51
|
Association between Alzheimer's Disease and Cancer Risk in South Korea: an 11-year Nationwide Population-Based Study. Dement Neurocogn Disord 2019; 17:137-147. [PMID: 30906403 PMCID: PMC6425881 DOI: 10.12779/dnd.2018.17.4.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Previous studies have suggested a decreased cancer risk among patients with Alzheimer's disease (AD). There remains a lack of data on the specific types of cancer and risk factors for developing cancer in AD. We evaluated the association between AD and cancer risk, and we examined specific types of cancer. Methods A population-based longitudinal study was conducted using the National Health Insurance Service-Senior cohort for 2002–2013. A total of 4,408 AD patients were included in the study, as were 19,150 matched controls. Potential associations between the risk of cancer and AD were analyzed using Cox proportional hazard regressions. Results Cancer developed in 12.3% of the AD group patients and in 18.5% of control group subjects. AD was associated with a reduced risk of cancer (hazard ratio [HR], 0.70; 95% confidence intervals, 0.64–0.78). The risk of head and neck cancers was significantly reduced (HR, 0.49), as were risks for cancers of the digestive tract, including stomach cancer (HR, 0.42), colorectal cancer (HR, 0.61), liver and biliary tract cancers (HR, 0.68), and pancreatic cancer (HR, 0.55). Lung and prostate cancer risks were also significantly lower for the AD group (HR, 0.52 and HR, 0.72, respectively). Conclusions Our results showed an inverse association between AD and cancer. Further research involving a large number of patients in a hospital based-study is needed to address the biological associations between cancer development and dementia, including AD.
Collapse
|
52
|
Liss MA, White JR, Goros M, Gelfond J, Leach R, Johnson-Pais T, Lai Z, Rourke E, Basler J, Ankerst D, Shah DP. Metabolic Biosynthesis Pathways Identified from Fecal Microbiome Associated with Prostate Cancer. Eur Urol 2018; 74:575-582. [PMID: 30007819 PMCID: PMC6716160 DOI: 10.1016/j.eururo.2018.06.033] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The fecal microbiome is associated with prostate cancer risk factors (obesity, inflammation) and can metabolize and produce various products that may influence cancer but have yet to be defined in prostate cancer. OBJECTIVE To investigate gut bacterial diversity, identify specific metabolic pathways associated with disease, and develop a microbiome risk profile for prostate cancer. DESIGN, SETTING, AND PARTICIPANTS After prospective collection of 133 rectal swab samples 2 wk before the transrectal prostate biopsy, we perform 16S rRNA amplicon sequencing on 105 samples (64 with cancer, 41 without cancer). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was applied to infer functional categories associated with taxonomic composition. The p values were adjusted using the false discovery rate. The α- and β-diversity analyses were performed using QIIME. The Mann-Whitney U test was employed to evaluate the statistical significance of β-diversity distances within and between groups of interest, and least absolute shrinkage and selection operator (LASSO) regression analysis was used to determine pathway significance. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The detection of prostate cancer on transrectal prostate needle biopsy and 16s microbiome profile. RESULTS AND LIMITATIONS We identified significant associations between total community composition and cancer/non-cancer status (Bray-Curtis distance metric, p<0.01). We identified significant differences in enrichments of Bacteroides and Streptococcus species in cancer (all p<0.04). Folate (LDA 3.8) and arginine (LDA 4.1) were the most significantly altered pathways. We formed a novel microbiome-derived risk factor for prostate cancer based on 10 aberrant metabolic pathways (area under curve=0.64, p=0.02). CONCLUSIONS Microbiome analyses on men undergoing prostate biopsy noted mostly similar bacterial species diversity among men diagnosed with and without prostate cancer. The microbiome may have subtle influences on prostate cancer but are likely patient-specific and would require paired analysis and precise manipulation, such as improvement of natural bacterial folate production. PATIENT SUMMARY Microbiome evaluation may provide patients with personalized data regarding the presence or absence of particular bacteria that have metabolic functions and implications regarding prostate cancer risk. The study provides a basis to investigate the manipulation of aberrant microbiomes to reduce prostate cancer risk.
Collapse
Affiliation(s)
- Michael A Liss
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA; South Texas Veterans Healthcare System, San Antonio, TX, USA.
| | | | - Martin Goros
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jonathan Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Robin Leach
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Teresa Johnson-Pais
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
| | - Elizabeth Rourke
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Joseph Basler
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Donna Ankerst
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dimpy P Shah
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
53
|
Salazar C, Ruiz-Hincapie P, Ruiz LM. The Interplay among PINK1/PARKIN/Dj-1 Network during Mitochondrial Quality Control in Cancer Biology: Protein Interaction Analysis. Cells 2018; 7:cells7100154. [PMID: 30274236 PMCID: PMC6210981 DOI: 10.3390/cells7100154] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
PARKIN (E3 ubiquitin ligase PARK2), PINK1 (PTEN induced kinase 1) and DJ-1 (PARK7) are proteins involved in autosomal recessive parkinsonism, and carcinogenic processes. In damaged mitochondria, PINK1’s importing into the inner mitochondrial membrane is prevented, PARKIN presents a partial mitochondrial localization at the outer mitochondrial membrane and DJ-1 relocates to mitochondria when oxidative stress increases. Depletion of these proteins result in abnormal mitochondrial morphology. PINK1, PARKIN, and DJ-1 participate in mitochondrial remodeling and actively regulate mitochondrial quality control. In this review, we highlight that PARKIN, PINK1, and DJ-1 should be regarded as having an important role in Cancer Biology. The STRING database and Gene Ontology (GO) enrichment analysis were performed to consolidate knowledge of well-known protein interactions for PINK1, PARKIN, and DJ-1 and envisage new ones. The enrichment analysis of KEGG pathways showed that the PINK1/PARKIN/DJ-1 network resulted in Parkinson disease as the main feature, while the protein DJ-1 showed enrichment in prostate cancer and p53 signaling pathway. Some predicted transcription factors regulating PINK1, PARK2 (PARKIN) and PARK7 (DJ-1) gene expression are related to cell cycle control. We can therefore suggest that the interplay among PINK1/PARKIN/DJ-1 network during mitochondrial quality control in cancer biology may occur at the transcriptional level. Further analysis, like a systems biology approach, will be helpful in the understanding of PINK1/PARKIN/DJ-1 network.
Collapse
Affiliation(s)
- Celia Salazar
- Instituto de Investigaciones Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| | - Paula Ruiz-Hincapie
- School of Engineering and Technology, University of Hertfordshire, Hatfield AL 10 9AB, UK.
| | - Lina María Ruiz
- Instituto de Investigaciones Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| |
Collapse
|
54
|
Schäfer M, Klein HU, Schwender H. Integrative analysis of multiple genomic variables using a hierarchical Bayesian model. Bioinformatics 2018; 33:3220-3227. [PMID: 28582573 DOI: 10.1093/bioinformatics/btx356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
Motivation Genes showing congruent differences in several genomic variables between two biological conditions are crucial to unravel causalities behind phenotypes of interest. Detecting such genes is important in biomedical research, e.g. when identifying genes responsible for cancer development. Small sample sizes common in next-generation sequencing studies are a key challenge, and there are still only very few statistical methods to analyze more than two genomic variables in an integrative, model-based way. Here, we present a novel bioinformatics approach to detect congruent differences between two biological conditions in a larger number of different measurements such as various epigenetic marks or mRNA transcript levels. Results We propose a coefficient quantifying the degree to which genes present consistent alterations in multiple (more than two) genomic variables when comparing samples presenting a condition of interest (e.g. cancer) to a reference group. A hierarchical Bayesian model is employed to assess uncertainty on a gene level, incorporating information on functional relationships between genes. We demonstrate the approach on different data sets containing RNA-seq gene transcripton and up to four ChIP-seq histone modification measurements. Both the coefficient-based ranking and the inference based on the model lead to a plausible prioritizing of candidate genes when analyzing multiple genomic variables. Availability and implementation BUGS code in the Supplement. Contact m.schaefer@uni-duesseldorf.de. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Martin Schäfer
- Mathematical Institute, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Hans-Ulrich Klein
- Program in Translational Neuropsychiatric Genomics, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02141, USA
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
55
|
Abstract
SIGNIFICANCE The p53 family of transcription factors, including p53, p63, and p73, plays key roles in both biological and pathological processes, including cancer and neural development. Recent Advances: In recent years, a growing body of evidence has indicated that the entire p53 family is involved in the regulation of the central nervous system (CNS) functions as well as in the pathogenesis of several neurological disorders. Mechanistically, the p53 proteins control neuronal cell fate, terminal differentiation, and survival, via a complex interplay among the family members. CRITICAL ISSUES In this article, we discuss the involvement of the p53 family in neurobiology and in pathological conditions affecting the CNS, including neuroinflammation. FUTURE DIRECTIONS Understanding the molecular mechanism(s) underlying the function of the p53 family could improve our general knowledge of the pathogenesis of brain disorders and potentially pave the road for new therapeutic intervention. Antioxid. Redox Signal. 29, 1-14.
Collapse
Affiliation(s)
- Massimiliano Agostini
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Gerry Melino
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Francesca Bernassola
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
56
|
Squillaro T, Cimini A, Peluso G, Giordano A, Melone MAB. Nano-delivery systems for encapsulation of dietary polyphenols: An experimental approach for neurodegenerative diseases and brain tumors. Biochem Pharmacol 2018; 154:303-317. [PMID: 29803506 DOI: 10.1016/j.bcp.2018.05.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases (NDs) and brain tumors are severe, disabling, and incurable disorders that represent a critical problem regarding human suffering and the economic burden on the healthcare system. Because of the lack of effective therapies to treat NDs and brain tumors, the challenge for physicians is to discover new drugs to improve their patients' quality of life. In addition to risk factors such as genetics and environmental influences, increased cellular oxidative stress has been reported as one of the potential common etiologies in both disorders. Given their antioxidant and anti-inflammatory potential, dietary polyphenols are considered to be one of the most bioactive natural agents in chronic disease prevention and treatment. Despite the protective activity of polyphenols, their inefficient delivery systems and poor bioavailability strongly limit their use in medicine and functional food. A potential solution lies in polymeric nanoparticle-based polyphenol delivery systems that are able to enhance their absorption across the gastrointestinal tract, improve their bioavailability, and transport them to target organs. In the present manuscript, we provide an overview of the primary polyphenols used for ND and brain tumor prevention and treatment by focusing on recent findings, the principal factors limiting their application in clinical practice, and a promising delivery strategy to improve their bioavailability.
Collapse
Affiliation(s)
- T Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - A Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - G Peluso
- Institute of Agro-Environmental and Forest Biology, CNR, Naples, Italy
| | - A Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA; Department of Medicine, Surgery and Neuroscience University of Siena, Italy.
| | - M A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
57
|
Rossi G, Redaelli V, Contiero P, Fabiano S, Tagliabue G, Perego P, Benussi L, Bruni AC, Filippini G, Farinotti M, Giaccone G, Buiatiotis S, Manzoni C, Ferrari R, Tagliavini F. Tau Mutations Serve as a Novel Risk Factor for Cancer. Cancer Res 2018; 78:3731-3739. [PMID: 29794074 DOI: 10.1158/0008-5472.can-17-3175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/23/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022]
Abstract
In addition to its well-recognized role in neurodegeneration, tau participates in maintenance of genome stability and chromosome integrity. In particular, peripheral cells from patients affected by frontotemporal lobar degeneration carrying a mutation in tau gene (genetic tauopathies), as well as cells from animal models, show chromosome numerical and structural aberrations, chromatin anomalies, and a propensity toward abnormal recombination. As genome instability is tightly linked to cancer development, we hypothesized that mutated tau may be a susceptibility factor for cancer. Here we conducted a retrospective cohort study comparing cancer incidence in families affected by genetic tauopathies to control families. In addition, we carried out a bioinformatics analysis to highlight pathways associated with the tau protein interactome. We report that the risk of developing cancer is significantly higher in families affected by genetic tauopathies, and a high proportion of tau protein interactors are involved in cellular processes particularly relevant to cancer. These findings disclose a novel role of tau as a risk factor for cancer, providing new insights in the various pathologic roles of mutated tau.Significance: This study reveals a novel role for tau as a risk factor for cancer, providing new insights beyond its role in neurodegeneration. Cancer Res; 78(13); 3731-9. ©2018 AACR.
Collapse
Affiliation(s)
- Giacomina Rossi
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.
| | - Veronica Redaelli
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Contiero
- Environmental Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Sabrina Fabiano
- Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giovanna Tagliabue
- Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Luisa Benussi
- NeuroBioGen Lab-Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Graziella Filippini
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Mariangela Farinotti
- Neuroepidemiology - Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giorgio Giaccone
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Fabrizio Tagliavini
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
58
|
Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacol Res 2018; 131:87-101. [DOI: 10.1016/j.phrs.2018.03.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
|
59
|
Alleva R, Manzella N, Gaetani S, Bacchetti T, Bracci M, Ciarapica V, Monaco F, Borghi B, Amati M, Ferretti G, Tomasetti M. Mechanism underlying the effect of long-term exposure to low dose of pesticides on DNA integrity. ENVIRONMENTAL TOXICOLOGY 2018; 33:476-487. [PMID: 29359425 DOI: 10.1002/tox.22534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Pesticides, including herbicides, insecticides and fungicides, are widely used in intensive agriculture. Recently, the long-term effects of pesticide exposure were found to be associated with many diseases. In this study, we evaluated the long-term effect of low-level exposure to a mixture of pesticides on DNA damage response (DDR) in relation to individual detoxifying variability. A residential population chronically exposed to pesticides was enrolled, biological/environmental pesticide levels; paroxonase 1 (PON-1) activity and 192 Q/R polymorphism and DDR were evaluated at three different periods of pesticide exposure. OGG1-dependent DNA repair activity was decreased in relation to pesticide exposure. The increase of DNA lesions and pesticide levels in the intensive pesticide-spraying period was independent on PON-1 activity. Next, human bronchial epithelial and neuronal cells were used as a model for in vitro evaluation of the mechanistic effect of pesticides. Pesticides induced mitochondrial dysfunction leading to ROS formation. ROS from mitochondria induced DNA damage, which in turn induced OGG1-dependent DNA repair activity through 8-oxoguanine DNA glycosylase 1 (OGG1) expression and activation. Even though OGG1 was overexpressed, an inhibition of its activity, associated with DNA lesion accumulation, was found at prolonged pesticide-exposure. A post-translational regulation of OGG1 by pesticide may be postulated. Taken together, long-term exposure to low-levels of pesticides affects DDR resulting in accumulation of DNA lesions that eventually may lead to cancer or neurological disorders.
Collapse
Affiliation(s)
- Renata Alleva
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- International Society of Doctors for the Environment (ISDE), Arezzo, Italy
| | - Nicola Manzella
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simona Gaetani
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Massimo Bracci
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Veronica Ciarapica
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Battista Borghi
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monica Amati
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Gianna Ferretti
- International Society of Doctors for the Environment (ISDE), Arezzo, Italy
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marco Tomasetti
- International Society of Doctors for the Environment (ISDE), Arezzo, Italy
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
60
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
61
|
Anand A, Goyal AK, Bakshi J, Sharma K, Vir D, Didi A. Yoga as an Integrative Approach for Prevention and Treatment of Oral Cancer. Int J Yoga 2018; 11:177-185. [PMID: 30233110 PMCID: PMC6134750 DOI: 10.4103/ijoy.ijoy_49_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite tremendous advancements in medicine, the number of oral cancer cases continues to increase, and the need for integrating alternate medicine or adopting an integrative approach has become a compelling cost-effective requirement for the management and treatment of diseases. Conventional treatment of oral cancer involves surgery followed by radiotherapy with or without chemotherapy which causes several complications including poor quality of life and high chances of recurrence of cancer. Oral cancer is often linked with obesity which is major risk factors in other cancers. Apart from obesity, oral cancer is thought to have an inverse relation with neurodegenerative disorders presumably because cell death decreases in the former case and increases in the latter. Ancient mind-body techniques such as yoga have not been adequately tested as a tool to synergize the cellular equilibrium pertaining to the treatment of oral cancer. Nerve growth factor (NGF), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) are among the early experimental cellular biomarkers that may be used to probe the modulation of oral cancer, obesity, and neurodegenerative disorders. Yoga has been reported to influence these molecules in healthy individuals but whether their expression can be altered in patients of oral cancer by yoga intervention is the subject of this research being discussed in this review article. Therefore, the present article not only reviews the current status of research studies in oral cancer, obesity, and neurodegenerative disorders but also how these are linked to each other and why the investigations of the putative NGF pathway, involving TNF-α and IL-6, could provide useful clues to understand the molecular effects brought about by yoga intervention in such patients.
Collapse
Affiliation(s)
- Akshay Anand
- Department of Neurology, PGIMER, Chandigarh, India
| | - Atul Kumar Goyal
- Department of Neurology, PGIMER, Chandigarh, India.,Department of Otolaryngology and Head, Neck Surgery (ENT), PGIMER, Chandigarh, India
| | - Jaimanti Bakshi
- Department of Otolaryngology and Head, Neck Surgery (ENT), PGIMER, Chandigarh, India
| | | | - Dharam Vir
- Department of Otolaryngology and Head, Neck Surgery (ENT), PGIMER, Chandigarh, India
| | - Anita Didi
- Head, Global Peace House, Sec 15, Chandigarh, India
| |
Collapse
|
62
|
Capobianco E, Valdes C, Sarti S, Jiang Z, Poliseno L, Tsinoremas NF. Ensemble Modeling Approach Targeting Heterogeneous RNA-Seq data: Application to Melanoma Pseudogenes. Sci Rep 2017; 7:17344. [PMID: 29229974 PMCID: PMC5725464 DOI: 10.1038/s41598-017-17337-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 11/23/2017] [Indexed: 01/28/2023] Open
Abstract
We studied the transcriptome landscape of skin cutaneous melanoma (SKCM) using 103 primary tumor samples from TCGA, and measured the expression levels of both protein coding genes and non-coding RNAs (ncRNAs). In particular, we emphasized pseudogenes potentially relevant to this cancer. While cataloguing the profiles based on the known biotypes, all the employed RNA-Seq methods generated just a small consensus of significant biotypes. We thus designed an approach to reconcile the profiles from all methods following a simple strategy: we selected genes that were confirmed as differentially expressed by the ensemble predictions obtained in a regression model. The main advantages of this approach are: 1) Selection of a high-confidence gene set identifying relevant pathways; 2) Use of a regression model whose covariates embed all method-driven outcomes to predict an averaged profile; 3) Method-specific assessment of prediction power and significance. Furthermore, the approach can be generalized to any biological system for which noisy RNA-Seq profiles are computed. As our analyses concerned bio-annotations of both high-quality protein coding genes and ncRNAs, we considered the associations between pseudogenes and parental genes (targets). Among the candidate targets that were validated, we identified PINK1, which is studied in patients with Parkinson and cancer (especially melanoma).
Collapse
Affiliation(s)
- Enrico Capobianco
- Center for Computational Science, University of Miami, Miami, FL, USA.
| | - Camilo Valdes
- Center for Computational Science, University of Miami, Miami, FL, USA
| | | | - Zhijie Jiang
- Center for Computational Science, University of Miami, Miami, FL, USA
| | - Laura Poliseno
- Istituto Toscano Tumori Oncogenomics Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| | - Nicolas F Tsinoremas
- Center for Computational Science, University of Miami, Miami, FL, USA
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
63
|
Hanson HA, Horn KP, Rasmussen KM, Hoffman JM, Smith KR. Is Cancer Protective for Subsequent Alzheimer's Disease Risk? Evidence From the Utah Population Database. J Gerontol B Psychol Sci Soc Sci 2017; 72:1032-1043. [PMID: 27101831 PMCID: PMC5926998 DOI: 10.1093/geronb/gbw040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Several studies have suggested that cancer is associated with a reduced risk of the development of Alzheimer's disease (AD). This study seeks to improve our understanding of the association between cancer and the development of AD by showing how mortality selection alters this relationship. METHOD A retrospective cohort study was carried out examining 92,425 individuals (47,873 women and 44,552 men) from the Utah Population Database with and without a history of any primary cancer identified by the Utah Cancer Registry. All individuals were aged 65-79 years and free of dementia in 1992 and followed for upwards of 18 years (1992-2009) for AD ascertainment, which was identified using diagnostic information from Medicare claims data. RESULTS We replicate previous results suggesting that cancer is associated with reduced risk of subsequent AD under specific statistical model specifications. However, these results should not be interpreted as evidence of an etiological association. We conclude that higher rates of overall mortality among individuals with cancer relative to those without cancer induce the widely reported putative protective association with cancer. CONCLUSION Careful consideration of model specification and the profound effects of mortality selection in the older adult population is essential when investigating the relationship between aging-related diseases such as cancer and AD. We show that cancer does not provide protection from AD as previously described in the literature. Social scientists seeking to understand social disparities in disease outcomes among older adults may therefore want to strongly consider the role of mortality selection which, if uncorrected, may generate biased associations.
Collapse
Affiliation(s)
- Heidi A Hanson
- Population Sciences, Huntsman Cancer Institute and
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City
| | - Kevin P Horn
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Kelli M Rasmussen
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, Salt Lake City, Utah
| | - John M Hoffman
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Ken R Smith
- Population Sciences, Huntsman Cancer Institute and
- Department of Family and Consumer Studies, University of Utah, Salt Lake City
| |
Collapse
|
64
|
Squillaro T, Schettino C, Sampaolo S, Galderisi U, Di Iorio G, Giordano A, Melone MAB. Adult‐onset brain tumors and neurodegeneration: Are polyphenols protective? J Cell Physiol 2017; 233:3955-3967. [DOI: 10.1002/jcp.26170] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Tiziana Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in NeurosciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Carla Schettino
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in NeurosciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Simone Sampaolo
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in NeurosciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology SectionUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Giuseppe Di Iorio
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in NeurosciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and TechnologyTemple UniversityPhiladelphiaPennsylvania
- Department of MedicineSurgery and Neuroscience University of SienaSienaItaly
| | - Mariarosa A. B. Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in NeurosciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and TechnologyTemple UniversityPhiladelphiaPennsylvania
| |
Collapse
|
65
|
Park MH, Yun HM, Hwang CJ, Park SI, Han SB, Hwang DY, Yoon DY, Kim S, Hong JT. Presenilin Mutation Suppresses Lung Tumorigenesis via Inhibition of Peroxiredoxin 6 Activity and Expression. Theranostics 2017; 7:3624-3637. [PMID: 29109765 PMCID: PMC5667337 DOI: 10.7150/thno.21408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 06/24/2017] [Indexed: 01/01/2023] Open
Abstract
Some epidemiological studies suggest an inverse correlation between cancer incidence and Alzheimer's disease (AD). In this study, we demonstrated experimental evidences for this inverse relationship. In the co-expression network analysis using the microarray data and GEO profile of gene expression omnibus data analysis, we showed that the expression of peroxiredoxin 6 (PRDX6), a tumor promoting protein was significantly increased in human squamous lung cancer, but decreased in mutant presenilin 2 (PS2) containing AD patient. We also found in animal model that mutant PS2 transgenic mice displayed a reduced incidence of spontaneous and carcinogen-induced lung tumor development compared to wildtype transgenic mice. Agreed with network and GEO profile study, we also revealed that significantly reduced expression of PRDX6 and activity of iPLA2 in these animal models. PS2 mutations increased their interaction with PRDX6, thereby increasing iPLA2 cleavage via increased γ-secretase leading to loss of PRDX6 activity. However, knockdown or inhibition of γ-secretase abolished the inhibitory effect of mutant PSs. Moreover, PS2 mutant skin fibroblasts derived from patients with AD showed diminished iPLA2 activity by the elevated γ-secretase activity. Thus, the present data suggest that PS2 mutations suppress lung tumor development by inhibiting the iPLA2 activity of PRDX6 via a γ-secretase cleavage mechanism and may explain the inverse relationship between cancer and AD incidence.
Collapse
|
66
|
Chen Y, Xu R. Context-sensitive network-based disease genetics prediction and its implications in drug discovery. Bioinformatics 2017; 33:1031-1039. [PMID: 28062449 DOI: 10.1093/bioinformatics/btw737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/19/2016] [Indexed: 01/05/2023] Open
Abstract
Motivation Disease phenotype networks play an important role in computational approaches to identifying new disease-gene associations. Current disease phenotype networks often model disease relationships based on pairwise similarities, therefore ignore the specific context on how two diseases are connected. In this study, we propose a new strategy to model disease associations using context-sensitive networks (CSNs). We developed a CSN-based phenome-driven approach for disease genetics prediction, and investigated the translational potential of the predicted genes in drug discovery. Results We constructed CSNs by directly connecting diseases with associated phenotypes. Here, we constructed two CSNs using different data sources; the two networks contain 26 790 and 13 822 nodes respectively. We integrated the CSNs with a genetic functional relationship network and predicted disease genes using a network-based ranking algorithm. For comparison, we built Similarity-Based disease Networks (SBN) using the same disease phenotype data. In a de novo cross validation for 3324 diseases, the CSN-based approach significantly increased the average rank from top 12.6 to top 8.8% for all tested genes comparing with the SBN-based approach ( p<e-22 ). The area under the receiver operating characteristic curve for the CSN approach was also significantly higher than the SBN approach (0.91 versus 0.87, p<e-3 ). In addition, we predicted genes for Parkinson's disease using CSNs, and demonstrated that the top-ranked genes are highly relevant to PD pathologenesis. We pin-pointed a top-ranked drug target gene for PD, and found its association with neurodegeneration supported by literature. In summary, CSNs lead to significantly improve the disease genetics prediction comparing with SBNs and provide leads for potential drug targets. Availability and Implementation nlp.case.edu/public/data/. Contact rxx@case.edu.
Collapse
|
67
|
Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol Sci 2017; 38:592-607. [PMID: 28551354 DOI: 10.1016/j.tips.2017.04.005] [Citation(s) in RCA: 663] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Cancer and Alzheimer's disease (AD) are characterized by (i) opposing biological mechanisms, (ii) an inverse correlation between their incidences, and (iii) oxidative stress being a common denominator of both diseases. Increased formation of reactive oxygen species (ROS) in cancer cells from oncogenic signaling and/or metabolic disturbances leads to upregulation of cellular antioxidant capacity to maintain ROS levels below a toxic threshold. Combining drugs that induce high levels of ROS with compounds that suppress cellular antioxidant capacity by depleting antioxidant systems [glutathione (GSH), superoxide dismutase (SOD), and thioredoxin (TRX)] and/or targeting glucose metabolism represents a potential anticancer strategy. In AD, free metals and/or Aβ:metal complexes may cause damage to biomolecules in the brain (via Fenton reaction), including DNA. Metal chelation, based on the application of selective metal chelators or metal delivery, may induce neuroprotective signaling and represents a promising therapeutic strategy. This review examines therapeutic strategies based on the modulation of oxidative stress in cancer and AD.
Collapse
Affiliation(s)
- Patrik Poprac
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University, Trieda Andreja Hlinku 1, 949 74 Nitra, Slovakia
| | - Miriama Simunkova
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Vojtech Kollar
- School of Economics and Management in Public Administration in Bratislava, Furdekova 16, 851 04 Bratislava, Slovakia
| | | | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia.
| |
Collapse
|
68
|
New evidence of the relative protective effects of neurodegenerative diseases and cancer against each other. Neurologia 2017; 34:283-290. [PMID: 28325559 DOI: 10.1016/j.nrl.2017.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/08/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Cancer and degenerative diseases share some pathogenic mechanisms which act in opposition to one another to produce either uncontrolled cell proliferation or cell death. According to several studies, patients with Alzheimer disease have a lower risk of neoplasia, and vice versa. This study describes the prevalence of tumours (active or successfully treated) in a series of patients with and without a dementing degenerative disease treated at a cognitive neurology unit. PATIENTS AND METHOD We analysed the frequency and topography of tumours and the presence or absence of a neurodegenerative disease in a group of 1,164 patients. Neurodegenerative diseases were classified in 4 groups: Alzheimer disease, synucleinopathies, Pick complex, and polyglutamine complex. We subsequently compared tumour frequency in patients with and without a degenerative disease, and prevalence of neurodegenerative diseases in patients with and without tumours. RESULTS Tumours were detected in 12.1% of the patients with a neurodegenerative disease and in 17.3% of the remaining patients. Around 14.8% of the patients with a history of neoplasia and 20.8% of the patients with no history of neoplasia were diagnosed with a neurodegenerative disease. Except for these differences and the differences between subgroups (type of degenerative disease and tumour location) were not statistically significant, except when comparing neurodegenerative diseases to central nervous system tumours, and synucleinopathies to neoplasms. CONCLUSION Dementing degenerative diseases and neoplastic disorders are not mutually exclusive. Nevertheless, the rate of co-occurrence is lower than would be expected given the prevalence rate for each group.
Collapse
|
69
|
Oláh J, Bertrand P, Ovádi J. Role of the microtubule-associated TPPP/p25 in Parkinson's and related diseases and its therapeutic potential. Expert Rev Proteomics 2017; 14:301-309. [PMID: 28271739 DOI: 10.1080/14789450.2017.1304216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The discovery and development of therapeutic strategies for the treatments of Parkinson's disease (PD) and other synucleinopathies are limited by a lack of understanding of the pathomechanisms and their connection with different diseases such as cancers. Areas covered: The hallmarks of these diseases are frequently multifunctional disordered proteins displaying moonlighting and/or chameleon features, which are challenging drug targets. A representative of these proteins is the disordered Tubulin Polymerization Promoting Protein (TPPP/p25) expressed specifically in oligodendrocytes (OLGs) in normal brain. Its non-physiological level is tightly related to the etiology of PD and Multiple System Atrophy (TPPP/p25 enrichment in inclusions of neurons and OLGs, respectively), multiple sclerosis (TPPP/p25-positive OLG destruction), as well as glioma (loss of TPPP/p25 expression). The established anti-proliferative potency of TPPP/p25 may raise its influence in cancer development. The recognition that whereas too much TPPP/p25 could kill neurons in PD, but its loss keeps cells alive in cancer could contribute to our understanding of the interrelationship of 'TPPP/p25 diseases'. Expert commentary: The knowledge accumulated so far underlines the key roles of the multifunctional TPPP/p25 in both physiological and diverse pathological processes, consequently its validation as drug target sorely needs a new innovative strategy that is briefly reviewed here.
Collapse
Affiliation(s)
- Judit Oláh
- a Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Philippe Bertrand
- b Institute of Chemistry for Materials and Medias, UMR CNRS 7285, University of Poitiers, 4 Rue Michel Brunet , TSA 51106 Poitiers cedex 9, France.,c REpiCGO network, Cancéropôle Grand Ouest, Maison de la Recherche en Santé, 63, quai Magellan 44000 Nantes , France
| | - Judit Ovádi
- a Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
70
|
Coarelli G, Diallo A, Thion MS, Rinaldi D, Calvas F, Boukbiza OL, Tataru A, Charles P, Tranchant C, Marelli C, Ewenczyk C, Tchikviladzé M, Monin ML, Carlander B, Anheim M, Brice A, Mochel F, Tezenas du Montcel S, Humbert S, Durr A. Low cancer prevalence in polyglutamine expansion diseases. Neurology 2017; 88:1114-1119. [DOI: 10.1212/wnl.0000000000003725] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/10/2016] [Indexed: 12/24/2022] Open
Abstract
Objective:Polyglutamine (PolyQ) diseases are dominantly transmitted neurologic disorders, caused by coding and expanded CAG trinucleotide repeats. Cancer was reported retrospectively to be rare in patients with PolyQ diseases and we aimed to investigate its prevalence in France.Methods:Consecutive patients with Huntington disease (HD) and spinocerebellar ataxia (SCA) were questioned about cancer, cardiovascular diseases, and related risk factors in 4 university hospitals in Paris, Toulouse, Strasbourg, and Montpellier. Standardized incidence ratios (SIR), based on age- and sex-adjusted rate of the French population, were assessed for different types of cancer.Results:We questioned 372 patients with HD and 134 patients with SCA. SIR showed significantly reduced risk of cancer in HD: 23 observed cases vs 111.05 expected ones (SIR 0.21, 95% confidence interval [CI] 0.13–0.31), as well as in SCA: 7 observed cases vs 34.73 expected (SIR 0.23, 95% CI 0.08–0.42). This was surprising since risk behavior for cancer was increased in these patients, with significantly greater tobacco and alcohol consumption in patients with HD vs patients with SCA (p < 0.0056). There was no association between CAG repeat size and cancer or cardiovascular disease. However, in patients with HD, skin cancers were more frequent than expected (5 vs 0.98, SIR 5.11, 95% CI 1.65–11.95).Conclusions:There was a decreased cancer rate in PolyQ diseases despite high incidence of risk factors. Intriguingly, skin cancer incidence was higher, suggesting a crosstalk between neurodegeneration and skin tumorigenesis.
Collapse
|
71
|
Deng Y, Long L, Wang K, Zhou J, Zeng L, He L, Gong Q. Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats. Front Pharmacol 2017; 8:39. [PMID: 28210222 PMCID: PMC5288340 DOI: 10.3389/fphar.2017.00039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/18/2017] [Indexed: 01/07/2023] Open
Abstract
Beta-amyloid (Aβ) deposition, associated neuronal apoptosis and neuroinflammation are considered as the important factors which lead to cognitive deficits in Alzheimer's disease (AD). Icariside II (ICS II), an active flavonoid compound derived from Epimedium brevicornum Maxim, has been extensively used to treat erectile dysfunction, osteoporosis and dementia in traditional Chinese medicine. Recently, ICS II attracts great interest due to its broad-spectrum anti-cancer property. ICS II shows an anti-inflammatory potential both in cancer treatment and cerebral ischemia-reperfusion. It is not yet clear whether the anti-inflammatory effect of ICS II could delay progression of AD. Therefore, the current study aimed to investigate the effects of ICS II on the behavioral deficits, Aβ levels, neuroinflammatory responses and apoptosis in Aβ25-35-treated rats. We found that bilateral hippocampal injection of Aβ25-35 induced cognitive impairment, neuronal damage, along with increase of Aβ, inflammation and apoptosis in hippocampus of rats. However, treatment with ICS II 20 mg/kg could improve the cognitive deficits, ameliorate neuronal death, and reduce the levels of Aβ in the hippocampus. Furthermore, ICS II could suppress microglial and astrocytic activation, inhibit expression of IL-1β, TNF-α, COX-2, and iNOS mRNA and protein, and attenuate the Aβ induced Bax/Bcl-2 ratio elevation and caspase-3 activation. In conclusion, these results showed that ICS II could reverse Aβ-induced cognitive deficits, possibly via the inhibition of neuroinflammation and apoptosis, which suggested a potential protective effect of ICS II on AD.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Long Long
- Department of Pharmacy, Zunyi Medical UniversityGuizhou, China
| | - Keke Wang
- Zunyi Medical and Pharmaceutical CollegeGuizhou, China
| | - Jiayin Zhou
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Lingrong Zeng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Lianzi He
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| |
Collapse
|
72
|
De Mario A, Quintana-Cabrera R, Martinvalet D, Giacomello M. (Neuro)degenerated Mitochondria-ER contacts. Biochem Biophys Res Commun 2017; 483:1096-1109. [DOI: 10.1016/j.bbrc.2016.07.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/10/2016] [Indexed: 01/24/2023]
|
73
|
Magdalinou NK, Noyce AJ, Pinto R, Lindstrom E, Holmén-Larsson J, Holtta M, Blennow K, Morris HR, Skillbäck T, Warner TT, Lees AJ, Pike I, Ward M, Zetterberg H, Gobom J. Identification of candidate cerebrospinal fluid biomarkers in parkinsonism using quantitative proteomics. Parkinsonism Relat Disord 2017; 37:65-71. [PMID: 28214264 DOI: 10.1016/j.parkreldis.2017.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 01/02/2017] [Accepted: 01/27/2017] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neurodegenerative parkinsonian syndromes have significant clinical and pathological overlap, making early diagnosis difficult. Cerebrospinal fluid (CSF) biomarkers may aid the differentiation of these disorders, but other than α-synuclein and neurofilament light chain protein, which have limited diagnostic power, specific protein biomarkers remain elusive. OBJECTIVES To study disease mechanisms and identify possible CSF diagnostic biomarkers through discovery proteomics, which discriminate parkinsonian syndromes from healthy controls. METHODS CSF was collected consecutively from 134 participants; Parkinson's disease (n = 26), atypical parkinsonian syndromes (n = 78, including progressive supranuclear palsy (n = 36), multiple system atrophy (n = 28), corticobasal syndrome (n = 14)), and elderly healthy controls (n = 30). Participants were divided into a discovery and a validation set for analysis. The samples were subjected to tryptic digestion, followed by liquid chromatography-mass spectrometry analysis for identification and relative quantification by isobaric labelling. Candidate protein biomarkers were identified based on the relative abundances of the identified tryptic peptides. Their predictive performance was evaluated by analysis of the validation set. RESULTS 79 tryptic peptides, derived from 26 proteins were found to differ significantly between atypical parkinsonism patients and controls. They included acute phase/inflammatory markers and neuronal/synaptic markers, which were respectively increased or decreased in atypical parkinsonism, while their levels in PD subjects were intermediate between controls and atypical parkinsonism. CONCLUSION Using an unbiased proteomic approach, proteins were identified that were able to differentiate atypical parkinsonian syndrome patients from healthy controls. Our study indicates that markers that may reflect neuronal function and/or plasticity, such as the amyloid precursor protein, and inflammatory markers may hold future promise as candidate biomarkers in parkinsonism.
Collapse
Affiliation(s)
- N K Magdalinou
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, Queen Square, London, UK.
| | - A J Noyce
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, Queen Square, London, UK
| | - R Pinto
- Institute of Chemistry University of Umeå, Umeå, Sweden
| | - E Lindstrom
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - J Holmén-Larsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - M Holtta
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - H R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, Royal Free Hospital, London, UK
| | - T Skillbäck
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - T T Warner
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, Queen Square, London, UK
| | - A J Lees
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, Queen Square, London, UK
| | - I Pike
- Proteome Sciences Plc, London, UK
| | - M Ward
- Proteome Sciences Plc, London, UK
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - J Gobom
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
74
|
Does any drug to treat cancer target mTOR and iron hemostasis in neurodegenerative disorders? Biometals 2016; 30:1-16. [PMID: 27853903 DOI: 10.1007/s10534-016-9981-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 12/23/2022]
Abstract
The prevalence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are increased by age. Alleviation of their symptoms and protection of normal neurons against degeneration are the main aspects of the research to establish novel therapeutic strategies. Iron as the one of most important cation not only play important role in the structure of electron transport chain proteins but also has pivotal duties in cellular activities. But disruption in iron hemostasis can make it toxin to neurons which causes lipid peroxidation, DNA damage and etc. In patients with Alzheimer and Parkinson misbalancing in iron homeostasis accelerate neurodegeneration and cause neuroinflmmation. mTOR as the common signaling pathway between cancer and neurodegenerative disorders controls iron uptake and it is in active form in both diseases. Anti-cancer drugs which target mTOR causes iron deficiency and dual effects of mTOR inhibitors can candidate them as a therapeutic strategy to alleviate neurodegeneration/inflammation because of iron overloading.
Collapse
|
75
|
Parkin and mitophagy in cancer. Oncogene 2016; 36:1315-1327. [PMID: 27593930 DOI: 10.1038/onc.2016.302] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Mitophagy, the selective engulfment and clearance of mitochondria, is essential for the homeostasis of a healthy network of functioning mitochondria and prevents excessive production of cytotoxic reactive oxygen species from damaged mitochondria. The mitochondrially targeted PTEN-induced kinase-1 (PINK1) and the E3 ubiquitin ligase Parkin are well-established synergistic mediators of the mitophagy of dysfunctional mitochondria. This pathway relies on the ubiquitination of a number of mitochondrial outer membrane substrates and subsequent docking of autophagy receptor proteins to selectively clear mitochondria. There are also alternate Parkin-independent mitophagy pathways mediated by BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 and Nip-3 like protein X as well as other effectors. There is increasing evidence that ablation of mitophagy accelerates a number of pathologies. Familial Parkinsonism is associated with loss-of-function mutations in PINK1 and Parkin. A growing number of studies have observed a correlation between impaired Parkin activity and enhanced cancer development, leading to the emerging concept that Parkin activity, or mitophagy in general, is a tumour suppression mechanism. This review examines the molecular mechanisms of mitophagy and highlights the potential links between Parkin and the hallmarks of cancer that may influence tumour development and progression.
Collapse
|
76
|
Huang Y, Mu DZ. [PINK1 and the related diseases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:781-6. [PMID: 27530800 PMCID: PMC7399510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/20/2016] [Indexed: 04/27/2024]
Abstract
As a kind of mitochondrial membrane protein with protein kinase activity, phosphatase and tensin homolog deleted on chromosome ten induced kinase 1 (PINK1) is involved in many biological metabolic processes. Since PINK1 had been found to be associated with Parkinson's disease, researchers have been exploring its biological function. PINK1 localizes in the outer mitochondrial membrane and regulates cell function through phosphorylating proteins. PINK1 is involved in mitochondrial function, mitochondrial morphology and mitochondrial autophagy, but the regulatory pathway is not yet clear. PINK1 is expressed widely in many tissues with a variety of biological activity, especially in tissues with high energy consumption. It may therefore be involved in the development and regulation of many diseases. Mutations in PINK1 were originally discovered to cause autosomal recessive Parkinson's disease. Recently some research has revealed that PINK1 is related to the development of neonatal hypoxic-ischemic encephalopathy, cancer, diabetes and other diseases. Studying and exploring the biological functions of PINK1 will facilitate the identification of the targets for therapeutic intervention for its related diseases. This review article mainly focuses on recent studies about the biological function and related diseases of PINK1.
Collapse
Affiliation(s)
- Yang Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University/Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu 610041, China.
| | | |
Collapse
|
77
|
Huang Y, Mu DZ. [PINK1 and the related diseases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:781-786. [PMID: 27530800 PMCID: PMC7399510 DOI: 10.7499/j.issn.1008-8830.2016.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
As a kind of mitochondrial membrane protein with protein kinase activity, phosphatase and tensin homolog deleted on chromosome ten induced kinase 1 (PINK1) is involved in many biological metabolic processes. Since PINK1 had been found to be associated with Parkinson's disease, researchers have been exploring its biological function. PINK1 localizes in the outer mitochondrial membrane and regulates cell function through phosphorylating proteins. PINK1 is involved in mitochondrial function, mitochondrial morphology and mitochondrial autophagy, but the regulatory pathway is not yet clear. PINK1 is expressed widely in many tissues with a variety of biological activity, especially in tissues with high energy consumption. It may therefore be involved in the development and regulation of many diseases. Mutations in PINK1 were originally discovered to cause autosomal recessive Parkinson's disease. Recently some research has revealed that PINK1 is related to the development of neonatal hypoxic-ischemic encephalopathy, cancer, diabetes and other diseases. Studying and exploring the biological functions of PINK1 will facilitate the identification of the targets for therapeutic intervention for its related diseases. This review article mainly focuses on recent studies about the biological function and related diseases of PINK1.
Collapse
Affiliation(s)
- Yang Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University/Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu 610041, China.
| | | |
Collapse
|
78
|
Khankhanian P, Cozen W, Himmelstein DS, Madireddy L, Din L, van den Berg A, Matsushita T, Glaser SL, Moré JM, Smedby KE, Baranzini SE, Mack TM, Lizée A, de Sanjosé S, Gourraud PA, Nieters A, Hauser SL, Cocco P, Maynadié M, Foretová L, Staines A, Delahaye-Sourdeix M, Li D, Bhatia S, Melbye M, Onel K, Jarrett R, McKay JD, Oksenberg JR, Hjalgrim H. Meta-analysis of genome-wide association studies reveals genetic overlap between Hodgkin lymphoma and multiple sclerosis. Int J Epidemiol 2016; 45:728-40. [PMID: 26971321 PMCID: PMC5005944 DOI: 10.1093/ije/dyv364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Based on epidemiological commonalities, multiple sclerosis (MS) and Hodgkin lymphoma (HL), two clinically distinct conditions, have long been suspected to be aetiologically related. MS and HL occur in roughly the same age groups, both are associated with Epstein-Barr virus infection and ultraviolet (UV) light exposure, and they cluster mutually in families (though not in individuals). We speculated if in addition to sharing environmental risk factors, MS and HL were also genetically related. Using data from genome-wide association studies (GWAS) of 1816 HL patients, 9772 MS patients and 25 255 controls, we therefore investigated the genetic overlap between the two diseases. METHODS From among a common denominator of 404 K single nucleotide polymorphisms (SNPs) studied, we identified SNPs and human leukocyte antigen (HLA) alleles independently associated with both diseases. Next, we assessed the cumulative genome-wide effect of MS-associated SNPs on HL and of HL-associated SNPs on MS. To provide an interpretational frame of reference, we used data from published GWAS to create a genetic network of diseases within which we analysed proximity of HL and MS to autoimmune diseases and haematological and non-haematological malignancies. RESULTS SNP analyses revealed genome-wide overlap between HL and MS, most prominently in the HLA region. Polygenic HL risk scores explained 4.44% of HL risk (Nagelkerke R(2)), but also 2.36% of MS risk. Conversely, polygenic MS risk scores explained 8.08% of MS risk and 1.94% of HL risk. In the genetic disease network, HL was closer to autoimmune diseases than to solid cancers. CONCLUSIONS HL displays considerable genetic overlap with MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Pouya Khankhanian
- Center for Neuroengineering and Thereapeutics at the University of Pennsylvania, Philadelphia, PA, USA University of California, San Francisco, CA, USA
| | - Wendy Cozen
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Lennox Din
- University of California, San Francisco, CA, USA
| | | | | | - Sally L Glaser
- Cancer Prevention Institute of California, Fremont, CA, USA
| | | | | | | | - Thomas M Mack
- University of Southern California, Los Angeles, CA, USA
| | | | - Silvia de Sanjosé
- Catalan Institute of Oncology, L'Hospitalet de Llobregat, Catalonia, Spain
| | | | | | | | | | - Marc Maynadié
- Centre Hospitalier Universitaire de Dijon, Dijon, France
| | | | | | | | - Dalin Li
- University of Southern California, Los Angeles, CA, USA
| | - Smita Bhatia
- City of Hope National Medical Center, Duarte, CA, USA
| | - Mads Melbye
- Statens Serum Institut, Copenhagen S, Denmark
| | | | - Ruth Jarrett
- MRC, University of Glasgow Centre for Virus Research, Glasgow, UK
| | - James D McKay
- International Agency for Research on Cancer, Lyon, France
| | | | | |
Collapse
|
79
|
Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke. Sci Rep 2016; 6:25626. [PMID: 27172999 PMCID: PMC4865873 DOI: 10.1038/srep25626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/20/2016] [Indexed: 12/13/2022] Open
Abstract
We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0–4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0–4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer’s disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD.
Collapse
|
80
|
Paul Y, Hasija Y. Gene Prioritization by Integrated Analysis of Protein Structural and Network Topological Properties for the Protein-Protein Interaction Network of Neurological Disorders. SCIENTIFICA 2016; 2016:9589404. [PMID: 27034906 PMCID: PMC4808548 DOI: 10.1155/2016/9589404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/11/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Neurological disorders are known to show similar phenotypic manifestations like anxiety, depression, and cognitive impairment. There is a need to identify shared genetic markers and molecular pathways in these diseases, which lead to such comorbid conditions. Our study aims to prioritize novel genetic markers that might increase the susceptibility of patients affected with one neurological disorder to other diseases with similar manifestations. Identification of pathways involving common candidate markers will help in the development of improved diagnosis and treatments strategies for patients affected with neurological disorders. This systems biology study for the first time integratively uses 3D-structural protein interface descriptors and network topological properties that characterize proteins in a neurological protein interaction network, to aid the identification of genes that are previously not known to be shared between these diseases. Results of protein prioritization by machine learning have identified known as well as new genetic markers which might have direct or indirect involvement in several neurological disorders. Important gene hubs have also been identified that provide an evidence for shared molecular pathways in the neurological disease network.
Collapse
Affiliation(s)
- Yashna Paul
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, New Delhi, Delhi 110042, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, New Delhi, Delhi 110042, India
| |
Collapse
|
81
|
Abstract
The relationship between dementia and cancer is complex. A wealth of observational data suggest (1) reduced risk of certain cancers in Alzheimer and Parkinson diseases; and (2) increased risk of other cancers in Parkinson disease. These relationships persist despite correcting for reporting artifacts and survival bias. Several potential mechanisms have been proposed and warrant further investigation. Aging is a risk factor for both. Common environmental exposures, such as smoking, may play roles. Common mechanisms such as chronic inflammation and immunosenescence, and common risk factors such as diabetes and obesity, have been implicated. Shared genetic pathways are a major focus, particularly those favoring apoptosis and cell proliferation at opposite ends of the spectrum. To complicate the picture further, certain cancer chemotherapy and adjuvant therapy agents have neurotoxic effects, whereas animal studies show other cancer drugs reducing neurodegeneration, raising the possibility of repurposing those agents for use in Alzheimer disease. These multiple potential lines of evidence must be disentangled to investigate underlying mechanisms, the end-game being to develop and to test potential prevention and treatment strategies.
Collapse
|
82
|
Yang SH, Li W, Sumien N, Forster M, Simpkins JW, Liu R. Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots. Prog Neurobiol 2015; 157:273-291. [PMID: 26603930 DOI: 10.1016/j.pneurobio.2015.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
Brain has exceptional high requirement for energy metabolism with glucose as the exclusive energy source. Decrease of brain energy metabolism and glucose uptake has been found in patients of Alzheimer's, Parkinson's and other neurodegenerative diseases, providing a clear link between neurodegenerative disorders and energy metabolism. On the other hand, cancers, including glioblastoma, have increased glucose uptake and rely on aerobic glycolysis for energy metabolism. The switch of high efficient oxidative phosphorylation to low efficient aerobic glycolysis pathway (Warburg effect) provides macromolecule for biosynthesis and proliferation. Current research indicates that methylene blue, a century old drug, can receive electron from NADH in the presence of complex I and donates it to cytochrome c, providing an alternative electron transfer pathway. Methylene blue increases oxygen consumption, decrease glycolysis, and increases glucose uptake in vitro. Methylene blue enhances glucose uptake and regional cerebral blood flow in rats upon acute treatment. In addition, methylene blue provides protective effect in neuron and astrocyte against various insults in vitro and in rodent models of Alzheimer's, Parkinson's, and Huntington's disease. In glioblastoma cells, methylene blue reverses Warburg effect by enhancing mitochondrial oxidative phosphorylation, arrests glioma cell cycle at s-phase, and inhibits glioma cell proliferation. Accordingly, methylene blue activates AMP-activated protein kinase, inhibits downstream acetyl-coA carboxylase and cyclin-dependent kinases. In summary, there is accumulating evidence providing a proof of concept that enhancement of mitochondrial oxidative phosphorylation via alternative mitochondrial electron transfer may offer protective action against neurodegenerative diseases and inhibit cancers proliferation.
Collapse
Affiliation(s)
- Shao-Hua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Wenjun Li
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nathalie Sumien
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Michael Forster
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, Center for Neuroscience, Health Science Center, West Virginia University, Medical Center Drive, Morgantown, WV 26506, USA
| | - Ran Liu
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
83
|
Neurodegeneration and Cancer: Where the Disorder Prevails. Sci Rep 2015; 5:15390. [PMID: 26493371 PMCID: PMC4615981 DOI: 10.1038/srep15390] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/07/2015] [Indexed: 12/27/2022] Open
Abstract
It has been reported that genes up-regulated in cancer are often down-regulated in neurodegenerative disorders and vice versa. The fact that apparently unrelated diseases share functional pathways suggests a link between their etiopathogenesis and the properties of molecules involved. Are there specific features that explain the exclusive association of proteins with either cancer or neurodegeneration? We performed a large-scale analysis of physico-chemical properties to understand what characteristics differentiate classes of diseases. We found that structural disorder significantly distinguishes proteins up-regulated in neurodegenerative diseases from those linked to cancer. We also observed high correlation between structural disorder and age of onset in Frontotemporal Dementia, Parkinson's and Alzheimer's diseases, which strongly supports the role of protein unfolding in neurodegenerative processes.
Collapse
|
84
|
Parlanti E, Pietraforte D, Iorio E, Visentin S, De Nuccio C, Zijno A, D'Errico M, Simonelli V, Sanchez M, Fattibene P, Falchi M, Dogliotti E. An altered redox balance and increased genetic instability characterize primary fibroblasts derived from xeroderma pigmentosum group A patients. Mutat Res 2015; 782:34-43. [PMID: 26546826 DOI: 10.1016/j.mrfmmm.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 10/22/2022]
Abstract
Xeroderma pigmentosum (XP)-A patients are characterized by increased solar skin carcinogenesis and present also neurodegeneration. XPA deficiency is associated with defective nucleotide excision repair (NER) and increased basal levels of oxidatively induced DNA damage. In this study we search for the origin of increased levels of oxidatively generated DNA lesions in XP-A cell genome and then address the question of whether increased oxidative stress might drive genetic instability. We show that XP-A human primary fibroblasts present increased levels and different types of intracellular reactive oxygen species (ROS) as compared to normal fibroblasts, with O₂₋• and H₂O₂ being the major reactive species. Moreover, XP-A cells are characterized by decreased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios as compared to normal fibroblasts. The significant increase of ROS levels and the alteration of the glutathione redox state following silencing of XPA confirmed the causal relationship between a functional XPA and the control of redox balance. Proton nuclear magnetic resonance (¹H NMR) analysis of the metabolic profile revealed a more glycolytic metabolism and higher ATP levels in XP-A than in normal primary fibroblasts. This perturbation of bioenergetics is associated with different morphology and response of mitochondria to targeted toxicants. In line with cancer susceptibility, XP-A primary fibroblasts showed increased spontaneous micronuclei (MN) frequency, a hallmark of cancer risk. The increased MN frequency was not affected by inhibition of ROS to normal levels by N-acetyl-L-cysteine.
Collapse
Affiliation(s)
- Eleonora Parlanti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Donatella Pietraforte
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sergio Visentin
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Chiara De Nuccio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Andrea Zijno
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Sanchez
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Fattibene
- Department of Technology and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
85
|
Genes, pathways, and animal models in primary open-angle glaucoma. Eye (Lond) 2015; 29:1285-98. [PMID: 26315706 DOI: 10.1038/eye.2015.160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/27/2015] [Indexed: 02/08/2023] Open
Abstract
Glaucoma is an optic neuropathy characterized by loss of retinal ganglion cells (RGCs) and consequently visual field loss. It is a complex and heterogeneous disease in which both environmental and genetic factors play a role. With the advent of genome-wide association studies (GWASs), the number of loci associated with primary open-angle glaucoma (POAG) have increased greatly. There has also been major progress in understanding the genes determining the vertical cup-disc ratio (VCDR), disc area (DA), cup area (CA), intraocular pressure (IOP), and central corneal thickness (CCT). In this review, we will update and summarize the genetic loci associated so far with POAG, VCDR, DA, CA, IOP, and CCT. We will describe the pathways revealed and supported by genetic association studies, integrating current knowledge from human and experimental data. Finally, we will discuss approaches for functional genomics and clinical translation.
Collapse
|
86
|
Niklison-Chirou MV, Killick R, Knight RA, Nicotera P, Melino G, Agostini M. How Does p73 Cause Neuronal Defects? Mol Neurobiol 2015; 53:4509-20. [PMID: 26266644 DOI: 10.1007/s12035-015-9381-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022]
Abstract
The p53-family member, p73, plays a key role in the development of the central nervous system (CNS), in senescence, and in tumor formation. The role of p73 in neuronal differentiation is complex and involves several downstream pathways. Indeed, in the last few years, we have learnt that TAp73 directly or indirectly regulates several genes involved in neural biology. In particular, TAp73 is involved in the maintenance of neural stem/progenitor cell self-renewal and differentiation throughout the regulation of SOX-2, Hey-2, TRIM32 and Notch. In addition, TAp73 is also implicated in the regulation of the differentiation and function of postmitotic neurons by regulating the expression of p75NTR and GLS2 (glutamine metabolism). Further still, the regulation of miR-34a by TAp73 indicates that microRNAs can also participate in this multifunctional role of p73 in adult brain physiology. However, contradictory results still exist in the relationship between p73 and brain disorders, and this remains an important area for further investigation.
Collapse
Affiliation(s)
- Maria Victoria Niklison-Chirou
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK
- Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Richard Killick
- The Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Richard A Knight
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK
| | | | - Gerry Melino
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK.
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Massimiliano Agostini
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK.
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy.
| |
Collapse
|
87
|
Currais A. Ageing and inflammation - A central role for mitochondria in brain health and disease. Ageing Res Rev 2015; 21:30-42. [PMID: 25684584 DOI: 10.1016/j.arr.2015.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 02/08/2023]
Abstract
To develop successful therapies that prevent or treat neurodegenerative diseases requires an understanding of the upstream events. Ageing is by far the greatest risk factor for most of these diseases, and to clarify their causes will require an understanding of the process of ageing itself. Starting with the question Why do we age as individual organisms, but the line of pluripotent embryonic stem cells and germ cells carried by individuals and transmitted to descendants is immortal? this review discusses how the process of cellular differentiation leads to the accumulation of biological imperfections with ageing, and how these imperfections may be the cause of chronic inflammatory responses to stress that undermine cellular function. Both differentiation and inflammation involve drastic metabolic changes associated with alterations in mitochondrial dynamics that shift the balance between aerobic glycolysis and oxidative phosphorylation. With ageing, mitochondrial dysfunction can be both the cause and consequence of inflammatory processes and elicit metabolic adaptations that might be either protective or become progressively detrimental. It is argued here that an understanding of the relationship between metabolism, differentiation and inflammation is essential to understand the pathological mechanisms governing brain health and disease during ageing.
Collapse
|
88
|
Chien CH, Lee MJ, Liou HC, Liou HH, Fu WM. Local immunosuppressive microenvironment enhances migration of melanoma cells to lungs in DJ-1 knockout mice. PLoS One 2015; 10:e0115827. [PMID: 25706411 PMCID: PMC4338246 DOI: 10.1371/journal.pone.0115827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/02/2014] [Indexed: 01/12/2023] Open
Abstract
DJ-1 is an oncoprotein that promotes survival of cancer cells through anti-apoptosis. However, DJ-1 also plays a role in regulating IL-1β expression, and whether inflammatory microenvironment built by dysregulated DJ-1 affects cancer progression is still unclear. This study thus aimed to compare the metastatic abilities of melanoma cells in wild-type (WT) and DJ-1 knockout (KO) mice, and to check whether inflammatory microenvironment built in DJ-1 KO mice plays a role in migration of cancer cells to lungs. First, B16F10 melanoma cells (at 6×104) were injected into the femoral vein of mice, and formation of lung nodules, levels of lung IL-1β and serum cytokines, and accumulation of myeloid-derived suppressor cells (MDSCs) were compared between WT and DJ-1 KO mice. Second, the cancer-bearing mice were treated with an interleukin-1 beta (IL-1β) neutralizing antibody to see whether IL-1β is involved in the cancer migration. Finally, cultured RAW 264.7 macrophage and B16F10 melanoma cells were respectively treated with DJ-1 shRNA and recombinant IL-1β to explore underlying molecular mechanisms. Our results showed that IL-1β enhanced survival and colony formation of cultured melanoma cells, and that IL-1β levels were elevated both in DJ-1 KO mice and in cultured macrophage cells with DJ-1 knockdown. The elevated IL-1β correlated with higher accumulation of immunosuppressive MDSCs and formation of melanoma module in the lung of DJ-1 KO mice, and both can be decreased by treating mice with IL-1β neutralizing antibodies. Taken together, these results indicate that immunosuppressive tissue microenvironment built in DJ-1 KO mice can enhance lung migration of cancer, and IL-1β plays an important role in promoting the cancer migration.
Collapse
Affiliation(s)
- Chia-Hung Chien
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Houng-Chi Liou
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Mei Fu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
89
|
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. It is typically fatal within 2-5 years of symptom onset. The incidence of ALS is largely uniform across most parts of the world, but an increasing ALS incidence during the last decades has been suggested. Although recent genetic studies have substantially improved our understanding of the causes of ALS, especially familial ALS, an important role of non-genetic factors in ALS is recognized and needs further study. In this review, we briefly discuss several major genetic contributors to ALS identified to date, followed by a more focused discussion on the most commonly examined non-genetic risk factors for ALS. We first review factors related to lifestyle choices, including smoking, intake of antioxidants, physical fitness, body mass index, and physical exercise, followed by factors related to occupational and environmental exposures, including electromagnetic fields, metals, pesticides, β-methylamino-L-alanine, and viral infection. Potential links between ALS and other medical conditions, including head trauma, metabolic diseases, cancer, and inflammatory diseases, are also discussed. Finally, we outline several future directions aiming to more efficiently examine the role of non-genetic risk factors in ALS.
Collapse
Affiliation(s)
- Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Freya Kamel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Fang Fang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
90
|
Jabir NR, Firoz CK, Baeesa SS, Ashraf GM, Akhtar S, Kamal W, Kamal MA, Tabrez S. Synopsis on the linkage of Alzheimer's and Parkinson's disease with chronic diseases. CNS Neurosci Ther 2014; 21:1-7. [PMID: 25399848 DOI: 10.1111/cns.12344] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration is the progressive loss of neuronal structure and function, which ultimately leads to neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis, and Huntington's disease. Even after the recent significant advances in neurobiology, the above-mentioned disorders continue to haunt the global population. Several studies have suggested the role of specific environmental and genetic risk factors associated with these disorders. However, the exact mechanism associated with the progression of these disorders still needs to be elucidated. In the recent years, sophisticated research has revealed interesting association of prominent neurodegenerative disorders such as AD and PD with chronic diseases such as cancer, diabetes, and cardiovascular diseases. Several common molecular mechanisms such as generation of free radicals, oxidative DNA damage, aberrations in mitochondrial DNA, and dysregulation of apoptosis have been highlighted as possible points of connection. The present review summarizes the possible mechanism of coexistence of AD and PD with other chronic diseases.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
91
|
PINK1 signalling in cancer biology. Biochim Biophys Acta Rev Cancer 2014; 1846:590-8. [PMID: 25450579 DOI: 10.1016/j.bbcan.2014.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/29/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Abstract
PTEN-induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up-regulated by overexpression of the major tumor suppressor, PTEN. Loss-of-function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinson's disease. Substantial work during the past decade has revealed that PINK1 regulates several primary cellular processes of significance in cancer cell biology, including cell survival, stress resistance, mitochondrial homeostasis and the cell cycle. Mechanistically, PINK1 has been shown to interact on a number of levels with the pivotal oncogenic PI3-kinase/Akt/mTOR signalling axis and to control critical mitochondrial and metabolic functions that regulate cancer survival, growth, stress resistance and the cell cycle. A cytoprotective and chemoresistant function for PINK1 has been highlighted by some studies, supporting PINK1 as a target in cancer therapeutics. This article reviews the function of PINK1 in cancer cell biology, with an emphasis on the mechanisms by which PINK1 interacts with PI3-kinase/Akt signalling, mitochondrial homeostasis, and the potential context-dependent pro- and anti-tumorigenic functions of PINK1.
Collapse
|
92
|
Age-dependent metabolic dysregulation in cancer and Alzheimer's disease. Biogerontology 2014; 15:559-77. [PMID: 25305052 DOI: 10.1007/s10522-014-9534-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/27/2014] [Indexed: 01/12/2023]
Abstract
Age is the main risk factor for cancer and neurodegeneration; two radically divergent diseases. Yet selective pressure to meet cellular metabolic needs may provide a common mechanism linking these two disorders. The exclusive use of glycolysis, despite the presence of oxygen, is commonly referred to as aerobic glycolysis and is the primary metabolic pathway of cancer cells. Recent evidence suggests that aerobic glycolysis is also a key regulator of synaptic plasticity in the brain that may positively influence cognition. Elevated aerobic glycolysis is a contributing factor to the development of cancer as increased glycolytic flux plays an important role in the biosynthesis of macromolecules and promotes proliferation. In contrast, decreased aerobic glycolysis in the brain occurs with age and could lead to a loss of cell survival mechanisms that counter pathogenic processes underlying neurodegeneration. In this review we discuss the recent findings from epidemiological studies demonstrating an inverse comorbidity of cancer and Alzheimer's disease. We summarize evidence linking the two diseases through changes in metabolism over the course of normal aging. We discuss the key steps and regulatory mechanisms of aerobic glycolysis and mitochondrial oxidative phosphorylation which could be exploited for the development of novel therapies. In addition, we outline the regulation of aerobic glycolysis at the transcriptional level by HIF-1α and Pin1 and their roles in cancer and neurodegeneration. Finally, we provide a possible explanation for metabolic dysregulation that occurs with age, and how it may be a contributing factor to age-related diseases. Determining how metabolism becomes dysregulated over time could lead to the development of effective interventions for ensuring metabolic homeostasis and healthy aging.
Collapse
|
93
|
Al-Chalabi A, Calvo A, Chio A, Colville S, Ellis CM, Hardiman O, Heverin M, Howard RS, Huisman MHB, Keren N, Leigh PN, Mazzini L, Mora G, Orrell RW, Rooney J, Scott KM, Scotton WJ, Seelen M, Shaw CE, Sidle KS, Swingler R, Tsuda M, Veldink JH, Visser AE, van den Berg LH, Pearce N. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol 2014; 13:1108-1113. [PMID: 25300936 PMCID: PMC4197338 DOI: 10.1016/s1474-4422(14)70219-4] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Amyotrophic lateral sclerosis shares characteristics with some cancers, such as onset being more common in later life, progression usually being rapid, the disease affecting a particular cell type, and showing complex inheritance. We used a model originally applied to cancer epidemiology to investigate the hypothesis that amyotrophic lateral sclerosis is a multistep process. Methods We generated incidence data by age and sex from amyotrophic lateral sclerosis population registers in Ireland (registration dates 1995–2012), the Netherlands (2006–12), Italy (1995–2004), Scotland (1989–98), and England (2002–09), and calculated age and sex-adjusted incidences for each register. We regressed the log of age-specific incidence against the log of age with least squares regression. We did the analyses within each register, and also did a combined analysis, adjusting for register. Findings We identified 6274 cases of amyotrophic lateral sclerosis from a catchment population of about 34 million people. We noted a linear relationship between log incidence and log age in all five registers: England r2=0·95, Ireland r2=0·99, Italy r2=0·95, the Netherlands r2=0·99, and Scotland r2=0·97; overall r2=0·99. All five registers gave similar estimates of the linear slope ranging from 4·5 to 5·1, with overlapping confidence intervals. The combination of all five registers gave an overall slope of 4·8 (95% CI 4·5–5·0), with similar estimates for men (4·6, 4·3–4·9) and women (5·0, 4·5–5·5). Interpretation A linear relationship between the log incidence and log age of onset of amyotrophic lateral sclerosis is consistent with a multistage model of disease. The slope estimate suggests that amyotrophic lateral sclerosis is a six-step process. Identification of these steps could lead to preventive and therapeutic avenues. Funding UK Medical Research Council; UK Economic and Social Research Council; Ireland Health Research Board; The Netherlands Organisation for Health Research and Development (ZonMw); the Ministry of Health and Ministry of Education, University, and Research in Italy; the Motor Neurone Disease Association of England, Wales, and Northern Ireland; and the European Commission (Seventh Framework Programme).
Collapse
Affiliation(s)
- Ammar Al-Chalabi
- King's College London, Institute of Psychiatry, Department of Clinical Neuroscience, London, UK.
| | - Andrea Calvo
- ALS Center, Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Adriano Chio
- ALS Center, Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Shuna Colville
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Cathy M Ellis
- Motor Nerve Clinic, King's College Hospital, London, UK
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Robin S Howard
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| | - Mark H B Huisman
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Noa Keren
- King's College London, Institute of Psychiatry, Department of Clinical Neuroscience, London, UK
| | - P Nigel Leigh
- Department of Neurology, Brighton and Sussex Medical School Trafford Centre for Biomedical Research, University of Sussex, Falmer, East Sussex, UK
| | - Letizia Mazzini
- Department of Neurology, 'Amedeo Avogadro' University of Eastern Piedmont and Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Gabriele Mora
- Salvatore Maugeri Foundation, IRCSS; Scientific Institute of Milan, Milan, Italy
| | - Richard W Orrell
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| | - James Rooney
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kirsten M Scott
- Department of Neurology, Addenbrooke's Hospital, Cambridge, UK
| | - William J Scotton
- King's College London, Institute of Psychiatry, Department of Clinical Neuroscience, London, UK
| | - Meinie Seelen
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christopher E Shaw
- King's College London, Institute of Psychiatry, Department of Clinical Neuroscience, London, UK
| | - Katie S Sidle
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert Swingler
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Miho Tsuda
- King's College London, Institute of Psychiatry, Department of Clinical Neuroscience, London, UK
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anne E Visser
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Neil Pearce
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Public Health Research, Massey University Wellington Campus, Wellington, New Zealand
| |
Collapse
|
94
|
Recent advances in Parkinson’s disease genetics. J Neurol 2014; 261:259-66. [PMID: 23798000 DOI: 10.1007/s00415-013-7003-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 12/15/2022]
Abstract
The last 5 years have seen rapid progress in Parkinson’s disease (PD) genetics, with the publication of a series of large-scale genome wide association studies for PD, and evaluation of the roles of the LRRK2 and GBA genes in the aetiology of PD. We are beginning to develop a coherent picture of the interplay of Mendelian and non-Mendelian factors in PD. Pathways involved in mitochondrial quality control (mitophagy), lysosomal function and immune function are emerging as important in the pathogenesis of PD. These pathways represent a target for therapeutic intervention and a way in which the heterogeneity of disease cause, as well as disease mechanism, can be established. In the future, there is likely to be an individualised basis for the treatment of PD, linked to the identification of specific genetic factors.
Collapse
|
95
|
Campos-Melo D, Droppelmann CA, Volkening K, Strong MJ. RNA-binding proteins as molecular links between cancer and neurodegeneration. Biogerontology 2014; 15:587-610. [PMID: 25231915 DOI: 10.1007/s10522-014-9531-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022]
Abstract
For many years, epidemiological studies have suggested an association between cancer and neurodegenerative disorders-two disease processes that seemingly have little in common. Although these two disease processes share disruptions in a wide range of cellular pathways, including cell survival, cell death and the cell cycle, the end result is very divergent: uncontrolled cell survival and proliferation in cancer and progressive neuronal cell death in neurodegeneration. Despite the clinical data connecting these two disease processes, little is known about the molecular links between them. Among the mechanisms affected in cancer and neurodegenerative diseases, alterations in RNA metabolism are obtaining significant attention given the critical role for RNA transcription, maturation, transport, stability, degradation and translation in normal cellular function. RNA-binding proteins (RBPs) are integral to each stage of RNA metabolism through their participation in the formation of ribonucleoprotein complexes (RNPs). RBPs have a broad range of functions including posttranscriptional regulation of mRNA stability, splicing, editing and translation, mRNA export and localization, mRNA polyadenylation and miRNA biogenesis, ultimately impacting the expression of every single gene in the cell. In this review, we examine the evidence for RBPs as being key a molecular linkages between cancer and neurodegeneration.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | | | | | | |
Collapse
|
96
|
Sorrentino G, Comel A, Mantovani F, Del Sal G. Regulation of mitochondrial apoptosis by Pin1 in cancer and neurodegeneration. Mitochondrion 2014; 19 Pt A:88-96. [PMID: 25132079 DOI: 10.1016/j.mito.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
Mitochondria are sensitive and efficient organelles that regulate essential biological processes including: energy metabolism, decoding and transduction of intracellular signals, and balance between cell death and survival. Of note, dysfunctions in mitochondrial physiology are a general hallmark of cancer cells, leading to transformation-related features such as altered cellular metabolism, survival under stress conditions and reduced apoptotic response to chemotherapy. Mitochondrial apoptosis is a finely regulated process that derives from activation of multiple signaling networks. A crucial biochemical requirement for transducing pro-apoptotic stimuli is represented by kinase-dependent phosphorylation cascades. In this context a pivotal role is played by the prolyl-isomerase Pin1, which translates Ser/Thr-Pro phosphorylation into conformational changes able to modify the activities of its substrates. In this review we will discuss the impact of Pin1 in regulating various aspects of apoptosis in different biological contexts with particular emphasis on cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Anna Comel
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy.
| |
Collapse
|
97
|
Li J, Ma W, Wang PY, Hurley PJ, Bunz F, Hwang PM. Polo-like kinase 2 activates an antioxidant pathway to promote the survival of cells with mitochondrial dysfunction. Free Radic Biol Med 2014; 73:270-7. [PMID: 24887096 PMCID: PMC4115326 DOI: 10.1016/j.freeradbiomed.2014.05.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 01/06/2023]
Abstract
We previously reported that Polo-like kinase 2 (PLK2) is highly expressed in cells with defective mitochondrial respiration and is essential for their survival. Although PLK2 has been widely studied as a cell cycle regulator, we have uncovered an antioxidant function for this kinase that activates the GSK3-NRF2 signaling pathway. Here, we report that the expression of PLK2 is responsive to oxidative stress and that PLK2 mediates antioxidant signaling by phosphorylating GSK3, thereby promoting the nuclear translocation of NRF2. We further show that the antioxidant activity of PLK2 is essential for preventing p53-dependent necrotic cell death. Thus, the regulation of redox homeostasis by PLK2 promotes the survival of cells with dysfunctional mitochondria, which may have therapeutic implications for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Li
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenzhe Ma
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ping-yuan Wang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paula J Hurley
- Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Fred Bunz
- Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Paul M Hwang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
98
|
Heat shock proteins at the crossroads between cancer and Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:239164. [PMID: 25147790 PMCID: PMC4131517 DOI: 10.1155/2014/239164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/12/2014] [Indexed: 12/31/2022]
Abstract
Heat shock proteins 70 and heat shock proteins 90 (Hsp70/90) have been implicated in many crucial steps of carcinogenesis: stabilizing oncogenic proteins, inhibiting programmed cell death and replicative senescence, induction of tumor angiogenesis, and activation of the invasion and metastasis. Plenty of cancer related proteins have the ability of regulating the expression of Hsp70/90 through heat shock factor 1. Cancer and Alzheimer's disease (AD) have plenty of overlapping regions in molecular genetics and cell biology associated with Hsp70/90. The Hsp70, as a protein stabilizer, has a cellular protection against neurodegeneration of the central nervous system, while Hsp90 promote neurodegenerative disorders indirectly through regulating the expression of Hsp70 and other chaperones. All these make existing anticancer drugs target Hsp70/90 which might be used in AD therapy.
Collapse
|
99
|
Stoyanov A, Pamphlett R. Is the risk of motor neuron disease increased or decreased after cancer? An Australian case-control study. PLoS One 2014; 9:e103572. [PMID: 25058637 PMCID: PMC4110050 DOI: 10.1371/journal.pone.0103572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/04/2014] [Indexed: 11/19/2022] Open
Abstract
Cancer appears to be inversely associated with both Alzheimer's and Parkinson's disease. The relationship between cancer and sporadic motor neuron disease (SMND), however, remains uncertain. Most previous cancer-SMND studies have been undertaken in northern hemisphere populations. We therefore undertook a case-control study to see if a link between cancer and SMND exists in an Australian population. A questionnaire was used to compare past cancer diagnoses in 739 SMND patients and 622 controls, recruited across Australia. Odds ratios with 95% confidence intervals were calculated to look for associations between cancer and SMND. A history of cancer was not associated either positively or negatively with a risk of subsequent SMND. This result remained when age, gender, smoking status, and the four SMND diagnostic subgroups were taken into account. No association was observed between SMND and specific tumours, including melanoma, a common malignancy in Australia. In conclusion, this Australian case-control study does not support an association between a past history of cancer and the development of SMND. This suggests that some pathogenetic mechanisms, such as apoptosis, are less relevant in SMND than in other neurodegenerative diseases where negative associations with cancer have been found.
Collapse
Affiliation(s)
- Alex Stoyanov
- The Stacey Motor Neuron Disease Laboratory, Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Roger Pamphlett
- The Stacey Motor Neuron Disease Laboratory, Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
100
|
Shi HB, Tang B, Liu YW, Wang XF, Chen GJ. Alzheimer disease and cancer risk: a meta-analysis. J Cancer Res Clin Oncol 2014; 141:485-94. [DOI: 10.1007/s00432-014-1773-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 01/11/2023]
|