasma, urine and/or exhaled breath. The results indicate that oxidative stress and elevated levels of oxidatively altered biomolecules are important intermediate endpoints that may be useful markers in hazard characterization of particulates.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environment Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Veras MM, Caldini EG, Dolhnikoff M, Saldiva PHN. Air pollution and effects on reproductive-system functions globally with particular emphasis on the Brazilian population. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2010; 13:1-15. [PMID: 20336577 DOI: 10.1080/10937401003673800] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In recent years, numerous studies showed that exposure to environmental air pollutants affected reproductive functions and, in particular, produced adverse effects on pregnancy outcomes, fertility, and fetal health. Epidemiological studies demonstrated that exposure to ambient levels of air pollutants are associated with low birth weight, intrauterine growth retardation, prematurity, neonatal death, and decreased fertility in males. Experimental animal data supported these findings and indicated that female fertility was also disturbed. Although there are various mechanisms of action suggested to show the manner in which air pollutants alter pregnancy and the reproductive systems in both genders, further studies are needed to correlate causal relationships. This information would serve to better understand the underlying physiologic changes in the reproductive system induced by exposure to air pollutants and possibly establish a link between the dose and response of individual or mixture of air pollutants.
Collapse
Affiliation(s)
- Mariana Matera Veras
- Laboratório de Poluição Atmosférica Experimental (LIM05), Departamento de Patologia Faculdade de Medicina, Universidade de São Paulo, São Paulo
| | | | | | | |
Collapse
|
68
|
Particulate air pollution, coronary heart disease and individual risk assessment: a general overview. ACTA ACUST UNITED AC 2009; 16:10-5. [PMID: 19165090 DOI: 10.1097/hjr.0b013e32831de25d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Both long-term and short-term exposure to air pollution is associated with a marked increase in cardiovascular morbidity and mortality because of the coronary syndrome and its complications. The exact molecular mechanism that is responsible for these acute and chronic effects is not elucidated yet. Potential pathophysiological pathways, however, include vascular dysfunction, inflammation, and oxidative stress and altered cardiac autonomic dysfunction. Actually, the cardiovascular risk assessment for individual patients with regard to air pollution is still complicated. To support decision-making in clinic, we propose a risk model, named 'CardioVascular and AIR pollution' risk table, composed of acknowledged factors in the relationship of cardiovascular disease and air pollution.
Collapse
|
69
|
Huang YCT, Li Z, Carter JD, Soukup JM, Schwartz DA, Yang IV. Fine ambient particles induce oxidative stress and metal binding genes in human alveolar macrophages. Am J Respir Cell Mol Biol 2009; 41:544-52. [PMID: 19251948 DOI: 10.1165/rcmb.2008-0064oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exposure to pollutant particles increased respiratory morbidity and mortality. The alveolar macrophages (AMs) are one cell type in the lung directly exposed to particles. Upon contact with particles, AMs are activated and produce reactive oxygen species, but the scope of this oxidative stress response remains poorly defined. In this study, we determined the gene expression profile in human AMs exposed to particles, and sought to characterize the global response of pro- and antioxidant genes. We exposed AMs obtained by bronchoscopy from normal individuals to Chapel Hill particulate matter of 2.5-microm diameter or smaller (PM(2.5); 1 microg/ml) or vehicle for 4 hours (n = 6 independent samples). mRNAs were extracted, amplified, and hybridized to Agilent human 1A microarray. Significant genes were identified by significance analysis of microarrays (false discovery rate, 10%; P < or = 0.05) and mapped with Gene Ontology in the Database for Annotation, Visualization, and Integrated Discovery. We found 34 and 41 up- and down-regulated genes, respectively; 22 genes (approximately 30%) were involved in metal binding, and 11 were linked to oxidative stress, including up-regulation of five metallothionein (MT)-1 isoforms. Exogenous MT1 attenuated PM(2.5)-induced H2O2 release. PM(2.5) premixed with MT1 stimulated less H2O2 release. Knockdown of MT1F gene increased PM(2.5)-induced H2O2 release. PM(2.5) at 1 microg/ml did not increase H2O2 release. Mount St. Helens PM(2.5) and acid-extracted Chapel Hill PM(2.5), both poor in metals, did not induce MT1F or H2O2 release. Our results show that PM(2.5) induced a gene expression profile prevalent with genes related to metal binding and oxidative stress in human AMs, independent of oxidative stress. Metals associated with PM may play an important role in particle-induced gene changes.
Collapse
Affiliation(s)
- Yuh-Chin T Huang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27705, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Simkhovich BZ, Marjoram P, Kleinman MT, Kloner RA. Direct and acute cardiotoxicity of ultrafine particles in young adult and old rat hearts. Basic Res Cardiol 2009; 102:467-75. [PMID: 17932707 DOI: 10.1007/s00395-007-0681-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 08/28/2007] [Accepted: 09/17/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND Air pollution is associated with significant increases in cardiac morbidity and mortality in the general population. The elderly cohort within the general population is considered at high risk for cardiac diseases. However the degree to which air pollutants affect cardiac responses in old hearts vs. their young adult counterparts has not been systematically addressed. OBJECTIVES We sought to investigate the response of young adult vs. old rat hearts to the direct exposure of ultrafine particles (UFP); i.e. when the UFP are directly instilled into the cardiac vasculature, and their effects are not dependent upon UFP inhalation. METHODS The study was performed in isolated Langendorff-perfused rat hearts obtained from young adult (4 months old) and aged (26 months old) Fisher 344/Brown Norway rats. Two treatment groups (control and UFP-treated) were studied, and two ages (young adult and old) were studied within each group. Control hearts were perfused with buffer only, UFP-treated hearts were perfused with buffer containing ultrafine particles isolated from industrial diesel reference particulate matter. Systolic and end-diastolic pressures, positive and negative dP/dt, and coronary flow were measured. RESULTS Young adult and old hearts demonstrated equal functional deterioration in response to direct infusion of UFP. Developed pressure in young adult UFP-treated hearts fell from 101+/-4 to 68+/-8 mmHg (a decrease by 33%, p<0.05). In the old UFP-treated hearts developed pressure fell by 35% (from 101+/-7 to 67+/-9 mm Hg, p<0.05). Positive dP/dt was equally affected in the young adult and old UFP-treated hearts and was decreased by 28% in both groups. CONCLUSION Ultrafine particles when instilled directly into the cardiac vasculature were equally cardiotoxic in young adult and old rat hearts.
Collapse
Affiliation(s)
- Boris Z Simkhovich
- The Heart Institute, Good Samaritan Hospital, 1225 Wilshire Boulevard, Los Angeles, CA 90017, USA.
| | | | | | | |
Collapse
|
71
|
Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 2009; 179:572-8. [PMID: 19136372 DOI: 10.1164/rccm.200807-1097oc] [Citation(s) in RCA: 482] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Exposure to particulate air pollution has been related to increased hospitalization and death, particularly from cardiovascular disease. Lower blood DNA methylation content is found in processes related to cardiovascular outcomes, such as oxidative stress, aging, and atherosclerosis. OBJECTIVES We evaluated whether particulate pollution modifies DNA methylation in heavily methylated sequences with high representation throughout the human genome. METHODS We measured DNA methylation of long interspersed nucleotide element (LINE)-1 and Alu repetitive elements by quantitative polymerase chain reaction-pyrosequencing of 1,097 blood samples from 718 elderly participants in the Boston area Normative Aging Study. We used covariate-adjusted mixed models to account for within-subject correlation in repeated measures. We estimated the effects on DNA methylation of ambient particulate pollutants (black carbon, particulate matter with aerodynamic diameter < or = 2.5 microm [PM2.5], or sulfate) in multiple time windows (4 h to 7 d) before the examination. We estimated standardized regression coefficients (beta) expressing the fraction of a standard deviation change in DNA methylation associated with a standard deviation increase in exposure. MEASUREMENTS AND MAIN RESULTS Repetitive element DNA methylation varied in association with time-related variables, such as day of the week and season. LINE-1 methylation decreased after recent exposure to higher black carbon (beta = -0.11; 95% confidence interval [CI], -0.18 to -0.04; P = 0.002) and PM2.5 (beta = -0.13; 95% CI, -0.19 to -0.06; P < 0.001 for the 7-d moving average). In two-pollutant models, only black carbon, a tracer of traffic particles, was significantly associated with LINE-1 methylation (beta = -0.09; 95% CI, -0.17 to -0.01; P = 0.03). No association was found with Alu methylation (P > 0.12). CONCLUSIONS We found decreased repeated-element methylation after exposure to traffic particles. Whether decreased methylation mediates exposure-related health effects remains to be determined.
Collapse
Affiliation(s)
- Andrea Baccarelli
- Laboratory of Environmental Epigenetics, Department of Environmental and Occupational Health, University of Milan, Via San Barnaba 8, 20122 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Gallo V, Khan A, Gonzales C, Phillips DH, Schoket B, Györffy E, Anna L, Kovács K, Møller P, Loft S, Kyrtopoulos S, Matullo G, Vineis P. Validation of biomarkers for the study of environmental carcinogens: a review. Biomarkers 2008; 13:505-34. [PMID: 18979642 DOI: 10.1080/13547500802054611] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There is a need for validation of biomarkers. Our aim is to review published work on the validation of selected biomarkers: bulky DNA adducts, N-nitroso compounds, 1-hydroxypyrene, and oxidative damage to DNA. A systematic literature search in PubMed was performed. Information on the variability and reliability of the laboratory tests used for biomarkers measurements was collected. For the evaluation of the evidence on validation we referred to the ACCE criteria. Little is known about intraindividual variation of DNA adduct measurements, but measurements have a good repeatability irrespective of the technique used for their identification; reproducibility improved after the correction for a laboratory factor. A high-sensitivity method is available for the measurement of 1-hydroxypyrene in urine. There is consensus on validation of biomarkers of oxidative damage DNA based on the comet assay and chromatographic measurement in blood while urinary measurements by chromatographic assays are well validated, and ELISA-based assays appear to lack specificity. Immunoassays for the quantification of adducts of N-nitroso compounds are useful for large epidemiological studies, given their sensitivity, the small amount of DNA required and their potential for rapid and high-throughput analysis.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Epidemiology and Public Health, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Differential oxidative stress response in young children and the elderly following exposure to PM(2.5). Environ Health Prev Med 2008; 14:60-6. [PMID: 19568869 DOI: 10.1007/s12199-008-0060-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES The mechanism of the adverse health effects of ambient particulate matter on humans has not been well-investigated despite many epidemiologic association studies. Measurement of personal exposure to particulate pollutants and relevant biological effect markers are necessary in order to investigate the mechanism of adverse health effects, particularly in fragile populations considered to be more susceptible to the effects of pollutants. METHODS We measured personal exposure to PM(2.5) and examined oxidative stress using urinary malondialdehyde three times in 51 preschoolers and 38 elderly subjects. A linear mixed-effects model was used to estimate PM(2.5) effects on urinary MDA levels. RESULTS Average personal exposure of the children and elderly to PM(2.5) was 80.5 +/- 29.9 and 20.7 +/- 12.7 mug/m(3), respectively. Mean urinary MDA level in the children and the elderly was 3.6 +/- 1.9 and 4.0 +/- 1.6 mumol/g creatinine. For elderly subjects the PM(2.5) level was significantly associated with urinary MDA after adjusting for age, sex, BMI, passive smoking, day-care facility site, alcohol consumption, cigarette smoking, and medical history (heart disease, hypertension and bronchial asthma). However, there was no significant relationship for children. CONCLUSIONS The elderly were more susceptible than young children to oxidative stress as a result of ambient exposure to PM(2.5). Identification of oxidative stress induced by PM(2.5) explains the mechanism of adverse health effects such as cardiovascular or respiratory diseases, particularly in the elderly.
Collapse
|
74
|
Urch B, Brook JR, Wasserstein D, Brook RD, Rajagopalan S, Corey P, Silverman F. Relative Contributions of PM2.5Chemical Constituents to Acute Arterial Vasoconstriction in Humans. Inhal Toxicol 2008; 16:345-52. [PMID: 15204750 DOI: 10.1080/08958370490439489] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Studies have shown associations between acute ambient particulate matter (PM) levels and increases in morbidity and mortality from cardiovascular diseases. We have previously reported in 24 healthy adults that exposure to concentrated ambient particles plus ozone (CAP + O(3)) caused a mean decrease of 0.09 mm in brachial artery diameter (BAD), which was significantly larger than a mean increase of 0.01 mm among the same individuals exposed to filtered air (FA). Our current objective is to examine the relationship between total and constituent PM(2.5) mass concentrations and the acute vascular response. We have analyzed both ambient and exposure filters from the brachial artery study for major chemical constituents, allowing us to compare the strength of the associations between each constituent and an individual's arterial response. We determined gravimetric PM(2.5) mass concentration and inorganic ion content from exposure filters. Twenty-three-hour ambient PM(2.5) filters collected from the same site and on the same day were used to estimate exposure concentrations of trace elements and organic and elemental carbon. We performed linear regression analyses on the levels of measured or estimated PM constituents using each subject's FA exposure as a control. We found, from our regression analyses, a significant negative association between both the organic and elemental carbon concentrations and the difference in the postexposure change in the BAD (Delta BAD) between and CAP + O(3) and FA exposure days. An understanding of the PM constituents most responsible for adverse health outcomes is critical for efforts to develop pollution abatement strategies that maximize benefits to public health.
Collapse
Affiliation(s)
- Bruce Urch
- Gage Occupational and Environmental Health Unit, St. Michael's Hospital, and Public Health Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
75
|
Bräuner EV, Møller P, Barregard L, Dragsted LO, Glasius M, Wåhlin P, Vinzents P, Raaschou-Nielsen O, Loft S. Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals. Part Fibre Toxicol 2008; 5:13. [PMID: 18837984 PMCID: PMC2579917 DOI: 10.1186/1743-8977-5-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 10/06/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Particulate air pollution is associated with increased risk of cardiovascular events although the involved mechanisms are poorly understood. The objective of the present study was to investigate the effects of controlled exposure to ambient air fine and ultrafine particles on microvascular function and biomarkers related to inflammation, haemostasis and lipid and protein oxidation. METHODS Twenty-nine subjects participated in a randomized, two-factor crossover study with or without biking exercise for 180 minutes and with 24 hour exposure to particle rich (number concentrations, NC: 11600 +/- 5600 per cm3, mass concentrations: 13.8 +/- 7.4 mug/m3 and 10.5 +/- 4.8 mug/m3 for PM10-2.5 and PM2.5, respectively) or particle filtered (NC: 555 +/- 1053 per cm3) air collected above a busy street. Microvascular function was assessed non-invasively by measuring digital peripheral artery tone following arm ischemia. Biomarkers included haemoglobin, red blood cells, platelet count, coagulation factors, C-reactive protein, fibrinogen, interleukin-6, tumour necrosis factor alpha, lag time to copper-induced oxidation of plasma lipids and protein oxidation measured as 2-aminoadipic semialdehyde in plasma. RESULTS No statistically significant differences were observed on microvascular function or the biomarkers after exposure to particle rich or particle filtered air. CONCLUSION This study indicates that exposure to air pollution particles at outdoor concentrations is not associated with detectable systemic inflammation, lipid or protein oxidation, altered haemostasis or microvascular function in young healthy participants.
Collapse
Affiliation(s)
- Elvira V Bräuner
- Institute of Public Health, Department of Environmental Health, Health Science Faculty, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Danielsen PH, Bräuner EV, Barregard L, Sällsten G, Wallin M, Olinski R, Rozalski R, Møller P, Loft S. Oxidatively damaged DNA and its repair after experimental exposure to wood smoke in healthy humans. Mutat Res 2008; 642:37-42. [PMID: 18495177 DOI: 10.1016/j.mrfmmm.2008.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 03/28/2008] [Accepted: 04/04/2008] [Indexed: 05/22/2023]
Abstract
Particulate matter from wood smoke may cause health effects through generation of oxidative stress with resulting damage to DNA. We investigated oxidatively damaged DNA and related repair capacity in peripheral blood mononuclear cells (PBMC) and measured the urinary excretion of repair products after controlled short-term exposure of human volunteers to wood smoke. Thirteen healthy adults were exposed first to clean air and then to wood smoke in a chamber during 4h sessions, 1 week apart. Blood samples were taken 3h after exposure and on the following morning, and urine was collected after exposure, from bedtime until the next morning. We measured the levels of DNA strand breaks (SB), oxidized purines as formamidopyrimidine-DNA-glycosylase (FPG) sites and activity of oxoguanine glycosylase 1 (hOGG1) in PBMC by the comet assay, whereas mRNA levels of hOGG1, nucleoside diphosphate linked moiety X-type motif 1 (hNUDT1) and heme oxygenase 1 (hHO1) were determined by real-time RT-PCR. The excretion of 8-oxo-7,8-dihydro-oxoguanine (8-oxoGua) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine was measured by high performance liquid chromatography purification followed by gas chromatography with mass spectrometry. The morning following exposure to wood smoke the PBMC levels of SB were significantly decreased and the mRNA levels of hOGG1 significantly increased. FPG sites, hOGG1 activity, expression of hNUDT1 and hHO1, urinary excretion of 8-oxodG and 8-oxoGua did not change significantly. Our findings support that exposure to wood smoke causes systemic effects, although we could not demonstrate genotoxic effects, possibly explained by enhanced repair and timing of sampling.
Collapse
|
77
|
Rossner P, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ. Seasonal variability of oxidative stress markers in city bus drivers. Part II. Oxidative damage to lipids and proteins. Mutat Res 2008; 642:21-7. [PMID: 18436262 DOI: 10.1016/j.mrfmmm.2008.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/29/2008] [Accepted: 03/19/2008] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to investigate the seasonal variability of markers of oxidative damage to lipids (15-F2t-isoprostane, 15-F2t-IsoP) and proteins (protein carbonyl levels) in 50 bus drivers and 50 controls from Prague, Czech Republic, and to identify factors affecting oxidative stress markers. The samples were collected in three seasons with different levels of air pollution. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter, PM2.5 and PM10, and volatile organic compounds, VOC) was monitored by personal and/or stationary monitors. For the analysis of both markers, ELISA techniques were used. The median levels of individual markers in bus drivers versus controls were as follows: 15-F2t-IsoP (nmol/mmol creatinine): winter 2005, 0.81 versus 0.68 (p<0.01); summer 2006, 0.62 versus 0.60 (p=0.90); winter 2006, 0.76 versus 0.51 (p<0.001); carbonyl levels (nmol/ml plasma): winter 2005, 14.1 versus 12.9 (p=0.001); summer 2006, 17.5 versus 16.6 (p=0.26); winter 2006, 13.5 versus 11.7 (p<0.001). Multivariate logistic regression identified PM levels measured by stationary monitors over a period 25-27 days before urine collection as a factor positively associated with lipid peroxidation, while protein oxidation levels correlated negatively with both c-PAHs and PM levels. In conclusion, markers of oxidative damage to lipids and proteins were increased in bus drivers in winter seasons, but not in summer. Lipid peroxidation was positively correlated with c-PAHs and PM exposure; protein oxidation correlated negatively and was highest in summer suggesting another factor(s) affecting protein carbonyl levels.
Collapse
Affiliation(s)
- Pavel Rossner
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine, AS CR vvi, Vídenská 1083, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
78
|
Romieu I, Barraza-Villarreal A, Escamilla-Nuñez C, Almstrand AC, Diaz-Sanchez D, Sly PD, Olin AC. Exhaled breath malondialdehyde as a marker of effect of exposure to air pollution in children with asthma. J Allergy Clin Immunol 2008; 121:903-9.e6. [PMID: 18234317 DOI: 10.1016/j.jaci.2007.12.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 12/04/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Assessment of the adverse effects of oxidative stress related to air pollution is limited by the lack of biological markers of dose to the lungs. OBJECTIVE We evaluated the use of exhaled breath condensate (EBC) malondialdehyde as a biomarker of exposure to traffic-related pollution in children with asthma as part of a panel study in Mexico City. METHODS Standard spirometry and collection of EBC and nasal lavage were performed. Environmental monitoring sites were located within 5 km of the children's homes and schools. Data were analyzed by using generalized estimating equations. RESULTS A total of 480 samples of malondialdehyde were obtained from 107 patients with asthma, with a median level of 18.7 (interquartile range [IQR], 12.4-28.7) nmol. Ambient particulates less than 2.5 microg/m(3) and ozone levels on the day of sampling were significantly associated with higher malondialdehyde levels. A 14.2-microg/m(3) (IQR) increase in 8-hour moving average particulates less than 2.5 microg/m(3) in size was associated with a 1.12-nmol increase in malondialdehyde and a 15.9-ppb (IQR) increase in 8-hour moving average ozone with a 1.16-nmol increase in malondialdehyde. Malondialdehyde levels were inversely associated with forced vital capacity and FEV(1) and positively associated with IL-8 levels in nasal lavage. CONCLUSION Exhaled breath condensate malondialdehyde was related to both air pollution exposure and changes in lung function and inflammatory markers.
Collapse
|
79
|
Abstract
"Would you tell me please, which way I ought to go from here," asked Alice. "That depends a good deal on where you want to go to," said the cat. (Lewis Carroll, Alice's Adventures in Wonderland) A large number of epidemiological studies show positive correlations between increasing levels of particulate matter (PM) in urban air and short-term morbidity and mortality for diverse acute cardiopulmonary diseases. Brought about by PM increments, inflammation is thought to exacerbate preexisting inflammatory diseases. Experimental evidence suggests a hierarchical oxidative stress model, in which a weakened antioxidant defense, as observed in disease or induced by inhaled particles, increases the PM ability to cause lung inflammation, accounting for exacerbations that occur in asthmatics and in patients with chronic obstructive lung disease. The role of PM-induced inflammation leading to acute cardiovascular events such as arrhythmia, heart failure, and myocardial infarction is more speculative. There is neither clear-cut evidence in humans that inhaled PM could get as far as blood circulation nor that proinflammatory mediators are significantly released from inflamed lung tissues, nor that blood coagulability is critically altered. As a whole, data in humans indicate that short-term inflammatory responses to PM are not always detected; they are usually mild and loosely correlated with functional changes. Among these studies, the diversity of PM characteristics, dose metrics, and endpoints hampers a clear discerning of inflammatory mechanism(s). Thus, the question arises as to whether inflammation represents the mechanism of acute cardiopulmonary PM toxicities in susceptible individuals, or rather an event that may coexist with other relevant mechanism(s). This review article discusses the evidence in humans linking short-term PM increments to inflammation and to exacerbations of cardiopulmonary diseases. Although there is a large amount of data available, there still remains a gulf between the number of epidemiological and panel studies and that of controlled exposures. Research on controlled exposure needs expanding, so that the results of time-series and panel studies will be better understood and short-term standards for human exposure may be more confidently allocated.
Collapse
Affiliation(s)
- Maria Luisa Scapellato
- Dipartimento di Medicina Ambientale e Sanità Pubblica, Università degli Studi di Padova, Padova, Italy.
| | | |
Collapse
|
80
|
Bräuner EV, Forchhammer L, Møller P, Barregard L, Gunnarsen L, Afshari A, Wåhlin P, Glasius M, Dragsted LO, Basu S, Raaschou-Nielsen O, Loft S. Indoor particles affect vascular function in the aged: an air filtration-based intervention study. Am J Respir Crit Care Med 2007; 177:419-25. [PMID: 17932377 DOI: 10.1164/rccm.200704-632oc] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exposure to particulate matter is associated with risk of cardiovascular events, possibly through endothelial dysfunction, and indoor air may be most important. OBJECTIVES We investigated effects of controlled exposure to indoor air particles on microvascular function (MVF) as the primary endpoint and biomarkers of inflammation and oxidative stress as secondary endpoints in a healthy elderly population. METHODS A total of 21 nonsmoking couples participated in a randomized, double-blind, crossover study with two consecutive 48-hour exposures to either particle-filtered or nonfiltered air (2,533-4,058 and 7,718-12,988 particles/cm(3), respectively) in their homes. MEASUREMENTS AND MAIN RESULTS MVF was assessed noninvasively by measuring digital peripheral artery tone after arm ischemia. Secondary endpoints included hemoglobin, red blood cells, platelet count, coagulation factors, P-selectin, plasma amyloid A, C-reactive protein, fibrinogen, IL-6, tumor necrosis factor-alpha, protein oxidation measured as 2-aminoadipic semialdehyde in plasma, urinary 8-iso-prostaglandin F(2alpha), and blood pressure. Indoor air filtration significantly improved MVF by 8.1% (95% confidence interval, 0.4-16.3%), and the particulate matter (diameter < 2.5 mum) mass of the indoor particles was more important than the total number concentration (10-700 nm) for these effects. MVF was significantly associated with personal exposure to iron, potassium, copper, zinc, arsenic, and lead in the fine fraction. After Bonferroni correction, none of the secondary biomarkers changed significantly. CONCLUSIONS Reduction of particle exposure by filtration of recirculated indoor air for only 48 hours improved MVF in healthy elderly citizens, suggesting that this may be a feasible way of reducing the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Elvira Vaclavik Bräuner
- D. Institute of Public Health, Department of Environmental and Occupational Health, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Brook RD. Is air pollution a cause of cardiovascular disease? Updated review and controversies. REVIEWS ON ENVIRONMENTAL HEALTH 2007; 22:115-37. [PMID: 17894203 DOI: 10.1515/reveh.2007.22.2.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Particulate matter (PM) air pollution is associated with an increased risk of cardiovascular morbidity and mortality. The focus of this review will be on the role that both acute and chronic exposure to PM plays in causing cardiovascular disease and on the latest major new findings and controversies in this field of research. Even short-term exposure to PM2.5 over a few hours can trigger myocardial infarctions, cardiac ischemia, arrhythmias, heart failure, stroke, exacerbation of peripheral arterial disease, and sudden death. Chronic exposure to moderately elevated levels also enhances the risk for developing a variety of cardiovascular diseases, possibly including hypertension and systemic atherosclerosis. Recent epidemiologic studies have furthered our understanding of the linkage between air pollutants and human health, with a multitude of plausible mechanistic explanations having been demonstrated experimentally during the past few years. Although a number of finer details relating to both the epidemiology and the mechanisms involved require more investigation, the overall weight of evidence is now sufficient to implicate PM exposure as a cause of cardiovascular disease. Without doubt, exposure to particulate matter can play a causal role in triggering a host of acute cardiovascular events via many mechanisms. Although long-term air pollution exposure has been shown to promote the development of atherosclerosis, the clinical significance of this relation requires more investigation.
Collapse
Affiliation(s)
- Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, USA.
| |
Collapse
|
82
|
Rossner P, Svecova V, Milcova A, Lnenickova Z, Solansky I, Santella RM, Sram RJ. Oxidative and nitrosative stress markers in bus drivers. Mutat Res 2007; 617:23-32. [PMID: 17328930 DOI: 10.1016/j.mrfmmm.2006.11.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/02/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
Exposure to ambient air pollution is associated with many diseases. Oxidative and nitrosative stress are believed to be two of the major sources of particulate matter (PM)-mediated adverse health effects. PM in ambient air arises from industry, local heating, and vehicle emissions and poses a serious problem mainly in large cities. In the present study we analyzed the level of oxidative and nitrosative stress among 50 bus drivers from Prague, Czech Republic, and 50 matching controls. We assessed simultaneously the levels of 15-F(2t)-isoprostane (15-F(2t)-IsoP) and 8-oxodeoxyguanosine (8-oxodG) in urine and protein carbonyl groups and 3-nitrotyrosine (NT) in blood plasma. For the analysis of all four markers we used ELISA techniques. We observed significantly increased levels of oxidative and nitrosative stress markers in bus drivers. The median levels (min, max) of individual markers in bus drivers versus controls were as follows: 8-oxodG: 7.79 (2.64-12.34)nmol/mmol versus 6.12 (0.70-11.38)nmol/mmol creatinine (p<0.01); 15-F(2t)-IsoP: 0.81 (0.38-1.55)nmol/mmol versus 0.68 (0.39-1.79)nmol/mmol creatinine (p<0.01); carbonyl levels: 14.1 (11.8-19.0)nmol/ml versus 12.9 (9.8-16.6)nmol/ml plasma (p<0.001); NT: 694 (471-3228)nmol/l versus 537 (268-13833)nmol/l plasma (p<0.001). 15-F(2t)-IsoP levels correlated with vitamin E (R=0.23, p<0.05), vitamin C (R=-0.33, p<0.01) and cotinine (R=0.47, p<0.001) levels. Vitamin E levels also positively correlated with 8-oxodG (R=0.27, p=0.01) and protein carbonyl levels (R=0.32, p<0.001). Both oxidative and nitrosative stress markers positively correlated with PM2.5 and PM10 exposure. In conclusion, our study indicates that exposure to PM2.5 and PM10 results in increased oxidative and nitrosative stress.
Collapse
Affiliation(s)
- Pavel Rossner
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Vídenská 1083, 142 20 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
83
|
Kooter IM, Boere AJF, Fokkens PHB, Leseman DLAC, Dormans JAMA, Cassee FR. Response of spontaneously hypertensive rats to inhalation of fine and ultrafine particles from traffic: experimental controlled study. Part Fibre Toxicol 2006; 3:7. [PMID: 16700918 PMCID: PMC1513241 DOI: 10.1186/1743-8977-3-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 05/15/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many epidemiological studies have shown that mass concentrations of ambient particulate matter (PM) are associated with adverse health effects in the human population. Since PM is still a very crude measure, this experimental study has explored the role of two distinct size fractions: ultrafine (<0.15 microm) and fine (0.15- 2.5 microm) PM. In a series of 2-day inhalation studies, spontaneously hypersensitive (SH) rats were exposed to fine, concentrated, ambient PM (fCAP) at a city background location or a combination of ultrafine and fine (u+fCAP) PM at a location dominated by traffic. We examined the effect on inflammation and both pathological and haematological indicators as markers of pulmonary and cardiovascular injury. Exposure concentrations ranged from 399 microg/m3 to 3613 microg/m3 for fCAP and from 269 microg/m3 to 556 microg/m3 for u+fCAP. RESULTS Ammonium, nitrate, and sulphate ions accounted for 56 +/- 16% of the total fCAP mass concentrations, but only 17 +/- 6% of the u+fCAP mass concentrations. Unambiguous particle uptake in alveolar macrophages was only seen after u+fCAP exposures. Neither fCAP nor u+fCAP induced significant changes of cytotoxicity or inflammation in the lung. However, markers of oxidative stress (heme oxygenase-1 and malondialdehyde) were affected by both fCAP and u+fCAP exposure, although not always significantly. Additional analysis revealed heme oxygenase-1 (HO-1) levels that followed a nonmonotonic function with an optimum at around 600 microg/m3 for fCAP. As a systemic response, exposure to u+fCAP and fCAP resulted in significant decreases of the white blood cell concentrations. CONCLUSION Minor pulmonary and systemic effects are observed after both fine and ultrafine + fine PM exposure. These effects do not linearly correlate with the CAP mass. A greater component of traffic CAP and/or a larger proportion ultrafine PM does not strengthen the absolute effects.
Collapse
Affiliation(s)
- Ingeborg M Kooter
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - A John F Boere
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Paul HB Fokkens
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Daan LAC Leseman
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jan AMA Dormans
- Laboratory of Toxicology, Pathology and Genetics, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Flemming R Cassee
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
84
|
Ayi Fanou L, Mobio TA, Creppy EE, Fayomi B, Fustoni S, Møller P, Kyrtopoulos S, Georgiades P, Loft S, Sanni A, Skov H, Ovrebø S, Autrup H. Survey of air pollution in Cotonou, Benin--air monitoring and biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 358:85-96. [PMID: 15916795 DOI: 10.1016/j.scitotenv.2005.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 03/22/2005] [Indexed: 05/02/2023]
Abstract
Exposure to genotoxic compounds present in ambient air has been studied in Cotonou, Benin, a city where two-stroke motorbikes are the major form of transportation and gasoline quality is poor. Personal monitoring and biomarkers were used to assess the exposure. Non-smoking taxi-moto drivers (city) and village residents were the study subjects. Benzene exposure was significantly higher in the city, as compared to the village (76.0+/-26.8 microg/m(3) versus 3.4+/-3.0, p=0.0004). Urinary excretion of benzene and S-phenylmercapturic acid (S-PMA) were also highest in subjects living in the city, whereas 1-hydroxypyrene was not different. The level of total polycyclic aromatic hydrocarbons (PAHs), associated with particles, ranged from 76.21 to 103.23 in Cotonou versus 1.55 ng/m(3) for the village. Determination of DNA damage in lymphocytes showed that subjects from the city had elevated number of lesions compared to subjects in the village in terms of bulky DNA adducts, 8-hydroxy-2'-deoxyguanosine and 5-methylcytosine, whereas DNA fragmentations analysed by alkaline gel electrophoresis was not different between the subjects. In conclusion, this study shows that air pollution is pronounced in Cotonou, Bénin and is associated with elevated levels of DNA damage in residents of the city compared to people living in a non-polluted rural village.
Collapse
Affiliation(s)
- Lucie Ayi Fanou
- Laboratoire de Biochimie et de Biologie Moleculaire, Faculte des Sciences et Techniques, Universite d'Abomey-Calavi, Republique du Benin. 04 BP 0320 Cotonou, Republique du Benin
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Nodari S, Corulli A, Manerba A, Metra M, Apostoli P, Dei Cas L. Endothelial Damage Due to Air Pollution. Heart Int 2006. [DOI: 10.1177/182618680600200207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Savina Nodari
- Section of Cardiovascular Diseases, Department of Experimental and Applied Medicine, University of Brescia - Italy
| | - Alessandra Corulli
- Institute of Occupational Health and Industrial Hygiene, University of Brescia - Italy
| | - Alessandra Manerba
- Section of Cardiovascular Diseases, Department of Experimental and Applied Medicine, University of Brescia - Italy
| | - Marco Metra
- Section of Cardiovascular Diseases, Department of Experimental and Applied Medicine, University of Brescia - Italy
| | - Pietro Apostoli
- Institute of Occupational Health and Industrial Hygiene, University of Brescia - Italy
| | - Livio Dei Cas
- Section of Cardiovascular Diseases, Department of Experimental and Applied Medicine, University of Brescia - Italy
| |
Collapse
|
86
|
Lei YC, Hwang JS, Chan CC, Lee CT, Cheng TJ. Enhanced oxidative stress and endothelial dysfunction in streptozotocin-diabetic rats exposed to fine particles. ENVIRONMENTAL RESEARCH 2005; 99:335-43. [PMID: 16307975 DOI: 10.1016/j.envres.2005.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 12/08/2004] [Accepted: 03/17/2005] [Indexed: 05/05/2023]
Abstract
The association between ambient particulate matter (PM) and cardiovascular diseases has been demonstrated in epidemiological studies. Recent studies suggest that diabetic patients are at greater risk for PM-associated cardiovascular events. Although diabetes and PM exposure individually have been reported to be associated with increased oxidative stress, inflammation, and endothelial dysfunction, it is not clear whether PM may induce synergistic interaction effects on these parameters in diabetics. Strepotozotocin-induced diabetic (n=4) and healthy (n=4) rats were intratracheally administered with PM2.5 collected from a busy traffic area in a dose of 200 microg suspended in 0.5 mL phosphate-buffered saline (PBS). The same number of rats was exposed to PBS as controls. Cell and differential counts and protein and lactate dehydrogenase activity were determined in bronchoalveolar lavage. Markers of 8-hydroxydeoxy-guanosine (8-OHdG), endothelin-1 (ET-1), and [nitrate+nitrite], an indicator of nitric oxide (NO) production, in addition to C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) in peripheral blood were also determined. Our results showed that diabetic rats were associated with increased 8-OHdG, IL-6, and ET-1 decreased [nitrate+nitrite]. In nondiabetic rats PM exposure was also associated with increased 8-OHdG, IL-6, TNF-alpha, and CRP but decreased [nitrate+nitrite]. Interestingly, increases of 8-OHdG and ET-1 after PM exposure were more prominent in diabetic rats than in nondiabetic rats. The general linear model further indicated that there were interactions between diabetes and PM on 8-OHdG (P<0.01) and ET-1 (P=0.08). We suggest that PM exposure may enhance the risk of cardiovascular diseases through interaction between PM and diabetes on excess reactive oxygen species generation and endothelial dysfunction. These findings provide further support for previous epidemiological studies.
Collapse
Affiliation(s)
- Yu-Chen Lei
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei 10018, Taiwan
| | | | | | | | | |
Collapse
|
87
|
Abstract
Exposure to ambient air particulate matter (PM) is associated with pulmonary and cardiovascular diseases and cancer. The mechanisms of PM-induced health effects are believed to involve inflammation and oxidative stress. The oxidative stress mediated by PM may arise from direct generation of reactive oxygen species from the surface of particles, soluble compounds such as transition metals or organic compounds, altered function of mitochondria or NADPH-oxidase, and activation of inflammatory cells capable of generating ROS and reactive nitrogen species. Resulting oxidative DNA damage may be implicated in cancer risk and may serve as marker for oxidative stress relevant for other ailments caused by particulate air pollution. There is overwhelming evidence from animal experimental models, cell culture experiments, and cell free systems that exposure to diesel exhaust and diesel exhaust particles causes oxidative DNA damage. Similarly, various preparations of ambient air PM induce oxidative DNA damage in in vitro systems, whereas in vivo studies are scarce. Studies with various model/surrogate particle preparations, such as carbon black, suggest that the surface area is the most important determinant of effect for ultrafine particles (diameter less than 100 nm), whereas chemical composition may be more important for larger particles. The knowledge concerning mechanisms of action of PM has prompted the use of markers of oxidative stress and DNA damage for human biomonitoring in relation to ambient air. By means of personal monitoring and biomarkers a few studies have attempted to characterize individual exposure, explore mechanisms and identify significant sources to size fractions of ambient air PM with respect to relevant biological effects. In these studies guanine oxidation in DNA has been correlated with exposure to PM(2.5) and ultrafine particles outdoor and indoor. Oxidative stress-induced DNA damage appears to an important mechanism of action of urban particulate air pollution. Related biomarkers and personal monitoring may be useful tools for risk characterization.
Collapse
Affiliation(s)
- Lotte Risom
- Institute of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen K, Denmark
| | | | | |
Collapse
|
88
|
O'Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, Economides PA, Horton ES, Schwartz J. Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Circulation 2005; 111:2913-20. [PMID: 15927967 DOI: 10.1161/circulationaha.104.517110] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epidemiological studies suggest that people with diabetes are vulnerable to cardiovascular health effects associated with exposure to particle air pollution. Endothelial and vascular function is impaired in diabetes and may be related to increased cardiovascular risk. We examined whether endothelium-dependent and -independent vascular reactivity was associated with particle exposure in individuals with and without diabetes. METHODS AND RESULTS Study subjects were 270 greater-Boston residents. We measured 24-hour average ambient levels of air pollution (fine particles [PM2.5], particle number, black carbon, and sulfates [SO4(2-)]) approximately 500 m from the patient examination site. Pollutant concentrations were evaluated for associations with vascular reactivity. Linear regressions were fit to the percent change in brachial artery diameter (flow mediated and nitroglycerin mediated), with the particulate pollutant index, apparent temperature, season, age, race, sex, smoking history, and body mass index as predictors. Models were fit to all subjects and then stratified by diagnosed diabetes versus at risk for diabetes. Six-day moving averages of all 4 particle metrics were associated with decreased vascular reactivity among patients with diabetes but not those at risk. Interquartile range increases in SO4(2-) were associated with decreased flow-mediated (-10.7%; 95% CI, -17.3 to -3.5) and nitroglycerin-mediated (-5.4%; 95% CI, -10.5 to -0.1) vascular reactivity among those with diabetes. Black carbon increases were associated with decreased flow-mediated vascular reactivity (-12.6%; 95% CI, -21.7 to -2.4), and PM2.5 was associated with nitroglycerin-mediated reactivity (-7.6%; 95% CI, -12.8 to -2.1). Effects were stronger in type II than type I diabetes. CONCLUSIONS Diabetes confers vulnerability to particles associated with coal-burning power plants and traffic.
Collapse
Affiliation(s)
- Marie S O'Neill
- Department of Environmental Health, Harvard School of Public Health, Boston, Mass, USA.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Smolková B, Dusinská M, Raslová K, McNeill G, Spustová V, Blazícek P, Horská A, Collins A. Seasonal changes in markers of oxidative damage to lipids and DNA; correlations with seasonal variation in diet. Mutat Res 2004; 551:135-44. [PMID: 15225588 DOI: 10.1016/j.mrfmmm.2004.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/27/2004] [Accepted: 02/28/2004] [Indexed: 04/30/2023]
Abstract
We have addressed the question whether the relatively high incidence of cardiovascular disease and certain cancers in countries of central/eastern Europe might be associated with nutritional imbalance, in particular a lack of fresh fruit and vegetables in the diet in winter months. Nutritional parameters and markers of oxidative stress were studied in three Slovak population groups: 46 survivors of myocardial infarction (MI group) and 48 healthy, normolipidemic subjects (NL), living in or near Bratislava; and 70 rural controls (RC group) living a more traditional life style in a country town. Data were collected in February/March and September/October of two consecutive years, representing times of minimum and maximum local availability of fresh fruits and vegetables. Oxidative stress was monitored using two biomarkers; plasma malondialdehyde (MDA, a product of lipid peroxidation), and oxidation of lymphocyte DNA. Dietary antioxidants, folic acid, homocysteine, total antioxidant status (FRAP) and uric acid were measured in plasma. Food frequency questionnaires were administered. Vegetable consumption in summer/autumn was twice as high as in winter/spring. DNA damage did not vary consistently across the seasons. Mean plasma MDA levels for the MI and NL groups showed a clear pattern, with high levels in winter/spring and low levels in summer/autumn. Folic acid showed a reciprocal pattern, similar to the pattern of vegetable consumption. The RC group had the smallest seasonal variations in vegetable consumption, folic acid levels, and MDA. High winter MDA levels are seen in those individuals with relatively low folic acid; they never occur in subjects with high plasma folic acid, implying that folic acid might directly protect against lipid oxidation. This study illustrates the value of the molecular epidemiological approach, while emphasising the need for well characterised population groups and valid biomarkers.
Collapse
Affiliation(s)
- Bozena Smolková
- Institute of Preventive and Clinical Medicine, Slovak Medical University, Limbová 12, Bratislava 83303, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC, Tager I. Air Pollution and Cardiovascular Disease. Circulation 2004; 109:2655-71. [PMID: 15173049 DOI: 10.1161/01.cir.0000128587.30041.c8] [Citation(s) in RCA: 1387] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Air pollution is a heterogeneous, complex mixture of gases, liquids, and particulate matter. Epidemiological studies have demonstrated a consistent increased risk for cardiovascular events in relation to both short- and long-term exposure to present-day concentrations of ambient particulate matter. Several plausible mechanistic pathways have been described, including enhanced coagulation/thrombosis, a propensity for arrhythmias, acute arterial vasoconstriction, systemic inflammatory responses, and the chronic promotion of atherosclerosis. The purpose of this statement is to provide healthcare professionals and regulatory agencies with a comprehensive review of the literature on air pollution and cardiovascular disease. In addition, the implications of these findings in relation to public health and regulatory policies are addressed. Practical recommendations for healthcare providers and their patients are outlined. In the final section, suggestions for future research are made to address a number of remaining scientific questions.
Collapse
|
91
|
Sørensen M, Autrup H, Møller P, Hertel O, Jensen SS, Vinzents P, Knudsen LE, Loft S. Linking exposure to environmental pollutants with biological effects. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2003; 544:255-71. [PMID: 14644327 DOI: 10.1016/j.mrrev.2003.06.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual exposure to PM(2.5), nitrogen dioxide (NO(2)) and benzene has been measured in groups of 40-50 subjects. Measured biomarkers included 1-hydroxypyrene, benzene metabolites (phenylmercapturic acid (PMA) and trans-trans-muconic acid (ttMA)), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine, DNA strand breaks, base oxidation, 8-oxodG and PAH bulky adducts in lymphocytes, markers of oxidative stress in plasma and genotypes of glutathione transferases (GSTs) and NADPH:quinone reductase (NQO1). With respect to benzene, the main result indicates that DNA base oxidation is correlated with PMA excretion. With respect to exposure to PM, biomarkers of oxidative damage showed significant positive association with the individual exposure. Thus, 8-oxodG in lymphocyte DNA and markers of oxidative damage to lipids and protein in plasma associated with PM(2.5) exposure. Several types of DNA damage showed seasonal variation. PAH adduct levels, DNA strand breaks and 8-oxodG in lymphocytes increased significantly in the summer period, requiring control of confounders. Similar seasonal effects on strand breaks and expression of the relevant DNA repair genes ERCC1 and OGG1 have been reported. In the present setting, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based biomarkers.
Collapse
Affiliation(s)
- Mette Sørensen
- Institute of Public Health, c/o Department of Pharmacology, The Panum Institute, room 18-5-32, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|