51
|
Wiechens N, Singh V, Gkikopoulos T, Schofield P, Rocha S, Owen-Hughes T. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors. PLoS Genet 2016; 12:e1005940. [PMID: 27019336 PMCID: PMC4809547 DOI: 10.1371/journal.pgen.1005940] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/25/2016] [Indexed: 12/22/2022] Open
Abstract
Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.
Collapse
Affiliation(s)
- Nicola Wiechens
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vijender Singh
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Triantaffyllos Gkikopoulos
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pieta Schofield
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
52
|
Chen W, Feng P, Ding H, Lin H, Chou KC. Using deformation energy to analyze nucleosome positioning in genomes. Genomics 2016; 107:69-75. [DOI: 10.1016/j.ygeno.2015.12.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/06/2015] [Accepted: 12/22/2015] [Indexed: 12/28/2022]
|
53
|
Singh A, Bagadia M, Sandhu KS. Spatially coordinated replication and minimization of expression noise constrain three-dimensional organization of yeast genome. DNA Res 2016; 23:155-69. [PMID: 26932984 PMCID: PMC4833423 DOI: 10.1093/dnares/dsw005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/31/2016] [Indexed: 01/01/2023] Open
Abstract
Despite recent advances, the underlying functional constraints that shape the three-dimensional organization of eukaryotic genome are not entirely clear. Through comprehensive multivariate analyses of genome-wide datasets, we show that cis and trans interactions in yeast genome have significantly distinct functional associations. In particular, (i) the trans interactions are constrained by coordinated replication and co-varying mutation rates of early replicating domains through interactions among early origins, while cis interactions are constrained by coordination of late replication through interactions among late origins; (ii)cis and trans interactions exhibit differential preference for nucleosome occupancy; (iii)cis interactions are also constrained by the essentiality and co-fitness of interacting genes. Essential gene clusters associate with high average interaction frequency, relatively short-range interactions of low variance, and exhibit less fluctuations in chromatin conformation, marking a physically restrained state of engaged loci that, we suggest, is important to mitigate the epigenetic errors by restricting the spatial mobility of loci. Indeed, the genes with lower expression noise associate with relatively short-range interactions of lower variance and exhibit relatively higher average interaction frequency, a property that is conserved across Escherichia coli,yeast, and mESCs. Altogether, our observations highlight the coordination of replication and the minimization of expression noise, not necessarily co-expression of genes, as potent evolutionary constraints shaping the spatial organization of yeast genome.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar 140306, India
| | - Meenakshi Bagadia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar 140306, India
| | - Kuljeet Singh Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar 140306, India
| |
Collapse
|
54
|
Cayrou C, Ballester B, Peiffer I, Fenouil R, Coulombe P, Andrau JC, van Helden J, Méchali M. The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Res 2015; 25:1873-85. [PMID: 26560631 PMCID: PMC4665008 DOI: 10.1101/gr.192799.115] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022]
Abstract
To unveil the still-elusive nature of metazoan replication origins, we identified them genome-wide and at unprecedented high-resolution in mouse ES cells. This allowed initiation sites (IS) and initiation zones (IZ) to be differentiated. We then characterized their genetic signatures and organization and integrated these data with 43 chromatin marks and factors. Our results reveal that replication origins can be grouped into three main classes with distinct organization, chromatin environment, and sequence motifs. Class 1 contains relatively isolated, low-efficiency origins that are poor in epigenetic marks and are enriched in an asymmetric AC repeat at the initiation site. Late origins are mainly found in this class. Class 2 origins are particularly rich in enhancer elements. Class 3 origins are the most efficient and are associated with open chromatin and polycomb protein-enriched regions. The presence of Origin G-rich Repeated elements (OGRE) potentially forming G-quadruplexes (G4) was confirmed at most origins. These coincide with nucleosome-depleted regions located upstream of the initiation sites, which are associated with a labile nucleosome containing H3K64ac. These data demonstrate that specific chromatin landscapes and combinations of specific signatures regulate origin localization. They explain the frequently observed links between DNA replication and transcription. They also emphasize the plasticity of metazoan replication origins and suggest that in multicellular eukaryotes, the combination of distinct genetic features and chromatin configurations act in synergy to define and adapt the origin profile.
Collapse
Affiliation(s)
| | - Benoit Ballester
- INSERM, U1090 TAGC, Marseille F-13288, France; Aix Marseille University, U1090 TAGC, Marseille F-13288, France
| | | | - Romain Fenouil
- Centre d'Immunologie de Marseille-Luminy (CIML), 13009 Marseille, France
| | | | | | - Jacques van Helden
- INSERM, U1090 TAGC, Marseille F-13288, France; Aix Marseille University, U1090 TAGC, Marseille F-13288, France
| | - Marcel Méchali
- Institute of Human Genetics, CNRS, 34396 Montpellier, France
| |
Collapse
|
55
|
Abstract
DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.
Collapse
|
56
|
Liu J, Zimmer K, Rusch DB, Paranjape N, Podicheti R, Tang H, Calvi BR. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila. Nucleic Acids Res 2015; 43:8746-61. [PMID: 26227968 PMCID: PMC4605296 DOI: 10.1093/nar/gkv766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/16/2015] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kurt Zimmer
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Neha Paranjape
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ram Podicheti
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
57
|
Balint A, Kim T, Gallo D, Cussiol JR, Bastos de Oliveira FM, Yimit A, Ou J, Nakato R, Gurevich A, Shirahige K, Smolka MB, Zhang Z, Brown GW. Assembly of Slx4 signaling complexes behind DNA replication forks. EMBO J 2015; 34:2182-97. [PMID: 26113155 DOI: 10.15252/embj.201591190] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/02/2015] [Indexed: 12/30/2022] Open
Abstract
Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress.
Collapse
Affiliation(s)
- Attila Balint
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - TaeHyung Kim
- Donnelly Centre, University of Toronto, Toronto, ON, Canada Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - David Gallo
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jose Renato Cussiol
- Department of Molecular Biology and Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Francisco M Bastos de Oliveira
- Department of Molecular Biology and Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Askar Yimit
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jiongwen Ou
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ryuichiro Nakato
- Institute of Molecular and Cellular Biosciences, Research Center for Epigenetic Disease, University of Tokyo, Tokyo, Japan
| | - Alexey Gurevich
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Katsuhiko Shirahige
- Institute of Molecular and Cellular Biosciences, Research Center for Epigenetic Disease, University of Tokyo, Tokyo, Japan
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, ON, Canada Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada Donnelly Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
58
|
Musiałek MW, Rybaczek D. Behavior of replication origins in Eukaryota - spatio-temporal dynamics of licensing and firing. Cell Cycle 2015; 14:2251-64. [PMID: 26030591 DOI: 10.1080/15384101.2015.1056421] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Although every organism shares some common features of replication, this process varies greatly among eukaryotic species. Current data show that mathematical models of the organization of origins based on possibility theory may be applied (and remain accurate) in every model organism i.e. from yeast to humans. The major differences lie within the dynamics of origin firing and the regulation mechanisms that have evolved to meet new challenges throughout the evolution of the organism. This article elaborates on the relations between chromatin structure, organization of origins, their firing times and the impact that these features can have on genome stability, showing both differences and parallels inside the eukaryotic domain.
Collapse
Key Words
- APC, anaphase promoting complex
- ARS, autonomously replicating sequences
- ATR, ataxia telangiectasia mutated and Rad3-related kinase
- C-Frag, chromosome fragmentation
- CDK, cyclin-dependent kinase
- CDT, C-terminus domain
- CEN, centromere
- CFSs, chromosome fragile sites
- CIN, chromosome instability
- CMG, Cdc45-MCM-GINS complex
- Cdc45, cell division control protein 45
- Cdc6, cell division control protein 6
- Cdt1, chromatin licensing and DNA replication factor 1
- Chk1, checkpoint kinase 1
- Clb2, G2/mitotic-specific cyclin Clb2
- DCR, Ddb1-Cu14a-Roc1 complex
- DDK, Dbf-4-dependent kinase
- DSBs, double strand breaks
- Dbf4, protein Dbf4 homolog A
- Dfp1, Hsk1-Dfp1 kinase complex regulatory subunit Dfp1
- Dpb11, DNA replication regulator Dpb11
- E2F, E2F transcription factor
- EL, early to late origins transition
- ETG1, E2F target gene 1/replisome factor
- Fkh, fork head domain protein
- GCN5, histone acetyltransferase GCN5
- GINS, go-ichi-ni-san
- LE, late to early origins transition
- MCM2–7, minichromosome maintenance helicase complex
- NDT, N-terminus domain
- ORC, origin recognition complex
- ORCA, origin recognition complex subunit A
- PCC, premature chromosome condensation
- PCNA, proliferating cell nuclear antigen
- RO, replication origin
- RPD3, histone deacetylase 3
- RTC, replication timing control
- Rif1, replication timing regulatory factor 1
- SCF, Skp1-Cullin-F-Box ligase
- SIR, sulfite reductase
- Sld2, replication regulator Sld2
- Sld3, replication regulator Sld3
- Swi6, chromatin-associated protein swi6
- Taz1, telomere length regulator taz1
- YKU70, yeast Ku protein.
- dormant origins
- mathematical models of replication
- ori, origin
- origin competence
- origin efficiency
- origin firing
- origin licensing
- p53, tumor suppressor protein p53
- replication timing
Collapse
Affiliation(s)
- Marcelina W Musiałek
- a Department of Cytophysiology ; Institute of Experimental Biology; Faculty of Biology and Environmental Protection; University of Łódź ; Łódź , Poland
| | | |
Collapse
|
59
|
Belsky JA, MacAlpine HK, Lubelsky Y, Hartemink AJ, MacAlpine DM. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly. Genes Dev 2015; 29:212-24. [PMID: 25593310 PMCID: PMC4298139 DOI: 10.1101/gad.247924.114] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Start sites of DNA replication are marked by the origin recognition complex (ORC), which coordinates Mcm2–7 helicase loading to form the prereplicative complex (pre-RC). Belsky et al. “footprinted” nucleosomes, transcription factors, and replication proteins at multiple points during the Saccharomyces cerevisiae cell cycle. This revealed a precise ORC-dependent footprint at 269 origins in G2. A separate class of inefficient origins exhibited protein occupancy only in G1. The local chromatin environment restricts the loading of the Mcm2–7 double hexamer either upstream of or downstream from the ACS. Start sites of DNA replication are marked by the origin recognition complex (ORC), which coordinates Mcm2–7 helicase loading to form the prereplicative complex (pre-RC). Although pre-RC assembly is well characterized in vitro, the process is poorly understood within the local chromatin environment surrounding replication origins. To reveal how the chromatin architecture modulates origin selection and activation, we “footprinted” nucleosomes, transcription factors, and replication proteins at multiple points during the Saccharomyces cerevisiae cell cycle. Our nucleotide-resolution protein occupancy profiles resolved a precise ORC-dependent footprint at 269 origins in G2. A separate class of inefficient origins exhibited protein occupancy only in G1, suggesting that stable ORC chromatin association in G2 is a determinant of origin efficiency. G1 nucleosome remodeling concomitant with pre-RC assembly expanded the origin nucleosome-free region and enhanced activation efficiency. Finally, the local chromatin environment restricts the loading of the Mcm2–7 double hexamer either upstream of or downstream from the ARS consensus sequence (ACS).
Collapse
Affiliation(s)
- Jason A Belsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Yoav Lubelsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alexander J Hartemink
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA; Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
60
|
Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density. Mol Cell Biol 2015; 35:1588-605. [PMID: 25733687 DOI: 10.1128/mcb.01070-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/14/2015] [Indexed: 12/14/2022] Open
Abstract
Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the Hand-Sant-Slide (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms.
Collapse
|
61
|
Rondinelli B, Schwerer H, Antonini E, Gaviraghi M, Lupi A, Frenquelli M, Cittaro D, Segalla S, Lemaitre JM, Tonon G. H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Res 2015; 43:2560-74. [PMID: 25712104 PMCID: PMC4357704 DOI: 10.1093/nar/gkv090] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
DNA replication is a tightly regulated process that initiates from multiple replication origins and leads to the faithful transmission of the genetic material. For proper DNA replication, the chromatin surrounding origins needs to be remodeled. However, remarkably little is known on which epigenetic changes are required to allow the firing of replication origins. Here, we show that the histone demethylase KDM5C/JARID1C is required for proper DNA replication at early origins. JARID1C dictates the assembly of the pre-initiation complex, driving the binding to chromatin of the pre-initiation proteins CDC45 and PCNA, through the demethylation of the histone mark H3K4me3. Fork activation and histone H4 acetylation, additional early events involved in DNA replication, are not affected by JARID1C downregulation. All together, these data point to a prominent role for JARID1C in a specific phase of DNA replication in mammalian cells, through its demethylase activity on H3K4me3.
Collapse
Affiliation(s)
- Beatrice Rondinelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Hélène Schwerer
- Laboratory of Stem Cell and Genome Plasticity in Development and Aging, Institute of Regenerative Medicine and Biotherapies, INSERM U1183, Montpellier University, Montpellier, France
| | - Elena Antonini
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Alessio Lupi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Jean-Marc Lemaitre
- Laboratory of Stem Cell and Genome Plasticity in Development and Aging, Institute of Regenerative Medicine and Biotherapies, INSERM U1183, Montpellier University, Montpellier, France
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
62
|
Lubelsky Y, Prinz JA, DeNapoli L, Li Y, Belsky JA, MacAlpine DM. DNA replication and transcription programs respond to the same chromatin cues. Genome Res 2015; 24:1102-14. [PMID: 24985913 PMCID: PMC4079966 DOI: 10.1101/gr.160010.113] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA replication is a dynamic process that occurs in a temporal order along each of the chromosomes. A consequence of the temporally coordinated activation of replication origins is the establishment of broad domains (>100 kb) that replicate either early or late in S phase. This partitioning of the genome into early and late replication domains is important for maintaining genome stability, gene dosage, and epigenetic inheritance; however, the molecular mechanisms that define and establish these domains are poorly understood. The modENCODE Project provided an opportunity to investigate the chromatin features that define the Drosophila replication timing program in multiple cell lines. The majority of early and late replicating domains in the Drosophila genome were static across all cell lines; however, a small subset of domains was dynamic and exhibited differences in replication timing between the cell lines. Both origin selection and activation contribute to defining the DNA replication program. Our results suggest that static early and late replicating domains were defined at the level of origin selection (ORC binding) and likely mediated by chromatin accessibility. In contrast, dynamic domains exhibited low ORC densities in both cell types, suggesting that origin activation and not origin selection governs the plasticity of the DNA replication program. Finally, we show that the male-specific early replication of the X chromosome is dependent on the dosage compensation complex (DCC), suggesting that the transcription and replication programs respond to the same chromatin cues. Specifically, MOF-mediated hyperacetylation of H4K16 on the X chromosome promotes both the up-regulation of male-specific transcription and origin activation.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Joseph A Prinz
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Leyna DeNapoli
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yulong Li
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jason A Belsky
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David M MacAlpine
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
63
|
Foulk MS, Urban JM, Casella C, Gerbi SA. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins. Genome Res 2015; 25:725-35. [PMID: 25695952 PMCID: PMC4417120 DOI: 10.1101/gr.183848.114] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/18/2015] [Indexed: 01/02/2023]
Abstract
Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand–independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo–controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na+ instead of K+ in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq.
Collapse
Affiliation(s)
- Michael S Foulk
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - John M Urban
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - Cinzia Casella
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - Susan A Gerbi
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| |
Collapse
|
64
|
Drillon G, Audit B, Argoul F, Arneodo A. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064102. [PMID: 25563930 DOI: 10.1088/0953-8984/27/6/064102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in the DNA sequence. At the smaller few hundred bp scale of gene promoters, CpG-rich promoters of housekeeping genes found nearby ubiquitous MaOris as well as CpG-poor promoters of tissue-specific genes found nearby cell-type-specific MaOris, both correspond to in vivo NFRs that are not coded as nucleosome-excluding-energy barriers. Whereas the former promoters are likely to correspond to high occupancy transcription factor binding regions, the latter are an illustration that gene regulation in human is typically cell-type-specific.
Collapse
Affiliation(s)
- Guénola Drillon
- Université de Lyon, F-69000 Lyon, France. Laboratoire de Physique, CNRS UMR 5672, École Normale Supérieure de Lyon, F-69007 Lyon, France
| | | | | | | |
Collapse
|
65
|
Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol 2015; 208:147-60. [PMID: 25601401 PMCID: PMC4298691 DOI: 10.1083/jcb.201407004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
Replication of mammalian genomes starts at sites termed replication origins, which historically have been difficult to locate as a result of large genome sizes, limited power of genetic identification schemes, and rareness and fragility of initiation intermediates. However, origins are now mapped by the thousands using microarrays and sequencing techniques. Independent studies show modest concordance, suggesting that mammalian origins can form at any DNA sequence but are suppressed by read-through transcription or that they can overlap the 5' end or even the entire gene. These results require a critical reevaluation of whether origins form at specific DNA elements and/or epigenetic signals or require no such determinants.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197 and Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| |
Collapse
|
66
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
67
|
Soriano I, Morafraile EC, Vázquez E, Antequera F, Segurado M. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae. BMC Genomics 2014; 15:791. [PMID: 25218085 PMCID: PMC4176565 DOI: 10.1186/1471-2164-15-791] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background Eukaryotic genomes are replicated during S phase according to a temporal program. Several determinants control the timing of origin firing, including the chromatin environment and epigenetic modifications. However, how chromatin structure influences the timing of the activation of specific origins is still poorly understood. Results By performing high-resolution analysis of genome-wide nucleosome positioning we have identified different chromatin architectures at early and late replication origins. These different patterns are already established in G1 and are tightly correlated with the organization of adjacent transcription units. Moreover, specific early and late nucleosomal patterns are fixed robustly, even in rpd3 mutants in which histone acetylation and origin timing have been significantly altered. Nevertheless, higher histone acetylation levels correlate with the local modulation of chromatin structure, leading to increased origin accessibility. In addition, we conducted parallel analyses of replication and nucleosome dynamics that revealed that chromatin structure at origins is modulated during origin activation. Conclusions Our results show that early and late replication origins present distinctive nucleosomal configurations, which are preferentially associated to different genomic regions. Our data also reveal that origin structure is dynamic and can be locally modulated by histone deacetylation, as well as by origin activation. These data offer novel insight into the contribution of chromatin structure to origin selection and firing in budding yeast. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-791) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Mónica Segurado
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/ Universidad de Salamanca (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.
| |
Collapse
|
68
|
Origin replication complex binding, nucleosome depletion patterns, and a primary sequence motif can predict origins of replication in a genome with epigenetic centromeres. mBio 2014; 5:e01703-14. [PMID: 25182328 PMCID: PMC4173791 DOI: 10.1128/mbio.01703-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Origins of DNA replication are key genetic elements, yet their identification remains elusive in most organisms. In previous work, we found that centromeres contain origins of replication (ORIs) that are determined epigenetically in the pathogenic yeast Candida albicans. In this study, we used origin recognition complex (ORC) binding and nucleosome occupancy patterns in Saccharomyces cerevisiae and Kluyveromyces lactis to train a machine learning algorithm to predict the position of active arm (noncentromeric) origins in the C. albicans genome. The model identified bona fide active origins as determined by the presence of replication intermediates on nondenaturing two-dimensional (2D) gels. Importantly, these origins function at their native chromosomal loci and also as autonomously replicating sequences (ARSs) on a linear plasmid. A “mini-ARS screen” identified at least one and often two ARS regions of ≥100 bp within each bona fide origin. Furthermore, a 15-bp AC-rich consensus motif was associated with the predicted origins and conferred autonomous replicating activity to the mini-ARSs. Thus, while centromeres and the origins associated with them are epigenetic, arm origins are dependent upon critical DNA features, such as a binding site for ORC and a propensity for nucleosome exclusion. DNA replication machinery is highly conserved, yet the definition of exactly what specifies a replication origin differs in different species. Here, we utilized computational genomics to predict origin locations in Candida albicans by combining locations of binding sites for the conserved origin replication complex, necessary for replication initiation, together with chromatin organization patterns. We identified predicted sequences that exhibited bona fide origin function and developed a linear plasmid assay to delimit the DNA fragments necessary for origin function. Additionally, we found that a short AC-rich motif, which is enriched in predicted origins, is required for origin function. Thus, we demonstrated a new machine learning paradigm for identification of potential origins from a genome with no prior information. Furthermore, this work suggests that C. albicans has two different types of origins: “hard-wired” arm origins that rely upon specific sequence motifs and “epigenetic” centromeric origins that are recruited to kinetochores in a sequence-independent manner.
Collapse
|
69
|
Temporal and spatial regulation of eukaryotic DNA replication: From regulated initiation to genome-scale timing program. Semin Cell Dev Biol 2014; 30:110-20. [DOI: 10.1016/j.semcdb.2014.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/04/2014] [Indexed: 11/23/2022]
|
70
|
Abstract
The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.
Collapse
|
71
|
GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris. PLoS Genet 2014; 10:e1004169. [PMID: 24603708 PMCID: PMC3945215 DOI: 10.1371/journal.pgen.1004169] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/25/2013] [Indexed: 11/19/2022] Open
Abstract
The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.
Collapse
|
72
|
Guo SH, Deng EZ, Xu LQ, Ding H, Lin H, Chen W, Chou KC. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. ACTA ACUST UNITED AC 2014; 30:1522-9. [PMID: 24504871 DOI: 10.1093/bioinformatics/btu083] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MOTIVATION Nucleosome positioning participates in many cellular activities and plays significant roles in regulating cellular processes. With the avalanche of genome sequences generated in the post-genomic age, it is highly desired to develop automated methods for rapidly and effectively identifying nucleosome positioning. Although some computational methods were proposed, most of them were species specific and neglected the intrinsic local structural properties that might play important roles in determining the nucleosome positioning on a DNA sequence. RESULTS Here a predictor called 'iNuc-PseKNC' was developed for predicting nucleosome positioning in Homo sapiens, Caenorhabditis elegans and Drosophila melanogaster genomes, respectively. In the new predictor, the samples of DNA sequences were formulated by a novel feature-vector called 'pseudo k-tuple nucleotide composition', into which six DNA local structural properties were incorporated. It was observed by the rigorous cross-validation tests on the three stringent benchmark datasets that the overall success rates achieved by iNuc-PseKNC in predicting the nucleosome positioning of the aforementioned three genomes were 86.27%, 86.90% and 79.97%, respectively. Meanwhile, the results obtained by iNuc-PseKNC on various benchmark datasets used by the previous investigators for different genomes also indicated that the current predictor remarkably outperformed its counterparts. AVAILABILITY A user-friendly web-server, iNuc-PseKNC is freely accessible at http://lin.uestc.edu.cn/server/iNuc-PseKNC.
Collapse
Affiliation(s)
- Shou-Hui Guo
- Key Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China, Gordon Life Science Institute, Belmont, Massachusetts, USA, Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University, Tangshan 063000, China and Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - En-Ze Deng
- Key Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China, Gordon Life Science Institute, Belmont, Massachusetts, USA, Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University, Tangshan 063000, China and Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Li-Qin Xu
- Key Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China, Gordon Life Science Institute, Belmont, Massachusetts, USA, Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University, Tangshan 063000, China and Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China, Gordon Life Science Institute, Belmont, Massachusetts, USA, Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University, Tangshan 063000, China and Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China, Gordon Life Science Institute, Belmont, Massachusetts, USA, Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University, Tangshan 063000, China and Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi ArabiaKey Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China, Gordon Life Science Institute, Belmont, Massachusetts, USA, Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University, Tangshan 063000, China and Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wei Chen
- Key Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China, Gordon Life Science Institute, Belmont, Massachusetts, USA, Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University, Tangshan 063000, China and Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi ArabiaKey Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China, Gordon Life Science Institute, Belmont, Massachusetts, USA, Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University, Tangshan 063000, China and Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kuo-Chen Chou
- Key Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China, Gordon Life Science Institute, Belmont, Massachusetts, USA, Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University, Tangshan 063000, China and Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi ArabiaKey Laboratory for Neuro-Information of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China, Gordon Life Science Institute, Belmont, Massachusetts, USA, Department of Physics, School of Sciences, Center for Genomics and Computational Biology, Hebei United University, Tangshan 063000, China and Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
73
|
Ganley ARD, Kobayashi T. Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Res 2014; 14:49-59. [DOI: 10.1111/1567-1364.12133] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022] Open
Affiliation(s)
- Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences; Massey University; Auckland New Zealand
| | - Takehiko Kobayashi
- Division of Cytogenetics; National Institute of Genetics; Mishima Shizuoka Japan
- Department of Genetics; The Graduate University for Advanced Studies; SOKENDAI; Mishima Shizuoka Japan
| |
Collapse
|
74
|
Sherstyuk VV, Shevchenko AI, Zakian SM. Epigenetic landscape for initiation of DNA replication. Chromosoma 2013; 123:183-99. [PMID: 24337246 DOI: 10.1007/s00412-013-0448-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
Abstract
The key genetic process of DNA replication is initiated at specific sites referred to as replication origins. In eukaryotes, origins of DNA replication are not specified by a defined nucleotide sequence. Recent studies have shown that the structural context and topology of DNA sequence, chromatin features, and its transcriptional activity play an important role in origin choice. During differentiation and development, significant changes in chromatin organization and transcription occur, influencing origin activity and choice. In the last few years, a number of different genome-wide studies have broadened the understanding of replication origin regulation. In this review, we discuss the epigenetic factors and mechanisms that modulate origin choice and firing.
Collapse
Affiliation(s)
- Vladimir V Sherstyuk
- Russian Academy of Sciences, Siberian Branch, Institute of Cytology and Genetics, pr. Akad. Lavrentieva 10, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
75
|
Abstract
The onset of genomic DNA synthesis requires precise interactions of specialized initiator proteins with DNA at sites where the replication machinery can be loaded. These sites, defined as replication origins, are found at a few unique locations in all of the prokaryotic chromosomes examined so far. However, replication origins are dispersed among tens of thousands of loci in metazoan chromosomes, thereby raising questions regarding the role of specific nucleotide sequences and chromatin environment in origin selection and the mechanisms used by initiators to recognize replication origins. Close examination of bacterial and archaeal replication origins reveals an array of DNA sequence motifs that position individual initiator protein molecules and promote initiator oligomerization on origin DNA. Conversely, the need for specific recognition sequences in eukaryotic replication origins is relaxed. In fact, the primary rule for origin selection appears to be flexibility, a feature that is modulated either by structural elements or by epigenetic mechanisms at least partly linked to the organization of the genome for gene expression.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901
| | | |
Collapse
|
76
|
Computational studies on Alzheimer’s disease associated pathways and regulatory patterns using microarray gene expression and network data: Revealed association with aging and other diseases. J Theor Biol 2013; 334:109-21. [DOI: 10.1016/j.jtbi.2013.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 12/31/2022]
|
77
|
Yoshida K, Poveda A, Pasero P. Time to be versatile: regulation of the replication timing program in budding yeast. J Mol Biol 2013; 425:4696-705. [PMID: 24076190 DOI: 10.1016/j.jmb.2013.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/24/2023]
Abstract
Eukaryotic replication origins are activated at different times during the S phase of the cell cycle, following a temporal program that is stably transmitted to daughter cells. Although the mechanisms that control initiation at the level of individual origins are now well understood, much less is known on how cells coordinate replication at hundreds of origins distributed on the chromosomes. In this review, we discuss recent advances shedding new light on how this complex process is regulated in the budding yeast Saccharomyces cerevisiae. The picture that emerges from these studies is that replication timing is regulated in cis by mechanisms modulating the chromatin structure and the subnuclear organization of origins. These mechanisms do not affect the licensing of replication origins but determine their ability to compete for limiting initiation factors, which are recycled from early to late origins throughout the length of the S phase.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer, 34396 Montpellier cedex 5, France; Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
78
|
Hoggard T, Shor E, Müller CA, Nieduszynski CA, Fox CA. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet 2013; 9:e1003798. [PMID: 24068963 PMCID: PMC3772097 DOI: 10.1371/journal.pgen.1003798] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. Cell division requires the duplication of chromosomes, protein-DNA complexes harboring genetic information. Specific chromosomal positions, origins, initiate this duplication. Multiple origins are required for accurate, efficient duplication—an insufficient number leads to mistakes in the genetic material and pathologies such as cancer. Origins are chosen when the origin recognition complex (ORC) binds to them. The molecular interactions controlling this binding remain unclear. Understanding these interactions will lead to new ways to control cell division, which could aid in treatments of disease. Experiments were performed in the eukaryotic microbe budding yeast to define the types of molecular interactions ORC uses to bind origins. Yeasts are useful for these studies because chromosome duplication and structure are well conserved from yeast to humans. While ORC-DNA interactions were important, interactions between ORC and chromosomal proteins played a role. In addition, different origins relied on different types of molecular interactions with ORC. Finally, ORC-protein interactions but not ORC-DNA interactions were associated with enhanced origin function during chromosome-duplication, revealing an unanticipated link between the types of molecular interactions ORC uses to select an origin and the ultimate function of that origin. These results have implications for interfering with ORC-origin interactions to control cell division.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Shor
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Carolin A. Müller
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
- * E-mail: (CAN); (CAF)
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CAN); (CAF)
| |
Collapse
|
79
|
Lombraña R, Almeida R, Revuelta I, Madeira S, Herranz G, Saiz N, Bastolla U, Gómez M. High-resolution analysis of DNA synthesis start sites and nucleosome architecture at efficient mammalian replication origins. EMBO J 2013; 32:2631-44. [PMID: 23995398 DOI: 10.1038/emboj.2013.195] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/07/2013] [Indexed: 11/09/2022] Open
Abstract
DNA replication origins are poorly characterized genomic regions that are essential to recruit and position the initiation complex to start DNA synthesis. Despite the lack of specific replicator sequences, initiation of replication does not occur at random sites in the mammalian genome. This has lead to the view that DNA accessibility could be a major determinant of mammalian origins. Here, we performed a high-resolution analysis of nucleosome architecture and initiation sites along several origins of different genomic location and firing efficiencies. We found that mammalian origins are highly variable in nucleosome conformation and initiation patterns. Strikingly, initiation sites at efficient CpG island-associated origins always occur at positions of high-nucleosome occupancy. Origin recognition complex (ORC) binding sites, however, occur at adjacent but distinct positions marked by labile nucleosomes. We also found that initiation profiles mirror nucleosome architecture, both at endogenous origins and at a transgene in a heterologous system. Our studies provide a unique insight into the relationship between chromatin structure and initiation sites in the mammalian genome that has direct implications for how the replication programme can be accommodated to diverse epigenetic scenarios.
Collapse
Affiliation(s)
- Rodrigo Lombraña
- 1Functional Organization of the Genome Group, Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program.
Collapse
Affiliation(s)
- David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
81
|
Abstract
Although distinct chromatin types have been long known to replicate at different timepoints of S phase, fine replication control has only recently become considered as an epigenetic phenomenon. It is now clear that in course of differentiation significant changes in genome replication timing occur, and these changes are intimately linked with the changes in transcriptional activity and nuclear architecture. Temporally coordinate replication is organized spatially into discrete units having specific chromosomal organization and function. Even though the functional aspects of such tight control of replication timing remain to be explored, one can confidently consider the replication program as yet another fundamental feature characteristic of the given differentiation state. The present review touches upon the molecular mechanisms of spatial and temporal control of replication timing, involving individual replication origins as well as large chromatin domains.
Collapse
|
82
|
Seffer I, Nemeth Z, Hoffmann G, Matics R, Seffer AG, Koller A. Unexplored potentials of epigenetic mechanisms of plants and animals-theoretical considerations. GENETICS & EPIGENETICS 2013; 5:23-41. [PMID: 25512705 PMCID: PMC4222336 DOI: 10.4137/geg.s11752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Morphological and functional changes of cells are important for adapting to environmental changes and associated with continuous regulation of gene expressions. Genes are regulated–in part–by epigenetic mechanisms resulting in alternating patterns of gene expressions throughout life. Epigenetic changes responding to the environmental and intercellular signals can turn on/off specific genes, but do not modify the DNA sequence. Most epigenetic mechanisms are evolutionary conserved in eukaryotic organisms, and several homologs of epigenetic factors are present in plants and animals. Moreover, in vitro studies suggest that the plant cytoplasm is able to induce a nuclear reassembly of the animal cell, whereas others suggest that the ooplasm is able to induce condensation of plant chromatin. Here, we provide an overview of the main epigenetic mechanisms regulating gene expression and discuss fundamental epigenetic mechanisms and factors functioning in both plants and animals. Finally, we hypothesize that animal genome can be reprogrammed by epigenetic factors from the plant protoplast.
Collapse
Affiliation(s)
| | - Zoltan Nemeth
- Seffer-Renner Medical Clinic, Budapest, Hungary. ; Department of Pathophysiology and Gerontology, Medical School, and Szentagothai Res Centre, University of Pecs, Pecs, Hungary
| | - Gyula Hoffmann
- Institute of Biology, Faculty of Sciences, University of Pecs, Pecs, Hungary
| | - Robert Matics
- Department of Pathophysiology and Gerontology, Medical School, and Szentagothai Res Centre, University of Pecs, Pecs, Hungary
| | - A Gergely Seffer
- Surgery Clinic, Medical School, University of Pecs, Pecs, Hungary
| | - Akos Koller
- Department of Pathophysiology and Gerontology, Medical School, and Szentagothai Res Centre, University of Pecs, Pecs, Hungary. ; Department of Physiology, New York Medical College, Valhalla NY, USA
| |
Collapse
|
83
|
Hizume K, Yagura M, Araki H. Concerted interaction between origin recognition complex (ORC), nucleosomes and replication origin DNA ensures stable ORC-origin binding. Genes Cells 2013; 18:764-79. [DOI: 10.1111/gtc.12073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/14/2013] [Indexed: 01/21/2023]
Affiliation(s)
| | - Masaru Yagura
- Division of Microbial Genetics; National Institute of Genetics; Mishima; 411-8540; Japan
| | | |
Collapse
|
84
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
85
|
Méchali M, Yoshida K, Coulombe P, Pasero P. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr Opin Genet Dev 2013; 23:124-31. [PMID: 23541525 DOI: 10.1016/j.gde.2013.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
Abstract
In the genome of eukaryotic cells, DNA synthesis is initiated at multiple sites called origins of DNA replication. Origins must fire only once per cell cycle and how this is achieved is now well understood. However, little is known about the mechanisms that determine when and where replication initiates in a given cell. A large body of evidence indicates that origins are not equal in terms of efficiency and timing of activation. Origin usage also changes concomitantly with the different cell differentiation programs. As DNA replication occurs in the context of chromatin, initiation could be influenced by multiple parameters, such as nucleosome positioning, histone modifications, and three-dimensional (3D) organization of the nucleus. This view is supported by recent genome-wide studies showing that DNA replication profiles are shaped by genetic and epigenetic processes that act both at the local and global levels to regulate origin function in eukaryotic cells.
Collapse
Affiliation(s)
- Marcel Méchali
- Institute of Human Genetics, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
86
|
Aparicio OM. Location, location, location: it's all in the timing for replication origins. Genes Dev 2013; 27:117-28. [PMID: 23348837 DOI: 10.1101/gad.209999.112] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The differential replication timing of eukaryotic replication origins has long been linked with epigenetic regulation of gene expression and more recently with genome stability and mutation rates; however, the mechanism has remained obscure. Recent studies have shed new light by identifying novel factors that determine origin timing in yeasts and mammalian cells and implicate the spatial organization of origins within nuclear territories in the mechanism. These new insights, along with recent findings that several initiation factors are limiting relative to licensed origins, support and shape an emerging model for replication timing control. The mechanisms that control the spatial organization of replication origins have potential impacts for genome regulation beyond replication.
Collapse
Affiliation(s)
- Oscar M Aparicio
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA.
| |
Collapse
|
87
|
H2A.Z nucleosome positioning has no impact on genetic variation in Drosophila genome. PLoS One 2013; 8:e58295. [PMID: 23472174 PMCID: PMC3589275 DOI: 10.1371/journal.pone.0058295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/01/2013] [Indexed: 11/20/2022] Open
Abstract
Nucleosome occupancy results in complex sequence variation rate heterogeneity by either increasing mutation rate or inhibiting DNA repair in yeast, fish, and human. H2A.Z nucleosome is extensively involved in gene transcription activation and regulation. To test whether H2A.Z nucleosome has the similar impact on sequence variability in the Drosophila genome, we profiled the H2A.Z nucleosome occupancy and sequence variation rate at gene ends and splicing sites. Consistent with previous studies, H2A.Z nucleosome positioning helps to demarcate the borders of exons. Nucleosome occupancy is anticorrelated with sequence divergence rate in the regions flanking transcription start sites and splicing sites. However, there is no rate heterogeneity between the linker DNA and H2A.Z nucleosomal DNA regardless of nucleosome occupancy, fuzziness, positioning in promoter, coding, and intergenic regions, young or old genes. But the rate at intergenic nucleosomes and the flanking linker regions is higher than that at the genic counterparts. Further analyses found that the high sequence divergence rate in the promoter regions that are usually nucleosome depleted regions may be likely resulted from the high mutation rate in the enriched tandem repeats. Interestingly, within nucleosomes spanning splicing sites, sequence variability of nucleosomal DNA significantly increases from the end within exons to the other end protruding into introns. The relaxed functional constraint in introns contributes to the high rate of nucleosomal DNA residing in introns while the strict functional constraint in exons maintains the low rate of nucleosomal DNA residing in exons. Taken together, H2A.Z nucleosome occupancy has no effect on sequence variability of Drosophila genome, which is likely determined by local sequence composition and the concomitant selection pressure.
Collapse
|
88
|
Rodriguez J, Tsukiyama T. ATR-like kinase Mec1 facilitates both chromatin accessibility at DNA replication forks and replication fork progression during replication stress. Genes Dev 2013; 27:74-86. [PMID: 23307868 DOI: 10.1101/gad.202978.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Faithful DNA replication is essential for normal cell division and differentiation. In eukaryotic cells, DNA replication takes place on chromatin. This poses the critical question as to how DNA replication can progress through chromatin, which is inhibitory to all DNA-dependent processes. Here, we developed a novel genome-wide method to measure chromatin accessibility to micrococcal nuclease (MNase) that is normalized for nucleosome density, the NCAM (normalized chromatin accessibility to MNase) assay. This method enabled us to discover that chromatin accessibility increases specifically at and ahead of DNA replication forks in normal S phase and during replication stress. We further found that Mec1, a key regulatory ATR-like kinase in the S-phase checkpoint, is required for both normal chromatin accessibility around replication forks and replication fork rate during replication stress, revealing novel functions for the kinase in replication stress response. These results suggest a possibility that Mec1 may facilitate DNA replication fork progression during replication stress by increasing chromatin accessibility around replication forks.
Collapse
Affiliation(s)
- Jairo Rodriguez
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington 98109, USA
| | | |
Collapse
|
89
|
Trujillo KM, Osley MA. A role for H2B ubiquitylation in DNA replication. Mol Cell 2012; 48:734-46. [PMID: 23103252 PMCID: PMC3525772 DOI: 10.1016/j.molcel.2012.09.019] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 06/12/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Abstract
The monoubiquitylation of histone H2B plays an important role in gene expression by contributing to the regulation of transcription elongation and mRNA processing and export. We explored additional cellular functions of this histone modification by investigating its localization to intergenic regions. H2B ubiquitylation is present in chromatin around origins of DNA replication in budding yeast, and as DNA is replicated its levels are maintained on daughter strands by the Bre1 ubiquitin ligase. In the absence of H2B ubiquitylation, the prereplication complex is formed and activated, but replication fork progression is slowed down and the replisome becomes unstable in the presence of hydroxyurea. H2B ubiquitylation promotes the assembly or stability of nucleosomes on newly replicated DNA, and this function is postulated to contribute to fork progression and replisome stability.
Collapse
Affiliation(s)
- Kelly M Trujillo
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | |
Collapse
|
90
|
Calculation of nucleosomal DNA deformation energy: its implication for nucleosome positioning. Chromosome Res 2012; 20:889-902. [DOI: 10.1007/s10577-012-9328-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/09/2012] [Accepted: 11/15/2012] [Indexed: 10/27/2022]
|
91
|
Yadav MP, Padmanabhan S, Tripathi VP, Mishra RK, Dubey DD. Analysis of stress-induced duplex destabilization (SIDD) properties of replication origins, genes and intergenes in the fission yeast, Schizosaccharomyces pombe. BMC Res Notes 2012; 5:643. [PMID: 23163955 PMCID: PMC3533806 DOI: 10.1186/1756-0500-5-643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/12/2012] [Indexed: 11/24/2022] Open
Abstract
Background Replication and transcription, the two key functions of DNA, require unwinding of the DNA double helix. It has been shown that replication origins in the budding yeast, Saccharomyces cerevisiae contain an easily unwound stretch of DNA. We have used a recently developed method for determining the locations and degrees of stress-induced duplex destabilization (SIDD) for all the reported replication origins in the genome of the fission yeast, Schizosaccharomyces pombe. Results We have found that the origins are more susceptible to SIDD as compared to the non-origin intergenic regions (NOIRs) and genes. SIDD analysis of many known origins in other eukaryotes suggests that SIDD is a common property of replication origins. Interestingly, the previously shown deletion-dependent changes in the activities of the origins of the ura4 origin region on chromosome 3 are paralleled by changes in SIDD properties, suggesting SIDD’s role in origin activity. SIDD profiling following in silico deletions of some origins suggests that many of the closely spaced S. pombe origins could be clusters of two or three weak origins, similar to the ura4 origin region. Conclusion SIDD appears to be a highly conserved, functionally important property of replication origins in S. pombe and other organisms. The distinctly low SIDD scores of origins and the long range effects of genetic alterations on SIDD properties provide a unique predictive potential to the SIDD analysis. This could be used in exploring different aspects of structural and functional organization of origins including interactions between closely spaced origins.
Collapse
Affiliation(s)
- Mukesh P Yadav
- Department of Biotechnology, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh 222001, India
| | | | | | | | | |
Collapse
|
92
|
iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties. PLoS One 2012; 7:e47843. [PMID: 23144709 PMCID: PMC3483203 DOI: 10.1371/journal.pone.0047843] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/21/2012] [Indexed: 01/14/2023] Open
Abstract
Nucleosome positioning has important roles in key cellular processes. Although intensive efforts have been made in this area, the rules defining nucleosome positioning is still elusive and debated. In this study, we carried out a systematic comparison among the profiles of twelve DNA physicochemical features between the nucleosomal and linker sequences in the Saccharomyces cerevisiae genome. We found that nucleosomal sequences have some position-specific physicochemical features, which can be used for in-depth studying nucleosomes. Meanwhile, a new predictor, called iNuc-PhysChem, was developed for identification of nucleosomal sequences by incorporating these physicochemical properties into a 1788-D (dimensional) feature vector, which was further reduced to a 884-D vector via the IFS (incremental feature selection) procedure to optimize the feature set. It was observed by a cross-validation test on a benchmark dataset that the overall success rate achieved by iNuc-PhysChem was over 96% in identifying nucleosomal or linker sequences. As a web-server, iNuc-PhysChem is freely accessible to the public at http://lin.uestc.edu.cn/server/iNuc-PhysChem. For the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics that were presented just for the integrity in developing the predictor. Meanwhile, for those who prefer to run predictions in their own computers, the predictor's code can be easily downloaded from the web-server. It is anticipated that iNuc-PhysChem may become a useful high throughput tool for both basic research and drug design.
Collapse
|
93
|
Di Paola D, Rampakakis E, Chan MK, Zannis-Hadjopoulos M. Differential chromatin structure encompassing replication origins in transformed and normal cells. Genes Cancer 2012; 3:152-76. [PMID: 23050047 DOI: 10.1177/1947601912457026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 12/23/2022] Open
Abstract
This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
94
|
Rizzardi LF, Dorn ES, Strahl BD, Cook JG. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae. Genetics 2012; 192:371-84. [PMID: 22851644 PMCID: PMC3454870 DOI: 10.1534/genetics.112.142349] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/18/2012] [Indexed: 12/18/2022] Open
Abstract
DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.
Collapse
Affiliation(s)
- Lindsay F. Rizzardi
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Elizabeth S. Dorn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Brian D. Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, and
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, and
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
95
|
Papior P, Arteaga-Salas JM, Günther T, Grundhoff A, Schepers A. Open chromatin structures regulate the efficiencies of pre-RC formation and replication initiation in Epstein-Barr virus. ACTA ACUST UNITED AC 2012; 198:509-28. [PMID: 22891264 PMCID: PMC3514025 DOI: 10.1083/jcb.201109105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies of EBV replication origins demonstrate an excess of pre-replication
complexes that are formed at flexible MNase-sensitive sites in the genome. Whether or not metazoan replication initiates at random or specific but flexible
sites is an unsolved question. The lack of sequence specificity in origin
recognition complex (ORC) DNA binding complicates genome-scale chromatin
immunoprecipitation (ChIP)-based studies. Epstein-Barr virus (EBV) persists as
chromatinized minichromosomes that are replicated by the host replication
machinery. We used EBV to investigate the link between zones of pre-replication
complex (pre-RC) assembly, replication initiation, and micrococcal nuclease
(MNase) sensitivity at different cell cycle stages in a genome-wide fashion. The
dyad symmetry element (DS) of EBV’s latent origin, a well-established and
very efficient pre-RC assembly region, served as an internal control. We
identified 64 pre-RC zones that correlate spatially with 57 short nascent strand
(SNS) zones. MNase experiments revealed that pre-RC and SNS zones were linked to
regions of increased MNase sensitivity, which is a marker of origin strength.
Interestingly, although spatially correlated, pre-RC and SNS zones were
characterized by different features. We propose that pre-RCs are formed at
flexible but distinct sites, from which only a few are activated per single
genome and cell cycle.
Collapse
Affiliation(s)
- Peer Papior
- DNA Replication and Epigenetics group, Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 München, Germany
| | | | | | | | | |
Collapse
|
96
|
Müller CA, Nieduszynski CA. Conservation of replication timing reveals global and local regulation of replication origin activity. Genome Res 2012; 22:1953-62. [PMID: 22767388 PMCID: PMC3460190 DOI: 10.1101/gr.139477.112] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DNA replication initiates from defined locations called replication origins; some origins are highly active, whereas others are dormant and rarely used. Origins also differ in their activation time, resulting in particular genomic regions replicating at characteristic times and in a defined temporal order. Here we report the comparison of genome replication in four budding yeast species: Saccharomyces cerevisiae, S. paradoxus, S. arboricolus, and S. bayanus. First, we find that the locations of active origins are predominantly conserved between species, whereas dormant origins are poorly conserved. Second, we generated genome-wide replication profiles for each of these species and discovered that the temporal order of genome replication is highly conserved. Therefore, active origins are not only conserved in location, but also in activation time. Only a minority of these conserved origins show differences in activation time between these species. To gain insight as to the mechanisms by which origin activation time is regulated we generated replication profiles for a S. cerevisiae/S. bayanus hybrid strain and find that there are both local and global regulators of origin function.
Collapse
Affiliation(s)
- Carolin A Müller
- Centre for Genetics and Genomics, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | |
Collapse
|
97
|
Drosopoulos WC, Kosiyatrakul ST, Yan Z, Calderano SG, Schildkraut CL. Human telomeres replicate using chromosome-specific, rather than universal, replication programs. ACTA ACUST UNITED AC 2012; 197:253-66. [PMID: 22508510 PMCID: PMC3328383 DOI: 10.1083/jcb.201112083] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human telomere replication initiates either from within telomere repeats or from within the subtelomere using a chromosome-specific replication program that appears conserved between different cell types. Telomeric and adjacent subtelomeric heterochromatin pose significant challenges to the DNA replication machinery. Little is known about how replication progresses through these regions in human cells. Using single molecule analysis of replicated DNA (SMARD), we delineate the replication programs—i.e., origin distribution, termination site location, and fork rate and direction—of specific telomeres/subtelomeres of individual human chromosomes in two embryonic stem (ES) cell lines and two primary somatic cell types. We observe that replication can initiate within human telomere repeats but was most frequently accomplished by replisomes originating in the subtelomere. No major delay or pausing in fork progression was detected that might lead to telomere/subtelomere fragility. In addition, telomeres from different chromosomes from the same cell type displayed chromosome-specific replication programs rather than a universal program. Importantly, although there was some variation in the replication program of the same telomere in different cell types, the basic features of the program of a specific chromosome end appear to be conserved.
Collapse
Affiliation(s)
- William C Drosopoulos
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
98
|
Di Rienzi SC, Lindstrom KC, Mann T, Noble WS, Raghuraman MK, Brewer BJ. Maintaining replication origins in the face of genomic change. Genome Res 2012; 22:1940-52. [PMID: 22665441 PMCID: PMC3460189 DOI: 10.1101/gr.138248.112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Origins of replication present a paradox to evolutionary biologists. As a collection, they are absolutely essential genomic features, but individually are highly redundant and nonessential. It is therefore difficult to predict to what extent and in what regard origins are conserved over evolutionary time. Here, through a comparative genomic analysis of replication origins and chromosomal replication patterns in the budding yeasts Saccharomyces cerevisiae and Lachancea waltii, we assess to what extent replication origins survived genomic change produced from 150 million years of evolution. We find that L. waltii origins exhibit a core consensus sequence and nucleosome occupancy pattern highly similar to those of S. cerevisiae origins. We further observe that the overall progression of chromosomal replication is similar between L. waltii and S. cerevisiae. Nevertheless, few origins show evidence of being conserved in location between the two species. Among the conserved origins are those surrounding centromeres and adjacent to histone genes, suggesting that proximity to an origin may be important for their regulation. We conclude that, over evolutionary time, origins maintain sequence, structure, and regulation, but are continually being created and destroyed, with the result that their locations are generally not conserved.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
99
|
Givens RM, Lai WKM, Rizzo JM, Bard JE, Mieczkowski PA, Leatherwood J, Huberman JA, Buck MJ. Chromatin architectures at fission yeast transcriptional promoters and replication origins. Nucleic Acids Res 2012; 40:7176-89. [PMID: 22573177 PMCID: PMC3424540 DOI: 10.1093/nar/gks351] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have used micrococcal nuclease (MNase) digestion followed by deep sequencing in order to obtain a higher resolution map than previously available of nucleosome positions in the fission yeast, Schizosaccharomyces pombe. Our data confirm an unusually short average nucleosome repeat length, ∼152 bp, in fission yeast and that transcriptional start sites (TSSs) are associated with nucleosome-depleted regions (NDRs), ordered nucleosome arrays downstream and less regularly spaced upstream nucleosomes. In addition, we found enrichments for associated function in four of eight groups of genes clustered according to chromatin configurations near TSSs. At replication origins, our data revealed asymmetric localization of pre-replication complex (pre-RC) proteins within large NDRs—a feature that is conserved in fission and budding yeast and is therefore likely to be conserved in other eukaryotic organisms.
Collapse
Affiliation(s)
- Robert M Givens
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Ashida H, Asai K, Hamada M. Shape-based alignment of genomic landscapes in multi-scale resolution. Nucleic Acids Res 2012; 40:6435-48. [PMID: 22561376 PMCID: PMC3413149 DOI: 10.1093/nar/gks354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Due to dramatic advances in DNA technology, quantitative measures of annotation data can now be obtained in continuous coordinates across the entire genome, allowing various heterogeneous ‘genomic landscapes’ to emerge. Although much effort has been devoted to comparing DNA sequences, not much attention has been given to comparing these large quantities of data comprehensively. In this article, we introduce a method for rapidly detecting local regions that show high correlations between genomic landscapes. We overcame the size problem for genome-wide data by converting the data into series of symbols and then carrying out sequence alignment. We also decomposed the oscillation of the landscape data into different frequency bands before analysis, since the real genomic landscape is a mixture of embedded and confounded biological processes working at different scales in the cell nucleus. To verify the usefulness and generality of our method, we applied our approach to well investigated landscapes from the human genome, including several histone modifications. Furthermore, by applying our method to over 20 genomic landscapes in human and 12 in mouse, we found that DNA replication timing and the density of Alu insertions are highly correlated genome-wide in both species, even though the Alu elements have amplified independently in the two genomes. To our knowledge, this is the first method to align genomic landscapes at multiple scales according to their shape.
Collapse
Affiliation(s)
- Hiroki Ashida
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan.
| | | | | |
Collapse
|