51
|
Pergialiotis V, Kotrogianni P, Christopoulos-Timogiannakis E, Koutaki D, Daskalakis G, Papantoniou N. Bisphenol A and adverse pregnancy outcomes: a systematic review of the literature. J Matern Fetal Neonatal Med 2018; 31:3320-3327. [PMID: 28805116 DOI: 10.1080/14767058.2017.1368076] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Bisphenol A is a chemical compound related to adverse maternal and neonatal outcomes. The purpose of the present systematic review is to summarize the current knowledge in the field. MATERIALS AND METHODS We systematically searched the Medline (1966-2017), Scopus (2004-2017), Clinicaltrials.gov (2008-2017), Cochrane Central Register of Controlled Trials CENTRAL (1999-2017) databases. RESULTS Thirty-five studies were included in the present systematic review. According to our findings, BPA has a direct negative impact on maternal, fetal, and neonatal outcomes, including birthweight, rates of preterm birth, developmental defects, and recurrent miscarriage. Data in the field of preeclampsia and gestational diabetes mellitus remain inconclusive because current research is very limited. CONCLUSIONS BPA exposure during pregnancy can result in significant antenatal pathology; hence, occupational exposure should be at least discouraged during this period. However, cross-sectional studies in the field that would assess the levels of exposure at timely intervals are still lacking, therefore, the actual impact of BPA remains unclear.
Collapse
Affiliation(s)
- Vasilios Pergialiotis
- a Laboratory of Experimental Surgery and Surgical Research NS Christeas , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Paraskevi Kotrogianni
- a Laboratory of Experimental Surgery and Surgical Research NS Christeas , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Evangelos Christopoulos-Timogiannakis
- a Laboratory of Experimental Surgery and Surgical Research NS Christeas , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Diamanto Koutaki
- a Laboratory of Experimental Surgery and Surgical Research NS Christeas , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Georgios Daskalakis
- b First Department of Obstetrics/Gynaecology , National and Kapodistrian University of Athens, Alexandra Hospital , Athens , Greece
| | - Nikolaos Papantoniou
- c Third Department of Obstetrics/Gynaecology , National and Kapodistrian University of Athens, Attikon Hospital , Athens , Greece
| |
Collapse
|
52
|
Abstract
Increasing scientific evidence suggests potential adverse effects on children's health from synthetic chemicals used as food additives, both those deliberately added to food during processing (direct) and those used in materials that may contaminate food as part of packaging or manufacturing (indirect). Concern regarding food additives has increased in the past 2 decades in part because of studies that increasingly document endocrine disruption and other adverse health effects. In some cases, exposure to these chemicals is disproportionate among minority and low-income populations. This report focuses on those food additives with the strongest scientific evidence for concern. Further research is needed to study effects of exposure over various points in the life course, and toxicity testing must be advanced to be able to better identify health concerns prior to widespread population exposure. The accompanying policy statement describes approaches policy makers and pediatricians can take to prevent the disease and disability that are increasingly being identified in relation to chemicals used as food additives, among other uses.
Collapse
Affiliation(s)
- Leonardo Trasande
- Departments of Pediatrics, Environmental Medicine, and Health Policy, School of Medicine, New York University, New York, New York
| | - Rachel M. Shaffer
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | | |
Collapse
|
53
|
Abstract
Our purposes with this policy statement and its accompanying technical report are to review and highlight emerging child health concerns related to the use of colorings, flavorings, and chemicals deliberately added to food during processing (direct food additives) as well as substances in food contact materials, including adhesives, dyes, coatings, paper, paperboard, plastic, and other polymers, which may contaminate food as part of packaging or manufacturing equipment (indirect food additives); to make reasonable recommendations that the pediatrician might be able to adopt into the guidance provided during pediatric visits; and to propose urgently needed reforms to the current regulatory process at the US Food and Drug Administration (FDA) for food additives. Concern regarding food additives has increased in the past 2 decades, in part because of studies in which authors document endocrine disruption and other adverse health effects. In some cases, exposure to these chemicals is disproportionate among minority and low-income populations. Regulation and oversight of many food additives is inadequate because of several key problems in the Federal Food, Drug, and Cosmetic Act. Current requirements for a "generally recognized as safe" (GRAS) designation are insufficient to ensure the safety of food additives and do not contain sufficient protections against conflict of interest. Additionally, the FDA does not have adequate authority to acquire data on chemicals on the market or reassess their safety for human health. These are critical weaknesses in the current regulatory system for food additives. Data about health effects of food additives on infants and children are limited or missing; however, in general, infants and children are more vulnerable to chemical exposures. Substantial improvements to the food additives regulatory system are urgently needed, including greatly strengthening or replacing the "generally recognized as safe" (GRAS) determination process, updating the scientific foundation of the FDA's safety assessment program, retesting all previously approved chemicals, and labeling direct additives with limited or no toxicity data.
Collapse
Affiliation(s)
- Leonardo Trasande
- Pediatrics, Environmental Medicine, and Health Policy, School of Medicine, New York University, New York, New York
| | - Rachel M. Shaffer
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
- Pediatrics, University of Washington, Seattle, Washington
| | | |
Collapse
|
54
|
Urinary Bisphenol A Concentration and Gestational Diabetes Mellitus in Chinese Women. Epidemiology 2018; 28 Suppl 1:S41-S47. [PMID: 29028674 DOI: 10.1097/ede.0000000000000730] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bisphenol A (BPA) has been associated with variable metabolic effects in animal models. It is unknown whether BPA exposure affects glucose tolerance in pregnancy. We aimed to investigate whether maternal urinary BPA concentration is associated with gestational diabetes mellitus (GDM). METHODS This study included 620 pregnant women from Shanghai, China 2012-2013. Maternal urinary BPA concentration was measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). GDM (n = 79) was diagnosed according to the criteria of the International Association of Diabetes and Pregnancy Study Groups (IADPSG). Multivariate regressions were used to explore the relationships of urinary BPA with GDM, plasma glucose levels in the 75-g 2-hour oral glucose tolerance test (OGTT), birth weight, and ponder index. RESULTS The geometric mean of BPA was 1.32 μg/L. After adjustment for maternal age, education, husband smoking status, prepregnancy body mass index (BMI), and urinary creatinine concentration, plasma glucose at 2 hours in the 75-g OGTT was 0.36 mmol/L lower (95% confidence index [CI] = -0.73, 0.01) for women with urine BPA in the high versus the low tertile. For each unit increase in natural log-transformed BPA, the odds of GDM was reduced by 27% (odds ratio (OR) = 0.73; 95% CI = 0.56, 0.97), the birth weight decreased by 25.70 g (95% CI = -54.48, 3.07), and ponder index was decreased by 0.02 (100 g/cm) (95% CI = -0.03, 0.00). CONCLUSIONS Higher maternal urinary BPA concentrations were associated with reduced risk of GDM and marginally lower birth weight and ponder index.
Collapse
|
55
|
Liu S, Sun Q. Sex differences, endogenous sex-hormone hormones, sex-hormone binding globulin, and exogenous disruptors in diabetes and related metabolic outcomes. J Diabetes 2018; 10:428-441. [PMID: 27990781 DOI: 10.1111/1753-0407.12517] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022] Open
Abstract
In assessing clinical and pathophysiological development of type 2 diabetes (T2D), the critical role of the sex steroids axis is underappreciated, particularly concerning the sex-specific relationships with many relevant cardiometabolic outcomes. In this issue of the Journal of Diabetes, we provide a comprehensive overview of these significant associations of germline variants in the genes governing the sex steroid pathways, plasma levels of steroid hormones, and sex hormone-binding globulin (SHBG) with T2D risk that have been observed in many clinical and high-quality large prospective cohorts of men and women across ethnic populations. Together, this body of evidence indicates that sex steroids and SHBG should be routinely incorporated into clinical characterization of T2D patients, particularly in screening prediabetic patients, such as those with metabolic syndrome, using plasma levels of SHBG. Given that several germline mutations in the SHBG gene have also been directly related to both plasma concentrations of SHBG and clinical manifestation of T2D, targeting signals in the sex steroid axis, particularly SHBG, may have significant utility in the prediction and treatment of T2D. Further, many of the environmental endocrine disrupting chemicals may exert their potential adverse effects on cardiometabolic outcomes via either estrogenic or androgenic signaling pathways, highlighting the importance of using the sex steroids and SHBG as important biochemical markers in both clinical and population studies in studying sex-specific mechanisms in the pathogenesis of T2D and its complications, as well as the need to equitably allocate resources in studying both men and women.
Collapse
Affiliation(s)
- Simin Liu
- Department of Endocrinology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
- Departments of Epidemiology, Brown University, Providence, Rhode Island, USA
- Departments of Medicine, Brown University, Providence, Rhode Island, USA
- Center for Global Cardiometabolic Health, Brown University, Providence, Rhode Island, USA
- Departments of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Qi Sun
- Departments of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
56
|
Gannon M, Kulkarni RN, Tse HM, Mauvais-Jarvis F. Sex differences underlying pancreatic islet biology and its dysfunction. Mol Metab 2018; 15:82-91. [PMID: 29891438 PMCID: PMC6066785 DOI: 10.1016/j.molmet.2018.05.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/30/2022] Open
Abstract
Background The sex of an individual affects glucose homeostasis and the pathophysiology, incidence, and prevalence of diabetes as well as the response to therapy. Scope of the review This review focuses on clinical and experimental sex differences in islet cell biology and dysfunction during development and in adulthood in human and animal models. We discuss sex differences in β-cell and α-cell function, heterogeneity, and dysfunction. We cover sex differences in communication between gonads and islets and islet-cell immune interactions. Finally, we discuss sex differences in β-cell programming by nutrition and other environmental factors during pregnancy. Major conclusions Important sex differences exist in islet cell function and susceptibility to failure. These differences represent sex-related biological factors that can be harnessed for gender-based prevention of and therapy for diabetes.
Collapse
Affiliation(s)
- Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, USA; Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, USA; Department of Medicine, Harvard Medical School, Boston, USA; Harvard Stem Cell Institute, Boston, MA, USA
| | - Hubert M Tse
- Department of Microbiology, Birmingham, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center School of Medicine, New Orleans, USA; Southeast Louisiana Veterans Healthcare System Medical Center, New Orleans, LA, USA.
| |
Collapse
|
57
|
Sui Y, Park SH, Wang F, Zhou C. Perinatal Bisphenol A Exposure Increases Atherosclerosis in Adult Male PXR-Humanized Mice. Endocrinology 2018; 159:1595-1608. [PMID: 29425287 PMCID: PMC5939635 DOI: 10.1210/en.2017-03250] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/31/2018] [Indexed: 01/19/2023]
Abstract
Bisphenol A (BPA) is a base chemical used extensively in numerous consumer products, and human exposure to BPA is ubiquitous. Higher BPA exposure has been associated with an increased risk of atherosclerosis and cardiovascular disease (CVD) in multiple human population-based studies. However, the underlying mechanisms responsible for the associations remain elusive. We previously reported that BPA activates the xenobiotic receptor pregnane X receptor (PXR), which has proatherogenic effects in animal models. Because BPA is a potent agonist for human PXR but does not affect rodent PXR activity, a suitable PXR-humanized apolipoprotein E-deficient (huPXR•ApoE-/-) mouse model was developed to study BPA's atherogenic effects. Chronic BPA exposure increased atherosclerosis in the huPXR•ApoE-/- mice. We report that BPA exposure can also activate human PXR signaling in the heart tubes of huPXR•ApoE-/- embryos, and perinatal BPA exposure exacerbated atherosclerosis in adult male huPXR•ApoE-/- offspring. However, atherosclerosis development in female offspring was not affected by perinatal BPA exposure. Perinatal BPA exposure did not affect plasma lipid levels but increased aortic and atherosclerotic lesional fatty acid transporter CD36 expression in male huPXR•ApoE-/- offspring. Mechanistically, PXR epigenetically regulated CD36 expression by increasing H3K4me3 levels and decreasing H3K27me3 levels in the CD36 promoter in response to perinatal BPA exposure. The findings from the present study contribute to our understanding of the association between BPA exposure and increased atherosclerosis or CVD risk in humans, and activation of human PXR should be considered for future BPA risk assessment.
Collapse
Affiliation(s)
- Yipeng Sui
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Fang Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
- Correspondence: Changcheng Zhou, PhD, Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone Street, #517, Lexington, Kentucky 40536. E-mail:
| |
Collapse
|
58
|
Thent ZC, Froemming GRA, Muid S. Bisphenol A exposure disturbs the bone metabolism: An evolving interest towards an old culprit. Life Sci 2018; 198:1-7. [DOI: 10.1016/j.lfs.2018.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
|
59
|
Le Ferrec E, Øvrevik J. G-protein coupled receptors (GPCR) and environmental exposure. Consequences for cell metabolism using the β-adrenoceptors as example. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
60
|
Gonçalves R, Zanatta AP, Cavalari FC, do Nascimento MAW, Delalande-Lecapitaine C, Bouraïma-Lelong H, Silva FRMB. Acute effect of bisphenol A: Signaling pathways on calcium influx in immature rat testes. Reprod Toxicol 2018; 77:94-102. [PMID: 29476780 DOI: 10.1016/j.reprotox.2018.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
We investigated the acute effect of low concentrations of BPA on calcium influx and the mechanism of action of BPA in this rapid response in the rat testis. BPA increased calcium influx at 1 pM and 1 nM at 300 s of incubation, in a similar manner to that of estradiol. At 1 pM, BPA stimulated calcium influx independently of classical estrogen receptors, consistent with a G-protein coupled receptor. This effect also involves the modulation of ionic channels, such as K+, TRPV1 and Cl- channels. Furthermore, BPA is able to modulate calcium from intracellular storages by inhibiting SERCA and activating IP3 receptor/Ca2+ channels at the endoplasmic reticulum and activate kinase proteins, such as PKA and PKC. The rapid responses of BPA on calcium influx could, in turn, trigger a cross talk by MEK and p38MAPK activation and also mediate genomic responses.
Collapse
Affiliation(s)
- Renata Gonçalves
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; UNOCHAPECÓ, Brazil; Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France
| | | | - Fernanda Carvalho Cavalari
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Monica Andressa Wessner do Nascimento
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Christelle Delalande-Lecapitaine
- Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France; INRA USC 2006, CAEN cedex 5, France
| | - Hélène Bouraïma-Lelong
- Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France; INRA USC 2006, CAEN cedex 5, France
| | - Fátima Regina Mena Barreto Silva
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
61
|
He J, Wei C, Li Y, Liu Y, Wang Y, Pan J, Liu J, Wu Y, Cui S. Zearalenone and alpha-zearalenol inhibit the synthesis and secretion of pig follicle stimulating hormone via the non-classical estrogen membrane receptor GPR30. Mol Cell Endocrinol 2018; 461:43-54. [PMID: 28830788 DOI: 10.1016/j.mce.2017.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Zearalenone (ZEA) is one of the most popular endocrine-disrupting chemicals and is mainly produced by fungi of the genus Fusarium. The excessive intake of ZEA severely disrupts human and animal fertility by affecting the reproductive axis. However, most studies on the effects of ZEA and its metabolite α-zearalenol (α-ZOL) on reproductive systems have focused on gonads. Few studies have investigated the endocrine-disrupting effects of ZEA and α-ZOL on pituitary gonadotropins, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The present study was designed to investigate the effects of ZEA and α-ZOL on the synthesis and secretion of FSH and LH and related mechanisms in female pig pituitary. Our in vivo and in vitro results demonstrated that ZEA significantly inhibited the synthesis and secretion of FSH in the pig pituitary gland, but ZEA and α-ZOL had no effects on LH. Our study also showed that ZEA and α-ZOL decreased FSH synthesis and secretion through non-classical estrogen membrane receptor GPR30, which subsequently induced protein kinase cascades and the phosphorylation of PKC, ERK and p38MAPK signaling pathways in pig pituitary cells. Furthermore, our study showed that the LIM homeodomain transcription factor LHX3 was involved in the mechanisms of ZEA and α-ZOL actions on gonadotropes in the female pig pituitary. These findings elucidate the mechanisms behind the physiological alterations resulting from endocrine-disrupting chemicals and further show that the proposed key molecules of the α-ZOL signaling pathway could be potential pharmacological targets.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chao Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Yueqin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Yue Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jirong Pan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Yingjie Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China.
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
62
|
Nadal A, Fuentes E, Ripoll C, Villar-Pazos S, Castellano-Muñoz M, Soriano S, Martinez-Pinna J, Quesada I, Alonso-Magdalena P. Extranuclear-initiated estrogenic actions of endocrine disrupting chemicals: Is there toxicology beyond paracelsus? J Steroid Biochem Mol Biol 2018; 176:16-22. [PMID: 28159674 DOI: 10.1016/j.jsbmb.2017.01.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/21/2022]
Abstract
Endocrine Disrupting Chemicals (EDCs), including bisphenol-A (BPA) do not act as traditional toxic chemicals inducing massive cell damage or death in an unspecific manner. EDCs can work upon binding to hormone receptors, acting as agonists, antagonists or modulators. Bisphenol-A displays estrogenic activity and, for many years it has been classified as a weak estrogen, based on the classic transcriptional action of estrogen receptors serving as transcription factors. However, during the last two decades our knowledge about estrogen signaling has advanced considerably. It is now accepted that estrogen receptors ERα and ERβ activate signaling pathways outside the nucleus which may or may not involve transcription. In addition, a new membrane estrogen receptor, GPER, has been proposed. Pharmacological and molecular evidence, along with results obtained in genetically modified mice, demonstrated that BPA, and its substitute BPS, are potent estrogens acting at nanomolar concentrations via extranuclear ERα, ERβ, and GPER. The different signaling pathways activated by BPA and BPS explain the well-known estrogenic effects of low doses of EDCs as well as non-monotonic dose-response relationships. These signaling pathways may help to explain the actions of EDCs with estrogenic activity in the etiology of different pathologies, including type-2 diabetes and obesity.
Collapse
Affiliation(s)
- Angel Nadal
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain.
| | - Esther Fuentes
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain; Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Cristina Ripoll
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Sabrina Villar-Pazos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Manuel Castellano-Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Sergi Soriano
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Juan Martinez-Pinna
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Ivan Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain; Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Paloma Alonso-Magdalena
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain; Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Alicante, Spain
| |
Collapse
|
63
|
Raza N, Kim KH, Abdullah M, Raza W, Brown RJ. Recent developments in analytical quantitation approaches for parabens in human-associated samples. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
64
|
Tudurí E, Marroqui L, Dos Santos RS, Quesada I, Fuentes E, Alonso-Magdalena P. Timing of Exposure and Bisphenol-A: Implications for Diabetes Development. Front Endocrinol (Lausanne) 2018; 9:648. [PMID: 30429829 PMCID: PMC6220716 DOI: 10.3389/fendo.2018.00648] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDCs). It is used as the base compound in the production of polycarbonate and other plastics present in many consumer products. It is also used as a building block in epoxy can coating and the thermal paper of cash register receipts. Humans are consistently exposed to BPA and, in consequence, this compound has been detected in the majority of individuals examined. Over the last decade, an enlarging body of evidence has provided a strong support for the role of BPA in the etiology of diabetes and other metabolic disorders. Timing of exposure to EDCs results crucial since it has important implications on the resulting adverse effects. It is now well established that the developing organisms are particularly sensitive to environmental influences. Exposure to EDCs during early life may result in permanent adverse consequences, which increases the risk of developing chronic diseases like diabetes in adult life. In addition to that, developmental abnormalities can be transmitted from one generation to the next, thus affecting future generations. More recently, it has been proposed that gestational environment may also program long-term susceptibility to metabolic disorders in the mother. In the present review, we will comment and discuss the contributing role of BPA in the etiology of diabetes. We will address the metabolic consequences of BPA exposure at different stages of life and comment on the final phenotype observed in different whole-animal models of study.
Collapse
|
65
|
Vahdati Hassani F, Abnous K, Mehri S, Jafarian A, Birner-Gruenberger R, Yazdian Robati R, Hosseinzadeh H. Proteomics and phosphoproteomics analysis of liver in male rats exposed to bisphenol A: Mechanism of hepatotoxicity and biomarker discovery. Food Chem Toxicol 2017; 112:26-38. [PMID: 29269058 DOI: 10.1016/j.fct.2017.12.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 01/14/2023]
Abstract
Bisphenol A (BPA), discovered to be an artificial estrogen, has been shown to leach from some containers and mediate oxidative damage to cells and tissues and to be involved in reproductive disorders, obesity, diabetes, and liver dysfunction. In the current study, we investigated the effects of oral chronic exposure to low dose of BPA (0.5 mg kg-1) on the protein and phosphoprotein expression profiles in male Wistar rat liver using a gel-based proteomics approach based on two-dimensional gel electrophoresis followed by matrix-assisted laser desorption/ionization mass spectrometry identification. Our results showed that BPA exposure affected the levels of proteins and phosphoproteins involved in diverse biological processes associated with hepatotoxicity, fatty liver, and carcinoma. Moreover, we analyzed the effects of BPA on oxidative stress by assessing levels of malondialdehyde (MDA), a marker of lipid peroxidation, and reduced glutathione (GSH), a non-enzymatic antioxidant agent, in the liver. As expected BPA induced oxidative stress indicated by increased levels of MDA and decreased GSH content in the liver. In conclusion, chronic oral exposure of rats to BPA leads to increased oxidative stress in the liver and major alterations in the liver proteome and phosphoproteome, which may contribute to the pathophysiology of liver diseases.
Collapse
Affiliation(s)
- Faezeh Vahdati Hassani
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Soghra Mehri
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical, Sciences, Mashhad, Iran.
| | - Amirhossein Jafarian
- Department of Pathology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ruth Birner-Gruenberger
- Medical University of Graz, Institute of Pathology, Research Unit Functional Proteomics and Metabolic Pathways, Stiftingtalstrasse 24, 8010 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria.
| | - Rezvan Yazdian Robati
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical, Sciences, Mashhad, Iran.
| |
Collapse
|
66
|
Moreman J, Lee O, Trznadel M, David A, Kudoh T, Tyler CR. Acute Toxicity, Teratogenic, and Estrogenic Effects of Bisphenol A and Its Alternative Replacements Bisphenol S, Bisphenol F, and Bisphenol AF in Zebrafish Embryo-Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12796-12805. [PMID: 29016128 DOI: 10.1021/acs.est.7b03283] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Bisphenol A (BPA), a chemical incorporated into plastics and resins, has estrogenic activity and is associated with adverse health effects in humans and wildlife. Similarly structured BPA analogues are widely used but far less is known about their potential toxicity or estrogenic activity in vivo. We undertook the first comprehensive analysis on the toxicity and teratogenic effects of the bisphenols BPA, BPS, BPF, and BPAF in zebrafish embryo-larvae and an assessment on their estrogenic mechanisms in an estrogen-responsive transgenic fish Tg(ERE:Gal4ff)(UAS:GFP). The rank order for toxicity was BPAF > BPA > BPF > BPS. Developmental deformities for larval exposures included cardiac edema, spinal malformation, and craniofacial deformities and there were distinct differences in the effects and potencies between the different bisphenol chemicals. These effects, however, occurred only at concentrations between 1.0 and 200 mg/L which exceed those in most environments. All bisphenol compounds induced estrogenic responses in Tg(ERE:Gal4ff)(UAS:GFP) zebrafish that were inhibited by coexposure with ICI 182 780, demonstrating an estrogen receptor dependent mechanism. Target tissues included the heart, liver, somite muscle, fins, and corpuscles of Stannius. The rank order for estrogenicity was BPAF > BPA = BPF > BPS. Bioconcentration factors were 4.5, 17.8, 5.3, and 0.067 for exposure concentrations of 1.0, 1.0, 0.10, and 50 mg/L for BPA, BPF, BPAF, and BPS, respectively. We thus show that these BPA alternatives induce similar toxic and estrogenic effects to BPA and that BPAF is more potent than BPA, further highlighting health concerns regarding the use of BPA alternatives.
Collapse
Affiliation(s)
- John Moreman
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Okhyun Lee
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Maciej Trznadel
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Arthur David
- University of Sussex , School of Life Sciences, Brighton BN1 9QG, United Kingdom
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Stocker Road, Exeter, EX4 4QD, United Kingdom
| |
Collapse
|
67
|
Petrakis D, Vassilopoulou L, Mamoulakis C, Psycharakis C, Anifantaki A, Sifakis S, Docea AO, Tsiaoussis J, Makrigiannakis A, Tsatsakis AM. Endocrine Disruptors Leading to Obesity and Related Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1282. [PMID: 29064461 PMCID: PMC5664782 DOI: 10.3390/ijerph14101282] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022]
Abstract
The review aims to comprehensively present the impact of exposure to endocrine disruptors (EDs) in relation to the clinical manifestation of obesity and related diseases, including diabetes mellitus, metabolic syndrome, cardiovascular diseases, carcinogenesis and infertility. EDs are strong participants in the obesity epidemic scenery by interfering with cellular morphological and biochemical processes; by inducing inflammatory responses; and by presenting transcriptional and oncogenic activity. Obesity and lipotoxicity enhancement occur through reprogramming and/or remodeling of germline epigenome by exposure to EDs. Specific population groups are vulnerable to ED exposure due to current dietary and environmental conditions. Obesity, morbidity and carcinogenicity induced by ED exposure are an evolving reality. Therefore, a new collective strategic approach is deemed essential, for the reappraisal of current global conditions pertaining to energy management.
Collapse
Affiliation(s)
- Demetrios Petrakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Loukia Vassilopoulou
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Christos Psycharakis
- Department of Obstetrics and Gynecology, Venizeleio-Pananio General Hospital of Heraklion, 71409 Heraklion, Crete, Greece.
| | - Aliki Anifantaki
- Crete Fertility Center, 56, Arch. Makariou & Sof. Venizelou Str., 71202 Heraklion, Crete, Greece.
| | | | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Petru Rares, 200349 Craiova, Romania.
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| |
Collapse
|
68
|
Polluted Pathways: Mechanisms of Metabolic Disruption by Endocrine Disrupting Chemicals. Curr Environ Health Rep 2017; 4:208-222. [PMID: 28432637 DOI: 10.1007/s40572-017-0137-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Environmental toxicants are increasingly implicated in the global decline in metabolic health. Focusing on diabetes, herein, the molecular and cellular mechanisms by which metabolism disrupting chemicals (MDCs) impair energy homeostasis are discussed. RECENT FINDINGS Emerging data implicate MDC perturbations in a variety of pathways as contributors to metabolic disease pathogenesis, with effects in diverse tissues regulating fuel utilization. Potentiation of traditional metabolic risk factors, such as caloric excess, and emerging threats to metabolism, such as disruptions in circadian rhythms, are important areas of current and future MDC research. Increasing evidence also implicates deleterious effects of MDCs on metabolic programming that occur during vulnerable developmental windows, such as in utero and early post-natal life as well as pregnancy. Recent insights into the mechanisms by which MDCs alter energy homeostasis will advance the field's ability to predict interactions with classical metabolic disease risk factors and empower studies utilizing targeted therapeutics to treat MDC-mediated diabetes.
Collapse
|
69
|
Bisphenol A and estrogen induce proliferation of human thyroid tumor cells via an estrogen-receptor-dependent pathway. Arch Biochem Biophys 2017; 633:29-39. [PMID: 28882636 DOI: 10.1016/j.abb.2017.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To determine the relationship between papillary thyroid carcinoma and environmental exposure to bisphenol A (BPA) or 17-β estrogen (E2) by assessing the effects of these compounds on estrogen receptor expression and AKT/mTOR signaling. METHODS The effects of low levels of BPA (1mM-10nM) and 17β-estradiol (E2, 0.1mM-1nM) on ER expression and cellular proliferation were determined in human thyroid papillary cancer BHP10-3 cells. Protein and mRNA levels of estrogen nuclear receptors (ERα/ERβ) and membrane receptors (GPR30) were determined by immunofluorescence assay, Western blotting, and RT-PCR, respectively, and proliferation was assessed by CCK-8 assay. RESULTS The proliferative effects of BPA and E2 were both concentration- and time-dependent. Expression of ERα/ERβ and GPR30 were enhanced by BPA and E2. BPA and E2 could quickly phosphorylate AKT/mTOR. Moreover, ICI suppressed ERα expression and activated GPR30 as did G-1. G-15 reversed the effects of E2 on GPR30 and AKT/mTOR, but did not alter the effect of BPA. CONCLUSIONS BPA influences thyroid cancer proliferation by regulating expression of ERs and GPR30, a mechanism that differs from E2. In addition, ICI and G-15 may have the potential to be used as anti-thyroid cancer agents.
Collapse
|
70
|
Leonardi A, Cofini M, Rigante D, Lucchetti L, Cipolla C, Penta L, Esposito S. The Effect of Bisphenol A on Puberty: A Critical Review of the Medical Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14091044. [PMID: 28891963 PMCID: PMC5615581 DOI: 10.3390/ijerph14091044] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023]
Abstract
Many scientific studies have revealed a trend towards an earlier onset of puberty and have disclosed an increasing number of children that display precocious puberty. As an explanation, some authors have considered the global socio-economic improvement across different populations, and other authors have considered the action of endocrine disrupting chemicals (EDCs). Among these, bisphenol A (BPA), an aromatic compound largely used worldwide as a precursor of some plastics and chemical additives, is well known for its molecular oestrogen-like and obesogenic actions. We reviewed the medical literature of the previous 20 years that examined associations between BPA exposure and the age of puberty in humans, considering only those referring to clinical or epidemiological data. Of 19 studies, only 7 showed a correlation between BPA and puberty. In particular, the possible disruptive role of BPA on puberty may be seen in those with central precocious puberty or isolated premature breast development aged 2 months to 4 years old, even if the mechanism is undefined. Some studies also found a close relationship between urinary BPA, body weight, and early puberty, which can be explained by the obesogenic effect of BPA itself. The currently available data do not allow establishment of a clear role for BPA in pubertal development because of the conflicting results among all clinical and epidemiological studies examined. Further research is needed to fully understand the potential role of exposure to EDCs and their adverse endocrine health outcomes.
Collapse
Affiliation(s)
- Alberto Leonardi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Marta Cofini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Donato Rigante
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, 00168 Rome, Italy.
| | - Laura Lucchetti
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Clelia Cipolla
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, 00168 Rome, Italy.
| | - Laura Penta
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06129 Perugia, Italy.
| |
Collapse
|
71
|
Zhou A, Chang H, Huo W, Zhang B, Hu J, Xia W, Chen Z, Xiong C, Zhang Y, Wang Y, Xu S, Li Y. Prenatal exposure to bisphenol A and risk of allergic diseases in early life. Pediatr Res 2017; 81:851-856. [PMID: 28141789 DOI: 10.1038/pr.2017.20] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/09/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prenatal exposure to bisphenol A (BPA) affects immune system and promotes allergy and asthma in mice, but findings in human studies are limited. We investigated whether prenatal exposure to BPA is associated with increased risk of allergic diseases in infants. METHODS We measured BPA concentrations in maternal urine samples collected at delivery from 412 women in Wuhan, China. The occurrence of allergic diseases including eczema and wheeze were assessed at age 6 mo through questionnaires. We used logistic regression to evaluate the association between urinary BPA levels and the risk of allergic diseases. RESULTS Mothers of infants with allergic diseases had significantly higher urinary BPA levels than those of infants without allergic diseases (median: 2.35 vs. 4.55 µg/l, P = 0.03). Increased risk of infant allergic diseases was associated with creatinine-adjusted maternal urinary BPA concentrations. And this association was limited to females (odds ratio (OR) = 1.36; 95% confidence interval (CI): 1.10-1.79) rather than males. After stratification by maternal age, the association was only significant in infants of mothers who were younger than 25 y old (OR = 1.90; 95% CI: 1.09-3.29). CONCLUSION Prenatal exposure to BPA may potentially increase the risk of allergic diseases at very early life in female infants.
Collapse
Affiliation(s)
- Aifen Zhou
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Women and Children Medical and Healthcare Center of Wuhan, Wuhan, China
| | - Huailong Chang
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqian Huo
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Women and Children Medical and Healthcare Center of Wuhan, Wuhan, China
| | - Jie Hu
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Chen
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Women and Children Medical and Healthcare Center of Wuhan, Wuhan, China
| | - Chao Xiong
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, China
| | - Yaqi Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, China
| | - Youjie Wang
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
72
|
Chailurkit LO, Tengpraettanakorn P, Chanprasertyotin S, Ongphiphadhanakul B. Is bisphenol A exposure associated with the development of glucose intolerance and increased insulin resistance in Thais? Nutr Health 2017; 23:185-191. [PMID: 28516806 DOI: 10.1177/0260106017708730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bisphenol A (BPA), the monomeric component of polycarbonate plastics, reportedly possesses endocrine-disrupting effects. Exposure to low levels of BPA during more vulnerable periods leads to abnormalities related to sexual development in experimental animals. Moreover, recently a few epidemiological studies in Caucasians have demonstrated the association of BPA exposure with type 2 diabetes. Therefore, in the present study we examined the association of BPA exposure and abnormal glucose tolerance in Thais. This is a cross-sectional study of 240 participants aged at least 50 years, randomly selected by computer-generated random numbers within each glucose tolerance status from an oral glucose tolerance study of 661 participants. There were 80 participants in each group of type 2 diabetes, impaired glucose tolerance (IGT) and normal glucose tolerance (NGT). Serum BPA was measured by competitive ELISA. The detection rate of BPA was significantly higher in participants with IGT compared to those with NGT ( p < 0.05), while no difference was found between participants with type 2 diabetes and NGT. When participants with type 2 diabetes were stratified into those with fasting plasma glucose (FPG) under the diabetic threshold (<126 mg/dL) and those over (≥126 mg/dL), it was found that those with FPG under the diabetic threshold had measurable rates of BPA comparable to those with IGT, and rates significantly higher than the NGT group ( p < 0.05), while those with FPG over the diabetic threshold did not have higher rates of measurable BPA compared with the NGT group. In conclusion, BPA exposure is not uncommon in Thais. There is an association between BPA exposure and IGT, but not type 2 diabetes.
Collapse
Affiliation(s)
- La-Or Chailurkit
- 1 Department of Medicine, Ramathibodi Hospital, Mahidol University, Thailand
| | | | | | | |
Collapse
|
73
|
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, Vom Saal F. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 2017; 68:3-33. [PMID: 27760374 PMCID: PMC5365353 DOI: 10.1016/j.reprotox.2016.10.001] [Citation(s) in RCA: 646] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/04/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations.
Collapse
Affiliation(s)
- Jerrold J Heindel
- National Institute of Environmental Health Sciences, Division of Extramural Research and Training Research Triangle Park, NC, USA.
| | - Bruce Blumberg
- University of California, Department of Developmental and Cell Biology, Irvine CA, USA
| | - Mathew Cave
- University of Louisville, Division of Gastroenterology, Hepatology and Nutrition, Louisville KY, USA
| | | | | | - Michelle A Mendez
- University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill NC, USA
| | - Angel Nadal
- Institute of Bioengineering and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Paola Palanza
- University of Parma, Department of Neurosciences, Parma, Italy
| | - Giancarlo Panzica
- University of Turin, Department of Neuroscience and Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy
| | - Robert Sargis
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine Chicago, IL, USA
| | - Laura N Vandenberg
- University of Massachusetts, Department of Environmental Health Sciences, School of Public Health & Health Sciences, Amherst, MA, USA
| | - Frederick Vom Saal
- University of Missouri, Department of Biological Sciences, Columbia, MO, USA
| |
Collapse
|
74
|
Dose-dependent effect of Bisphenol-A on insulin signaling molecules in cardiac muscle of adult male rat. Chem Biol Interact 2017; 266:10-16. [DOI: 10.1016/j.cbi.2017.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 01/16/2023]
|
75
|
Galyon KD, Farshidi F, Han G, Ross MG, Desai M, Jellyman JK. Maternal bisphenol A exposure alters rat offspring hepatic and skeletal muscle insulin signaling protein abundance. Am J Obstet Gynecol 2017; 216:290.e1-290.e9. [PMID: 27836638 DOI: 10.1016/j.ajog.2016.08.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND The obesogenic and diabetogenic effects of the environmental toxin bisphenol A during critical windows of development are well recognized. Liver and skeletal muscle play a central role in the control of glucose production, utilization, and storage. OBJECTIVES We hypothesized that maternal bisphenol A exposure disrupts insulin signaling in rat offspring liver and skeletal muscle. We determined the protein expression of hepatic and skeletal muscle insulin signaling molecules including insulin receptor beta, its downstream target insulin receptor substrate 1 and glucose transporters (glucose transporter 2, glucose transporter 4), and hepatic glucose-regulating enzymes phosphoenolpyruvate carboxykinase and glucokinase. STUDY DESIGN Rat dams had ad libitum access to filtered drinking water (control) or drinking water with bisphenol A from 2 weeks prior to mating and through pregnancy and lactation. Offspring litters were standardized to 4 males and 4 females and nursed by the same dam. At weaning, bisphenol A exposure was removed from all offspring. Glucose tolerance was tested at 6 weeks and 6 months. Liver and skeletal muscle was collected from 3 week old and 10 month old offspring for protein expression (Western blot) of insulin receptor beta, insulin receptor substrate 1, glucose transporter 2, glucose transporter 4, phosphoenolpyruvate carboxykinase, and glucokinase. RESULTS Male, but not female, bisphenol A offspring had impaired glucose tolerance at 6 weeks and 6 months. Both male and female adult offspring had higher glucose-stimulated insulin secretion as well as the ratio of stimulated insulin to glucose. Male bisphenol A offspring had higher liver protein abundance of the 200 kDa insulin receptor beta precursor (2-fold), and insulin receptor substrate 1 (1.5-fold), whereas glucose transporter 2 was 0.5-fold of the control at 3 weeks of age. In adult male bisphenol A offspring, the abundance of insulin receptor beta was higher (2-fold) and glucose transporter 4 was 0.8-fold of the control in skeletal muscle. In adult female bisphenol A offspring, the skeletal muscle protein abundance of glucose transporter 4 was 0.4-fold of the control. CONCLUSION Maternal bisphenol A had sex- and tissue-specific effects on insulin signaling components, which may contribute to increased risk of glucose intolerance in offspring. Glucose transporters were consistently altered at both ages as well as in both sexes and may contribute to glucose intolerance. These data suggest that maternal bisphenol A exposure should be limited during pregnancy and lactation.
Collapse
|
76
|
Wang Z, Liu H, Liu S. Low-Dose Bisphenol A Exposure: A Seemingly Instigating Carcinogenic Effect on Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600248. [PMID: 28251049 PMCID: PMC5323866 DOI: 10.1002/advs.201600248] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Indexed: 05/21/2023]
Abstract
Breast cancer is the fifth most common cause of cancer death in the world and the second most common fatal cancer in women. Epidemiological studies and clinical data have indicated that hormones, including estrogen, progesterone, and prolactin, play important roles in the initiation and progression of breast cancer. Bisphenol A (BPA) is one of the most commonly used and thoroughly studied endocrine disruptors. It can be released from consumer products and deposited in the environment, thus creating potential for human exposure through oral, inhaled, and dermal routes. Some recent reviews have summarized the known mechanisms of endocrine disruptions by BPA in human diseases, including obesity, reproductive disorders, and birth defects. However, large knowledge gaps still exist on the roles BPA may play in cancer initiation and development. Evidence from animal and in vitro studies has suggested an association between increased incidence of breast cancer and BPA exposure at doses below the safe reference doses that are the most environmentally relevant. Most current studies have paid little attention to the cancer-promoting properties of BPA at low doses. In this review, recent findings on the carcinogenic effects of low-dose BPA on breast cancer and discussed possible biologic mechanisms are summarized.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- School of Public HealthXinxiang Medical UniversityXinxiangHenan Province453003China
| | - Huiyu Liu
- Beijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| |
Collapse
|
77
|
Barbonetti A, Castellini C, Di Giammarco N, Santilli G, Francavilla S, Francavilla F. In vitro exposure of human spermatozoa to bisphenol A induces pro-oxidative/apoptotic mitochondrial dysfunction. Reprod Toxicol 2016; 66:61-67. [DOI: 10.1016/j.reprotox.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
|
78
|
Provvisiero DP, Pivonello C, Muscogiuri G, Negri M, de Angelis C, Simeoli C, Pivonello R, Colao A. Influence of Bisphenol A on Type 2 Diabetes Mellitus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E989. [PMID: 27782064 PMCID: PMC5086728 DOI: 10.3390/ijerph13100989] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) is an organic synthetic compound employed to produce plastics and epoxy resins. It is used as a structural component in polycarbonate beverage bottles and as coating for metal surface in food containers and packaging. The adverse effects of BPA on human health are widely disputed. BPA has been recently associated with a wide variety of medical disorders and, in particular, it was identified as potential endocrine-disrupting compound with diabetogenic action. Most of the clinical observational studies in humans reveal a positive link between BPA exposure, evaluated by the measurement of urinary BPA levels, and the risk of developing type 2 diabetes mellitus. Clinical studies on humans and preclinical studies on in vivo, ex vivo, and in vitro models indicate that BPA, mostly at low doses, may have a role in increasing type 2 diabetes mellitus developmental risk, directly acting on pancreatic cells, in which BPA induces the impairment of insulin and glucagon secretion, triggers inhibition of cell growth and apoptosis, and acts on muscle, hepatic, and adipose cell function, triggering an insulin-resistant state. The current review summarizes the available evidences regarding the association between BPA and type 2 diabetes mellitus, focusing on both clinical and preclinical studies.
Collapse
Affiliation(s)
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Naples 80130, Italy; (C.P.); (C.S.); (A.C.)
| | - Giovanna Muscogiuri
- I.O.S. & COLEMAN S.r.l., Naples 80100, Italy; (D.P.P.); (G.M.); (M.N.); (C.d.A.)
| | - Mariarosaria Negri
- I.O.S. & COLEMAN S.r.l., Naples 80100, Italy; (D.P.P.); (G.M.); (M.N.); (C.d.A.)
| | - Cristina de Angelis
- I.O.S. & COLEMAN S.r.l., Naples 80100, Italy; (D.P.P.); (G.M.); (M.N.); (C.d.A.)
| | - Chiara Simeoli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Naples 80130, Italy; (C.P.); (C.S.); (A.C.)
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Naples 80130, Italy; (C.P.); (C.S.); (A.C.)
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Naples 80130, Italy; (C.P.); (C.S.); (A.C.)
| |
Collapse
|
79
|
Usman A, Ahmad M. From BPA to its analogues: Is it a safe journey? CHEMOSPHERE 2016; 158:131-42. [PMID: 27262103 DOI: 10.1016/j.chemosphere.2016.05.070] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 05/19/2023]
Abstract
Bisphenol-A (BPA) is one of the most abundant synthetic chemicals in the world due to its uses in plastics. Its widespread exposure vis-a-vis low dose effects led to a reduction in its safety dose and imposition of ban on its use in infant feeding bottles. This restriction paved the way for the gradual market entry of its analogues. However, their structural similarity to BPA has put them under surveillance for endocrine disrupting potential. The application of these analogues is increasing and so are the studies reporting their toxicity. This review highlights the reasons which led to the ban of BPA and also reports the exposure and toxicological data available on its analogues. Hence, this compilation is expected to answer in a better way whether the replacement of BPA by these analogues is safer or more harmful?
Collapse
Affiliation(s)
- Afia Usman
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
80
|
Ahmed R. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food Chem Toxicol 2016; 95:168-74. [DOI: 10.1016/j.fct.2016.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/29/2022]
|
81
|
Rutkowska AZ, Diamanti-Kandarakis E. Polycystic ovary syndrome and environmental toxins. Fertil Steril 2016; 106:948-58. [PMID: 27559705 DOI: 10.1016/j.fertnstert.2016.08.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common, heterogeneous, and multifactorial endocrine disorder in premenopausal women. The pathophysiology of this endocrinopathy is still unclear; however, the heterogeneity of its features within ethnic races, geographic location, and families suggests that environment and lifestyle are of prime importance. This work is mainly focused on the possible role of the most common and studied environmental toxins for this syndrome in the pathogenesis of PCOS. Plasticizers, such as bisphenol A (BPA) or phthalates, which belong to the categories of endocrine disrupting chemicals (EDCs) and advanced glycation end products (AGEs), affect humans' health in everyday, industrialized life; therefore special attention should be paid to such exposure. Timing of exposure to EDCs is crucial for the intensity of adverse health effects. It is now evident that fetuses, infants, and/or young children are the most susceptible groups, especially in the early development periods. Prenatal exposure to EDCs that mimic endogenous hormones may contribute to the altered fetal programming and in consequence lead to PCOS and other adverse health effects, potentially transgenerationally. Acute or prolonged exposure to EDCs and AGEs through different life cycle stages may result in destabilization of the hormonal homeostasis and lead to disruption of reproductive functions. They may also interfere with metabolic alterations such as obesity, insulin resistance, and compensatory hyperinsulinemia that can exacerbate the PCOS phenotype and contribute to PCOS consequences such as type 2 diabetes and cardiovascular disease. Since wide exposure to environmental toxins and their role in the pathophysiology of PCOS are supported by extensive data derived from diverse scientific models, protective strategies and strong recommendations should be considered to reduce human exposure to protect present and future generations from their adverse health effects.
Collapse
Affiliation(s)
| | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology and Diabetes Center of Excellence, Medical School University of Athens, EUROCLINIC, Athens, Greece.
| |
Collapse
|
82
|
Experimental Data Extraction and in Silico Prediction of the Estrogenic Activity of Renewable Replacements for Bisphenol A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13070705. [PMID: 27420082 PMCID: PMC4962246 DOI: 10.3390/ijerph13070705] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 01/23/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous compound used in polymer manufacturing for a wide array of applications; however, increasing evidence has shown that BPA causes significant endocrine disruption and this has raised public concerns over safety and exposure limits. The use of renewable materials as polymer feedstocks provides an opportunity to develop replacement compounds for BPA that are sustainable and exhibit unique properties due to their diverse structures. As new bio-based materials are developed and tested, it is important to consider the impacts of both monomers and polymers on human health. Molecular docking simulations using the Estrogenic Activity Database in conjunction with the decision forest were performed as part of a two-tier in silico model to predict the activity of 29 bio-based platform chemicals in the estrogen receptor-α (ERα). Fifteen of the candidates were predicted as ER binders and fifteen as non-binders. Gaining insight into the estrogenic activity of the bio-based BPA replacements aids in the sustainable development of new polymeric materials.
Collapse
|
83
|
Kow LM, Pfaff DW. Rapid estrogen actions on ion channels: A survey in search for mechanisms. Steroids 2016; 111:46-53. [PMID: 26939826 PMCID: PMC4929851 DOI: 10.1016/j.steroids.2016.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022]
Abstract
A survey of nearly two hundred reports shows that rapid estrogenic actions can be detected across a range of kinds of estrogens, a range of doses, on a wide range of tissue, cell and ion channel types. Striking is the fact that preparations of estrogenic agents that do not permeate the cell membrane almost always mimic the actions of the estrogenic agents that do permeate the membrane. All kinds of estrogens, ranging from natural ones, through receptor modulators, endocrine disruptors, phytoestrogens, agonists, and antagonists to novel G-1 and STX, have been reported to be effective. For actions on specific types of ion channels, the possibility of opposing actions, in different cases, is the rule, not the exception. With this variety there is no single, specific action mechanism for estrogens per se, although in some cases estrogens can act directly or via some signaling pathways to affect ion channels. We infer that estrogens can bind a large number of substrates/receptors at the membrane surface. As against the variety of subsequent routes of action, this initial step of the estrogen's binding action is the key.
Collapse
Affiliation(s)
- Lee-Ming Kow
- The Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
84
|
Derghal A, Djelloul M, Trouslard J, Mounien L. An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors. Front Neurosci 2016; 10:318. [PMID: 27445682 PMCID: PMC4928026 DOI: 10.3389/fnins.2016.00318] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are diverse natural and synthetic chemicals that may alter various mechanisms of the endocrine system and produce adverse developmental, reproductive, metabolic, and neurological effects in both humans and wildlife. Research on EDCs has revealed that they use a variety of both nuclear receptor-mediated and non-receptor-mediated mechanisms to modulate different components of the endocrine system. The molecular mechanisms underlying the effects of EDCs are still under investigation. Interestingly, some of the effects of EDCs have been observed to pass on to subsequent unexposed generations, which can be explained by the gametic transmission of deregulated epigenetic marks. Epigenetics is the study of heritable changes in gene expression that occur without a change in the DNA sequence. Epigenetic mechanisms, including histone modifications, DNA methylation, and specific micro-RNAs (miRNAs) expression, have been proposed to mediate transgenerational transmission and can be triggered by environmental factors. MiRNAs are short non-coding RNA molecules that post-transcriptionally repress the expression of genes by binding to 3′-untranslated regions of the target mRNAs. Given that there is mounting evidence that miRNAs are regulated by hormones, then clearly it is important to investigate the potential for environmental EDCs to deregulate miRNA expression and action.
Collapse
Affiliation(s)
- Adel Derghal
- Aix Marseille University, PPSN Marseille, France
| | - Mehdi Djelloul
- Aix Marseille University, PPSNMarseille, France; Department of Cell and Molecular Biology, Karolinska InstituteStockholm, Sweden
| | | | | |
Collapse
|
85
|
Martella A, Silvestri C, Maradonna F, Gioacchini G, Allarà M, Radaelli G, Overby DR, Di Marzo V, Carnevali O. Bisphenol A Induces Fatty Liver by an Endocannabinoid-Mediated Positive Feedback Loop. Endocrinology 2016; 157:1751-63. [PMID: 27014939 PMCID: PMC6285285 DOI: 10.1210/en.2015-1384] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The xenoestrogen bisphenol A (BPA) is a widespread plasticizer detectable within several ecosystems. BPA is considered a metabolic disruptor, affecting different organs; however, little is known about its mechanism of action in the liver, in which it triggers triglyceride accumulation. Adult zebrafish (Danio rerio) exposed to BPA developed hepatosteatosis, which was associated with an increase in the liver levels of the obesogenic endocannabinoids 2-arachidonoylglycerol and anandamide and a concomitant decrease in palmitoylethanolamide. These changes were associated with variations in the expression of key endocannabinoid catabolic and metabolic enzymes and an increase in the expression of the endocannabinoid receptor cnr1. Acute and chronic in vitro treatments with nano- and micromolar BPA doses showed increased anandamide levels in line with decreased activity of fatty acid amide hydrolase, the main anandamide hydrolytic enzyme, and induced triglyceride accumulation in HHL-5 cells in a CB1-dependent manner. We conclude that BPA is able to produce hepatosteatosis in zebrafish and human hepatocytes by up-regulating the endocannabinoid system.
Collapse
Affiliation(s)
- Andrea Martella
- Dipartimento di Scienze della Vita e dell'Ambiente (A.M., F.M., G.G., O.C.), Università Politecnica delle Marche, 60131 Ancona, Italy; Endocannabinoid Research Group (A.M., C.S., M.A., V.D.), Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (NA), Italy; Dipartimento di Biomedicina Comparata e Alimentazione (G.R.), Universitá degli Studi di Padova, 35020 Legnaro (PD), Italy; Department of Bioengineering (C.S., D.R.O.), Imperial College London, London SW7 2AZ, United Kingdom; and Istituto Nazionale Biostrutture e Biosistemi (F.M., O.C.), 00136, Roma, Italy
| | - Cristoforo Silvestri
- Dipartimento di Scienze della Vita e dell'Ambiente (A.M., F.M., G.G., O.C.), Università Politecnica delle Marche, 60131 Ancona, Italy; Endocannabinoid Research Group (A.M., C.S., M.A., V.D.), Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (NA), Italy; Dipartimento di Biomedicina Comparata e Alimentazione (G.R.), Universitá degli Studi di Padova, 35020 Legnaro (PD), Italy; Department of Bioengineering (C.S., D.R.O.), Imperial College London, London SW7 2AZ, United Kingdom; and Istituto Nazionale Biostrutture e Biosistemi (F.M., O.C.), 00136, Roma, Italy
| | - Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente (A.M., F.M., G.G., O.C.), Università Politecnica delle Marche, 60131 Ancona, Italy; Endocannabinoid Research Group (A.M., C.S., M.A., V.D.), Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (NA), Italy; Dipartimento di Biomedicina Comparata e Alimentazione (G.R.), Universitá degli Studi di Padova, 35020 Legnaro (PD), Italy; Department of Bioengineering (C.S., D.R.O.), Imperial College London, London SW7 2AZ, United Kingdom; and Istituto Nazionale Biostrutture e Biosistemi (F.M., O.C.), 00136, Roma, Italy
| | - Giorgia Gioacchini
- Dipartimento di Scienze della Vita e dell'Ambiente (A.M., F.M., G.G., O.C.), Università Politecnica delle Marche, 60131 Ancona, Italy; Endocannabinoid Research Group (A.M., C.S., M.A., V.D.), Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (NA), Italy; Dipartimento di Biomedicina Comparata e Alimentazione (G.R.), Universitá degli Studi di Padova, 35020 Legnaro (PD), Italy; Department of Bioengineering (C.S., D.R.O.), Imperial College London, London SW7 2AZ, United Kingdom; and Istituto Nazionale Biostrutture e Biosistemi (F.M., O.C.), 00136, Roma, Italy
| | - Marco Allarà
- Dipartimento di Scienze della Vita e dell'Ambiente (A.M., F.M., G.G., O.C.), Università Politecnica delle Marche, 60131 Ancona, Italy; Endocannabinoid Research Group (A.M., C.S., M.A., V.D.), Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (NA), Italy; Dipartimento di Biomedicina Comparata e Alimentazione (G.R.), Universitá degli Studi di Padova, 35020 Legnaro (PD), Italy; Department of Bioengineering (C.S., D.R.O.), Imperial College London, London SW7 2AZ, United Kingdom; and Istituto Nazionale Biostrutture e Biosistemi (F.M., O.C.), 00136, Roma, Italy
| | - Giuseppe Radaelli
- Dipartimento di Scienze della Vita e dell'Ambiente (A.M., F.M., G.G., O.C.), Università Politecnica delle Marche, 60131 Ancona, Italy; Endocannabinoid Research Group (A.M., C.S., M.A., V.D.), Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (NA), Italy; Dipartimento di Biomedicina Comparata e Alimentazione (G.R.), Universitá degli Studi di Padova, 35020 Legnaro (PD), Italy; Department of Bioengineering (C.S., D.R.O.), Imperial College London, London SW7 2AZ, United Kingdom; and Istituto Nazionale Biostrutture e Biosistemi (F.M., O.C.), 00136, Roma, Italy
| | - Darryl R Overby
- Dipartimento di Scienze della Vita e dell'Ambiente (A.M., F.M., G.G., O.C.), Università Politecnica delle Marche, 60131 Ancona, Italy; Endocannabinoid Research Group (A.M., C.S., M.A., V.D.), Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (NA), Italy; Dipartimento di Biomedicina Comparata e Alimentazione (G.R.), Universitá degli Studi di Padova, 35020 Legnaro (PD), Italy; Department of Bioengineering (C.S., D.R.O.), Imperial College London, London SW7 2AZ, United Kingdom; and Istituto Nazionale Biostrutture e Biosistemi (F.M., O.C.), 00136, Roma, Italy
| | - Vincenzo Di Marzo
- Dipartimento di Scienze della Vita e dell'Ambiente (A.M., F.M., G.G., O.C.), Università Politecnica delle Marche, 60131 Ancona, Italy; Endocannabinoid Research Group (A.M., C.S., M.A., V.D.), Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (NA), Italy; Dipartimento di Biomedicina Comparata e Alimentazione (G.R.), Universitá degli Studi di Padova, 35020 Legnaro (PD), Italy; Department of Bioengineering (C.S., D.R.O.), Imperial College London, London SW7 2AZ, United Kingdom; and Istituto Nazionale Biostrutture e Biosistemi (F.M., O.C.), 00136, Roma, Italy
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente (A.M., F.M., G.G., O.C.), Università Politecnica delle Marche, 60131 Ancona, Italy; Endocannabinoid Research Group (A.M., C.S., M.A., V.D.), Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (NA), Italy; Dipartimento di Biomedicina Comparata e Alimentazione (G.R.), Universitá degli Studi di Padova, 35020 Legnaro (PD), Italy; Department of Bioengineering (C.S., D.R.O.), Imperial College London, London SW7 2AZ, United Kingdom; and Istituto Nazionale Biostrutture e Biosistemi (F.M., O.C.), 00136, Roma, Italy
| |
Collapse
|
86
|
Chevalier N, Paul-Bellon R, Fénichel P. Comment on "Effects of Atrazine on Estrogen Receptor α- and G Protein-Coupled Receptor 30-Mediated Signaling and Proliferation in Cancer Cells and Cancer-Associated Fibroblasts". ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:A64-A65. [PMID: 27035794 PMCID: PMC4830002 DOI: 10.1289/ehp.1510927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Nicolas Chevalier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Nice, France
- Université de Nice–Sophia Antipolis, Nice, France
- Centre Hospitalier Universitaire de Nice, Nice, France
| | - Rachel Paul-Bellon
- Institut National de la Santé et de la Recherche Médicale (INSERM), Nice, France
- Université de Nice–Sophia Antipolis, Nice, France
| | - Patrick Fénichel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Nice, France
- Université de Nice–Sophia Antipolis, Nice, France
- Centre Hospitalier Universitaire de Nice, Nice, France
| |
Collapse
|
87
|
Menale C, Mita DG, Diano N, Diano S. Adverse Effects of Bisphenol A Exposure on Glucose Metabolism Regulation. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA) is used as basic chemical compound in the production of polycarbonate food containers or epoxy resins coating metallic cans for food and beverages conservation. Its xeno-estrogenic activity alters endocrine-metabolic pathways modulating glucose metabolism and increasing the risk of developing diabetes, insulin resistance, and obesity. Based on in vitro and in vivo experimental research, here we report some of the major BPA adverse effects on tissues that play a key role in the regulation on the whole body’s metabolism. Evidences have shown that BPA is able to exert its endocrine disrupting action altering glucose metabolism and contributing to the onset of metabolic disorders, acting on liver functions and affecting insulin production by the pancreas. Exposure to BPA has been reported also to modulate glucose utilization in muscles, as well as to interfere with adipose tissue endocrine function. In addition, to peripheral tissues, recent studies have shown that BPA by acting in the Central Nervous System affects neuroendocrine regulation of glucose metabolism, promoting glucose metabolism dysfunction such as glucose intolerance and insulin resistance. Thus, exposure to BPA seems to be an important risk factor in the onset of obesity and metabolic syndrome. However, its mechanisms of action need to be further investigated to provide a major evaluation of risk assessment.
Collapse
|
88
|
Jahan S, Ain QU, Ullah H. Therapeutic effects of quercetin against bisphenol A induced testicular damage in male Sprague Dawley rats. Syst Biol Reprod Med 2016; 62:114-24. [DOI: 10.3109/19396368.2015.1115139] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sarwat Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qurat Ul Ain
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hizb Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
89
|
Abstract
Bisphenol A (BPA) is used extensively in the world and is present in a diverse range of manufactured articles including dental resins, polycarbonate plastics, and the inner coating of food cans. It is a high volume chemical, with global production at 3.6 × 10(9) kg per year. BPA was identified as a high priority for assessment of human health risk because it was considered to present greatest potential for human exposure. Most studies of the health effects of BPA have focused on endocrine disruption leading to reproductive toxicity, but it displays additional side effects, including liver damage, disrupted pancreatic β-cell function, thyroid hormone disruption, and obesity-promoting effects. In this article, we reviewed specifically on the effects of BPA in energy balance.
Collapse
Affiliation(s)
- L Le Corre
- a Laboratoire de Toxicologie Alimentaire, INSERM U866, NUTOX, Derttech Packtox , University of Burgundy , Dijon , France
| | | | | |
Collapse
|
90
|
Vitku J, Starka L, Bicikova M, Hill M, Heracek J, Sosvorova L, Hampl R. Endocrine disruptors and other inhibitors of 11β-hydroxysteroid dehydrogenase 1 and 2: Tissue-specific consequences of enzyme inhibition. J Steroid Biochem Mol Biol 2016; 155:207-16. [PMID: 25066675 DOI: 10.1016/j.jsbmb.2014.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/09/2014] [Accepted: 07/19/2014] [Indexed: 01/03/2023]
Abstract
Numerous chemicals in the environment have the ability to interact with the endocrine system. These compounds are called endocrine disruptors (EDs). Exposure to EDs represents one of the hypotheses for decreasing fertility, the increased risk of numerous cancers and obesity, metabolic syndrome and type 2 diabetes. There are various mechanisms of ED action, one of which is their interference in the action of 11β-hydroxysteroid dehydrogenase (11βHSD) that maintains a balance between active and inactive glucocorticoids on the intracellular level. This enzyme has two isoforms and is expressed in various tissues. Inhibition of 11βHSD in various tissues can have different consequences. In the case of EDs, the results of exposure are mainly adverse; on the other hand pharmaceutically developed inhibitors of 11βHSD type 1 are evaluated as an option for treating metabolic syndrome, as well as related diseases and depressive disorders. This review focuses on the effects of 11βHSD inhibitors in the testis, colon, adipose tissue, kidney, brain and placenta.
Collapse
Affiliation(s)
- Jana Vitku
- Institute of Endocrinology, Department of Steroids and Proteofactors, Prague, Czech Republic.
| | - Luboslav Starka
- Institute of Endocrinology, Department of Steroids and Proteofactors, Prague, Czech Republic
| | - Marie Bicikova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Prague, Czech Republic
| | - Martin Hill
- Institute of Endocrinology, Department of Steroids and Proteofactors, Prague, Czech Republic
| | - Jiri Heracek
- Charles University, Third Faculty of Medicine, Department of Urology, Prague, Czech Republic; Faculty Hospital Kralovske Vinohrady, Department of Urology, Prague, Czech Republic
| | - Lucie Sosvorova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Prague, Czech Republic
| | - Richard Hampl
- Institute of Endocrinology, Department of Steroids and Proteofactors, Prague, Czech Republic
| |
Collapse
|
91
|
Green Tea Catechin, EGCG, Suppresses PCB 102-Induced Proliferation in Estrogen-Sensitive Breast Cancer Cells. Int J Breast Cancer 2015; 2015:163591. [PMID: 26783468 PMCID: PMC4691479 DOI: 10.1155/2015/163591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 02/08/2023] Open
Abstract
The persistence of polychlorinated biphenyls (PCBs) in the environment is of considerable concern since they accumulate in human breast tissue and may stimulate the growth of estrogen-sensitive tumors. Studies have shown that EGCG from green tea can modify estrogenic activity and thus may act as a cancer chemopreventive agent. In the present study, we evaluated the individual and combined effects of PCB 102 and EGCG on cell proliferation using an estrogen-sensitive breast cancer cell line MCF-7/BOS. PCB 102 (1-10 μM) increased cell proliferation in a dose-dependent manner. Furthermore, the proliferative effects of PCB 102 were mediated by ERα and could be abrogated by the selective ERα antagonist MPP. EGCG (10-50 μM) caused a dose-dependent inhibition of PCB 102-induced cell proliferation, with nearly complete inhibition at 25 μM EGCG. The antiproliferative action of EGCG was mediated by ERβ and could be blocked by the ERβ-specific inhibitor PHTPP. In conclusion, EGCG suppressed the proliferation-stimulating activity of the environmental estrogen PCB 102 which may be helpful in the chemoprevention of breast cancer.
Collapse
|
92
|
Palioura E, Diamanti-Kandarakis E. Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs). Rev Endocr Metab Disord 2015; 16:365-71. [PMID: 26825073 DOI: 10.1007/s11154-016-9326-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous disorder of unclear etiopathogenesis that is likely to involve genetic and environmental components synergistically contributing to its phenotypic expression. Endocrine disrupting chemicals (EDCs) and in particular Bisphenol A (BPA) represent a group of widespread pollutants intensively investigated as possible environmental contributors to PCOS pathogenesis. Substantial evidence from in vitro and animal studies incriminates endocrine disruptors in the induction of reproductive and metabolic aberrations resembling PCOS characteristics. In humans, elevated BPA concentrations are observed in adolescents and adult PCOS women compared to reproductively healthy ones and are positively correlated with hyperandrogenemia, implying a potential role of the chemical in PCOS pathophysiology, although a causal interference cannot yet be established. It is plausible that developmental exposure to specific EDCs could permanently alter neuroendocrine, reproductive and metabolic regulation favoring PCOS development in genetically predisposed individuals or it could accelerate and/or exacerbate the natural course of the syndrome throughout life cycle exposure.
Collapse
Affiliation(s)
- Eleni Palioura
- Department of Endocrinology and Center of Excellence in Diabetes, Euroclinic Athens, Athens, Greece
| | | |
Collapse
|
93
|
Abstract
The prevalence of obesity, metabolic syndrome and type 2 diabetes has dramatically increased worldwide over the last few decades. Although genetic predisposition and lifestyle factors like decreased physical activity and energy-dense diet are well-known factors in the pathophysiology of these conditions, accumulating evidence suggests that the increase in endocrine disrupting chemicals (EDCs) in the environment also explains a substantial part of the incidence of these metabolic diseases. Bisphenol A (BPA) is one of the highest-volume chemicals produced worldwide. Most people are exposed to it daily by consuming food and beverages into which BPA has leached from polycarbonate containers, including reusable bottles and baby bottles. Although initially considered to be a weak environmental estrogen, BPA may be similar in potency to 17β-estradiol in stimulating cellular responses, especially at low but environmentally relevant doses (nM), as more recent studies have demonstrated. In this review, we summarize both epidemiological evidence and in vivo experimental data that point to an association between BPA exposure and the induction of insulin resistance and/or disruption of pancreatic beta cell function and/or obesity. We then discuss the in vitro data and explain the potential mechanisms involved in the metabolic disorders observed after BPA exposure.
Collapse
Affiliation(s)
- Nicolas Chevalier
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet 2, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, 151 route de Saint-Antoine de Ginestière, CS 23079, 06202, Nice Cedex 3, France
- Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), Nice, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 5 "Environnement, Reproduction et Cancers Hormono-Dépendants", Nice, France
| | - Patrick Fénichel
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet 2, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, 151 route de Saint-Antoine de Ginestière, CS 23079, 06202, Nice Cedex 3, France.
- Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), Nice, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 5 "Environnement, Reproduction et Cancers Hormono-Dépendants", Nice, France.
| |
Collapse
|
94
|
Huo W, Xia W, Wan Y, Zhang B, Zhou A, Zhang Y, Huang K, Zhu Y, Wu C, Peng Y, Jiang M, Hu J, Chang H, Xu B, Li Y, Xu S. Maternal urinary bisphenol A levels and infant low birth weight: A nested case-control study of the Health Baby Cohort in China. ENVIRONMENT INTERNATIONAL 2015; 85:96-103. [PMID: 26382648 DOI: 10.1016/j.envint.2015.09.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Exposure to bisphenol A (BPA), a known endocrine disruptor, has been demonstrated to affect fetal development in animal studies, but findings in human studies have been inconsistent. OBJECTIVES We investigated whether maternal exposure to BPA during pregnancy is associated with an increased risk of infant low birth weight (LBW). METHODS A total 452 mother-infant pairs (113 LBW cases and 339 matched controls) were selected from the participants enrolled in the prospective Health Baby Cohort (HBC) in Wuhan city, China, during 2012-2014. BPA concentrations were measured in maternal urine samples collected at delivery, and the information of birth outcomes was retrieved from the medical records. A conditional logistic regression was used to evaluate the relationship between urinary BPA levels and LBW. RESULTS Mothers with LBW infants had significantly higher urinary BPA levels (median: 4.70μg/L) than the control mothers (median: 2.25μg/L) (p<0.05). Increased risk of LBW was associated with higher maternal urinary levels of BPA [adjusted odds ratio (OR)=3.13 for the medium tertile, 95% confidence interval (CI): 1.21, 8.08; adjusted OR=2.49 for the highest tertile, 95% CI: 0.98, 6.36]. The association was more pronounced among female infants than among male infants, with a statistical evidence of heterogeneity in risk (p=0.03). CONCLUSIONS Prenatal exposure to higher levels of BPA may potentially increase the risk of delivering LBW infants, especially for female infants. This is the first case-control study to examine the association in China.
Collapse
Affiliation(s)
- Wenqian Huo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjian Wan
- CDC of Yangtze River Administration and Navigational Affairs, General Hospital of the Yangtze River Shipping, Wuhan 430019, China
| | - Bin Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, China
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, China
| | - Yiming Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, China
| | - Kai Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingshuang Zhu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuansha Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Peng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minmin Jiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huailong Chang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
95
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
96
|
Maqbool F, Mostafalou S, Bahadar H, Abdollahi M. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sci 2015; 145:265-73. [PMID: 26497928 DOI: 10.1016/j.lfs.2015.10.022] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
Endocrine disrupting chemicals (EDC) are released into environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDC have major risks for human by targeting different organs and systems in the body. Multiple mechanisms are involved in targeting the normal system, through estrogen receptors, nuclear receptors and steroidal receptors activation. In this review, different methods by which xenobiotics stimulate signaling pathways and genetic mutation or DNA methylation have been discussed. These methods help to understand the results of xenobiotic action on the endocrine system. Endocrine disturbances in the human body result in breast cancer, ovarian problems, thyroid eruptions, testicular carcinoma, Alzheimer disease, schizophrenia, nerve damage and obesity. EDC characterize a wide class of compounds such as organochlorinated pesticides, industrial wastes, plastics and plasticizers, fuels and numerous other elements that exist in the environment or are in high use during daily life. The interactions and mechanism of toxicity in relation to human general health problems, especially endocrine disturbances with particular reference to reproductive problems, diabetes, and breast, testicular and ovarian cancers should be deeply investigated. There should also be a focus on public awareness of these EDC risks and their use in routine life. Therefore, the aim of this review is to summarize all evidence regarding different physiological disruptions in the body and possible involved mechanisms, to prove the association between endocrine disruptions and human diseases.
Collapse
Affiliation(s)
- Faheem Maqbool
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran 1417614411, Iran; Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sara Mostafalou
- School of Pharmacy, Ardebil University of Medical Sciences, Ardebil, Iran
| | - Haji Bahadar
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran 1417614411, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
97
|
Abstract
Bisphenol A (BPA) exposure has been associated with serious endocrine-disrupting effects in humans and wildlife. Toxicological and epidemiological studies evidenced that BPA increases body mass index and disrupts normal cardiovascular physiology by interfering with endogenous hormones in rodents, nonhuman primates, and cell culture test systems. The BPA concentration derived from these experiments were used by government regulatory agencies to determine the safe exposure levels of BPA in humans. However, accumulating literature in vivo and in vitro indicate that at concentrations lower than that reported in toxicological studies, BPA could elicit a different endocrine-disrupting capacity. To further complicate this picture, BPA effects rely on several and diverse mechanisms that converge upon endocrine and reproductive systems. If all or just few of these mechanisms concur to the endocrine-disrupting potential of low doses of BPA is at present still unclear. Thus, taking into account that the incidence and/or prevalence of health problems associated with endocrine disruption have increased worldwide, the goal of the present review is to give an overview of the many mechanisms of BPA action in order to decipher whether different mechanisms are at the root of the effect of low dose of BPA on endocrine system.
Collapse
Affiliation(s)
| | | | - Maria Marino
- Department of Science, Roma Tre University, Roma, Italy; INBB-National Laboratory of Gender and Endocrine Disruptors, Roma, Italy
| |
Collapse
|
98
|
Ng HW, Shu M, Luo H, Ye H, Ge W, Perkins R, Tong W, Hong H. Estrogenic activity data extraction and in silico prediction show the endocrine disruption potential of bisphenol A replacement compounds. Chem Res Toxicol 2015; 28:1784-95. [PMID: 26308263 DOI: 10.1021/acs.chemrestox.5b00243] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA) replacement compounds are released to the environment and cause widespread human exposure. However, a lack of thorough safety evaluations on the BPA replacement compounds has raised public concerns. We assessed the endocrine disruption potential of BPA replacement compounds in the market to assist their safety evaluations. A literature search was conducted to ascertain the BPA replacement compounds in use. Available experimental estrogenic activity data of these compounds were extracted from the Estrogenic Activity Database (EADB) to assess their estrogenic potential. An in silico model was developed to predict the estrogenic activity of compounds lacking experimental data. Molecular dynamics (MD) simulations were performed to understand the mechanisms by which the estrogenic compounds bind to and activate the estrogen receptor (ER). Forty-five BPA replacement compounds were identified in the literature. Seven were more estrogenic and five less estrogenic than BPA, while six were nonestrogenic in EADB. A two-tier in silico model was developed based on molecular docking to predict the estrogenic activity of the 27 compounds lacking data. Eleven were predicted as ER binders and 16 as nonbinders. MD simulations revealed hydrophobic contacts and hydrogen bonds as the main interactions between ER and the estrogenic compounds.
Collapse
Affiliation(s)
- Hui Wen Ng
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Mao Shu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Heng Luo
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Hao Ye
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Weigong Ge
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Roger Perkins
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| |
Collapse
|
99
|
Cantonwine DE, Ferguson KK, Mukherjee B, McElrath TF, Meeker JD. Urinary Bisphenol A Levels during Pregnancy and Risk of Preterm Birth. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:895-901. [PMID: 25815860 PMCID: PMC4559950 DOI: 10.1289/ehp.1408126] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/24/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Preterm birth (PTB), a leading cause of infant mortality and morbidity, has a complex etiology with a multitude of interacting causes and risk factors. The role of environmental contaminants, particularly bisphenol A (BPA), is understudied with regard to PTB. OBJECTIVES In the present study we examined the relationship between longitudinally measured BPA exposure during gestation and PTB. METHODS A nested case-control study was performed from women enrolled in a prospective birth cohort study at Brigham and Women's Hospital in Boston, Massachusetts, during 2006-2008. Urine samples were analyzed for BPA concentrations at a minimum of three time points during pregnancy on 130 cases of PTB and 352 randomly assigned controls. Clinical classifications of PTB were defined as "spontaneous," which was preceded by spontaneous preterm labor or preterm premature rupture of membranes, or "placental," which was preceded by preeclampsia or intrauterine growth restriction. RESULTS Geometric mean concentrations of BPA did not differ significantly between cases and controls. In adjusted models, urinary BPA averaged across pregnancy was not significantly associated with PTB. When examining clinical classifications of PTB, urinary BPA late in pregnancy was significantly associated with increased odds of delivering a spontaneous PTB. After stratification on infant's sex, averaged BPA exposure during pregnancy was associated with significantly increased odds of being delivered preterm among females, but not males. CONCLUSIONS These results provide little evidence of a relationship between BPA and prematurity, though further research may be warranted given the generalizability of participant recruitment from a tertiary teaching hospital, limited sample size, and significant associations among females and within the clinical subcategories of PTB. CITATION Cantonwine DE, Ferguson KK, Mukherjee B, McElrath TF, Meeker JD. 2015. Urinary bisphenol A levels during pregnancy and risk of preterm birth. Environ Health Perspect 123:895-901; http://dx.doi.org/10.1289/ehp.1408126.
Collapse
Affiliation(s)
- David E Cantonwine
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
100
|
3D models of bisphenol A and its metabolite 4-methyl-2,4-bis (4-hydroxyphenyl)-pent-1-ene (MBP) antagonist binding to human progesterone receptor. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0012-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|