51
|
Different Mechanisms of Longevity in Long-Lived Mouse and Caenorhabditis elegans Mutants Revealed by Statistical Analysis of Mortality Rates. Genetics 2016; 204:905-920. [PMID: 27638422 DOI: 10.1534/genetics.116.192369] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/28/2016] [Indexed: 12/23/2022] Open
Abstract
Mouse and Caenorhabditis elegans mutants with altered life spans are being used to investigate the aging process and how genes determine life span. The survival of a population can be modeled by the Gompertz function, which comprises two parameters. One of these parameters ("G") describes the rate at which mortality accelerates with age and is often described as the "rate of aging." The other parameter ("A") may correspond to the organism's baseline vulnerability to deleterious effects of disease and the environment. We show that, in mice, life-span-extending mutations systematically fail to affect the age-dependent acceleration of mortality (G), but instead affect only baseline vulnerability (A). This remains true even when comparing strains maintained under identical environmental conditions. In contrast, life-span-extending mutations in C. elegans were associated with decreases in G These observations on mortality rate kinetics suggest that the mechanisms of aging in mammals might fundamentally differ from those in nematodes.
Collapse
|
52
|
Byrne AB, Hammarlund M. Axon regeneration in C. elegans: Worming our way to mechanisms of axon regeneration. Exp Neurol 2016; 287:300-309. [PMID: 27569538 DOI: 10.1016/j.expneurol.2016.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
How axons repair themselves after injury is a fundamental question in neurobiology. With its conserved genome, relatively simple nervous system, and transparent body, C. elegans has recently emerged as a productive model to uncover the cellular mechanisms that regulate and execute axon regeneration. In this review, we discuss the strengths and weaknesses of the C. elegans model of regeneration. We explore the technical advances that enable the use of C. elegans for in vivo regeneration studies, review findings in C. elegans that have contributed to our understanding of the regeneration response across species, discuss the potential of C. elegans research to provide insight into mechanisms that function in the injured mammalian nervous system, and present potential future directions of axon regeneration research using C. elegans.
Collapse
Affiliation(s)
- Alexandra B Byrne
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Marc Hammarlund
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
53
|
Wu JZ, Huang JH, Khanabdali R, Kalionis B, Xia SJ, Cai WJ. Pyrroloquinoline quinone enhances the resistance to oxidative stress and extends lifespan upon DAF-16 and SKN-1 activities in C. elegans. Exp Gerontol 2016; 80:43-50. [PMID: 27090484 DOI: 10.1016/j.exger.2016.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/18/2016] [Accepted: 04/09/2016] [Indexed: 12/21/2022]
Abstract
Pyrroloquinoline quinone (PQQ) is linked to fundamental biological processes such as mitochondrial biogenesis and lipid metabolism. PQQ may also function as an essential micronutrient during animal development. Recent studies have shown the therapeutic potential of PQQ for several age-related diseases due to its antioxidant capacity. However, whether PQQ can promote longevity is unknown. Here, we investigate the effects of PQQ on oxidative stress resistance as well as lifespan modulation in Caenorhabditis elegans. We find that PQQ enhances resistance to oxidative stress and extends the lifespan of C. elegans at optimal doses. The underlying molecular mechanism involves the increased activities of the primary lifespan extension transcriptional factors DAF-16/FOXO, the conserved oxidative stress-responsive transcription factor SKN-1/Nrf2, and upregulation of daf-16, skn-1 downstream targets including sod-3, hsp16.2, gst-1 and gst-10. Our findings uncover a novel role of PQQ in longevity, supporting PQQ as a possible dietary supplement for overall health improvement.
Collapse
Affiliation(s)
- J Z Wu
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China; Institute of Integrated Traditional Chinese and Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - J H Huang
- Institute of Integrated Traditional Chinese and Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - R Khanabdali
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville 3052, Australia
| | - B Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville 3052, Australia
| | - S J Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - W J Cai
- Institute of Integrated Traditional Chinese and Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
54
|
Somvanshi VS, Gahoi S, Banakar P, Thakur PK, Kumar M, Sajnani M, Pandey P, Rao U. A transcriptomic insight into the infective juvenile stage of the insect parasitic nematode, Heterorhabditis indica. BMC Genomics 2016; 17:166. [PMID: 26931371 PMCID: PMC4774024 DOI: 10.1186/s12864-016-2510-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/22/2016] [Indexed: 01/02/2023] Open
Abstract
Background Nematodes are the most numerous animals in the soil. Insect parasitic nematodes of the genus Heterorhabditis are capable of selectively seeking, infecting and killing their insect-hosts in the soil. The infective juvenile (IJ) stage of the Heterorhabditis nematodes is analogous to Caenorhabditis elegans dauer juvenile stage, which remains in ‘arrested development’ till it finds and infects a new insect-host in the soil. H. indica is the most prevalent species of Heterorhabditis in India. To understand the genes and molecular processes that govern the biology of the IJ stage, and to create a resource to facilitate functional genomics and genetic exploration, we sequenced the transcriptome of H. indica IJs. Results The de-novo sequence assembly using Velvet-Oases pipeline resulted in 13,593 unique transcripts at N50 of 1,371 bp, of which 53 % were annotated by blastx. H. indica transcripts showed higher orthology with parasitic nematodes as compared to free living nematodes. In-silico expression analysis showed 30 % of transcripts expressing with ≥100 FPKM value. All the four canonical dauer formation pathways like cGMP-PKG, insulin, dafachronic acid and TGF-β were active in the IJ stage. Several other signaling pathways were highly represented in the transcriptome. Twenty-four orthologs of C. elegans RNAi pathway effector genes were discovered in H. indica, including nrde-3 that is reported for the first time in any of the parasitic nematodes. An ortholog of C. elegans tol-1 was also identified. Further, 272 kinases belonging to 137 groups, and several previously unidentified members of important gene classes were identified. Conclusions We generated high-quality transcriptome sequence data from H. indica IJs for the first time. The transcripts showed high similarity with the parasitic nematodes, M. hapla, and A. suum as opposed to C. elegans, a species to which H. indica is more closely related. The high representation of transcripts from several signaling pathways in the IJs indicates that despite being a developmentally arrested stage; IJs are a hotbed of signaling and are actively interacting with their environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2510-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Shachi Gahoi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Prasoon Kumar Thakur
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Mukesh Kumar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Manisha Sajnani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Priyatama Pandey
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
55
|
Kumar S, Dietrich N, Kornfeld K. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span. PLoS Genet 2016; 12:e1005866. [PMID: 26918946 PMCID: PMC4769152 DOI: 10.1371/journal.pgen.1005866] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/23/2016] [Indexed: 01/23/2023] Open
Abstract
Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new therapeutic strategies for addressing age-related degenerative changes.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
56
|
Prasanth MI, Santoshram GS, Bhaskar JP, Balamurugan K. Ultraviolet-A triggers photoaging in model nematode Caenorhabditis elegans in a DAF-16 dependent pathway. AGE (DORDRECHT, NETHERLANDS) 2016; 38:27. [PMID: 26873884 PMCID: PMC5005890 DOI: 10.1007/s11357-016-9889-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/03/2016] [Indexed: 05/06/2023]
Abstract
Ultraviolet radiations (UV) are the primary causative agent for skin aging (photoaging) and cancer, especially UV-A. The mode of action and the molecular mechanism behind the damages caused by UV-A is not well studied, in vivo. The current study was employed to investigate the impact of UV-A exposure using the model organism, Caenorhabditis elegans. Analysis of lifespan, healthspan, and other cognitive behaviors were done which was supported by the molecular mechanism. UV-A exposure on collagen damages the synthesis and functioning which has been monitored kinetically using engineered strain, col-19:: GFP. The study results suggested that UV-A accelerated the aging process in an insulin-like signaling pathway dependent manner. Mutant (daf-2)-based analysis concrete the observations of the current study. The UV-A exposure affected the usual behavior of the worms like pharyngeal movements and brood size. Quantitative PCR profile of the candidate genes during UV-A exposure suggested that continuous exposure has damaged the neural network of the worms, but the mitochondrial signaling and dietary restriction pathway remain unaffected. Western blot analysis of HSF-1 evidenced the alteration in protein homeostasis in UV-A exposed worms. Outcome of the current study supports our view that C. elegans can be used as a model to study photoaging, and the mode of action of UV-A-mediated damages can be elucidated which will pave the way for drug developments against photoaging.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 004, India
| | | | - James Prabhanand Bhaskar
- ITC - Life Sciences and Technology Centre, ITC Limited, No. 3, 1st Main, Peenya Industrial Area, Bangalore, Karnataka, 560058, India
| | - Krishnaswamy Balamurugan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 004, India.
| |
Collapse
|
57
|
Palmisano NJ, Meléndez A. Detection of Autophagy in Caenorhabditis elegans Using GFP::LGG-1 as an Autophagy Marker. Cold Spring Harb Protoc 2016; 2016:pdb.prot086496. [PMID: 26729905 PMCID: PMC5292878 DOI: 10.1101/pdb.prot086496] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In yeast and mammalian cells, the autophagy protein Atg8/LC3 (microtubule-associated proteins 1A/1B light chain 3B encoded by MAP1LC3B) has been the marker of choice to detect double-membraned autophagosomes that are produced during the process of autophagy. A lipid-conjugated form of Atg8/LC3B is localized to the inner and outer membrane of the early-forming structure known as the phagophore. During maturation of autophagosomes, Atg8/LC3 bound to the inner autophagosome membrane remains in situ as the autophagosomes fuse with lysosomes. The nematode Caenorhabditis elegans is thought to conduct a similar process, meaning that tagging the nematode ortholog of Atg8/LC3-known as LGG-1-with a fluorophore has become a widely accepted method to visualize autophagosomes. Under normal growth conditions, GFP-modified LGG-1 displays a diffuse expression pattern throughout a variety of tissues, whereas, when under conditions that induce autophagy, the GFP::LGG-1 tag labels positive punctate structures, and its overall level of expression increases. Here, we present a protocol for using fluorescent reporters of LGG-1 coupled to GFP to monitor autophagosomes in vivo. We also discuss the use of alternative fluorescent markers and the possible utility of the LGG-1 paralog LGG-2.
Collapse
Affiliation(s)
- Nicholas J. Palmisano
- Queens College-CUNY, Department of Biology, Flushing, NY, USA
- The Graduate Center, The City University of New York, New York, USA
| | - Alicia Meléndez
- Queens College-CUNY, Department of Biology, Flushing, NY, USA
- The Graduate Center, The City University of New York, New York, USA
| |
Collapse
|
58
|
The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity. Cell Metab 2015; 22:151-63. [PMID: 26154057 PMCID: PMC4502596 DOI: 10.1016/j.cmet.2015.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 04/05/2015] [Accepted: 06/02/2015] [Indexed: 01/27/2023]
Abstract
FOXO family transcription factors are downstream effectors of Insulin/IGF-1 signaling (IIS) and major determinants of aging in organisms ranging from worms to man. The molecular mechanisms that actively promote DAF16/FOXO stability and function are unknown. Here we identify the deubiquitylating enzyme MATH-33 as an essential DAF-16 regulator in IIS, which stabilizes active DAF-16 protein levels and, as a consequence, influences DAF-16 functions, such as metabolism, stress response, and longevity in C. elegans. MATH-33 associates with DAF-16 in cellulo and in vitro. MATH-33 functions as a deubiquitylase by actively removing ubiquitin moieties from DAF-16, thus counteracting the action of the RLE-1 E3-ubiquitin ligase. Our findings support a model in which MATH-33 promotes DAF-16 stability in response to decreased IIS by directly modulating its ubiquitylation state, suggesting that regulated oscillations in the stability of DAF-16 protein play an integral role in controlling processes such as metabolism and longevity.
Collapse
|
59
|
Berenstein AJ, Piñero J, Furlong LI, Chernomoretz A. Mining the modular structure of protein interaction networks. PLoS One 2015; 10:e0122477. [PMID: 25856434 PMCID: PMC4391834 DOI: 10.1371/journal.pone.0122477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/11/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cluster-based descriptions of biological networks have received much attention in recent years fostered by accumulated evidence of the existence of meaningful correlations between topological network clusters and biological functional modules. Several well-performing clustering algorithms exist to infer topological network partitions. However, due to respective technical idiosyncrasies they might produce dissimilar modular decompositions of a given network. In this contribution, we aimed to analyze how alternative modular descriptions could condition the outcome of follow-up network biology analysis. METHODOLOGY We considered a human protein interaction network and two paradigmatic cluster recognition algorithms, namely: the Clauset-Newman-Moore and the infomap procedures. We analyzed to what extent both methodologies yielded different results in terms of granularity and biological congruency. In addition, taking into account Guimera's cartographic role characterization of network nodes, we explored how the adoption of a given clustering methodology impinged on the ability to highlight relevant network meso-scale connectivity patterns. RESULTS As a case study we considered a set of aging related proteins and showed that only the high-resolution modular description provided by infomap, could unveil statistically significant associations between them and inter/intra modular cartographic features. Besides reporting novel biological insights that could be gained from the discovered associations, our contribution warns against possible technical concerns that might affect the tools used to mine for interaction patterns in network biology studies. In particular our results suggested that sub-optimal partitions from the strict point of view of their modularity levels might still be worth being analyzed when meso-scale features were to be explored in connection with external source of biological knowledge.
Collapse
Affiliation(s)
- Ariel José Berenstein
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina
| | - Janet Piñero
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Carrer del Dr. Aiguader, 88, 08003—Barcelona, Spain
| | - Laura Inés Furlong
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Carrer del Dr. Aiguader, 88, 08003—Barcelona, Spain
| | - Ariel Chernomoretz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina
- Laboratorio de Biología de Sistemas Integrativa, Fundación Instituto Leloir, Buenos Aires, Argentina
| |
Collapse
|
60
|
Martin N, Beach D, Gil J. Ageing as developmental decay: insights from p16INK4a. Trends Mol Med 2014; 20:667-74. [DOI: 10.1016/j.molmed.2014.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/07/2014] [Accepted: 09/09/2014] [Indexed: 01/03/2023]
|
61
|
Zhuang Z, Lv T, Li M, Zhang Y, Xue T, Yang L, Liu H, Zhang W. The lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2014; 69:304-309. [PMID: 25367047 DOI: 10.1007/s11130-014-0448-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nymphaea hybrid, a water lily from the Nymphaeaceae family, has been found to exhibit some in vivo beneficial effects. In the present study we investigated the lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. We found that Nymphaea hybrid root extract significantly extended the lifespan of C.elegans and improved its locomotion during aging. Moreover, Nymphaea hybrid root extract increased the resistance of C.elegans to both heat stress and oxidative stress. We found that the ability of Nymphaea hybrid root extract to increase lifespan was independent of its antimicrobial effects and was probably associated with its effects on the reproduction of C.elegans. In addition, the lifespan-extending effects of Nymphaea hybrid root extract were found to be dependent on the insulin/IGF signaling pathway. We also found that total flavones of Nymphaea hybrid could increase survival of C.elegans in both normal and adverse conditions, indicating that total flavones comprise the major fractions with lifespan-extending effects. Therefore, Nymphaea hybrid root extract has lifespan-extending effects in C.elegans and could be developed as a functional food.
Collapse
Affiliation(s)
- Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213164, China,
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Regmi SG, Rolland SG, Conradt B. Age-dependent changes in mitochondrial morphology and volume are not predictors of lifespan. Aging (Albany NY) 2014; 6:118-30. [PMID: 24642473 PMCID: PMC3969280 DOI: 10.18632/aging.100639] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is a hallmark of skeletal muscle degeneration during aging. One mechanism through which mitochondrial dysfunction can be caused is through changes in mitochondrial morphology. To determine the role of mitochondrial morphology changes in age-dependent mitochondrial dysfunction, we studied mitochondrial morphology in body wall muscles of the nematode C. elegans. We found that in this tissue, animals display a tubular mitochondrial network, which fragments with increasing age. This fragmentation is accompanied by a decrease in mitochondrial volume. Mitochondrial fragmentation and volume loss occur faster under conditions that shorten lifespan and occur slower under conditions that increase lifespan. However, neither mitochondrial morphology nor mitochondrial volume of five- and seven-day old wild-type animals can be used to predict individual lifespan. Our results indicate that while mitochondria in body wall muscles undergo age-dependent fragmentation and a loss in volume, these changes are not the cause of aging but rather a consequence of the aging process.
Collapse
Affiliation(s)
- Saroj G Regmi
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
63
|
Wen H, Gao X, Qin J. Probing the anti-aging role of polydatin in Caenorhabditis elegans on a chip. Integr Biol (Camb) 2014; 6:35-43. [PMID: 24305800 DOI: 10.1039/c3ib40191j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C. elegans is widely used as a model organism in the study of aging and evaluation of anti-aging drugs due to its unique characteristics. In this work, we set out to investigate polydatin, a natural resveratrol glycoside, and its role in extending lifespan, improving oxidative stress resistance, and the possible regulation mechanism involved in the Insulin/IGF-1 signaling (IIS) pathway for the first time by using a flexible microfluidic device. The effects of polydatin on the lifespan, oxidative stress resistance, mobility and the expression of aging-related proteins and genes were explored. Polydatin was found to significantly extend the mean lifespan of worms by up to 30.7% and 62.1% under normal and acute stress conditions respectively. It improved the expression of the inducible oxidative stress protein (GST-4) and corresponding stroke frequencies in the transgenic CL2166 strain. Moreover, it also increased SOD-3::GFP expression in CF1553 worms and promoted DAF-16 nucleus translocation in TJ356 worms. The longevity-extending role of polydatin is partly attributed to its anti-oxidative activity and increased oxidative stress resistance by regulating the stress-resistance related proteins SOD-3, and daf-16 expression at protein and mRNA levels involved in the IIS pathway. The established microfluidic platform is capable of flexible operation with multiple functions, which not only supports the individual worm's long-term culture with sufficient nutrient exchange, but also facilitates mobility monitoring of the worm, immobilizing and imaging in a controllable and parallel manner. These interesting findings reported here highlight the significance of the natural compound polydatin in the study of aging-related diseases, and the utility of the microfluidic platform for applications in aging studies.
Collapse
Affiliation(s)
- Hui Wen
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
| | | | | |
Collapse
|
64
|
Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 2014; 269:152-72. [PMID: 24699227 DOI: 10.1016/j.neuroscience.2014.03.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations induced by genetic or environmental factors leading to the formation of aberrant networks associated with learning disabilities. Moreover, evidence is accumulating that suggests that also late-onset neurological disorders, even Alzheimer's disease, might be considered disorders of aberrant neural development with pathological changes that are set up at early stages of development before the appearance of the symptoms. Thus, evaluating proteins and pathways that are important in age-related neurodegeneration in the developing brain together with the characterization of mechanisms important during brain development with relevance to brain aging are of crucial importance. In the present review we focus on (1) aspects of neurogenesis with relevance to aging; (2) neurodegenerative disease (NDD)-associated proteins/pathways in the developing brain; and (3) further pathways of the developing or neurodegenerating brains that show commonalities. Elucidation of complex pathogenetic routes characterizing the earliest stage of the detrimental processes that result in pathological aging represents an essential first step toward a therapeutic intervention which is able to reverse these pathological processes and prevent the onset of the disease. Based on the shared features between pathways, we conclude that prevention of NDDs of the elderly might begin during the fetal and childhood life by providing the mothers and their children a healthy environment for the fetal and childhood development.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Austria.
| | - H Adle-Biassette
- Inserm U1141, F-75019 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France; Department of Pathology, Lariboisière Hospital, APHP, Paris, France
| | - I Milenkovic
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - J van Scheppingen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
65
|
Judkins JC, Mahanti P, Hoffman J, Yim I, Antebi A, Schroeder FC. A photocleavable masked nuclear-receptor ligand enables temporal control of C. elegans development. Angew Chem Int Ed Engl 2014; 53:2110-3. [PMID: 24453122 PMCID: PMC4016105 DOI: 10.1002/anie.201307465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/02/2013] [Indexed: 11/10/2022]
Abstract
The development and lifespan of C. elegans are controlled by the nuclear hormone receptor DAF-12, an important model for the vertebrate vitamin D and liver X receptors. As with its mammalian homologues, DAF-12 function is regulated by bile acid-like steroidal ligands; however, tools for investigating their biosynthesis and function in vivo are lacking. A flexible synthesis for DAF-12 ligands and masked ligand derivatives that enable precise temporal control of DAF-12 function was developed. For ligand masking, photocleavable amides of 5-methoxy-N-methyl-2-nitroaniline (MMNA) were introduced. MMNA-masked ligands are bioavailable and after incorporation into the worm, brief UV irradiation can be used to trigger the expression of DAF-12 target genes and initiate development from dauer larvae into adults. The in vivo release of DAF-12 ligands and other small-molecule signals by using photocleavable MMNA-masked ligands will enable functional studies with precise spatial and temporal resolution.
Collapse
|
66
|
Judkins JC, Mahanti P, Hoffman JB, Yim I, Antebi A, Schroeder FC. A Photocleavable Masked Nuclear-Receptor Ligand Enables Temporal Control ofC. elegansDevelopment. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201307465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
67
|
Abstract
The ability of injured axons to regenerate declines with age, yet the mechanisms that regulate axon regeneration in response to age are not known. Here we show that axon regeneration in aging C. elegans motor neurons is inhibited by the conserved insulin/IGF1 receptor DAF-2. DAF-2's function in regeneration is mediated by intrinsic neuronal activity of the forkhead transcription factor DAF-16/FOXO. DAF-16 regulates regeneration independently of lifespan, indicating that neuronal aging is an intrinsic, neuron-specific, and genetically regulated process. In addition, we found that DAF-18/PTEN inhibits regeneration independently of age and FOXO signaling via the TOR pathway. Finally, DLK-1, a conserved regulator of regeneration, is downregulated by insulin/IGF1 signaling, bound by DAF-16 in neurons, and required for both DAF-16- and DAF-18-mediated regeneration. Together, our data establish that insulin signaling specifically inhibits regeneration in aging adult neurons and that this mechanism is independent of PTEN and TOR.
Collapse
|
68
|
Gray JC, Cutter AD. Mainstreaming Caenorhabditis elegans in experimental evolution. Proc Biol Sci 2014; 281:20133055. [PMID: 24430852 DOI: 10.1098/rspb.2013.3055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.
Collapse
Affiliation(s)
- Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, , 25 Willcocks Street, Toronto, Ontario, Canada , M5S 3B2
| | | |
Collapse
|
69
|
Priebe S, Menzel U, Zarse K, Groth M, Platzer M, Ristow M, Guthke R. Extension of life span by impaired glucose metabolism in Caenorhabditis elegans is accompanied by structural rearrangements of the transcriptomic network. PLoS One 2013; 8:e77776. [PMID: 24204961 PMCID: PMC3813781 DOI: 10.1371/journal.pone.0077776] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/05/2013] [Indexed: 12/20/2022] Open
Abstract
Glucose restriction mimicked by feeding the roundworm Caenorhabditis elegans with 2-deoxy-D-glucose (DOG) - a glucose molecule that lacks the ability to undergo glycolysis - has been found to increase the life span of the nematodes considerably. To facilitate understanding of the molecular mechanisms behind this life extension, we analyzed transcriptomes of DOG-treated and untreated roundworms obtained by RNA-seq at different ages. We found that, depending on age, DOG changes the magnitude of the expression values of about 2 to 24 percent of the genes significantly, although our results reveal that the gross changes introduced by DOG are small compared to the age-induced changes. We found that 27 genes are constantly either up- or down-regulated by DOG over the whole life span, among them several members of the cytochrome P450 family. The monotonic change with age of the temporal expression patterns of the genes was investigated, leading to the result that 21 genes reverse their monotonic behaviour under impaired glycolysis. Put simply, the DOG-treatment reduces the gross transcriptional activity but increases the interconnectedness of gene expression. However, a detailed analysis of network parameters discloses that the introduced changes differ remarkably between individual signalling pathways. We found a reorganization of the hubs of the mTOR pathway when standard diet is replaced by DOG feeding. By constructing correlation based difference networks, we identified those signalling pathways that are most vigorously changed by impaired glycolysis. Taken together, we have found a number of genes and pathways that are potentially involved in the DOG-driven extension of life span of C. elegans. Furthermore, our results demonstrate how the network structure of ageing-relevant signalling pathways is reorganised under impaired glycolysis.
Collapse
Affiliation(s)
- Steffen Priebe
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
- * E-mail:
| | - Uwe Menzel
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| | - Kim Zarse
- Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany
| | - Marco Groth
- Genome Analysis Group, Leibniz Institute for Age Research - Fritz-Lipmann-Institute, Jena, Germany
| | - Matthias Platzer
- Genome Analysis Group, Leibniz Institute for Age Research - Fritz-Lipmann-Institute, Jena, Germany
| | - Michael Ristow
- Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany
| | - Reinhard Guthke
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| |
Collapse
|
70
|
Kassahun H, Nilsen H. Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1. WORM 2013; 2:e27337. [PMID: 24744987 DOI: 10.4161/worm.27337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/25/2013] [Indexed: 01/04/2023]
Abstract
Oxidative stress promotes human aging and contributes to common neurodegenerative diseases. Endogenous DNA damage induced by oxidative stress is believed to be an important promoter of neurodegenerative diseases. Although a large amount of evidence correlates a reduced DNA repair capacity with aging and neurodegenerative disease, there is little direct evidence of causality. Moreover, the contribution of oxidative DNA damage to the aging process is poorly understood. We have used the nematode Caenorhabditis elegans to study the contribution of oxidative DNA damage and repair to aging. C. elegans is particularly well suited to tackle this problem because it has a minimum complexity DNA repair system, which enables us to circumvent the important limitation presented by the extensive redundancy of DNA repair enzymes in mammals.
Collapse
Affiliation(s)
- Henok Kassahun
- The Biotechnology Centre; University of Oslo; Oslo, Norway
| | - Hilde Nilsen
- The Biotechnology Centre; University of Oslo; Oslo, Norway
| |
Collapse
|
71
|
Torgovnick A, Schiavi A, Maglioni S, Ventura N. Healthy aging: what can we learn from Caenorhabditis elegans? Z Gerontol Geriatr 2013; 46:623-8. [DOI: 10.1007/s00391-013-0533-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
72
|
Hou L, Huang J, Green CD, Boyd-Kirkup J, Zhang W, Yu X, Gong W, Zhou B, Han JDJ. Systems biology in aging: linking the old and the young. Curr Genomics 2013; 13:558-65. [PMID: 23633915 PMCID: PMC3468888 DOI: 10.2174/138920212803251418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/11/2012] [Accepted: 07/25/2012] [Indexed: 12/05/2022] Open
Abstract
Aging can be defined as a process of progressive decline in the physiological capacity of an organism, manifested by accumulated alteration and destabilization at the whole system level. Systems biology approaches offer a promising new perspective to examine the old problem of aging. We begin this review by introducing the concepts of systems biology, and then illustrate the application of systems biology approaches to aging research, from gene expression profiling to network analysis. We then introduce the network that can be constructed using known lifespan and aging regulators, and conclude with a look forward to the future of systems biology in aging research. In summary, systems biology is not only a young field that may help us understand aging at a higher level, but also an important platform that can link different levels of knowledge on aging, moving us closer to a more comprehensive control of systematic decline during aging.
Collapse
Affiliation(s)
- Lei Hou
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China ; Center of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Liu T, Cai D. Counterbalance between BAG and URX neurons via guanylate cyclases controls lifespan homeostasis in C. elegans. EMBO J 2013; 32:1529-42. [PMID: 23584532 PMCID: PMC3671255 DOI: 10.1038/emboj.2013.75] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 03/12/2013] [Indexed: 01/13/2023] Open
Abstract
Lifespan of C. elegans is affected by the nervous system; however, the underlying neural integration still remains unclear. In this work, we targeted an antagonistic neural system consisting of low-oxygen sensing BAG neurons and high-oxygen sensing URX neurons. While ablation of BAG neurons increases lifespan of C. elegans, ablation of URX neurons decreases lifespan. Genetic analysis revealed that BAG and URX neurons counterbalance each other via different guanylate cyclases (GCYs) to control lifespan balance. Lifespan-modulating effects of GCYs in these neurons are independent of the actions from insulin/IGF-1 signalling, germline signalling, sensory perception, or dietary restriction. Given the known gas-sensing property of these neurons, we profiled that lifespan of C. elegans is promoted under moderately low oxygen (4-12%) or moderately high carbon dioxide (5%) but inhibited under high-level oxygen (40%); however, these pro-longevity and anti-longevity effects are counteracted, respectively, by BAG and URX neurons via different GCYs. In conclusion, BAG and URX neurons work as a neural-regulatory system to counterbalance each other via different GCYs to control lifespan homeostasis.
Collapse
Affiliation(s)
- Tiewen Liu
- Department of Molecular Pharmacology, Institute of Aging, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
74
|
Arczewska KD, Tomazella GG, Lindvall JM, Kassahun H, Maglioni S, Torgovnick A, Henriksson J, Matilainen O, Marquis BJ, Nelson BC, Jaruga P, Babaie E, Holmberg CI, Bürglin TR, Ventura N, Thiede B, Nilsen H. Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1. Nucleic Acids Res 2013; 41:5368-81. [PMID: 23580547 PMCID: PMC3664812 DOI: 10.1093/nar/gkt225] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.
Collapse
Affiliation(s)
- Katarzyna D Arczewska
- The Biotechnology Centre, University of Oslo, PO Box 1125 Blindern, 0317 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Hwang H, Lu H. Microfluidic tools for developmental studies of small model organisms--nematodes, fruit flies, and zebrafish. Biotechnol J 2013; 8:192-205. [PMID: 23161817 PMCID: PMC3918482 DOI: 10.1002/biot.201200129] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/13/2012] [Accepted: 09/24/2012] [Indexed: 12/15/2022]
Abstract
Studying the genetics of development with small model organisms such as the zebrafish (Danio Rerio), the fruit fly (Drosophila melanogaster), and the soil-dwelling nematode (Caenorhabditis elegans), provide unique opportunities for understanding related processes and diseases in humans. These model organisms also have potential for use in drug discovery and toxicity-screening applications. There have been sweeping developments in microfabrication and microfluidic technologies for manipulating and imaging small objects, including small model organisms, which allow high-throughput quantitative biological studies. Here, we review recent progress in microfluidic tools able to manipulate small organisms and project future directions and applications of these techniques and technologies.
Collapse
Affiliation(s)
- Hyundoo Hwang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, USA, Tel: +1-404-894-8473
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, USA, Tel: +1-404-894-8473
| |
Collapse
|
76
|
Inukai S, Slack F. MicroRNAs and the genetic network in aging. J Mol Biol 2013; 425:3601-8. [PMID: 23353823 DOI: 10.1016/j.jmb.2013.01.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) comprise a class of small RNAs important for the posttranscriptional regulation of numerous biological processes. Their combinatorial mode of function, in which an individual miRNA can target many genes and multiple miRNAs share targets, makes them especially suited for regulating processes and pathways at the "network" level. In particular, miRNAs have recently been implicated in aging, which is a complex process known to involve multiple pathways. Findings from genome-wide miRNA expression profiling studies highlight three themes in miRNA function during aging: many miRNAs are differentially expressed, many such miRNAs target known aging-associated pathways, and there are global trends in miRNA expression change over time. In addition, several miRNAs have emerged as potentially coordinating multiple pathways during aging. Elucidating the underlying network structure of genes and miRNAs involved in aging processes promises to advance our understanding of not only aging and associated pathogenesis but also how miRNAs can connect disparate pathways.
Collapse
Affiliation(s)
- Sachi Inukai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | |
Collapse
|
77
|
Ageing and the small, non-coding RNA world. Ageing Res Rev 2013; 12:429-35. [PMID: 22504407 DOI: 10.1016/j.arr.2012.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/12/2012] [Accepted: 03/29/2012] [Indexed: 01/09/2023]
Abstract
MicroRNAs, a class of small, non-coding RNAs, are now widely known for their importance in many aspects of biology. These small regulatory RNAs have critical functions in diverse biological events, including development and disease. Recent findings show that microRNAs are essential for lifespan determination in the model organisms, Caenorhabditis elegans and Drosophila, suggesting that microRNAs are also involved in the complex process of ageing. Further, short RNA fragments derived from longer parental RNAs, such as transfer RNA cleavage fragments, have now emerged as a novel class of regulatory RNAs that inhibit translation in response to stress. In addition, the RNA editing pathway is likely to act in the double-stranded RNA-mediated silencing machinery to suppress unfavorable RNA interference activity in the ageing process. These multiple, redundant layers in gene regulatory networks may make it possible to both stably and flexibly regulate genetic pathways in ensuring robustness of developmental and ageing processes.
Collapse
|
78
|
NSBP-1 mediates the effects of cholesterol on insulin/IGF-1 signaling in Caenorhabditis elegans. Cell Mol Life Sci 2012; 70:1623-36. [PMID: 23255046 DOI: 10.1007/s00018-012-1221-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/30/2012] [Accepted: 11/22/2012] [Indexed: 01/12/2023]
Abstract
Nematode sterol-binding protein 1 (NSBP-1) is a homolog of nucleosome assembly protein 1 in mammals that is expressed widely in Caenorhabditis elegans. NSBP-1 mutants are biologically lethal, demonstrating the significance of the gene in growth and development. We investigated how cholesterol influences the insulin signaling pathway through this novel sterol-binding protein in C. elegans. Here we report that NSBP-1 influences many biological processes mediated by insulin signaling, such as longevity, dauer formation, fat storage, and resistance to oxidative stress. We found that NSBP-1 is phosphorylated by AKT-1 downstream of insulin signaling. In the absence of insulin signaling, NSBP-1 is translocated to the nucleus and binds to DAF-16, a FOXO transcription factor, in a cholesterol-dependent manner. Moreover, NSBP-1 and DAF-16 regulate a common set of genes that can directly modulate fat storage, longevity, and resistance to stress. Together, our results present a new steroid-binding molecule that can connect sterol signaling to insulin signaling through direct interaction with FOXO.
Collapse
|
79
|
Abstract
Discovering the biological basis of aging is one of the greatest remaining challenges for science. Work on the biology of aging has discovered a range of interventions and pathways that control aging rate. A picture is emerging of a signaling network that is sensitive to nutritional status and that controls growth, stress resistance, and aging. This network includes the insulin/IGF-1 and target of rapamycin (TOR) pathways and likely mediates the effects of dietary restriction on aging. Yet the biological processes upon which these pathways act to control life span remain unclear. A long-standing guiding assumption about aging is that it is caused by wear and tear, particularly damage at the molecular level. One view is that reactive oxygen species (ROS), including free radicals, generated as by-products of cellular metabolism, are a major contributor to this damage. Yet many recent tests of the oxidative damage theory have come up negative. Such tests have opened an exciting new phase in biogerontology in which fundamental assumptions about aging are being reexamined and revolutionary concepts are emerging. Among these concepts is the hyperfunction theory, which postulates that processes contributing to growth and reproduction run on in later life, leading to hypertrophic and hyperplastic pathologies. Here we reexamine central concepts about the nature of aging.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
80
|
Abstract
Many genes and pathways are known to modulate lifespan in various organisms, but it remains unclear whether there exists a common aging program, and how individual variations of lifespan can occur in an isogenic population. Recent studies on aging regulation at the systems and epigenetic levels point to the possibility of regulating and potentially reversing the aging epigenome and transcriptome, resulting in differential aging status and aging rate in different individuals. Here, the author summarize some of these findings and discuss the possibility of integrating multiple layers of aging regulation at the systems level, to identify an aging program that can explain lifespan variations introduced by environmental and developmental history.
Collapse
Affiliation(s)
- Jing-Dong Jackie Han
- Chinese Academy of Sciences Key laboratory for Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
81
|
Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system. J Neurosci 2012; 32:8778-90. [PMID: 22745480 DOI: 10.1523/jneurosci.1494-11.2012] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.
Collapse
|
82
|
Cañuelo A, Gilbert-López B, Pacheco-Liñán P, Martínez-Lara E, Siles E, Miranda-Vizuete A. Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans. Mech Ageing Dev 2012; 133:563-74. [PMID: 22824366 DOI: 10.1016/j.mad.2012.07.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/20/2012] [Accepted: 07/13/2012] [Indexed: 01/13/2023]
Abstract
Extra virgin olive oil (EVOO) consumption has been traditionally related to a higher longevity in the human population. EVOO effects on health are often attributed to its unique mixture of phenolic compounds with tyrosol and hydroxityrosol being the most biologically active. Although these compounds have been extensively studied in terms of their antioxidant potential and its role in different pathologies, their actual connection with longevity remains unexplored. This study utilized the nematode Caenorhabditis elegans to investigate the possible effects of tyrosol in metazoan longevity. Significant lifespan extension was observed at one specific tyrosol concentration, which also induced a higher resistance to thermal and oxidative stress and delayed the appearance of a biomarker of ageing. We also report that, although tyrosol was efficiently taken up by these nematodes, it did not induce changes in development, body length or reproduction. In addition, lifespan experiments with several mutant strains revealed that components of the heat shock response (HSF-1) and the insulin pathway (DAF-2 and DAF-16) might be implicated in mediating tyrosol effects in lifespan, while caloric restriction and sirtuins do not seem to mediate its effects. Together, our results point to hormesis as a possible mechanism to explain the effects of tyrosol on longevity in C. elegans.
Collapse
Affiliation(s)
- Ana Cañuelo
- Departamento de Biología Experimental, Universidad de Jaén, Edif. B-3, 23071 Jaén, Spain.
| | | | | | | | | | | |
Collapse
|
83
|
Tissenbaum HA. Genetics, life span, health span, and the aging process in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2012; 67:503-10. [PMID: 22499764 PMCID: PMC3410663 DOI: 10.1093/gerona/gls088] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/23/2012] [Indexed: 11/14/2022] Open
Abstract
As a tool for measuring the aging process, life span has been invaluable in dissecting the genes that modulate longevity. Studies over the past few decades have identified several hundred genes that can modify life span in model organisms such as yeast, worms, and flies. Yet, despite this vast amount of research, we still do not fully understand how the genes that affect life span influence how an organism ages. How does modulation of the genes that affect life span contribute to the aging process? Does life-span extension result in extension of healthy aging? Here, we will focus primarily on the insulin/IGF-1 signaling pathway in Caenorhabditis elegans because members of this pathway have been shown to be associated with extended life span across phylogeny, from worms to humans. I discuss how this connects to the aging process, age-associated disease, and the potential to increase healthy aging in addition to lengthening life span.
Collapse
Affiliation(s)
- Heidi A Tissenbaum
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
84
|
Wang J, Nakad R, Schulenburg H. Activation of the Caenorhabditis elegans FOXO family transcription factor DAF-16 by pathogenic Bacillus thuringiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:193-201. [PMID: 21945834 DOI: 10.1016/j.dci.2011.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 05/31/2023]
Abstract
The FOXO family of transcription factors have recently been implicated in innate immunity, especially in case of DAF-16 from the nematode Caenorhabditis elegans. However, previous studies with this nematode proposed that DAF-16 is not directly activated by pathogens. Rather, DAF-16 mediates resistance if activated by some other cue as part of a general stress response. We specifically tested this notion by analysis of DAF-16 nuclear translocation and thus regulatory activity upon exposure to pathogenic Bacillus thuringiensis. Our results demonstrate that DAF-16 nuclear translocation is indeed particularly induced in response to bacterial pathogenicity, whereas infection load alone has little effect. Translocation is strongest at an early time point, suggesting a role during the immediate immune response. The increased DAF-16 availability is associated with higher resistance and a reduction in feeding behaviour. Taken together, our data highlight that a FOXO transcription factor directly responds to pathogens and thus contributes to immune defence.
Collapse
Affiliation(s)
- Jun Wang
- Department of Animal Evolutionary Ecology, Zoological Institute, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | | | | |
Collapse
|
85
|
Pujol-Lereis LM, Rabossi A, Quesada-Allué LA. Lipid profiles as indicators of functional senescence in the medfly. Exp Gerontol 2012; 47:465-72. [PMID: 22765950 DOI: 10.1016/j.exger.2012.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 12/11/2022]
Abstract
Changes associated with the age-related decline of physiological functions, and their relation with mortality rates, are thoroughly being investigated in the aging research field. We used the Mediterranean fruit fly Ceratitis capitata, largely studied by biodemographers, as a model for functional senescence studies. The aim of our work was to find novel combinatorial indicators able to reflect the functional state of adult insects, regardless of chronological age. We studied the profiles of neutral and polar lipids of head, thorax and abdomen of standard populations kept at 23 °C, at different ages. Lipid classes were separated by thin layer chromatography, and the quantitative values were used to find patterns of change using a multivariate principal component analysis approach. The lipid-dependent principal components obtained correlated with age, and differences between sexes were consistent with differences in the shape of the survival curves and the mortality parameters. These same components were able to discriminate populations with a behavioral decline due to a mild 28 °C thermal stress. Thus, young populations at 28 °C showed similar lipid profiles than old populations at 23 °C. The results indicated that the lipid-dependent components reflect the functional state of the flies, and so were named functional state components (FSCs). It is proposed that FSCs may be used as functional senescence indicators.
Collapse
Affiliation(s)
- Luciana Mercedes Pujol-Lereis
- IIBBA-CONICET, Química Biológica-FCEyN-Universidad de Buenos Aires and Fundación Instituto Leloir, Buenos Aires, Argentina.
| | | | | |
Collapse
|
86
|
Ni Z, Ebata A, Alipanahiramandi E, Lee SS. Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell 2012; 11:315-25. [PMID: 22212395 DOI: 10.1111/j.1474-9726.2011.00785.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Changes in epigenetic status and chromatin structure have been shown to associate with aging in many organisms. Here, we report an RNAi screen of putative histone methyltransferases and demethylases in wild-type Caenorhabditis elegans using reproduction inhibitor. We identified six genes that when inactivated by RNAi, consistently extend lifespan. Five of these genes do not require germline proliferation to affect lifespan. We further characterized two of these genes, the highly homologous SET domain containing genes, set-9 and set-26. They share redundant functions in maintaining normal lifespan, while exhibiting differential tissue expression patterns. Furthermore, we found that set-9 and set-26 partially act through the Forkhead box O (FOXO) transcription factor, DAF-16, to modulate lifespan. Interestingly, inactivation of somatic SET-26 alone results in a robust lifespan extension and alters the levels of histone H3 protein and the repressive histone marks, H3K9me3 and H3K27me3, in an age-dependent manner. We hypothesize that inactivation of SET-26 triggers compensation mechanisms to restore repressive chromatin structure and hence affects chromatin stability to promote longevity.
Collapse
Affiliation(s)
- Zhuoyu Ni
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
87
|
Pilling LC, Harries LW, Powell J, Llewellyn DJ, Ferrucci L, Melzer D. Genomics and successful aging: grounds for renewed optimism? J Gerontol A Biol Sci Med Sci 2012; 67:511-9. [PMID: 22454374 DOI: 10.1093/gerona/gls091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Successful aging depends in part on delaying age-related disease onsets until later in life. Conditions including coronary artery disease, Alzheimer's disease, prostate cancer, and type 2 diabetes are moderately heritable. Genome-wide association studies have identified many risk associated single-nucleotide polymorphisms for these conditions, but much heritability remains unaccounted for. Nevertheless, a great deal is being learned. METHODS Here, we review age-related disease associated single-nucleotide polymorphisms and identify key underlying pathways including lipid handling, specific immune processes, early tissue development, and cell cycle control. RESULTS Most age-related disease associated single-nucleotide polymorphisms do not affect coding regions of genes or protein makeup but instead influence regulation of gene expression. Recent evidence indicates that evolution of gene regulatory sites is fundamental to interspecies differences. Animal models relevant to human aging may therefore need to focus more on gene regulation rather than testing major disruptions to fundamental pathway genes. Recent larger scale human studies of in vivo genome-wide expression (notably from the InCHIANTI aging study) have identified changes in splicing, the "fine tuning" of protein sequences, as a potentially important factor in decline of cellular function with age. Studies of expression with muscle strength and cognition have shown striking concordance with certain mice models of muscle repair and beta-amyloid phagocytosis respectively. CONCLUSIONS The emerging clearer picture of the genetic architecture of age-related diseases in humans is providing new insights into the underlying pathophysiological pathways involved. Translation of genomics into new approaches to prevention, tests and treatments to extend successful aging is therefore likely in the coming decades.
Collapse
Affiliation(s)
- L C Pilling
- Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK
| | | | | | | | | | | |
Collapse
|
88
|
C. elegans VANG-1 modulates life span via insulin/IGF-1-like signaling. PLoS One 2012; 7:e32183. [PMID: 22359667 PMCID: PMC3281126 DOI: 10.1371/journal.pone.0032183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/23/2012] [Indexed: 02/07/2023] Open
Abstract
The planar cell polarity (PCP) pathway is highly conserved from Drosophila to humans and a PCP-like pathway has recently been described in the nematode Caenorhabditis elegans. The developmental function of this pathway is to coordinate the orientation of cells or structures within the plane of an epithelium or to organize cell-cell intercalation required for correct morphogenesis. Here, we describe a novel role of VANG-1, the only C. elegans ortholog of the conserved PCP component Strabismus/Van Gogh. We show that two alleles of vang-1 and depletion of the protein by RNAi cause an increase of mean life span up to 40%. Consistent with the longevity phenotype vang-1 animals also show enhanced resistance to thermal- and oxidative stress and decreased lipofuscin accumulation. In addition, vang-1 mutants show defects like reduced brood size, decreased ovulation rate and prolonged reproductive span, which are also related to gerontogenes. The germline, but not the intestine or neurons, seems to be the primary site of vang-1 function. Life span extension in vang-1 mutants depends on the insulin/IGF-1-like receptor DAF-2 and DAF-16/FoxO transcription factor. RNAi against the phase II detoxification transcription factor SKN-1/Nrf2 also reduced vang-1 life span that might be explained by gradual inhibition of insulin/IGF-1-like signaling in vang-1. This is the first time that a key player of the PCP pathway is shown to be involved in the insulin/IGF-1-like signaling dependent modulation of life span in C. elegans.
Collapse
|
89
|
Jensen LT, Møller TH, Larsen SA, Jakobsen H, Olsen A. A new role for laminins as modulators of protein toxicity in Caenorhabditis elegans. Aging Cell 2012; 11:82-92. [PMID: 22051349 DOI: 10.1111/j.1474-9726.2011.00767.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein misfolding is a common theme in aging and several age-related diseases such as Alzheimer's and Parkinson's disease. The processes involved in the development of these diseases are many and complex. Here, we show that components of the basement membrane (BM), particularly laminin, affect protein integrity of the muscle cells they support. We knocked down gene expression of epi-1, a laminin α-chain, and found that this resulted in increased proteotoxicity in different Caenorhabditis elegans transgenic models, expressing aggregating proteins in the body wall muscle. The effect could partially be rescued by decreased insulin-like signaling, known to slow the aging process and the onset of various age-related diseases. Our data points to an underlying molecular mechanism involving proteasomal degradation and HSP-16 chaperone activity. Furthermore, epi-1-depleted animals had altered synaptic function and displayed hypersensitivity to both levamisole and aldicarb, an acetylcholine receptor agonist and an acetylcholinesterase inhibitor, respectively. Our results implicate the BM as an extracellular modulator of protein homeostasis in the adjacent muscle cells. This is in agreement with previous research showing that imbalance in neuromuscular signaling disturbs protein homeostasis in the postsynaptic cell. In our study, proteotoxicity may indeed be mediated by the neuromuscular junction which is part of the BM, where laminins are present in high concentration, ensuring the proper microenvironment for neuromuscular signaling. Laminins are evolutionarily conserved, and thus the BM may play a much more causal role in protein misfolding diseases than currently recognized.
Collapse
Affiliation(s)
- Louise T Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
90
|
Significant longevity-extending effects of a tetrapeptide from maize on Caenorhabditis elegans under stress. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
91
|
Tazearslan C, Cho M, Suh Y. Discovery of functional gene variants associated with human longevity: opportunities and challenges. J Gerontol A Biol Sci Med Sci 2011; 67:376-83. [PMID: 22156437 DOI: 10.1093/gerona/glr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Age is a major risk factor for many human diseases. Extremely long-lived individuals, such as centenarians, have managed to ward off age-related diseases and serve as human models to search for the genetic factors that influence longevity. The discovery of evolutionarily conserved pathways with major impact on life span in animal models has provided tantalizing opportunities to test the relevance of these pathways for human longevity. Here we specifically focus on the insulin/insulin-like growth factor-1 signaling as a prime candidate pathway. Coupled with the rapid advances in ultra high-throughput sequencing technologies, it is now feasible to comprehensively analyze all possible sequence variants in candidate genes segregating with a longevity phenotype and to investigate the functional consequences of the associated variants. A better understanding of the functional genes that affect healthy longevity in humans may lead to a rational basis for intervention strategies that can delay or prevent age-related diseases.
Collapse
Affiliation(s)
- Cagdas Tazearslan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
92
|
Monje JM, Brokate-Llanos AM, Pérez-Jiménez MM, Fidalgo MA, Muñoz MJ. pkc-1 regulates daf-2 insulin/IGF signalling-dependent control of dauer formation in Caenorhabditis elegans. Aging Cell 2011; 10:1021-31. [PMID: 21933341 DOI: 10.1111/j.1474-9726.2011.00747.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In Caenorhabditis elegans, the insulin/IGF pathway participates in the decision to initiate dauer development. Dauer is a diapause stage that is triggered by environmental stresses, such as a lack of nutrients. Insulin/IGF receptor mutants arrest constitutively in dauer, an effect that can be suppressed by mutations in other elements of the insulin/IGF pathway or by a reduction in the activity of the nuclear hormone receptor daf-12. We have isolated a pkc-1 mutant that acts as a novel suppressor of the dauer phenotypes caused by insulin/IGF receptor mutations. Interactions between insulin/IGF mutants and the pkc-1 suppressor mutant are similar to those described for daf-12 or the DAF-12 coregulator din-1. Moreover, we show that the expression of the DAF-12 target daf-9, which is normally elevated upon a reduction in insulin/IGF receptor activity, is suppressed in a pkc-1 mutant background, suggesting that pkc-1 could link the daf-12 and insulin/IGF pathways. pkc-1 has been implicated in the regulation of peptide neurosecretion in C. elegans. Although we demonstrate that pkc-1 expression in the nervous system regulates dauer formation, our results suggest that the requirement for pkc-1 in neurosecretion is independent of its role in modulating insulin/IGF signalling. pkc-1 belongs to the novel protein kinase C (nPKC) family, members of which have been implicated in insulin resistance and diabetes in mammals, suggesting a conserved role for pkc-1 in the regulation of the insulin/IGF pathway.
Collapse
Affiliation(s)
- José M Monje
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC/Universidad Pablo de Olavide, Seville, Spain
| | | | | | | | | |
Collapse
|
93
|
Kato M, Chen X, Inukai S, Zhao H, Slack FJ. Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA (NEW YORK, N.Y.) 2011; 17:1804-20. [PMID: 21810936 PMCID: PMC3185914 DOI: 10.1261/rna.2714411] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Small, noncoding RNAs (sncRNAs), including microRNAs (miRNAs), impact diverse biological events through the control of gene expression and genome stability. However, the role of these sncRNAs in aging remains largely unknown. To understand the contribution of sncRNAs to the aging process, we performed small RNA profiling by deep-sequencing over the course of Caenorhabditis elegans (C. elegans) aging. Many small RNAs, including a significant number of miRNAs, change their expression during aging in C. elegans. Further studies of miRNA expression changes under conditions that modify lifespan demonstrate the tight control of their expression during aging. Adult-specific loss of argonaute-like gene-1 (alg-1) activity, which is necessary for miRNA maturation and function, resulted in an abnormal lifespan, suggesting that miRNAs are, indeed, required in adulthood for normal aging. miRNA target prediction algorithms combined with transcriptome data and pathway enrichment analysis revealed likely targets of these age-associated miRNAs with known roles in aging, such as mitochondrial metabolism. Furthermore, a computational analysis of our deep-sequencing data identified additional age-associated sncRNAs, including miRNA star strands, novel miRNA candidates, and endo-siRNA sequences. We also show an increase of specific transfer RNA (tRNA) fragments during aging, which are known to be induced in response to stress in several organisms. This study suggests that sncRNAs including miRNAs contribute to lifespan regulation in C. elegans, and indicates new connections between aging, stress responses, and the small RNA world.
Collapse
Affiliation(s)
- Masaomi Kato
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Xiaowei Chen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Sachi Inukai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Hongyu Zhao
- Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Frank J. Slack
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Corresponding author.E-mail .
| |
Collapse
|
94
|
Tan KT, Luo SC, Ho WZ, Lee YH. Insulin/IGF-1 receptor signaling enhances biosynthetic activity and fat mobilization in the initial phase of starvation in adult male C. elegans. Cell Metab 2011; 14:390-402. [PMID: 21907144 DOI: 10.1016/j.cmet.2011.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/05/2011] [Accepted: 06/27/2011] [Indexed: 10/17/2022]
Abstract
Upon nutrient deprivation, cells are thought to suppress biosynthesis but activate catabolic pathways to provide alternative energy sources and nutrients. However, here we provide evidence that in adult male C. elegans, both biosynthesis and degradation activities, including ribosome biogenesis and turnover, are enhanced during early starvation and appear to depend on the availability of intestinal lipid stores. Upon depletion of the intestinal lipids, further food deprivation results in a significant reduction in metabolic activity in the starved male worms. Our data show that adult C. elegans exhibits a two-phase metabolic response to starvation stress: an initial phase with enhanced metabolic activity that rapidly exhausts the lipid stores, followed by a phase with low metabolic activity, which outlasts the life of fed control worms. DAF-2 insulin/IGF-1 receptor signaling to the RAS pathway is required for the starvation-induced ribosome biogenesis and rapid lipid depletion in the initial phase of starvation.
Collapse
Affiliation(s)
- Kien Thiam Tan
- Laboratory of Molecular Pathology, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
95
|
Greer KA, Hughes LM, Masternak MM. Connecting serum IGF-1, body size, and age in the domestic dog. AGE (DORDRECHT, NETHERLANDS) 2011; 33:475-483. [PMID: 20865338 PMCID: PMC3168604 DOI: 10.1007/s11357-010-9182-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 09/02/2010] [Indexed: 05/29/2023]
Abstract
Many investigations in recent years have targeted understanding the genetic and biochemical basis of aging. Collectively, genetic factors and biological mechanisms appear to influence longevity in general and specifically; reduction of the insulin/IGF-1 signaling cascade has extended life span in diverse species. Genetic alteration of mammals for life extension indicates correlation to serum IGF-1 levels in mice, and IGF-1 levels have been demonstrated as a physiological predictor of frailty with aging in man. Longevity and aging data in the dog offer a close measure of the natural multifactorial longevity interactions of genetic influence, IGF-1 signaling, and environmental factors such as exposure, exercise, and lifestyle. The absence of genetic alteration more closely represents the human longevity status, and the unique species structure of the canine facilitates analyses not possible in other species. These investigations aimed to measure serum IGF-1 in numerous purebred and mixed-breed dogs of variable size and longevity in comparison to age, gender, and spay/neuter differences. The primary objective of this investigation was to determine plasma IGF-1 levels in the adult dog, including a wide range of breeds and adult body weight. The sample set includes animals ranging from just a few months of age through 204 months and ranging in size from 5 to 160 lb. Four groups were evaluated for serum IGF-1 levels, including intact and neutered males, and intact and spayed females. IGF-1 loss over time, as a function of age, decreases in all groups with significant differences between males and females. The relationship between IGF-1 and weight differs depending upon spay/neuter status, but there is an overall increase in IGF-1 levels with increasing weight. The data, currently being interrogated further for delineation of IGF-1 receptor variants and sex differences, are being collected longitudinally and explored for longevity associations previously unavailable in non-genetically modified mammals.
Collapse
Affiliation(s)
- Kimberly A Greer
- Indiana University East, 2325 Chester Blvd, Richmond, IN 47374, USA.
| | | | | |
Collapse
|
96
|
Jovelin R, Phillips PC. Expression level drives the pattern of selective constraints along the insulin/Tor signal transduction pathway in Caenorhabditis. Genome Biol Evol 2011; 3:715-22. [PMID: 21849326 PMCID: PMC3157841 DOI: 10.1093/gbe/evr071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genes do not act in isolation but perform their biological functions within genetic pathways that are connected in larger networks. Investigation of nucleotide variation within genetic pathways and networks has shown that topology can affect the rate of protein evolution; however, it remains unclear whether a same pattern of nucleotide variation is expected within functionally similar networks and whether it may be due to similar or different biological mechanisms. We address these questions by investigating nucleotide variation in the context of the structure of the insulin/Tor-signaling pathway in Caenorhabditis, which is well characterized and is functionally conserved across phylogeny. In Drosophila and vertebrates, the rate of protein evolution is negatively correlated with the position of a gene within the insulin/Tor pathway. Similarly, we find that in Caenorhabditis, the rate of amino acid replacement is lower for downstream genes. However, in Caenorhabditis, the rate of synonymous substitution is also strongly affected by the position of a gene in the pathway, and we show that the distribution of selective pressure along the pathway is driven by differential expression level. A full understanding of the effect of pathway structure on selective constraints is therefore likely to require inclusion of specific biological function into more general network models.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Biology, Center for Ecology and Evolutionary Biology, University of Oregon, USA.
| | | |
Collapse
|
97
|
OASIS: online application for the survival analysis of lifespan assays performed in aging research. PLoS One 2011; 6:e23525. [PMID: 21858155 PMCID: PMC3156233 DOI: 10.1371/journal.pone.0023525] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/19/2011] [Indexed: 12/24/2022] Open
Abstract
Background Aging is a fundamental biological process. Characterization of genetic and environmental factors that influence lifespan is a crucial step toward understanding the mechanisms of aging at the organism level. To capture the different effects of genetic and environmental factors on lifespan, appropriate statistical analyses are needed. Methodology/Principal Findings We developed an online application for survival analysis (OASIS) that helps conduct various novel statistical tasks involved in analyzing survival data in a user-friendly manner. OASIS provides standard survival analysis results including Kaplan-Meier estimates and mean/median survival time by taking censored survival data. OASIS also provides various statistical tests including comparison of mean survival time, overall survival curve, and survival rate at specific time point. To visualize survival data, OASIS generates survival and log cumulative hazard plots that enable researchers to easily interpret their experimental results. Furthermore, we provide statistical methods that can analyze variances among survival datasets. In addition, users can analyze proportional effects of risk factors on survival. Conclusions/Significance OASIS provides a platform that is essential to facilitate efficient statistical analyses of survival data in the field of aging research. Web application and a detailed description of algorithms are accessible from http://sbi.postech.ac.kr/oasis.
Collapse
|
98
|
Jin C, Li J, Green CD, Yu X, Tang X, Han D, Xian B, Wang D, Huang X, Cao X, Yan Z, Hou L, Liu J, Shukeir N, Khaitovich P, Chen CD, Zhang H, Jenuwein T, Han JDJ. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 2011; 14:161-72. [PMID: 21803287 DOI: 10.1016/j.cmet.2011.07.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/07/2011] [Accepted: 06/13/2011] [Indexed: 10/17/2022]
Abstract
Epigenetic modifications are thought to be important for gene expression changes during development and aging. However, besides the Sir2 histone deacetylase in somatic tissues and H3K4 trimethylation in germlines, there is scant evidence implicating epigenetic regulations in aging. The insulin/IGF-1 signaling (IIS) pathway is a major life span regulatory pathway. Here, we show that progressive increases in gene expression and loss of H3K27me3 on IIS components are due, at least in part, to increased activity of the H3K27 demethylase UTX-1 during aging. RNAi of the utx-1 gene extended the mean life span of C. elegans by ~30%, dependent on DAF-16 activity and not additive in daf-2 mutants. The loss of utx-1 increased H3K27me3 on the Igf1r/daf-2 gene and decreased IIS activity, leading to a more "naive" epigenetic state. Like stem cell reprogramming, our results suggest that reestablishment of epigenetic marks lost during aging might help "reset" the developmental age of animal cells.
Collapse
Affiliation(s)
- Chunyu Jin
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
It has long been understood that many of the same manipulations that increase longevity in Caenorhabditis elegans also increase resistance to various acute stressors, and vice-versa; moreover these findings hold in more complex organisms as well. Nevertheless, the mechanistic relationship between these phenotypes remains unclear, and in many cases the overlap between stress resistance and longevity is inexact. Here we review the known connections between stress resistance and longevity, discuss instances in which these connections are absent, and summarize the theoretical explanations that have been posited for these phenomena.
Collapse
Affiliation(s)
- Katherine I. Zhou
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| | - Zachary Pincus
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| | - Frank J. Slack
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| |
Collapse
|
100
|
Ibáñez-Ventoso C, Driscoll M. MicroRNAs in C. elegans Aging: Molecular Insurance for Robustness? Curr Genomics 2011; 10:144-53. [PMID: 19881908 PMCID: PMC2705848 DOI: 10.2174/138920209788185243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/25/2009] [Accepted: 03/13/2009] [Indexed: 11/22/2022] Open
Abstract
The last decade has witnessed a revolution in our appreciation of the extensive regulatory gene expression networks modulated by small untranslated RNAs. microRNAs (miRNAs), ~22 nt RNAs that bind imperfectly to partially homologous sites on target mRNAs to regulate transcript expression, are now known to influence a broad range of biological processes germane to development, homeostatic regulation and disease. It has been proposed that miRNAs ensure biological robustness, and aging has been described as a progressive loss of system and cellular robustness, but relatively little work to date has addressed roles of miRNAs in longevity and healthspan (the period of youthful vigor and disease resistance that precedes debilitating decline in basic functions). The C. elegans model is highly suitable for testing hypotheses regarding miRNA impact on aging biology: the lifespan of the animal is approximately three weeks, there exist a wealth of genetic mutations that alter lifespan through characterized pathways, biomarkers that report strong healthspan have been defined, and many miRNA genes have been identified, expression-profiled, and knocked out. 50/114 C. elegans miRNAs change in abundance during adult life, suggesting significant potential to modulate healthspan and lifespan. Indeed, miRNA lin-4 has been elegantly shown to influence lifespan and healthspan via its lin-14 mRNA target and the insulin signaling pathway. 27 of the C. elegans age-regulated miRNAs have sequence similarity with both fly and human miRNAs. We review current understanding of a field poised to reveal major insights into potentially conserved miRNA-regulated networks that modulate aging.
Collapse
Affiliation(s)
- Carolina Ibáñez-Ventoso
- Department of Molecular Biology & Biochemistry, Rutgers, The State University of New Jersey, A232 Nelson Biological Laboratories, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|