51
|
Exosomal Long Non-coding RNAs: Emerging Players in the Tumor Microenvironment. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:1371-1383. [PMID: 33738133 PMCID: PMC7940039 DOI: 10.1016/j.omtn.2020.09.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in exosome biology have uncovered a significant role of exosomes in cancer and make them a determining factor in intercellular communication. Exosomes are types of extracellular vesicles that are involved in the communication between cells by exchanging various signaling molecules between the surrounding cells. Among various signaling molecules, long non-coding RNAs (lncRNAs), a type of non-coding RNA having a size of more than 200 nt in length and lacking protein-coding potential, have emerged as crucial regulators of intercellular communication. Tumor-derived exosomes containing various lncRNAs, known as exosomal lncRNAs, reprogram the microenvironment by regulating numerous cellular functions, including the regulation of gene transcription that favors cancer growth and progression, thus significantly determining the biological effects of exosomes. In addition, deregulated expression of lncRNAs is found in various human cancers and serves as a diagnostic biomarker to predict cancer type. The present review discusses the role of exosomal lncRNAs in the crosstalk between tumor cells and the surrounding cells of the microenvironment. Furthermore, we also discuss the involvement of exosomal lncRNAs within the tumor microenvironment in favoring tumor growth, metabolic reprogramming of tumor cells, and tumor-supportive autophagy. Therefore, lncRNAs can be used as a therapeutic target in the treatment of various human cancers.
Collapse
|
52
|
Chen L, Bao Y, Jiang S, Zhong XB. The Roles of Long Noncoding RNAs HNF1α-AS1 and HNF4α-AS1 in Drug Metabolism and Human Diseases. Noncoding RNA 2020; 6:E24. [PMID: 32599764 PMCID: PMC7345002 DOI: 10.3390/ncrna6020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNAs with a length of over 200 nucleotides that do not have protein-coding abilities. Recent studies suggest that lncRNAs are highly involved in physiological functions and diseases. lncRNAs HNF1α-AS1 and HNF4α-AS1 are transcripts of lncRNA genes HNF1α-AS1 and HNF4α-AS1, which are antisense lncRNA genes located in the neighborhood regions of the transcription factor (TF) genes HNF1α and HNF4α, respectively. HNF1α-AS1 and HNF4α-AS1 have been reported to be involved in several important functions in human physiological activities and diseases. In the liver, HNF1α-AS1 and HNF4α-AS1 regulate the expression and function of several drug-metabolizing cytochrome P450 (P450) enzymes, which also further impact P450-mediated drug metabolism and drug toxicity. In addition, HNF1α-AS1 and HNF4α-AS1 also play important roles in the tumorigenesis, progression, invasion, and treatment outcome of several cancers. Through interacting with different molecules, including miRNAs and proteins, HNF1α-AS1 and HNF4α-AS1 can regulate their target genes in several different mechanisms including miRNA sponge, decoy, or scaffold. The purpose of the current review is to summarize the identified functions and mechanisms of HNF1α-AS1 and HNF4α-AS1 and to discuss the future directions of research of these two lncRNAs.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Suzhen Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, China
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| |
Collapse
|
53
|
Xu YJ, Liu PP, Ng SC, Teng ZQ, Liu CM. Regulatory networks between Polycomb complexes and non-coding RNAs in the central nervous system. J Mol Cell Biol 2020; 12:327-336. [PMID: 31291646 PMCID: PMC7288736 DOI: 10.1093/jmcb/mjz058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/26/2019] [Accepted: 06/11/2019] [Indexed: 01/29/2023] Open
Abstract
High-throughput sequencing has facilitated the identification of many types of non-coding RNAs (ncRNAs) involved in diverse cellular processes. NcRNAs as epigenetic mediators play key roles in neuronal development, maintenance, and dysfunction by controlling gene expression at multiple levels. NcRNAs may not only target specific DNA or RNA for gene silence but may also directly interact with chromatin-modifying proteins like Polycomb group (PcG) proteins to drive orchestrated transcriptional programs. Recent significant progress has been made in characterizing ncRNAs and PcG proteins involved in transcriptional, post-transcriptional, and epigenetic regulation. More importantly, dysregulation of ncRNAs, PcG proteins, and interplay among them is closely associated with the pathogenesis of central nervous system (CNS) disorders. In this review, we focus on the interplay between ncRNAs and PcG proteins in the CNS and highlight the functional roles of the partnership during neural development and diseases.
Collapse
Affiliation(s)
- Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shyh-Chang Ng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
54
|
Catana CS, Crișan CA, Opre D, Berindan-Neagoe I. Implications of Long Non-Coding RNAs in Age-Altered Proteostasis. Aging Dis 2020; 11:692-704. [PMID: 32489713 PMCID: PMC7220293 DOI: 10.14336/ad.2019.0814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
This review aims to summarize the current knowledge on how lncRNAs are influencing aging and cancer metabolism. Recent research has shown that senescent cells re-enter cell-cycle depending on intrinsic or extrinsic factors, thus restoring tissue homeostasis in response to age-related diseases (ARDs). Furthermore, maintaining proteostasis or cellular protein homeostasis requires a correct quality control (QC) of protein synthesis, folding, conformational stability, and degradation. Long non-coding RNAs (lncRNAs), transcripts longer than 200 nucleotides, regulate gene expression through RNA-binding protein (RBP) interaction. Their association is linked to aging, an event of proteostasis collapse. The current review examines approaches that lead to recognition of senescence-associated lncRNAs, current methodologies, potential challenges that arise from studying these molecules, and their crucial implications in clinical practice.
Collapse
Affiliation(s)
- Cristina-Sorina Catana
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Catalina-Angela Crișan
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Dana Opre
- Department of Psychology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
55
|
Xia Y, Deng Y, Zhou Y, Li D, Sun X, Gu L, Chen Z, Zhao Q. TSPAN31 suppresses cell proliferation in human cervical cancer through down-regulation of its antisense pairing with CDK4. Cell Biochem Funct 2020; 38:660-668. [PMID: 32207169 DOI: 10.1002/cbf.3526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 01/08/2023]
Abstract
Natural antisense transcripts (NAT) are prevalent phenomena in the mammalian genome and play significant regulatory roles in gene expression. While new insights into NAT continue to be revealed, their exact function and their underlying mechanisms in human cancer remain largely unclear. We identified a NAT of CDK4, referred to TSPAN31, which inhibits CDK4 mRNA and protein expression in human cervical cancer by targeting the 3'-untranslated region (3'-UTR) of the CDK4 mRNA. Furthermore, silencing the expression of the TSPAN31 mRNA rescued the TSPAN31 3'-UTR- or the TSPAN31 full-length-induced decrease in CDK4 expression. Noteworthy, we discovered that TSPAN31, as a member of the tetraspanin family, suppressed cell proliferation by down-regulating its antisense pairing with CDK4 and decreasing retinoblastoma protein phosphorylation in human cervical cancer. Therefore, the results of the present study suggest that TSPAN31 may serve as a potential molecular target for the development of novel anti-cancer agents. SIGNIFICANCE OF THE STUDY: Natural antisense transcripts are widely found in the genome and play an important role in the growth and development of cells. TSPAN31 is natural antisense transcript, and CDK4 is an important gene in the regulation of the cell cycle. Therefore, TSPAN31 and CDK4 have great significance in the study of tumour therapeutic targets.
Collapse
Affiliation(s)
- Yingjie Xia
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Yuanfei Deng
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Yuting Zhou
- Molecular & Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Dan Li
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Xuemeng Sun
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Lei Gu
- Department of Clinical Medical, Guangzhou Medical University, Guangdong, PR China
| | - Zipeng Chen
- Department of Clinical Medical, Guangzhou Medical University, Guangdong, PR China
| | - Qing Zhao
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
56
|
Long noncoding RNA CMPK2 promotes colorectal cancer progression by activating the FUBP3-c-Myc axis. Oncogene 2020; 39:3926-3938. [PMID: 32203166 DOI: 10.1038/s41388-020-1266-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play crucial roles in cancer long noncoding RNAs (lncRNAs) have been known to play crucial roles in cancer development and progression by regulating chromatin dynamics and gene expression. However, only a few lncRNAs with annotated functions in the progression of colorectal cancer (CRC) have been identified to date. In the present study, the expression of lncCMPK2 was upregulated in CRC tissues and positively correlated with clinical stages and lymphatic metastasis. The overexpression of lncCMPK2 promoted the proliferation and cell cycle transition of CRC cells. Conversely, the silencing of lncCMPK2 restricted cell proliferation both in vitro and in vivo. lncCMPK2 was localized to the nucleus of CRC cells, bound to far upstream element binding protein 3 (FUBP3), and guided FUBP3 to the far upstream element (FUSE) of the c-Myc gene to activate transcription. lncCMPK2 also stabilized FUBP3. These results provide novel insights into the functional mechanism of lncCMPK2 in CRC progression and highlight its potential as a biomarker of advanced CRC and therapeutic target.
Collapse
|
57
|
Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol 2020; 21:167-178. [PMID: 32005969 DOI: 10.1038/s41580-019-0206-3] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
Abstract
R-loops are three-stranded structures that harbour an RNA-DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such 'unscheduled' R-loops, evidence is mounting that cells harness the presence of RNA-DNA hybrids in scheduled, 'regulatory' R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.
Collapse
|
58
|
Yu J, Yang Y, Xu Z, Lan C, Chen C, Li C, Chen Z, Yu C, Xia X, Liao Q, Jose PA, Zeng C, Wu G. Long Noncoding RNA Ahit Protects Against Cardiac Hypertrophy Through SUZ12 (Suppressor of Zeste 12 Protein Homolog)-Mediated Downregulation of MEF2A (Myocyte Enhancer Factor 2A). Circ Heart Fail 2020; 13:e006525. [PMID: 31957467 DOI: 10.1161/circheartfailure.119.006525] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) can regulate various physiological and pathological processes through multiple molecular mechanisms in cis and in trans. However, the role of lncRNAs in cardiac hypertrophy is yet to be fully elucidated. METHODS A mouse lncRNA microarray was used to identify differentially expressed lncRNAs in the mouse hearts following transverse aortic constriction-induced pressure overload comparing to the sham-operated samples. The direct impact of one lncRNA, Ahit, on cardiomyocyte hypertrophy was characterized in neonatal rat cardiomyocytes in response to phenylephrine by targeted knockdown and overexpression. The in vivo function of Ahit was analyzed in mouse hearts by using cardiac-specific adeno-associated virus, serotype 9-short hairpin RNA to knockdown Ahit in combination with transverse aortic constriction. Using catRAPID program, an interaction between Ahit and SUZ12 (suppressor of zeste 12 protein homolog) was predicted and validated by RNA immunoprecipitation and immunoblotting following RNA pull-down. Chromatin immunoprecipitation was performed to determine SUZ12 or H3K27me3 occupancy on the MEF2A (myocyte enhancer factor 2A) promoter. Finally, the expression of human Ahit (leukemia-associated noncoding IGF1R activator RNA 1 [LUNAR1]) in the serum samples from patients of hypertrophic cardiomyopathy was tested by quantitative real-time polymerase chain reaction. RESULTS A previously unannotated lncRNA, antihypertrophic interrelated transcript (Ahit), was identified to be upregulated in the mouse hearts after transverse aortic constriction. Inhibition of Ahit induced cardiac hypertrophy, both in vitro and in vivo, associated with increased expression of MEF2A, a critical transcriptional factor involved in cardiac hypertrophy. In contrast, overexpression of Ahit significantly attenuated stress-induced cardiac hypertrophy in vitro. Furthermore, Ahit was significantly upregulated in serum samples of patients diagnosed with hypertensive heart disease versus nonhypertrophic hearts (1.46±0.17 fold, P=0.0325). Mechanistically, Ahit directly bound and recruited SUZ12, a core PRC2 (polycomb repressive complex 2) protein, to the promoter of MEF2A, triggering its trimethylation on H3 lysine 27 (H3K27me3) residues and mediating the downregulation of MEF2A, thereby preventing cardiac hypertrophy. CONCLUSIONS Ahit is a lncRNA with a significant role in cardiac hypertrophy regulation through epigenomic modulation. Ahit is a potential therapeutic target of cardiac hypertrophy.
Collapse
Affiliation(s)
- Junyi Yu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Yang Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Zaicheng Xu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Cong Lan
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Caiyu Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Chuanwei Li
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Zhi Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Cheng Yu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Xuewei Xia
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Qiao Liao
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, Departments of Medicine and Pharmacology/Physiology. The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.)
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.).,Cardiovascular Research Center, Chongqing College, University of Chinese Academy of Sciences, Chongqing, P.R. China (C.Z.)
| | - Gengze Wu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| |
Collapse
|
59
|
Binang HB, Wang YS, Tewara MA, Du L, Shi S, Li N, Nsenga AGA, Wang C. Expression levels and associations of five long non-coding RNAs in gastric cancer and their clinical significance. Oncol Lett 2020; 19:2431-2445. [PMID: 32194743 PMCID: PMC7039045 DOI: 10.3892/ol.2020.11311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is a type of cancer that is commonly diagnosed worldwide due to a lack of early diagnostic, prognostic and therapeutic targets for this disease. The aim of the present study was to examine the expression levels of five long non-coding RNAs, namely PTPRG antisense RNA 1 (PTPRG-AS1), forkhead box P4 antisense RNA 1 (FOXP4-AS1), bladder cancer-associated transcript 2 (BLACAT2), ZXF2 and upregulated in colorectal cancer (UCC), to study their associations with patient characteristics and assess their prognostic efficacy, in order to determine the possibility of their application as GC biomarkers. The expression levels of long non-coding RNAs (lncRNAs) were determined by reverse transcription-quantitative PCR analysis of 61 pairs of GC tissues and adjacent healthy gastric mucosa tissues and GC cell lines. The Chi-square test was conducted to assess the associations of lncRNA expression levels with clinical characteristics of patients. The effect of UCC on GC cell proliferation was determined using in vitro functional experiments. The prognostic efficacy of FOXP4-AS1, BLACAT2 and UCC were examined in the Gene Expression Profiling Interactive Analysis database and those of PTPRG-AS1 were examined in the Kaplan Meier Plot database. Gene alteration frequencies of PTPRG-AS1 and BLACAT2 in GC were identified using the cBioPortal for Cancer Genomics. PTPRG-AS1, FOXP4-AS1, BLACAT2, ZXF2 and UCC were found to be upregulated in GC cell lines and GC tissues compared with adjacent normal tissues. PTPRG-AS1 and ZXF2 expression levels were associated with the expression status of the cell proliferation marker Ki67. UCC promoted the proliferation of GC cells in vitro and was associated with lymph node metastasis. Increased expression of FOXP4-AS1 indicated a favorable outcome in terms of disease-free survival, whereas high expression of PTPRG-AS1 was associated with poor survival rates for patients in different GC risk groups. BLACAT2 gene mutation was associated with poor disease-free survival outcome for patients with GC. The results suggest that PTPRG-AS1, FOXP4-AS1, BLACAT2, ZXF2 and UCC are potential biomarkers for the detection of GC at the molecular level and may be used as potential targets for GC therapy. The individual roles of these lncRNAs may be utilized for prognostic predictions.
Collapse
Affiliation(s)
- Helen Barong Binang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of Clinical Laboratory Diagnostics, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yun-Shan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Marlvin Anemey Tewara
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuang Shi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ning Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ariston Gabriel Abakundana Nsenga
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of Clinical Laboratory Diagnostics, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
60
|
Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet 2019; 21:102-117. [DOI: 10.1038/s41576-019-0184-5] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
61
|
Jamal M, Song T, Chen B, Faisal M, Hong Z, Xie T, Wu Y, Pan S, Yin Q, Shao L, Zhang Q. Recent Progress on Circular RNA Research in Acute Myeloid Leukemia. Front Oncol 2019; 9:1108. [PMID: 31781482 PMCID: PMC6851197 DOI: 10.3389/fonc.2019.01108] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/07/2019] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a myeloid malignancy characterized by the proliferation of abnormal and immature myeloid blasts in the bone marrow. Circular RNA (circRNA) is a novel class of long non-coding RNA with a stable circular conformation that regulates various biological processes. The aberrant expression of circRNA and its impact on AML progression has been reported by a number of studies. Despite recent advances in circRNA research, our understanding of the leukemogenic mechanism of circRNA remains very limited, and translating the current circRNA-related research into clinical practice is challenging. This review provides an update on the functional roles of and research progress on circRNAs in AML with an emphasis on mechanistic insights. The challenges and opportunities associated with circRNA-based diagonostic and therapeutic development in AML are also outlined.
Collapse
Affiliation(s)
- Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Tianbao Song
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Bei Chen
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Muhammad Faisal
- Institute of Pathology, Hannover Medical School, Hanover, Germany
| | - Zixi Hong
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Tian Xie
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Yingjie Wu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
62
|
Choudhari R, Sedano MJ, Harrison AL, Subramani R, Lin KY, Ramos EI, Lakshmanaswamy R, Gadad SS. Long noncoding RNAs in cancer: From discovery to therapeutic targets. Adv Clin Chem 2019; 95:105-147. [PMID: 32122521 DOI: 10.1016/bs.acc.2019.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have recently gained considerable attention as key players in biological regulation; however, the mechanisms by which lncRNAs govern various disease processes remain mysterious and are just beginning to be understood. The ease of next-generation sequencing technologies has led to an explosion of genomic information, especially for the lncRNA class of noncoding RNAs. LncRNAs exhibit the characteristics of mRNAs, such as polyadenylation, 5' methyl capping, RNA polymerase II-dependent transcription, and splicing. These transcripts comprise more than 200 nucleotides (nt) and are not translated into proteins. Directed interrogation of annotated lncRNAs from RNA-Seq datasets has revealed dramatic differences in their expression, largely driven by alterations in transcription, the cell cycle, and RNA metabolism. The fact that lncRNAs are expressed cell- and tissue-specifically makes them excellent biomarkers for ongoing biological events. Notably, lncRNAs are differentially expressed in several cancers and show a distinct association with clinical outcomes. Novel methods and strategies are being developed to study lncRNA function and will provide researchers with the tools and opportunities to develop lncRNA-based therapeutics for cancer.
Collapse
Affiliation(s)
- Ramesh Choudhari
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Melina J Sedano
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Alana L Harrison
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ramadevi Subramani
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ken Y Lin
- The Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Enrique I Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
63
|
Chen Y, Chen X, Gao J, Xu C, Xu P, Li Y, Zhu Y, Yu C. Long noncoding RNA FLRL2 alleviated nonalcoholic fatty liver disease through Arntl-Sirt1 pathway. FASEB J 2019; 33:11411-11419. [PMID: 31311301 DOI: 10.1096/fj.201900643rrr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which has an unknown pathogenesis and lacks a curative treatment, is becoming more prevalent. A previous long noncoding RNA (lncRNA) profiling analysis revealed a potential role for fatty liver-related lncRNA 2 (FLRL2) in the pathogenesis of NAFLD. To further understand the role of FLRL2 in NAFLD and explore its therapeutic value, both in vivo and in vitro NAFLD models were constructed. Small interfering RNA and small hairpin RNA interference and adenovirus transfection were adopted to manipulate the expressions of FLRL2, aryl-hydrocarbon receptor nuclear translocator-like (Arntl), and sirtuin 1 (Sirt1) expression. Steatosis was evaluated through histologic staining with hematoxylin and eosin and oil red O and also by quantitative triglyceride measurements. FLRL2 is a widely distributed nuclear lncRNA that is down-regulated in NAFLD. Overexpression of FLRL2 resolved steatosis, lipogenesis, inflammation, and endoplasmic reticulum (ER) stress in NAFLD, and down-regulation of FLRL2 resulted in the opposite effects. Sequence analysis demonstrated that FLRL2 was located in the intronic region of the Arntl gene, and a luciferase assay showed transcriptional activation of the Arntl gene upon FLRL2 overexpression. A similar expression pattern and synergistic effect of Arntl manipulation was observed in NAFLD in vitro. Inhibition of Arntl partially reversed the steatosis amelioration induced by FLRL2 overexpression. Downstream Sirt1 was also inhibited in NAFLD and influenced by both FLRL2 and Arntl. In NAFLD mice, FLRL2 enhancement alleviated steatosis, activated the Arntl-Sirt1 axis, and inhibited lipogenesis, ER stress, and inflammation, providing preliminary evidence of the benefits of FLRL2-mediated gene therapy in NAFLD.-Chen, Y., Chen, X., Gao, J., Xu, C., Xu, P., Li, Y., Zhu, Y., Yu, C. Long noncoding RNA FLRL2 alleviated nonalcoholic fatty liver disease through Arntl-Sirt1 pathway.
Collapse
Affiliation(s)
- Yi Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Xueyang Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Jianguo Gao
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Ping Xu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Youming Li
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Yong Zhu
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; and
| |
Collapse
|
64
|
Cai B, Zhang Y, Zhao Y, Wang J, Li T, Zhang Y, Jiang Y, Jin X, Xue G, Li P, Sun Y, Huang Q, Zhang X, Su W, Yang Y, Sun Y, Shi L, Li X, Lu Y, Yang B, Pan Z. Long Noncoding RNA-DACH1 (Dachshund Homolog 1) Regulates Cardiac Function by Inhibiting SERCA2a (Sarcoplasmic Reticulum Calcium ATPase 2a). Hypertension 2019; 74:833-842. [PMID: 31446800 DOI: 10.1161/hypertensionaha.119.12998] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart failure (HF) is a major cause of morbidity and mortality in patients with various cardiovascular diseases. Restoration of cardiac function is critical in improving the clinical outcomes of patients with HF. Long noncoding RNAs are widely involved in the development of multiple cardiac diseases, whereas their role in regulating cardiac function remains unclear. In this study, we found that the expression of long noncoding RNA-DACH1 (dachshund homolog 1) was upregulated in the failing hearts of mice and human. We tested the hypothesis that the intronic long noncoding RNA of DACH1 (LncDACH1) can participate in the regulation of cardiac function and HF. Transgenic overexpression of LncDACH1 in the cardiac myocytes of mice led to impaired cardiac function, reduced calcium transient and cell shortening, and decreased SERCA2a (sarcoplasmic reticulum calcium ATPase 2a) protein expression. In contrast, conditional knockout of LncDACH1 in cardiac myocytes resulted in increased calcium transient, cell shortening, SERCA2a protein expression, and improved cardiac function of transverse aortic constriction induced HF mice. The same qualitative data were obtained by overexpression or knockdown of LncDACH1 with adenovirus carrying LncDACH1 or its siRNA. Moreover, therapeutic administration of adenovirus carrying LncDACH1 siRNA to transverse aortic constriction mice abolished the development of HF. Mechanistically, LncDACH1 directly binds to SERCA2a. Overexpression of LncDACH1 augments the ubiquitination of SERCA2a. LncDACH1 upregulation impairs cardiac function by promoting ubiquitination-related degradation of SERCA2a.
Collapse
Affiliation(s)
- Benzhi Cai
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China.,Department of Pharmacology, Institute of Clinical Pharmacy, Heilongjiang Key Laboratory of Drug Research (B.C.), Harbin Medical University, China
| | - Yang Zhang
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Yue Zhao
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Jin Wang
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Tingting Li
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Yiyuan Zhang
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Yuan Jiang
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Xuexin Jin
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Genlong Xue
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Penghui Li
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Yilin Sun
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Qihe Huang
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Xiaofang Zhang
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Wanzhen Su
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Ying Yang
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Yangyang Sun
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Ling Shi
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Xingda Li
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Yanjie Lu
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Baofeng Yang
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| | - Zhenwei Pan
- From the Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy (B.C., Yang Zhang, Y. Zhao, J.W., T.L., Yiyuan Zhang, Y.J., X.J., G.X., P.L., Yilin Sun, Q.H., X.Z., W.S., Y.Y., Yangyang Sun, L.S., X.L., Y.L., B.Y., Z.P.), Harbin Medical University, China
| |
Collapse
|
65
|
Guo M, Liu T, Zhang S, Yang L. RASSF1-AS1, an antisense lncRNA of RASSF1A, inhibits the translation of RASSF1A to exacerbate cardiac fibrosis in mice. Cell Biol Int 2019; 43:1163-1173. [PMID: 30571844 DOI: 10.1002/cbin.11085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cardiac fibrosis is associated with various cardiovascular diseases and can eventually lead to heart failure. Dysregulation of long non-coding RNAs (lncRNAs) are recognized as one of the key mechanisms of cardiac diseases. However, the roles and underlying mechanisms of lncRNAs in cardiac fibrosis have not been explicitly defined. Here, we investigated the role of an antisense (AS) lncRNA from the Ras association domain-containing protein 1 isoform A (RASSF1A) gene locus, named RASSF1-AS1, in the development of cardiac fibrosis. Cardiac fibrosis mouse model was established by isoproterenol injection. We found that RASSF1A protein was downregulated, whereas RASSF1-AS1 was markedly upregulated during cardiac fibrosis. Overexpression and knockdown of mouse primary cardiac fibroblasts showed that RASSF1-AS1 negatively regulated RASSF1A expression at the post-transcriptional level. According to the landscape analysis and sense-AS binding evaluation, RASSF1-AS1 partially overlaps with RASSF1A messenger RNA (mRNA) at the exon2 region. RNA pull-down and luciferase activity assays confirmed that RASSF1-AS1 directly bound to RASSF1A mRNA and suppressed its translation. Furthermore, wild-type RASSF1-AS1 had a promoting effect on nuclear factor-κB activation and cardiac fibrosis, but mutated RASSF1-AS1, in which the binding region was deleted, had no effect. In conclusion, RASSF1-AS1 inhibits the translation of RASSF1A to exacerbate cardiac fibrosis in mice, indicating a potential application of RASSF1-AS1 as a therapy target for cardiac fibrosis.
Collapse
Affiliation(s)
- Min Guo
- Department of Geriatric, Shandong Energy Zibo Mining Group Co. Ltd. Central Hospital, 133 Zikuang Road, Zichuan District, Zibo, Shandong, 255120, P.R. China
| | - Tangyu Liu
- Department of Cardiovascular Medicine, Shandong Energy Zibo Mining Group Co. Ltd. Central Hospital, 133 Zikuang Road, Zichuan District, Zibo, Shandong, 255120, P.R. China
| | - Shujie Zhang
- Department of Geriatric, Shandong Energy Zibo Mining Group Co. Ltd. Central Hospital, 133 Zikuang Road, Zichuan District, Zibo, Shandong, 255120, P.R. China
| | - Longbiao Yang
- Department of Orthopedics, Shandong Energy Zibo Mining Group Co. Ltd. Central Hospital, 133 Zikuang Road, Zichuan District, Zibo, Shandong, 255120, P.R. China
| |
Collapse
|
66
|
Rasmussen TP. Parallels between artificial reprogramming and the biogenesis of cancer stem cells: Involvement of lncRNAs. Semin Cancer Biol 2019; 57:36-44. [PMID: 30273656 DOI: 10.1016/j.semcancer.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/12/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Cellular identity is established and maintained by the interplay of cell type-specific transcription factors and epigenetic regulation of the genome. During development in vivo and differentiation in vitro, transitions from one cell type to the next are triggered by cell signaling events culminating in modifications of chromatin that render genes accessible or inaccessible to the transcriptional apparatus. In recent years it has become apparent that cellular identity is plastic, and technological reprogramming methods such as somatic cell nuclear transfer and induced pluripotency can yield reprogrammed cells that have been restored to a state of developmental potency. Long noncoding RNAs (lncRNAs) are untranslated functional RNA molecules that are intimately involved in the regulation of the chromatin of protein-coding genes. In fact, recent evidence shows that there are more lncRNA species in the cell than mRNA species and that most protein-coding genes are likely to be under epigenetic regulation mediated by lncRNAs. This review examines lncRNA function in reprogrammed pluripotent cells and cancer stem cells. Because cancer stem cells arise from normal cells, their biogenesis can be viewed as a reprogramming process that occurs in vivo, and parallels between artificial reprogramming and cancer stem cell biogenesis are discussed.
Collapse
Affiliation(s)
- Theodore P Rasmussen
- University of Connecticut, Department of Pharmaceutical Sciences, 69 North Eagleville Road, Storrs, CT 06269, USA; University of Connecticut, Department of Molecular and Cell Biology, 91 North Eagleville Road, Storrs, CT 06269, USA; University of Connecticut, Institute for Systems Genomics, 181 Auditorium Road, Storrs, CT 06269, USA; University of Connecticut, UConn Stem Cell Institute, 400 Farmington Avenue Farmington, CT 06033, USA.
| |
Collapse
|
67
|
Zhang XD, Huang GW, Xie YH, He JZ, Guo JC, Xu XE, Liao LD, Xie YM, Song YM, Li EM, Xu LY. The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells. Nucleic Acids Res 2019; 46:1793-1809. [PMID: 29253179 PMCID: PMC5829580 DOI: 10.1093/nar/gkx1259] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/05/2017] [Indexed: 01/11/2023] Open
Abstract
EZR, a member of the ezrin-radixin-moesin (ERM) family, is involved in multiple aspects of cell migration and cancer. SMYD3, a histone H3–lysine 4 (H3–K4)-specific methyltransferase, regulates EZR gene transcription, but the molecular mechanisms of epigenetic regulation remain ill-defined. Here, we show that antisense lncRNA EZR-AS1 was positively correlated with EZR expression in both human esophageal squamous cell carcinoma (ESCC) tissues and cell lines. Both in vivo and in vitro studies revealed that EZR-AS1 promoted cell migration through up-regulation of EZR expression. Mechanistically, antisense lncRNA EZR-AS1 formed a complex with RNA polymerase II to activate the transcription of EZR. Moreover, EZR-AS1 could recruit SMYD3 to a binding site, present in a GC-rich region downstream of the EZR promoter, causing the binding of SMYD3 and local enrichment of H3K4me3. Finally, the interaction of EZR-AS1 with SMYD3 further enhanced EZR transcription and expression. Our findings suggest that antisense lncRNA EZR-AS1, as a member of an RNA polymerase complex and through enhanced SMYD3-dependent H3K4 methylation, plays an important role in enhancing transcription of the EZR gene to promote the mobility and invasiveness of human cancer cells.
Collapse
Affiliation(s)
- Xiao-Dan Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Guo-Wei Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Ying-Hua Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Jian-Zhong He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Jin-Cheng Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Yang-Min Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yong-Mei Song
- The Affiliated Nanshan People's Hospital of Shenzhen University, Shenzhen Municipal Sixth People's Hospital, Shenzhen 518060, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| |
Collapse
|
68
|
Saghafi T, Taheri RA, Parkkila S, Emameh RZ. Phytochemicals as Modulators of Long Non-Coding RNAs and Inhibitors of Cancer-Related Carbonic Anhydrases. Int J Mol Sci 2019; 20:E2939. [PMID: 31208095 PMCID: PMC6627131 DOI: 10.3390/ijms20122939] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as a group of transcripts which regulate various biological processes, such as RNA processing, epigenetic control, and signaling pathways. According to recent studies, lncRNAs are dysregulated in cancer and play an important role in cancer incidence and spreading. There is also an association between lncRNAs and the overexpression of some tumor-associated proteins, including carbonic anhydrases II, IX, and XII (CA II, CA IX, and CA XII). Therefore, not only CA inhibition, but also lncRNA modulation, could represent an attractive strategy for cancer prevention and therapy. Experimental studies have suggested that herbal compounds regulate the expression of many lncRNAs involved in cancer, such as HOTAIR (HOX transcript antisense RNA), H19, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), PCGEM1 (Prostate cancer gene expression marker 1), PVT1, etc. These plant-derived drugs or phytochemicals include resveratrol, curcumin, genistein, quercetin, epigallocatechin-3-galate, camptothcin, and 3,3'-diindolylmethane. More comprehensive information about lncRNA modulation via phytochemicals would be helpful for the administration of new herbal derivatives in cancer therapy. In this review, we describe the state-of-the-art and potential of phytochemicals as modulators of lncRNAs in different types of cancers.
Collapse
Affiliation(s)
- Tayebeh Saghafi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 14965/161 Tehran, Iran.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland.
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| |
Collapse
|
69
|
Skuratovskaia D, Vulf M, Komar A, Kirienkova E, Litvinova L. Promising Directions in Atherosclerosis Treatment Based on Epigenetic Regulation Using MicroRNAs and Long Noncoding RNAs. Biomolecules 2019; 9:E226. [PMID: 31212708 PMCID: PMC6627269 DOI: 10.3390/biom9060226] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is one of the leading causes of mortality from cardiovascular disease (CVD) and is a chronic inflammatory disease of the middle and large arteries caused by a disruption of lipid metabolism. Noncoding RNA (ncRNA), including microRNA (miRNA), small interfering RNA (siRNA) and long noncoding RNA (lncRNA), was investigated for the treatment of atherosclerosis. Regulation of the expression of noncoding RNA targets the constituent element of the pathogenesis of atherosclerosis. Currently, miRNA therapy commonly employs miRNA antagonists and mimic compounds. In this review, attention is focused on approaches to correcting molecular disorders based on the genetic regulation of the transcription of key genes responsible for the development of atherosclerosis. Promising technologies were considered for the treatment of atherosclerosis, and examples are given for technologies that have been shown to be effective in clinical trials.
Collapse
Affiliation(s)
- Daria Skuratovskaia
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Maria Vulf
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Aleksandra Komar
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Elena Kirienkova
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Larisa Litvinova
- Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| |
Collapse
|
70
|
Jangal M, Lebeau B, Witcher M. Beyond EZH2: is the polycomb protein CBX2 an emerging target for anti-cancer therapy? Expert Opin Ther Targets 2019; 23:565-578. [PMID: 31177918 DOI: 10.1080/14728222.2019.1627329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Epigenetic modifications are important regulators of transcription and appropriate gene expression answering an environmental stimulus. In cancer, these epigenetic modifications are altered, which impact the transcriptome, promoting initiation and cancer progression. Thus, targeting epigenetic machinery has proven to be an efficient cancer therapy. Areas covered: We review CBX2 as a therapeutic target. CBX2 is a polycomb protein, responsible for polycomb-repressive complex 1 (PRC1) targeting to chromatin via recognition of the repressive mark H3K27me3. Mechanistically, CBX2 overexpression may be implicated in poor survival by maintaining cancer stem cells in an undifferentiated state and via repression of tumor suppressors. We discuss strategies used to target CBX proteins and provide insights into biomarker considerations that may be important when targeting CBX family members for anti-cancer therapy. Expert opinion: CBX2 inhibition is a promising approach for the targeting of polycomb complexes in the cancer stem cell niche. However, extensive optimization of the current field of small molecules targeting CBX family proteins will be critical to reach in vivo, or clinical, utility.
Collapse
Affiliation(s)
- Maïka Jangal
- a The Lady Davis Institute of the Jewish General Hospital, Department of Oncology , McGill University , Montreal , Canada
| | - Benjamin Lebeau
- a The Lady Davis Institute of the Jewish General Hospital, Department of Oncology , McGill University , Montreal , Canada
| | - Michael Witcher
- a The Lady Davis Institute of the Jewish General Hospital, Department of Oncology , McGill University , Montreal , Canada
| |
Collapse
|
71
|
Huang J, Li J, Li Y, Lu Z, Che Y, Mao S, Lei Y, Zang R, Zheng S, Liu C, Wang X, Li N, Sun N, He J. Interferon-inducible lncRNA IRF1-AS represses esophageal squamous cell carcinoma by promoting interferon response. Cancer Lett 2019; 459:86-99. [PMID: 31173852 DOI: 10.1016/j.canlet.2019.05.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Interferons (IFNs) play crucial roles in the development and treatment of cancer. Long non-coding RNAs (lncRNAs) are emerging molecules involved in cancer progression. Here, we identified and characterized an IFN-inducible nuclear lncRNA IRF1-AS (Interferon Regulatory Factor 1 Antisense RNA) which was positively correlated with IRF1 expression. IFNs upregulate IRF1-AS via the JAK-STAT pathway. Knockdown and overexpression of IRF1-AS revealed that IRF1-AS inhibits oesophageal squamous cell carcinoma (ESCC) proliferation and promotes apoptosis in vitro and in vivo. Mechanistically, IRF1-AS activates IRF1 (Interferon Regulatory Factor 1) transcription through interacting with ILF3 (Interleukin Enhancer Binding Factor 3) and DHX9 (DExH-Box Helicase 9). In turn, IRF1 binds to the IRF1-AS promoter directly and activates IRF1-AS transcription. Global analysis of IRF1-AS-regulated genes indicated that IRF1-AS activates the IFN response in vitro and in vivo. IRF1 knockdown in IRF1-AS-overexpressing cells abolished the antiproliferative effect and activation of the IFN response. Furthermore, IRF1-AS was downregulated in ESCC tissues, and low expression correlated with poor prognosis. In conclusion, the interferon-inducible lncRNA IRF1-AS represses esophageal squamous cell carcinoma progression by promoting interferon response through a positive regulatory loop with IRF1.
Collapse
Affiliation(s)
- Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiagen Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuangshuang Mao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruochuan Zang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
72
|
Calanca N, Paschoal AP, Munhoz ÉP, Galindo LT, Barbosa BM, Caldeira JRF, Oliveira RA, Cavalli LR, Rogatto SR, Rainho CA. The long non-coding RNA ANRASSF1 in the regulation of alternative protein-coding transcripts RASSF1A and RASSF1C in human breast cancer cells: implications to epigenetic therapy. Epigenetics 2019; 14:741-750. [PMID: 31062660 DOI: 10.1080/15592294.2019.1615355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alternative protein-coding transcripts of the RASSF1 gene have been associated with dual functions in human cancer: while RASSF1C isoform has oncogenic properties, RASSF1A is a tumour suppressor frequently silenced by hypermethylation. Recently, the antisense long non-coding RNA RASSF1 (ANRASSF1) was implicated in a locus-specific mechanism for the RASSF1A epigenetic repression mediated by PRC2 (Polycomb Repressive Complex 2). Here, we evaluated the methylation patterns of the promoter regions of RASSF1A and RASSF1C and the expression levels of these RASSF1 transcripts in breast cancer and breast cancer cell lines. As expected, RASSF1C remained unmethylated and RASSF1A was hypermethylated at high frequencies in 75 primary breast cancers, and also in a panel of three mammary epithelial cells (MEC) and 10 breast cancer cell lines (BCC). Although RASSF1C was expressed in all cell lines, only two of them expressed the transcript RASSF1A. ANRASSF1 expression levels were increased in six BCCs. In vitro induced demethylation with 5-Aza-2'-deoxicytydine (5-Aza-dC) resulted in up-regulation of RASSF1A and an inverse correlation with ANRASSF1 relative abundance in BCCs. However, increased levels of both transcripts were observed in two MECs (184A1 and MCF10A) after treatment with 5-Aza-dC. Overall, these findings indicate that ANRASSF1 is differentially expressed in MECs and BCCs. The lncRNA ANRASSF1 provides new perspectives as a therapeutic target for locus-specific regulation of RASSF1A.
Collapse
Affiliation(s)
- Naiade Calanca
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | - Ana Paula Paschoal
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | - Érika Prando Munhoz
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | - Layla Testa Galindo
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | - Barbara Mitsuyasu Barbosa
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | | | - Rogério Antonio Oliveira
- c Department of Biostatistics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| | - Luciane Regina Cavalli
- d Department of Oncology , Georgetown University Medical Center , Washington , DC , USA.,e Faculdades Pequeno Préncipe e Instituto de Pesquisa Pelé Pequeno Príncipe , , Curitiba , Brazil
| | - Silvia Regina Rogatto
- f Department of Clinical Genetics , University Hospital, Institute of Regional Health Research, University of Southern Denmark Vejle , Denmark
| | - Cláudia Aparecida Rainho
- a Department of Genetics, Institute of Biosciences , São Paulo State University (Unesp) , Botucatu , Brazil
| |
Collapse
|
73
|
LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol 2019; 103:4649-4677. [PMID: 31062053 DOI: 10.1007/s00253-019-09837-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Long noncoding RNA (lncRNA) is a kind of RNAi molecule composed of hundreds to thousands of nucleotides. There are several major types of functional lncRNAs which participate in some important cellular pathways. LncRNA-RNA interaction controls mRNA translation and degradation or serves as a microRNA (miRNA) sponge for silencing. LncRNA-protein interaction regulates protein activity in transcriptional activation and silencing. LncRNA guide, decoy, and scaffold regulate transcription regulators of enhancer or repressor region of the coding genes for alteration of expression. LncRNA plays a role in cellular responses including the following activities: regulation of chromatin structural modification and gene expression for epigenetic and cell function control, promotion of hematopoiesis and maturation of immunity, cell programming in stem cell and somatic cell development, modulation of pathogen infection, switching glycolysis and lipid metabolism, and initiation of autoimmune diseases. LncRNA, together with miRNA, are considered the critical elements in cancer development. It has been demonstrated that tumorigenesis could be driven by homeostatic imbalance of lncRNA/miRNA/cancer regulatory factors resulting in biochemical and physiological alterations inside the cells. Cancer-driven lncRNAs with other cellular RNAs, epigenetic modulators, or protein effectors may change gene expression level and affect the viability, immortality, and motility of the cells that facilitate cancer cell cycle rearrangement, angiogenesis, proliferation, and metastasis. Molecular medicine will be the future trend for development. LncRNA/miRNA could be one of the potential candidates in this category. Continuous studies in lncRNA functional discrepancy between cancer cells and normal cells and regional and rational genetic differences of lncRNA profiles are critical for clinical research which is beneficial for clinical practice.
Collapse
|
74
|
Zhu Y, Mao D, Gao W, Han G, Hu H. Analysis of lncRNA Expression in Patients With Eosinophilic and Neutrophilic Asthma Focusing on LNC_000127. Front Genet 2019; 10:141. [PMID: 30941157 PMCID: PMC6433975 DOI: 10.3389/fgene.2019.00141] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNA (lncRNA) is important in many diseases. Some studies have shown that lncRNA affects the pathogenesis of systemic inflammation of asthma. lncRNA regulates gene transcription, protein expression, and epigenetic regulation. However, lncRNAs associated with different airway phenotypes, such as eosinophilic (Eos) and neutrophilic (Neu) asthma have not been identified. The goal of this study was to determine the differences in circulating lncRNA signatures in Eos and Neu samples. Using RNA-sequencing (RNA-seq), lncRNA expression was evaluated in peripheral whole blood samples among Eos patients, Neu patients, and healthy individuals (Control). Bioinformatic analysis was used to predict relevant biological pathways. Quantitative PCR (qPCR) was used to measure gene expression in whole blood samples, Jurkat cells, and human CD4+ T cells. Finally, a novel lncRNA, LNC_000127, was inhibited by transfection of Jurkat cells with a lentiviral vector, and the effect was examined by Human Asthma RT2 Profiler™ PCR Array and western blotting. Compared to control samples, Eos samples contained 190 unique lncRNAs and Neu samples had 166 unique lncRNAs (difference ≥2-fold). KEGG pathway annotation data and GO terms revealed that different lncRNAs are involved in different mechanisms. LNC_000127, was highly expressed in Eos samples before treatment; its expression was increased in Jurkat cells and human CD4+ T cells following stimulation with PMA/CD28. Subsequent analyses revealed that LNC_000127 functions in the Th2 inflammation pathway. The results suggest that lncRNAs are involved in different phenotypes of asthma. Whether the different phenotypes of asthma can be recognized based on these lncRNAs (as biomarkers) requires further analysis. Targeting LNC_000127 may be effective for reducing Th2 inflammation in Eos asthma.
Collapse
Affiliation(s)
- Yujin Zhu
- Respiratory Department, Chinese People's Liberation Army General Hospital, Beijing, China.,Respiratory Department, Tianjin Municipal Corps Hospital of CAPF, Tianjin, China
| | - Dan Mao
- Respiratory Department, Chinese People's Liberation Army General Hospital, Beijing, China.,No. 968 Hospital of Chinese People's Liberation Army, Jinzhou, China
| | - Wei Gao
- Respiratory Department, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Guojing Han
- Respiratory Department, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hong Hu
- Respiratory Department, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
75
|
Wang YQ, Jiang DM, Hu SS, Zhao L, Wang L, Yang MH, Ai ML, Jiang HJ, Han Y, Ding YQ, Wang S. SATB2-AS1 Suppresses Colorectal Carcinoma Aggressiveness by Inhibiting SATB2-Dependent Snail Transcription and Epithelial-Mesenchymal Transition. Cancer Res 2019; 79:3542-3556. [PMID: 30858153 DOI: 10.1158/0008-5472.can-18-2900] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/17/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022]
Abstract
Accumulating evidence suggests that long noncoding RNA (lncRNA) plays important regulatory roles in cancer biology. However, the involvement of lncRNA in colorectal carcinoma progression remains largely unknown, especially in colorectal carcinoma metastasis. In this study, we investigated the changes in lncRNA expression in colorectal carcinoma and identified a new lncRNA, the antisense transcript of SATB2 (SATB2-AS1), as a key regulator of colorectal carcinoma progression. SATB2-AS1 was frequently downregulated in colorectal carcinoma cells and tissues, and patients whose tumors expressed SATB2-AS1 at low levels had a shorter overall survival and poorer prognosis. Downregulation of SATB2-AS1 significantly promoted cell proliferation, migration, and invasion in vitro and in vivo, demonstrating that it acts as a tumor suppressor in colorectal carcinoma. SATB2-AS1 suppressed colorectal carcinoma progression by serving as a scaffold to recruit p300, whose acetylation of H3K27 and H3K9 at the SATB2 promoter upregulated expression of SATB2, a suppressor of colorectal carcinoma growth and metastasis. SATB2 subsequently recruited HDAC1 to the Snail promoter, repressing Snail transcription and inhibiting epithelial-to-mesenchymal transition. Taken together, these data reveal SATB2-AS1 as a novel regulator of the SATB2-Snail axis whose loss facilitates progression of colorectal carcinoma. SIGNIFICANCE: These data show that the lncRNA SATB2-AS1 mediates epigenetic regulation of SATB2 and Snail expression to suppress colorectal cancer progression.See related commentary by Li, p. 3536.
Collapse
Affiliation(s)
- Yi-Qing Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dong-Mei Jiang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sha-Sha Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lan Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min-Hui Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mei-Ling Ai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hui-Juan Jiang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Han
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
76
|
Kangarlouei R, Irani S, Noormohammadi Z, Memari F, Mirfakhraie R. ANRIL and ANRASSF1 long noncoding RNAs are upregulated in gastric cancer. J Cell Biochem 2019; 120:12544-12548. [PMID: 30834580 DOI: 10.1002/jcb.28520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023]
Abstract
Gastric cancer (GC) is the fifth most frequent cancer and the third-leading cause of cancer-related death worldwide. It is a highly heterogeneous disease regarding the morphological and molecular viewpoints. Since it is curable in primary stages, early detection could improve the survival rate. Long noncoding RNAs contribute to a variety of cellular mechanisms, and their dysregulation is reported in various diseases such as cancer. Thus, they have a great potential to be used as diagnostic and prognostic biomarkers and therapeutic targets as well. In the current study, ANRIL and ANRASSF1 expression levels were compared between GC tumors and the adjacent normal tissues collected from 39 Iranian patients using the quantitative real-time polymerase chain reaction method. Correlation between ANRIL and ANRASSF1 expression levels and other clinical parameters was also evaluated. ANRIL and ANRASSF1 were significantly overexpressed in GC tumors compared with adjacent tissues ( P < 0.0001 and P = 0.001, respectively). No significant correlation between ANRIL and ANRASSF1 expression levels and demographic information was found. This study suggests that ANRIL and ANRASSF1 may play a critical role in GC progression and can be considered as a potential diagnostic or therapeutics biomarkers.
Collapse
Affiliation(s)
- Roghayeh Kangarlouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fereidoon Memari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
77
|
Yang MH, Zhao L, Wang L, Ou-Yang W, Hu SS, Li WL, Ai ML, Wang YQ, Han Y, Li TT, Ding YQ, Wang S. Nuclear lncRNA HOXD-AS1 suppresses colorectal carcinoma growth and metastasis via inhibiting HOXD3-induced integrin β3 transcriptional activating and MAPK/AKT signalling. Mol Cancer 2019; 18:31. [PMID: 30823921 PMCID: PMC6397497 DOI: 10.1186/s12943-019-0955-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been indicated to play critical roles in cancer development and progression. LncRNA HOXD cluster antisense RNA1 (HOXD-AS1) has recently been found to be dysregulated in several cancers. However, the expression levels, cellular localization, precise function and mechanism of HOXD-AS1 in colorectal carcinoma (CRC) are largely unknown. Methods Real-time PCR and in situ hybridization were used to detect the expression of HOXD-AS1 in CRC tissue samples and cell lines. Gain- and loss-of-function experiments were performed to investigate the biological roles of HOXD-AS1 in CRC cell line. RNA pull down, RNA immunoprecipitation and chromatin immunoprecipitation assays were conducted to investigate the mechanisms underlying the functions of HOXD-AS1 in CRC. Results We observed that HOXD-AS1 was located in the nucleus of CRC cells and that nuclear HOXD-AS1 was downregulated in most CRC specimens and cell lines. Lower levels of nuclear HOXD-AS1 expression were associated with poor outcomes of CRC patients. HOXD-AS1 downregulation enhanced proliferation and migration of CRC cells in vitro and facilitated CRC tumourigenesis and metastasis in vivo. Mechanistic investigations revealed that HOXD-AS1 could suppress HOXD3 transcription by recruiting PRC2 to induce the accumulation of the repressive marker H3K27me3 at the HOXD3 promoter. Subsequently, HOXD3, as a transcriptional activator, promoted Integrin β3 transcription, thereby activating the MAPK/AKT signalling pathways. Conclusion Our results reveal a previously unrecognized HOXD-AS1-HOXD3-Integrin β3 regulatory axis involving in epigenetic and transcriptional regulation constitutes to CRC carcinogenesis and progression. Electronic supplementary material The online version of this article (10.1186/s12943-019-0955-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min-Hui Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Ghuangzhou, 510150, China
| | - Lan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen Ou-Yang
- The Second Clinical Medical College, Zhujang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sha-Sha Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Lu Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mei-Ling Ai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Qing Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yue Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting-Ting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
78
|
Kumari D, Gazy I, Usdin K. Pharmacological Reactivation of the Silenced FMR1 Gene as a Targeted Therapeutic Approach for Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020039. [PMID: 30759772 PMCID: PMC6406686 DOI: 10.3390/brainsci9020039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
More than ~200 CGG repeats in the 5′ untranslated region of the FMR1 gene results in transcriptional silencing and the absence of the FMR1 encoded protein, FMRP. FMRP is an RNA-binding protein that regulates the transport and translation of a variety of brain mRNAs in an activity-dependent manner. The loss of FMRP causes dysregulation of many neuronal pathways and results in an intellectual disability disorder, fragile X syndrome (FXS). Currently, there is no effective treatment for FXS. In this review, we discuss reactivation of the FMR1 gene as a potential approach for FXS treatment with an emphasis on the use of small molecules to inhibit the pathways important for gene silencing.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Inbal Gazy
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
79
|
Lindsay C, Kostiuk M, Biron VL. Pharmacoepigenetics of EZH2 Inhibitors. PHARMACOEPIGENETICS 2019:447-462. [DOI: 10.1016/b978-0-12-813939-4.00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
80
|
Moreau PR, Örd T, Downes NL, Niskanen H, Bouvy-Liivrand M, Aavik E, Ylä-Herttuala S, Kaikkonen MU. Transcriptional Profiling of Hypoxia-Regulated Non-coding RNAs in Human Primary Endothelial Cells. Front Cardiovasc Med 2018; 5:159. [PMID: 30456215 PMCID: PMC6230589 DOI: 10.3389/fcvm.2018.00159] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/16/2018] [Indexed: 01/04/2023] Open
Abstract
Hypoxia occurs in human atherosclerotic lesions and has multiple adverse effects on endothelial cell metabolism. Recently, key roles of long non-coding RNAs (lncRNAs) in the development of atherosclerosis have begun to emerge. In this study, we investigate the lncRNA profiles of human umbilical vein endothelial cells subjected to hypoxia using global run-on sequencing (GRO-Seq). We demonstrate that hypoxia regulates the nascent transcription of ~1800 lncRNAs. Interestingly, we uncover evidence that promoter-associated lncRNAs are more likely to be induced by hypoxia compared to enhancer-associated lncRNAs, which exhibit an equal distribution of up- and downregulated transcripts. We also demonstrate that hypoxia leads to a significant induction in the activity of super-enhancers next to transcription factors and other genes implicated in angiogenesis, cell survival and adhesion, whereas super-enhancers near several negative regulators of angiogenesis were repressed. Despite the majority of lncRNAs exhibiting low detection in RNA-Seq, a subset of lncRNAs were expressed at comparable levels to mRNAs. Among these, MALAT1, HYMAI, LOC730101, KIAA1656, and LOC339803 were found differentially expressed in human atherosclerotic lesions, compared to normal vascular tissue, and may thus serve as potential biomarkers for lesion hypoxia.
Collapse
Affiliation(s)
- Pierre R Moreau
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nicholas L Downes
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Einari Aavik
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.,Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
81
|
Panda S, Setia M, Kaur N, Shepal V, Arora V, Singh DK, Mondal A, Teli A, Tathode M, Gajula R, Padhy LC, Shiras A. Noncoding RNA Ginir functions as an oncogene by associating with centrosomal proteins. PLoS Biol 2018; 16:e2004204. [PMID: 30296263 PMCID: PMC6193740 DOI: 10.1371/journal.pbio.2004204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/18/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs constitute a major fraction of the eukaryotic transcriptome, and together with proteins, they intricately fine-tune various growth regulatory signals to control cellular homeostasis. Here, we describe the functional characterisation of a novel pair of long intergenic noncoding RNAs (lincRNAs) comprised of complementary, fully overlapping sense and antisense transcripts Genomic Instability Inducing RNA (Ginir) and antisense RNA of Ginir (Giniras), respectively, from mouse cells. This transcript pair is expressed in a spatiotemporal manner during embryonic development. The individual levels of the sense and antisense transcripts are finely balanced during embryonic growth and in adult tissues. Functional studies of the individual transcripts performed using overexpression and knock-down strategies in mouse cells has led to the discovery that Ginir RNA is a regulator of cellular proliferation and can act as an oncogene having a preeminent role in malignant transformation. Mechanistically, we demonstrate that the oncogenic function of Ginir is mediated by its interaction with centrosomal protein 112 (Cep112). Additionally, we establish here a specific interaction between Cep112 with breast cancer type 1 susceptibility protein (Brca1), another centrosome-associated protein. Next, we prove that the mutual interaction between Cep112 with Brca1 is significant for mitotic regulation and maintenance of genomic stability. Furthermore, we demonstrate that the Cep112 protein interaction with Brca1 protein is impaired when an elevated level of Ginir RNA is present in the cells, resulting in severe deregulation and abnormality in mitosis, leading to malignant transformation. Inhibiting the Ginir RNA function in transformed cells attenuates transformation and restores genomic stability. Together, these findings unravel, to our knowledge, a hitherto-unknown mechanism of oncogenesis mediated by a long noncoding RNA and establishes a unique role of Cep112–Brca1 interaction being modulated by Ginir RNA in maintaining mitotic fidelity. The growth of multicellular organisms is tightly regulated by cellular homeostasis mediated by cell division. This is achieved with the help of various proteins acting in a highly coordinated manner via intricately woven intercellular signalling pathways, which regulate cell division. Here, we identify a long noncoding RNA pair, which we named Genomic Instability Inducing RNA (Ginir)/antisense RNA of Ginir (Giniras), and explore its function in cellular homeostasis. We show that this RNA pair is expressed in a spatiotemporally regulated manner during development and is enriched in the brain. We find that Ginir acts as a dominant oncogene when Ginir transcript levels are overexpressed in mouse fibroblasts and that centrosomal protein 112 (Cep112) is its interacting protein partner. We also report that Cep112 interacts with breast cancer type 1 susceptibility protein (Brca1), a protein well known for its role in genome surveillance. Our data reveal that interactions between these two proteins are perturbed in the presence of excessive levels of Ginir RNA, which results in aberrant mitosis and drives the cells towards neoplastic transformation.
Collapse
Affiliation(s)
- Suchismita Panda
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Meenakshi Setia
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Navjot Kaur
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Varsha Shepal
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Vivek Arora
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Divya Kumari Singh
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Abir Mondal
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Abhishek Teli
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | | | - Rajendra Gajula
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - L. C. Padhy
- Kalinga Institute of Industrial Technology, (KIIT), Bhubaneswar, India
- * E-mail: (LCP); (AS)
| | - Anjali Shiras
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
- * E-mail: (LCP); (AS)
| |
Collapse
|
82
|
Wang Y, Lu T, Wang Q, Liu J, Jiao W. Circular RNAs: Crucial regulators in the human body (Review). Oncol Rep 2018; 40:3119-3135. [PMID: 30272328 PMCID: PMC6196641 DOI: 10.3892/or.2018.6733] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) belong to a new type of endogenous non‑coding RNAs (ncRNAs) that are derived from exons and/or introns, and are widely distributed in mammals. The majority of circRNAs have a specific expression profile in cells or tissues, as well as during different stages of development. CircRNAs were originally thought to be the products of mis‑splicing. However, with the assistance of bioinformatics tools and the rapid development of high‑throughput sequencing, an increasing body of evidence has suggested that circRNAs bind micro(mi)RNAs, and have a role as miRNA sponges, thereby regulating target mRNA splicing and transcription. Human diseases are closely associated with circRNAs, especially in cancer as their expression is typically altered during the progression of cancer; this may provide a novel type of biomarker for cancer diagnosis and prognosis. CircRNAs are becoming a key area of interest within the field of cancer research. In the present review, we summarize the known molecular mechanisms and biological origin of circRNAs, as well as their functions, especially those related to human tumors.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Qian Wang
- College of Nursing, Weifang Medical University, Weifang 261053, P.R. China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao 266003, P.R. China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| |
Collapse
|
83
|
Bure I, Geer S, Knopf J, Roas M, Henze S, Ströbel P, Agaimy A, Wiemann S, Hoheisel JD, Hartmann A, Haller F, Moskalev EA. Long noncoding RNA HOTAIR is upregulated in an aggressive subgroup of gastrointestinal stromal tumors (GIST) and mediates the establishment of gene-specific DNA methylation patterns. Genes Chromosomes Cancer 2018; 57:584-597. [PMID: 30248209 DOI: 10.1002/gcc.22672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Aberrant alterations of DNA methylation are common events in oncogenesis. The origin of cancer-associated epigenetic defects is of interest for mechanistic understanding of malignant transformation and-in the long run-therapeutic modulation of DNA methylation in a locus-specific manner. Given the ability of certain long noncoding RNAs to operate as an interface between DNA and the epigenetic modification machinery which can interact with DNA methyltransferases, we hypothesized-considering HOTAIR as an example-that this transcript may contribute to gene specificity of DNA methylation. Using gastrointestinal stromal tumors (GISTs, n = 67) as a model, we confirmed upregulation of HOTAIR in tumors with high risk of recurrence and showed high abundance of the transcript in GIST cell lines. HOTAIR knockdown in GIST-T1 cells triggered transcriptional response of genes involved in the organization and disassembly of the extracellular matrix and, notably, induced global locus-specific alterations of DNA methylation patterns. Hypomethylation was induced at a total of 507 CpG sites, whereas 382 CpG dinucleotides underwent gain of methylation upon HOTAIR depletion. Importantly, orchestrated gain or loss of methylation at multiple individual CpG sites was shown for cancer-related DPP4, RASSF1, ALDH1A3, and other targets. Collectively, our data indicate that HOTAIR enables target specificity of DNA methylation in GIST and is capable of dual (hypo- and hypermethylation) regulation by a yet to be defined mechanism. The results further suggest the feasibility of manipulating DNA methylation in a targeted manner and are of interest in the context of epigenetic cancer therapy.
Collapse
Affiliation(s)
- Irina Bure
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Sandra Geer
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Jasmin Knopf
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Maike Roas
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Sabine Henze
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Ströbel
- Institute of Pathology, Georg August University, Göttingen, Germany
| | - Abbas Agaimy
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Stefan Wiemann
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg D Hoheisel
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arndt Hartmann
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Florian Haller
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Evgeny A Moskalev
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| |
Collapse
|
84
|
Bian EB, Xiong ZG, Li J. New advances of lncRNAs in liver fibrosis, with specific focus on lncRNA-miRNA interactions. J Cell Physiol 2018; 234:2194-2203. [PMID: 30229908 DOI: 10.1002/jcp.27069] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Noncoding RNAs (ncRNAs) were initially thought to be transcriptional byproducts. However, recent advances of ncRNAs research have increased our understanding of the importance of ncRNA in gene regulation and disease pathogenesis. Consistent with these developments, liver fibrosis research is also experiencing rapid growth in the investigation of links between ncRNAs and the pathology of this disease. The initial focus was on studying the function and regulation mechanisms of microRNAs (miRNAs). However, recently, elucidation of the mechanisms of long noncoding RNAs (lncRNAs) and lncRNA-mediated liver fibrosis has just commenced. In this review, we emphasize on abnormal expression of lncRNAs in liver fibrosis. Furthermore, we also discuss that the interaction of lncRNAs with miRNAs is involved in the regulation of the expression of protein-coding genes in liver fibrosis. Recent advances in understanding dysregulated lncRNAs expression and the lncRNAs-miRNAs interaction in liver fibrosis will help for developing new therapeutic targets and biomarkers of liver fibrosis.
Collapse
Affiliation(s)
- Er-Bao Bian
- Department of Neurosurgery, The Second Hospital of Anhui Medical University, Hefei, China.,Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhi-Gang Xiong
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Department of Neuropharmacology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Jun Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
85
|
He J, Tu C, Liu Y. Role of lncRNAs in aging and age-related diseases. Aging Med (Milton) 2018; 1:158-175. [PMID: 31942494 PMCID: PMC6880696 DOI: 10.1002/agm2.12030] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/10/2023] Open
Abstract
Aging is progressive physiological degeneration and consequently declined function, which is linked to senescence on both cellular and organ levels. Accumulating studies indicate that long noncoding RNAs (lncRNAs) play important roles in cellular senescence at all levels-transcriptional, post-transcriptional, translational, and post-translational. Understanding the molecular mechanism of lncRNAs underlying senescence could facilitate interpretation and intervention of aging and age-related diseases. In this review, we describe categories of known and novel lncRNAs that have been involved in the progression of senescence. We also identify the lncRNAs implicated in diseases arising from age-driven degeneration or dysfunction in some representative organs and systems (brains, liver, muscle, cardiovascular system, bone pancreatic islets, and immune system). Improved comprehension of lncRNAs in the aging process on all levels, from cell to organismal, may provide new insights into the amelioration of age-related pathologies and prolonged healthspan.
Collapse
Affiliation(s)
- Jieyu He
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chao Tu
- Department of OrthopedicsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Youshuo Liu
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
86
|
Lin X, Qiu J, Hua K. Long non-coding RNAs as emerging regulators of epithelial to mesenchymal transition in gynecologic cancers. Biosci Trends 2018; 12:342-353. [PMID: 30146551 DOI: 10.5582/bst.2018.01181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gynecologic cancer is a vital global healthcare issue with high rates of mortality and morbidity. Tumor metastasis attributes to most of the death suffering from solid tumors. The epithelial-mesenchymal transition (EMT) plays a pivotal role in initiating metastasis. Long non-coding RNAs (lncRNAs), a well-known group of non-coding RNAs, and a prominent topic in life science research, are misregulated in many malignancies and some are EMT-associated. In the case of gynecologic cancers, several EMT-associated lncRNAs have been identified and found to be implicated in cancer aggressiveness and progression. Mechanically, these lncRNAs participate in the EMT-related metastatic process in multiple ways including interaction with polycomb repressive complex 2 (PRC2), regulation of EMT signaling networks, mediation of EMT-transcription factors (EMT-TFs) and EMT markers, and cooperation with microRNAs (miRNAs). Further studies on these EMT-associated lncRNAs and identification of more relevant lncRNAs are imperative for the lncRNAs-based clinical management of high rate of metastasis in patients with gynecologic cancers.
Collapse
Affiliation(s)
- Xiaojing Lin
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University.,Shanghai Medical College, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University.,Shanghai Medical College, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University.,Shanghai Medical College, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University
| |
Collapse
|
87
|
Yao R, Zou H, Liao W. Prospect of Circular RNA in Hepatocellular Carcinoma: A Novel Potential Biomarker and Therapeutic Target. Front Oncol 2018; 8:332. [PMID: 30191143 PMCID: PMC6115511 DOI: 10.3389/fonc.2018.00332] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
CircRNA, a kind of tissue specific and covalently closed circular non-coding RNA is very abundant in eukaryocyte. Generally, circRNA is generated by back-splicing of protein-coding genes' pre-mRNA. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Due to the characteristics of poor prognosis and high recurrence, the pathogenesis of HCC is highly concerned by researchers worldwide. Recent studies demonstrated that numerous circRNAs were differentially expressed in HCC tissues and normal liver tissues, which is closely related with the development and prognosis of HCC. However, the mechanism of circRNA in HCC remains unclear. In this review, we summarized the abnormal expressions of circRNAs in HCC, discussed its role, and potential mechanisms, and tried to explore the prospective values of circRNA in the diagnosis, therapy, and prognosis of HCC.
Collapse
Affiliation(s)
- Renzhi Yao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Haifan Zou
- Department of Science Experiment Center, Guilin Medical University, Guilin, China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
88
|
Bawa PS, Ravi S, Paul S, Chaudhary B, Srinivasan S. A novel molecular mechanism for a long non-coding RNA PCAT92 implicated in prostate cancer. Oncotarget 2018; 9:32419-32434. [PMID: 30197753 PMCID: PMC6126693 DOI: 10.18632/oncotarget.25940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/18/2018] [Indexed: 11/25/2022] Open
Abstract
The role of many lncRNAs in cancer remains elusive including that for a Prostate Cancer Associated Transcript 92 (PCAT92). PCAT92 shares the locus on chromosome 13 with ABCC4 gene, known to be implicated in prostate cancer. It has been shown that PCAT92 and ABCC4 are up-regulated in prostate cancer samples from multiple transcriptome datasets. Among the prostate cancer cell-lines LNCaP showed maximum overexpression of PCAT92 compared to control cell-line RWPE-1. We have shown that knockdown of PCAT92 in LNCaP cells reduces cell viability and proliferation and down-regulates ABCC4 transcript/protein expression. The shared region between PCAT92 and ABCC4 has a binding site for an oncogenic transcription factor (ZIC2) which is also upregulated in the majority of datasets studied here. ZIC2 binding to the predicted ABCC4 promoter has been confirmed using pull-down assay. Interestingly, under PCAT92 knockdown condition, there is a reduction in the ZIC2 binding to ABCC4 promoter indicating the potential involvement of PCAT92 in the recruitment of ZIC2. We have identified distinct regions on PCAT92 with potential to bind to ZIC2 non-DNA binding Zinc-finger domain and potential for triplex formation near ABCC4 promoter region, which have been experimentally validated. Together, these observations and localization in the nucleus suggests that PCAT92 may play a role in prostate cancer by increasing the local concentration of ZIC2 by forming RNA-DNA triplex near ABCC4 promoter thus helping in recruitment of ZIC2 for ABCC4 regulation.
Collapse
Affiliation(s)
- Pushpinder Singh Bawa
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India.,Manipal University, Manipal, Karnataka, India
| | - Samathmika Ravi
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Swagatika Paul
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Bibha Chaudhary
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Subhashini Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| |
Collapse
|
89
|
Ding S, Qu W, Jiao Y, Zhang J, Zhang C, Dang S. LncRNA SNHG12 promotes the proliferation and metastasis of papillary thyroid carcinoma cells through regulating wnt/β-catenin signaling pathway. Cancer Biomark 2018; 22:217-226. [PMID: 29630517 DOI: 10.3233/cbm-170777] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shimei Ding
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Wei Qu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Yang Jiao
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Jing Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Chunhong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| |
Collapse
|
90
|
Sepe R, Pellecchia S, Serra P, D'Angelo D, Federico A, Raia M, Cortez Cardoso Penha R, Decaussin-Petrucci M, Del Vecchio L, Fusco A, Pallante P. The Long Non-Coding RNA RP5-1024C24.1 and Its Associated-Gene MPPED2 Are Down-Regulated in Human Thyroid Neoplasias and Act as Tumour Suppressors. Cancers (Basel) 2018; 10:E146. [PMID: 29783666 PMCID: PMC5977119 DOI: 10.3390/cancers10050146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Well-differentiated papillary thyroid carcinoma (PTC) represents the thyroid neoplasia with the highest incidence. Long non-coding RNAs (lncRNAs) have been found deregulated in several human carcinomas, and hence, proposed as potential diagnostic and prognostic markers. Therefore, the aim of our study was to investigate their role in thyroid carcinogenesis. Methods: We analysed the lncRNA expression profile of 12 PTC and four normal thyroid tissues through a lncRNA microarray. Results: We identified 669 up- and 2470 down-regulated lncRNAs with a fold change >2. Among them, we focused on the down-regulated RP5-1024C24.1 located in an antisense position with respect to the MPPED2 gene which codes for a metallophosphoesterase with tumour suppressor activity. Both these genes are down-regulated in benign and malignant thyroid neoplasias. The restoration of RP5-1024C24.1 expression in thyroid carcinoma cell lines reduced cell proliferation and migration by modulating the PTEN/Akt pathway. Inhibition of thyroid carcinoma cell growth and cell migration ability was also achieved by the MPPED2 restoration. Interestingly, RP5-1024C24.1 over-expression is able to increase MPPED2 expression. Conclusions: Taken together, these results demonstrate that RP5-1024C24.1 and MPPED2 might be considered as novel tumour suppressor genes whose loss of expression contributes to thyroid carcinogenesis.
Collapse
Affiliation(s)
- Romina Sepe
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Simona Pellecchia
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Pierre Serra
- Service d'Anatomie et Cytologie Pathologiques, Centre de Biologie Sud, Groupement Hospitalier Lyon Sud, 69495 Pierre Bénite, France.
| | - Daniela D'Angelo
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Antonella Federico
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Maddalena Raia
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy.
| | - Ricardo Cortez Cardoso Penha
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy.
- Instituto Nacional de Cancer, Laboratorio de Carcinogênese Molecular, Rua Andre Cavalcanti 37, Centro, Rio de Janeiro 20231-050, Brazil.
| | - Myriam Decaussin-Petrucci
- Service d'Anatomie et Cytologie Pathologiques, Centre de Biologie Sud, Groupement Hospitalier Lyon Sud, 69495 Pierre Bénite, France.
| | - Luigi Del Vecchio
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy.
| | - Alfredo Fusco
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
91
|
daSilva LF, Beckedorff FC, Ayupe AC, Amaral MS, Mesel V, Videira A, Reis EM, Setubal JC, Verjovski-Almeida S. Chromatin Landscape Distinguishes the Genomic Loci of Hundreds of Androgen-Receptor-Associated LincRNAs From the Loci of Non-associated LincRNAs. Front Genet 2018; 9:132. [PMID: 29875794 PMCID: PMC5985396 DOI: 10.3389/fgene.2018.00132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/03/2018] [Indexed: 11/30/2022] Open
Abstract
Cell signaling events triggered by androgen hormone in prostate cells is dependent on activation of the androgen receptor (AR) transcription factor. Androgen hormone binding to AR promotes its displacement from the cytoplasm to the nucleus and AR binding to DNA motifs, thus inducing activatory and inhibitory transcriptional programs through a complex regulatory mechanism not yet fully understood. In this work, we performed RNA-seq deep-sequencing of LNCaP prostate cancer cells and found over 7000 expressed long intergenic non-coding RNAs (lincRNAs), of which ∼4000 are novel lincRNAs, and 258 lincRNAs have their expression activated by androgen. Immunoprecipitation of AR, followed by large-scale sequencing of co-immunoprecipitated RNAs (RIP-Seq) has identified in the LNCaP cell line a total of 619 lincRNAs that were significantly enriched (FDR < 10%, DESeq2) in the anti-Androgen Receptor (antiAR) fraction in relation to the control fraction (non-specific IgG), and we named them Androgen-Receptor-Associated lincRNAs (ARA-lincRNAs). A genome-wide analysis showed that protein-coding gene neighbors to ARA-lincRNAs had a significantly higher androgen-induced change in expression than protein-coding genes neighboring lincRNAs not associated to AR. To find relevant epigenetic signatures enriched at the ARA-lincRNAs’ transcription start sites (TSSs) we used a machine learning approach and identified that the ARA-lincRNA genomic loci in LNCaP cells are significantly enriched with epigenetic marks that are characteristic of in cis enhancer RNA regulators, and that the H3K27ac mark of active enhancers is conspicuously enriched at the TSS of ARA-lincRNAs adjacent to androgen-activated protein-coding genes. In addition, LNCaP topologically associating domains (TADs) that comprise chromatin regions with ARA-lincRNAs exhibit transcription factor contents, epigenetic marks and gene transcriptional activities that are significantly different from TADs not containing ARA-lincRNAs. This work highlights the possible involvement of hundreds of lincRNAs working in synergy with the AR on the genome-wide androgen-induced gene regulatory program in prostate cells.
Collapse
Affiliation(s)
- Lucas F daSilva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - Felipe C Beckedorff
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - Ana C Ayupe
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Murilo S Amaral
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - Vinícius Mesel
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - Alexandre Videira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - Eduardo M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
92
|
Belousova EA, Filipenko ML, Kushlinskii NE. Circular RNA: New Regulatory Molecules. Bull Exp Biol Med 2018; 164:803-815. [PMID: 29658072 DOI: 10.1007/s10517-018-4084-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Indexed: 12/14/2022]
Abstract
Circular RNA are a family of covalently closed circular RNA molecules, formed from pre-mRNA of coding genes by means of splicing (canonical and alternative noncanonical splicing). Maturation of circular RNA is regulated by cis- and trans-elements. Complete list of biological functions of these RNA is not yet compiled; however, their capacity to interact with specific microRNA and play a role of a depot attracts the greatest interest. This property makes circular RNA active regulatory transcription factors. Circular RNA have many advantages over their linear analogs: synthesis of these molecules is conservative, they are universal, characterized by clearly determined specificity, and are resistant to exonucleases. In addition, the level of their expression is often higher than that of their linear forms. It should be noted that expression of circular RNA is tissue-specific. Moreover, some correlations between changes in the repertoire and intensity of expression of circular RNA and the development of some pathologies have been detected. Circular RNA have certain advantages and can serve as new biomarkers for the diagnosis, prognosis, and evaluation of response to therapy.
Collapse
Affiliation(s)
- E A Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M L Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N E Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
93
|
Hu G, Niu F, Humburg BA, Liao K, Bendi S, Callen S, Fox HS, Buch S. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget 2018; 9:18648-18663. [PMID: 29719633 PMCID: PMC5915100 DOI: 10.18632/oncotarget.24307] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/13/2018] [Indexed: 12/13/2022] Open
Abstract
LncRNAs are long non-coding regulatory RNAs that are longer than 200 nucleotides. One of the major functions of lncRNAs is the regulation of specific gene expression at multiple steps including, recruitment and expression of basal transcription machinery, post-transcriptional modifications and epigenetics [1]. Emerging evidence suggests that lncRNAs also play a critical role in maintaining tissue homeostasis during physiological and pathological conditions, lipid homeostasis, as well as epithelial and smooth muscle cell homeostasis, a topic that has been elegantly reviewed [2-5]. While aberrant expression of lncRNAs has been implicated in several disease conditions, there is paucity of information about their contribution to the etiology of diseases [6]. Several studies have compared the expression of lncRNAs under normal and cancerous conditions and found differential expression of several lncRNAs, suggesting thereby an involvement of lncRNAs in disease processes [7, 8]. Furthermore, the ability of lncRNAs to influence epigenetic changes also underlies their role in disease pathogenesis since epigenetic regulation is known to play a critical role in many human diseases [1]. LncRNAs thus are not only involved in homeostatic functioning but also play a vital role in the progression of many diseases, thereby underscoring their potential as novel therapeutic targets for the alleviation of a variety of human disease conditions.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bree A. Humburg
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sunil Bendi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
94
|
Sun Q, Hao Q, Prasanth KV. Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends Genet 2018; 34:142-157. [PMID: 29249332 PMCID: PMC6002860 DOI: 10.1016/j.tig.2017.11.005] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
A significant portion of the human genome encodes genes that transcribe long nonprotein-coding RNAs (lncRNAs). A large number of lncRNAs localize in the nucleus, either enriched on the chromatin or localized to specific subnuclear compartments. Nuclear lncRNAs participate in several biological processes, including chromatin organization, and transcriptional and post-transcriptional gene expression, and also act as structural scaffolds of nuclear domains. Here, we highlight recent studies demonstrating the role of lncRNAs in regulating gene expression and nuclear organization in mammalian cells. In addition, we update current knowledge about the involvement of the most-abundant and conserved lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), in gene expression control.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA; These authors contributing equally
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA; These authors contributing equally
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
95
|
Latgé G, Poulet C, Bours V, Josse C, Jerusalem G. Natural Antisense Transcripts: Molecular Mechanisms and Implications in Breast Cancers. Int J Mol Sci 2018; 19:ijms19010123. [PMID: 29301303 PMCID: PMC5796072 DOI: 10.3390/ijms19010123] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/07/2017] [Accepted: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Natural antisense transcripts are RNA sequences that can be transcribed from both DNA strands at the same locus but in the opposite direction from the gene transcript. Because strand-specific high-throughput sequencing of the antisense transcriptome has only been available for less than a decade, many natural antisense transcripts were first described as long non-coding RNAs. Although the precise biological roles of natural antisense transcripts are not known yet, an increasing number of studies report their implication in gene expression regulation. Their expression levels are altered in many physiological and pathological conditions, including breast cancers. Among the potential clinical utilities of the natural antisense transcripts, the non-coding|coding transcript pairs are of high interest for treatment. Indeed, these pairs can be targeted by antisense oligonucleotides to specifically tune the expression of the coding-gene. Here, we describe the current knowledge about natural antisense transcripts, their varying molecular mechanisms as gene expression regulators, and their potential as prognostic or predictive biomarkers in breast cancers.
Collapse
Affiliation(s)
- Guillaume Latgé
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| | - Christophe Poulet
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
- Center of Genetics, University Hospital (CHU), 4500 Liège, Belgium.
| | - Claire Josse
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
- Department of Medical Oncology, University Hospital (CHU), 4500 Liège, Belgium.
- Laboratory of Medical Oncology, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| | - Guy Jerusalem
- Department of Medical Oncology, University Hospital (CHU), 4500 Liège, Belgium.
- Laboratory of Medical Oncology, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| |
Collapse
|
96
|
Abstract
Over the last two decades it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly small RNAs is their reliance of conserved secondary structures. Large scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible noncoding RNAs that exert a vastly diverse array of molecule functions. In this chapter we provide a-necessarily incomplete-overview of the current state of comparative analysis of noncoding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world.
Collapse
Affiliation(s)
- Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany.,Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Ivo L Hofacker
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark.,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.,Bioinformatics and Computational Biology Research Group, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Peter F Stadler
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark. .,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria. .,Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany. .,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, D-04103 Leipzig, Germany. .,Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA.
| |
Collapse
|
97
|
The hypoxia-responsive lncRNA NDRG-OT1 promotes NDRG1 degradation via ubiquitin-mediated proteolysis in breast cancer cells. Oncotarget 2017. [PMID: 29535820 PMCID: PMC5828211 DOI: 10.18632/oncotarget.23732] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hypoxia can lead to solid tumor aggressiveness by driving multiple signaling pathways. Long non-coding RNAs respond to several extrinsic stimuli, causing changes in cancer cells by participating in multiple steps of gene expression. However, genomic profiling of long non-coding RNAs regulated by oxygen in breast cancer remained unclear. Therefore, the aims of this study were to identify oxygen-responsive long non-coding RNAs in breast cancer cells, and to delineate their regulatory mechanisms. The expression profiling of long non-coding RNAs in breast cancer cells growing under normoxic, hypoxic, and re-oxygenated conditions was examined using next-generation sequencing technology. Four hundred and seventy-two lncRNAs oxygen-responsive lncRNAs were identified. After examining the top three differentially expressed lncRNAs in hypoxia, we selected N-Myc Downstream Regulated Gene 1-Overlapping 1 (NDRG1-OT1) for further study, especially the most responsive isoform, NDRG1-OT1_v4. We overexpressed NDRG1-OT1_v4 under normoxia and performed microarray analysis to identify 108 NDRG1-OT1_v4 regulated genes and their functions. Among these genes, we found that both NDRG1 mRNA expression and NDRG1 protein levels were inhibited by NDRG1-OT1_v4. Finally, we used co-immunoprecipitation to show that NDRG1-OT1_v4 destabilizes NDRG1 by promoting ubiquitin-mediated proteolysis. Our findings reveal a new type of epigenetic regulation of NDRG1 by NDRG1-OT1_v4 in breast cancer cells.
Collapse
|
98
|
Long Y, Bolanos B, Gong L, Liu W, Goodrich KJ, Yang X, Chen S, Gooding AR, Maegley KA, Gajiwala KS, Brooun A, Cech TR, Liu X. Conserved RNA-binding specificity of polycomb repressive complex 2 is achieved by dispersed amino acid patches in EZH2. eLife 2017; 6. [PMID: 29185984 PMCID: PMC5706960 DOI: 10.7554/elife.31558] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a key chromatin modifier responsible for methylation of lysine 27 in histone H3. PRC2 has been shown to interact with thousands of RNA species in vivo, but understanding the physiological function of RNA binding has been hampered by the lack of separation-of-function mutants. Here, we use comprehensive mutagenesis and hydrogen deuterium exchange mass spectrometry (HDX-MS) to identify critical residues for RNA interaction in PRC2 core complexes from Homo sapiens and Chaetomium thermophilum, for which crystal structures are known. Preferential binding of G-quadruplex RNA is conserved, surprisingly using different protein elements. Key RNA-binding residues are spread out along the surface of EZH2, with other subunits including EED also contributing, and missense mutations of some of these residues have been found in cancer patients. The unusual nature of this protein-RNA interaction provides a paradigm for other epigenetic modifiers that bind RNA without canonical RNA-binding motifs.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Ben Bolanos
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Lihu Gong
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| | - Wei Liu
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Karen J Goodrich
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Xin Yang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| | - Siming Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| | - Anne R Gooding
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Karen A Maegley
- Oncology Research Unit, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Ketan S Gajiwala
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Alexei Brooun
- Worldwide Medicinal Chemistry, Worldwide Research and Development, Pfizer Inc., San Diego, United States
| | - Thomas R Cech
- Department of Chemistry and Biochemistry, BioFrontiers Institute, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, United States.,Department of Biophysics, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
99
|
Xing W, Gao W, Mao G, Zhang J, Lv X, Wang G, Yan J. Long non-coding RNAs in aging organs and tissues. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:30-37. [PMID: 28602041 DOI: 10.1111/1440-1681.12795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/27/2017] [Accepted: 05/07/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Wenmin Xing
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Wenyan Gao
- Institute of Materia Medica; Zhejiang Academy of Medical Sciences; Hangzhou China
| | - Genxiang Mao
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Jing Zhang
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Xiaoling Lv
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Guofu Wang
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Jing Yan
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| |
Collapse
|
100
|
Tang Y, Zhou T, Yu X, Xue Z, Shen N. The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol 2017; 13:657-669. [PMID: 28978995 DOI: 10.1038/nrrheum.2017.162] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key epigenetic regulators that govern gene expression and influence multiple biological processes. Accumulating evidence demonstrates that lncRNAs have critical roles in immune cell development and function. In this Review, the molecular mechanisms of gene expression regulation by lncRNAs are described and current knowledge of the role of lncRNAs in immune regulation and inflammation are presented, highlighting strategies for defining the roles of lncRNAs in the pathogenesis of multiple rheumatic diseases. Finally, research progress in understanding the role of lncRNAs in rheumatic diseases is discussed.
Collapse
Affiliation(s)
- Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai, China
| | - Tian Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Xiang Yu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Zhixin Xue
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, 2200 Lane 25 Xietu Road, Shanghai, China.,Collaborative Innovation Centre for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.,Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
| |
Collapse
|