51
|
Analysis of the Relationship between Type II Diabetes Mellitus and Parkinson's Disease: A Systematic Review. PARKINSONS DISEASE 2019; 2019:4951379. [PMID: 31871617 PMCID: PMC6906831 DOI: 10.1155/2019/4951379] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
In the early sixties, a discussion started regarding the association between Parkinson's disease (PD) and type II diabetes mellitus (T2DM). Today, this potential relationship is still a matter of debate. This review aims to analyze both diseases concerning causal relationships and treatments. A total of 104 articles were found, and studies on animal and “in vitro” models showed that T2DM causes neurological alterations that may be associated with PD, such as deregulation of the dopaminergic system, a decrease in the expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), an increase in the expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes 15 (PED/PEA-15), and neuroinflammation, as well as acceleration of the formation of alpha-synuclein amyloid fibrils. In addition, clinical studies described that Parkinson's symptoms were notably worse after the onset of T2DM, and seven deregulated genes were identified in the DNA of T2DM and PD patients. Regarding treatment, the action of antidiabetic drugs, especially incretin mimetic agents, seems to confer certain degree of neuroprotection to PD patients. In conclusion, the available evidence on the interaction between T2DM and PD justifies more robust clinical trials exploring this interaction especially the clinical management of patients with both conditions.
Collapse
|
52
|
Liu CY, Wang X, Liu C, Zhang HL. Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. Front Cell Neurosci 2019; 13:514. [PMID: 31803024 PMCID: PMC6877505 DOI: 10.3389/fncel.2019.00514] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence suggests that neuroinflammation is not just a consequence but a vital contributor to the development and progression of Parkinson’s disease (PD). Microglia in particular, may contribute to the induction and modulation of inflammation in PD. Upon stimulation, microglia convert into activated phenotypes, which exist along a dynamic continuum and bear different immune properties depending on the disease stage and severity. Activated microglia release various factors involved in neuroinflammation, such as cytokines, chemokines, growth factors, reactive oxygen species (ROS), reactive nitrogen species (RNS), and prostaglandins (PGs). Further, activated microglia interact with other cell types (e.g., neurons, astrocytes and mast cells) and are closely associated with α-synuclein (α-syn) pathophysiology and iron homeostasis disturbance. Taken together, microglial activation and microglia-mediated inflammatory responses play essential roles in the pathogenesis of PD and elucidation of the complexity and imbalance of microglial activation may shed light on novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Cai-Yun Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Liang Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
53
|
Zakaria A, Rady M, Mahran L, Abou-Aisha K. Pioglitazone Attenuates Lipopolysaccharide-Induced Oxidative Stress, Dopaminergic Neuronal Loss and Neurobehavioral Impairment by Activating Nrf2/ARE/HO-1. Neurochem Res 2019; 44:10.1007/s11064-019-02907-0. [PMID: 31713708 DOI: 10.1007/s11064-019-02907-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to examine the neuroprotective potential of pioglitazone via activation of Nrf2/ARE-dependent HO-1 signaling pathway in chronic neuroinflammation and progressive neurodegeneration mouse model induced by lipopolysaccharide (LPS). After assessing spatial memory, anxiety and motor-coordination, TH+ neurons in substantia nigra (SN) were counted. The oxidative stress marker carbonyl protein levels and HO-1 enzyme activity were also evaluated. RT-qPCR was conducted to detect HO-1, Nrf2 and NF-κp65 mRNA expression levels and Nrf2 transcriptional activation of antioxidant response element (ARE) of HO-1 was investigated. Pioglitazone ameliorated LPS-induced dopaminergic neuronal loss, as well as mitigated neurobehavioral impairments. It enhanced Nrf2 mRNA expression, and augmented Nrf2/ARE-dependent HO-1 pathway activation by amplifying HO-1 mRNA expression. Moreover, it induced a significant decrease in NF-κB p65 mRNA expression, while reducing carbonyl protein levels and restoring the HO-1 enzyme activity. Interestingly, LPS induced Nrf2/antioxidant response element (ARE) of HO-1 activation, ultimately resulting in slight enhanced HO-1 mRNA expression. However, LPS elicited decrease in HO-1 enzyme activity. Zinc protoporphyrin-IX (ZnPPIX) administrated with pioglitazone abolished its effects in the LPS mouse model. The study results demonstrate that coordinated activation of Nrf2/ARE-dependent HO-1 pathway defense mechanism by the PPARγ agonist pioglitazone mediated its neuroprotective effects.
Collapse
Affiliation(s)
- Aya Zakaria
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), New Cairo, Egypt.
| | - Mona Rady
- Department of Microbiology and Immunology, German University in Cairo (GUC), New Cairo, Egypt
| | - Laila Mahran
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), New Cairo, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology and Immunology, German University in Cairo (GUC), New Cairo, Egypt.
| |
Collapse
|
54
|
Sergi D, Renaud J, Simola N, Martinoli MG. Diabetes, a Contemporary Risk for Parkinson's Disease: Epidemiological and Cellular Evidences. Front Aging Neurosci 2019; 11:302. [PMID: 31787891 PMCID: PMC6856011 DOI: 10.3389/fnagi.2019.00302] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM), a group of diseases characterized by defective glucose metabolism, is the most widespread metabolic disorder affecting over 400 million adults worldwide. This pathological condition has been implicated in the pathogenesis of a number of central encephalopathies and peripheral neuropathies. In further support of this notion, recent epidemiological evidence suggests a link between DM and Parkinson’s disease (PD), with hyperglycemia emerging as one of the culprits in neurodegeneration involving the nigrostriatal pathway, the neuroanatomical substrate of the motor symptoms affecting parkinsonian patients. Indeed, dopaminergic neurons located in the mesencephalic substantia nigra appear to be particularly vulnerable to oxidative stress and degeneration, likely because of their intrinsic susceptibility to mitochondrial dysfunction, which may represent a direct consequence of hyperglycemia and hyperglycemia-induced oxidative stress. Other pathological pathways induced by increased intracellular glucose levels, including the polyol and the hexosamine pathway as well as the formation of advanced glycation end-products, may all play a pivotal role in mediating the detrimental effects of hyperglycemia on nigral dopaminergic neurons. In this review article, we will examine the epidemiological as well as the molecular and cellular clues supporting the potential susceptibility of nigrostriatal dopaminergic neurons to hyperglycemia.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justine Renaud
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, QC, Canada
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,National Institute for Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Maria-Grazia Martinoli
- Cellular Neurobiology, Department of Medical Biology, Université du Québec, Trois-Rivières, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval and CHU Research Center, Québec, QC, Canada
| |
Collapse
|
55
|
Decreased risk of Parkinson's disease in diabetic patients with thiazolidinediones therapy: An exploratory meta-analysis. PLoS One 2019; 14:e0224236. [PMID: 31639149 PMCID: PMC6804998 DOI: 10.1371/journal.pone.0224236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
Background It has been found that thiazolidinediones (TZDs) may play a protective role in animal models of Parkinson’s disease (PD), while the results remain controversial whether TZDs protect against Parkinson’s disease in humans. The purpose of this meta-analysis is to explore the association between TZDs use and the incidence of PD in diabetic patients. Methods A systematic online search was conducted to find studies published up to 31 December 2018. In our exploratory meta-analysis, studies comparing incidence of PD between TZD-treated and non-TZD-treated groups of diabetic patients were included. Data analysis was performed using a random or fixed effects model and expressed as odds ratios (OR) with 95% confidence interval (95% CI). We used the Cochrane Collaboration’s Review Manager 5.3 software to analyze data. Results In total, 5 retrospective observational cohort studies were identified which met the inclusion criteria. The pooled odds ratio (OR) was 0.70 [95% CI, 0.51 to 0.96; p = 0.03] in a random-effects model, indicating a 30% lower risk of developing PD in diabetic patients treated with TZDs compared with non-TZD-treated patients. Conclusion In this exploratory meta-analysis, we found that TZDs use was associated with reduced risk of PD in diabetic patients. However, this meta-analysis was not registered online although we followed a protocol designed for it. Further prospective observational studies with larger sample size and more strict inclusion criteria including controlling for diabetes complication severity index, hypoglycemic drugs combination, sex ratio, and comorbidity are needed to guide whether RCTs are warranted. And RCTs can better determine whether TZDs use could lower incidence of PD in diabetic patients.
Collapse
|
56
|
TSUDA T, NONOME T, GOTO S, TAKEDA JI, TSUNODA M, HIRAYAMA M, OHNO K. Application of Skin Gas GC/MS Analysis for Prediction of the Severity Scale of Parkinson’s Disease. CHROMATOGRAPHY 2019. [DOI: 10.15583/jpchrom.2019.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | - Sae GOTO
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine
| | - Jun-ichi TAKEDA
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine
| | - Makoto TSUNODA
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Masaaki HIRAYAMA
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine
| | - Kinji OHNO
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine
| |
Collapse
|
57
|
Tang BL. Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sci 2019; 9:brainsci9090238. [PMID: 31540439 PMCID: PMC6770198 DOI: 10.3390/brainsci9090238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
The mitochondrial pyruvate carriers mediate pyruvate import into the mitochondria, which is key to the sustenance of the tricarboxylic cycle and oxidative phosphorylation. However, inhibition of mitochondria pyruvate carrier-mediated pyruvate transport was recently shown to be beneficial in experimental models of neurotoxicity pertaining to the context of Parkinson’s disease, and is also protective against excitotoxic neuronal death. These findings attested to the metabolic adaptability of neurons resulting from MPC inhibition, a phenomenon that has also been shown in other tissue types. In this short review, I discuss the mechanism and potential feasibility of mitochondrial pyruvate carrier inhibition as a neuroprotective strategy in neuronal injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
58
|
|
59
|
Gureev AP, Shaforostova EA, Popov VN. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front Genet 2019; 10:435. [PMID: 31139208 PMCID: PMC6527603 DOI: 10.3389/fgene.2019.00435] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is a general degenerative process related to deterioration of cell functions in the entire organism. Mitochondria, which play a key role in energy homeostasis and metabolism of reactive oxygen species (ROS), require lifetime control and constant renewal. This explains recently peaked interest in the processes of mitochondrial biogenesis and mitophagy. The principal event of mitochondrial metabolism is regulation of mitochondrial DNA (mtDNA) transcription and translation, which is a complex coordinated process that involves at least two systems of transcription factors. It is commonly believed that its major regulatory proteins are PGC-1α and PGC-1β, which act as key factors connecting several regulator cascades involved in the control of mitochondrial metabolism. In recent years, the number of publications on the essential role of Nrf2/ARE signaling in the regulation of mitochondrial biogenesis has grown exponentially. Nrf2 is induced by various xenobiotics and oxidants that oxidize some Nrf2 negative regulators. Thus, ROS, in particular H2O2, were found to be strong Nrf2 activators. At present, there are two major concepts of mitochondrial biogenesis. Some authors suggest direct involvement of Nrf2 in the regulation of this process. Others believe that Nrf2 regulates expression of the antioxidant genes, while the major and only regulator of mitochondrial biogenesis is PGC-1α. Several studies have demonstrated the existence of the regulatory loop involving both PGC-1α and Nrf2. In this review, we summarized recent data on the Nrf2 role in mitochondrial biogenesis and its interaction with PGC-1α in the context of extending longevity.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
60
|
The Relation Between Type 2 Diabetes Mellitus and Parkinson Disease Up to Date. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2019. [DOI: 10.2478/rjdnmd-2019-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Parkinson’s disease is defined nowadays as a neurodegenerative disease with prominent motor symptoms accompanied by a wide range of comorbidities, some of them, like type 2 diabetes mellitus, probably implicated in the pathogenesis and progression of the disease. In order to achieve this article, which aimed to realize an up to date synthesis of published dedicated papers, a PubMed search was performed; it revealed increasing evidence that these two morbid conditions share many pathogenic pathways and current studies are trying to finally transform the accumulated knowledge into curative therapy or effective prevention for these frequent and complex diseases.
Collapse
|
61
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|
62
|
Lee Y, Cho JH, Lee S, Lee W, Chang SC, Chung HY, Moon HR, Lee J. Neuroprotective effects of MHY908, a PPAR α/γ dual agonist, in a MPTP-induced Parkinson’s disease model. Brain Res 2019; 1704:47-58. [DOI: 10.1016/j.brainres.2018.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 01/21/2023]
|
63
|
Novel Treatment Opportunities Against Cognitive Impairment in Parkinson's Disease with an Emphasis on Diabetes-Related Pathways. CNS Drugs 2019; 33:143-160. [PMID: 30687888 PMCID: PMC6373401 DOI: 10.1007/s40263-018-0601-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cognitive impairment is highly prevalent in patients with Parkinson's disease (PD) and causes adverse health outcomes. Novel procognitive therapies are needed to address this unmet need. It is now established that there is an increased risk of dementia in patients with type 2 diabetes mellitus (T2DM) and, moreover, T2DM and PD may have common underlying biological mechanisms. As such, T2DM medications are emerging as potential therapies in the context of PD dementia (PDD). In this review, we provide an update on pathophysiological mechanisms underlying cognitive impairments and PDD, focusing on diabetes-related pathways. Finally, we have conducted a review of ongoing clinical trials in PD patients with dementia, highlighting the multiple pharmacological mechanisms that are targeted to achieve cognitive enhancement.
Collapse
|
64
|
Wu D, Wang S, Wen X, Han X, Wang Y, Shen M, Fan S, Zhuang J, Zhang Z, Shan Q, Li M, Hu B, Sun C, Lu J, Chen G, Zheng Y. Retracted
: Suppression of microRNA‐342‐3p increases glutamate transporters and prevents dopaminergic neuron loss through activating the Wnt signaling pathway via p21‐activated kinase 1 in mice with Parkinson's disease. J Cell Physiol 2018; 234:9033-9044. [DOI: 10.1002/jcp.27577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology Xuzhou China
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University Huaian China
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| | - Gui‐Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University Nanjing China
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University Xuzhou China
- College of Health Sciences, Jiangsu Normal University Xuzhou China
| |
Collapse
|
65
|
Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE. Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation. Annu Rev Pharmacol Toxicol 2018; 59:237-261. [PMID: 30208281 DOI: 10.1146/annurev-pharmtox-010818-021807] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons that leads to a broad range of disabilities, including severe cognitive decline and motor impairment, for which there are no effective therapies. Several lines of evidence support a putative therapeutic role of nuclear receptors (NRs) in these types of disorders. NRs are ligand-activated transcription factors that regulate the expression of a wide range of genes linked to metabolism and inflammation. Although the activation of NRs in animal models of neurodegenerative disease exhibits promising results, the translation of this strategy to clinical practice has been unsuccessful. In this review we discuss the role of NRs in neurodegenerative diseases in light of preclinical and clinical studies, as well as new findings derived from the analysis of transcriptomic databases from humans and animal models. We discuss the failure in the translation of NR-based therapeutic approaches and consider alternative and novel research avenues in the development of effective therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Juan F Codocedo
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Shweta S Puntambekar
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Gary E Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
66
|
Lee SE, Han K, Baek JY, Ko KS, Lee KU, Koh EH. Association Between Diabetic Retinopathy and Parkinson Disease: The Korean National Health Insurance Service Database. J Clin Endocrinol Metab 2018; 103:3231-3238. [PMID: 29982669 DOI: 10.1210/jc.2017-02774] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
CONTEXT Studies have shown an association between diabetes and Parkinson disease (PD). The retina is a part of the central nervous system; it was proposed that diabetic retinopathy (DR) and PD share common pathophysiology of dopamine deficiency. However, no epidemiologic studies have investigated the relationship between these two diseases. OBJECTIVE We assessed the association between DR and incident PD using a population-based database. DESIGN/SETTING/PARTICIPANTS Using the Korean National Health Insurance Service database, 14,912,368 participants who underwent regular health checkup from 2005 to 2008 were included. Subjects were classified into non-diabetes, diabetes without DR, and diabetes with DR groups at baseline and followed up until the date of PD incidence, death, or 31 December 2013. Cox proportional hazards regression analysis was used to evaluate the association between DR and incident PD. RESULTS During the period, 34,834 subjects were newly diagnosed with PD. The incidence of PD was 2.74, 8.39, and 15.51 per 10,000 person-years for the non-diabetes, diabetes without DR, and diabetes with DR groups, respectively. In multivariate Cox proportional hazard models, DR groups were associated with significantly higher risk of PD than non-diabetes or diabetes without DR groups even after adjusting for age, sex, fasting plasma glucose level, insulin usage, and other possible risk factors. CONCLUSION Concurrent DR was associated with an increased risk of incident PD. Future studies are necessary to investigate the mechanism of increased risk of PD in DR including dopamine deficiency in the central nervous system and long-lasting poor glycemic control.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyungdo Han
- Department of Biostatistics, The Catholic University of Korea, Seoul, Korea
| | - Ji Yeon Baek
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Soo Ko
- Department of Internal Medicine, Cardiovascular and Metabolic Disease Center, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Ki-Up Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Hee Koh
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | |
Collapse
|
67
|
Wu HF, Kao LT, Shih JH, Kao HH, Chou YC, Li IH, Kao S. Pioglitazone use and Parkinson's disease: a retrospective cohort study in Taiwan. BMJ Open 2018; 8:e023302. [PMID: 30158237 PMCID: PMC6119417 DOI: 10.1136/bmjopen-2018-023302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Many researchers have expected pioglitazone to serve as an effective neuroprotective agent against Parkinson's disease (PD). Therefore, we conducted this cohort study to investigate the association between pioglitazone use and PD by using a large Asian population-based dataset in Taiwan. DESIGN Retrospective cohort study. SETTING Taiwan. PARTICIPANTS 7906 patients with diabetes who had received pioglitazone were defined as the study cohort, and 7906 matched patients with diabetes who had not received pioglitazone were defined as the comparison cohort. PRIMARY AND SECONDARY OUTCOME MEASURES We tracked each patient individually over a 5-year follow-up period to identify those diagnosed as having PD during this period. We performed Cox proportional hazard regression analyses to evaluate the HRs for PD between the study and comparison cohorts. RESULTS The findings indicated that among the sampled patients, PD occurred in 257 (1.63%): 119 (1.51%) pioglitazone users and 138 (1.75%) non-users. The adjusted HR for PD within the follow-up period was 0.90 (95% CI: 0.68 to 1.18) in the patients who had received pioglitazone compared with the matched patients who had not received pioglitazone. Moreover, this study revealed that pioglitazone use was not associated with PD incidence in men (HR: 1.06, 95% CI: 0.71 to 1.59) or women (HR: 0.84, 95% CI: 0.61 to 1.15). CONCLUSIONS This study did not find the relationship between pioglitazone use and PD incidence, regardless of sex, among an Asian population of patients with diabetes.
Collapse
Affiliation(s)
- Hsiu-Feng Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Li-Ting Kao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
| | - Jui-Hu Shih
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Han Kao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Senyeong Kao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
68
|
Lin HL, Lin HC, Tseng YF, Chao JCJ, Hsu CY. Association of thiazolidinedione with a lower risk of Parkinson's disease in a population with newly-diagnosed diabetes mellitus. Ann Med 2018; 50:430-436. [PMID: 29888974 DOI: 10.1080/07853890.2018.1488083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES We investigated the association of thiazolidinedione and its dose effect with the risk of Parkinson's disease (PD) in patients with diabetes mellitus (DM). METHODS This study enrolled 38,521 patients with newly-diagnosed DM, between 2001 and 2013, and compared them to the matched subjects without DM. The hazard ratios (HRs) for PD were compared between the thiazolidinedione-treated and non-thiazolidinedione-treated groups of the study cohort, and between subgroups who received different cumulative dosages of thiazolidinedione. RESULTS We observed that 544 (1.4%) patients developed PD during the follow-up median duration of 6.2 years in patients with newly-diagnosed DM or had a higher risk for PD than patients without DM (HR = 1.150). In the study cohort, the risk of PD was significantly lower in the thiazolidinedione-treated group (HR = 0.399) compared to the non-thiazolidinedione-treated group. Thiazolidinedione reduced the risk of PD in a dose-dependent manner, with HRs ranging from 0.613 to 0.081 with defined daily doses of 0-90 to >720, respectively. CONCLUSIONS Thiazolidinedione use was associated with a significantly reduced risk of PD in patients with newly-diagnosed DM. Further studies to elucidate the common mechanism of PD and DM may provide novel therapies for these two diseases. Key messages Newly-diagnosed diabetes mellitus slightly increases the risk for Parkinson's disease. Thiazolidinedione is associated with a lower risk of Parkinson's disease in a dose-dependent manner in patients with newly-diagnosed diabetes mellitus.
Collapse
Affiliation(s)
- Hsiu-Li Lin
- a Department of Neurology , Sijhih Cathay General Hospital , New Taipei City , Taiwan
| | - Hsiu-Chen Lin
- b Department of Pediatrics, School of Medicine, College of Medicine , Taipei Medical University , Taipei , Taiwan.,c Department of Laboratory Medicine , Taipei Medical University Hospital , Taipei , Taiwan
| | - Yuan-Fu Tseng
- a Department of Neurology , Sijhih Cathay General Hospital , New Taipei City , Taiwan
| | - Jane Chen-Jui Chao
- d School of Nutrition and Health Sciences, College of Nutrition , Taipei Medical University , Taipei , Taiwan.,e Nutrition Research Center , Taipei Medical University Hospital , Taipei , Taiwan
| | - Chien-Yeh Hsu
- f Department of Information Management , National Taipei University of Nursing and Health Sciences , Taipei , Taiwan
| |
Collapse
|
69
|
Metzger JM, Moore CF, Boettcher CA, Brunner KG, Fleddermann RA, Matsoff HN, Resnikoff HA, Bondarenko V, Kamp TJ, Hacker TA, Barnhart TE, Lao PJ, Christian BT, Nickles RJ, Gallagher CL, Holden JE, Emborg ME. In vivo imaging of inflammation and oxidative stress in a nonhuman primate model of cardiac sympathetic neurodegeneration. NPJ PARKINSONS DISEASE 2018; 4:22. [PMID: 30038956 PMCID: PMC6045637 DOI: 10.1038/s41531-018-0057-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/11/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
Loss of cardiac postganglionic sympathetic innervation is a characteristic pathology of Parkinson’s disease (PD). It progresses over time independently of motor symptoms and is not responsive to typical anti-parkinsonian therapies. Cardiac sympathetic neurodegeneration can be mimicked in animals using systemic dosing of the neurotoxin 6-hydroxydopamine (6-OHDA). As in PD, 6-OHDA-induced neuronal loss is associated with increased inflammation and oxidative stress. To assess the feasibility of detecting changes over time in cardiac catecholaminergic innervation, inflammation, and oxidative stress, myocardial positron emission tomography with the radioligands [11C]meta-hydroxyephedrine (MHED), [11C]PBR28 (PBR28), and [61Cu]diacetyl-bis(N(4))-methylthiosemicarbazone (ATSM) was performed in 6-OHDA-intoxicated adult, male rhesus macaques (n = 10; 50 mg/kg i.v.). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone, which is known to have anti-inflammatory and anti-oxidative stress properties, was administered to five animals (5 mg/kg, PO); the other five were placebo-treated. One week after 6-OHDA, cardiac MHED uptake was significantly reduced in both groups (placebo, 86% decrease; pioglitazone, 82%); PBR28 and ATSM uptake increased in both groups but were attenuated in pioglitazone-treated animals (PBR28 Treatment × Level ANOVA p < 0.002; ATSM Mann–Whitney p = 0.032). At 12 weeks, partial recovery of MHED uptake was significantly greater in the pioglitazone-treated group, dependent on left ventricle circumferential region and axial level (Treatment × Region × Level ANOVA p = 0.034); 12-week MHED uptake significantly correlated with tyrosine hydroxylase immunoreactivity across cardiac anatomy (p < 0.000002). PBR28 and ATSM uptake returned to baseline levels by 12 weeks. These radioligands thus hold potential as in vivo biomarkers of mechanisms of cardiac neurodegeneration and neuroprotection. Three cardiac nerve loss biomarkers enable the visualization of cardiac neurodegeneration and response to neuroprotective treatment. The loss of sympathetic cardiac innervation in patients with PD causes symptoms such as postural hypotension, arrhythmia, and fatigue that do not respond to anti-parkinsonian medications. Marina Emborg and colleagues at University of Wisconsin–Madison, USA, used positron emission tomography with three radioligands to image changes in cardiac innervation, oxidative stress and inflammation in monkeys during neurotoxin-induced PD-like cardiac neurodegeneration. They were able to visualize the recruitment of inflammatory cells and increased production of reactive oxygen species during neurodegeneration as well as observe improvements in response to pioglitazone, a drug that has previously been shown to have neuroprotective effects in animal models of PD. These radioligands could be useful imaging biomarkers of cardiac nerve loss progression in patients with PD or cardiovascular disease.
Collapse
Affiliation(s)
- Jeanette M Metzger
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA.,2Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI USA
| | - Colleen F Moore
- 3Department of Psychology, University of Wisconsin-Madison, Madison, WI USA
| | - Carissa A Boettcher
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Kevin G Brunner
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Rachel A Fleddermann
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Helen N Matsoff
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Henry A Resnikoff
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Viktoriya Bondarenko
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Timothy J Kamp
- 4Department of Medicine, University of Wisconsin-Madison, Madison, WI USA
| | - Timothy A Hacker
- 4Department of Medicine, University of Wisconsin-Madison, Madison, WI USA
| | - Todd E Barnhart
- 5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | - Patrick J Lao
- 5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | - Bradley T Christian
- 5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | - R Jerry Nickles
- 5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | | | - James E Holden
- 5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | - Marina E Emborg
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA.,2Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI USA.,5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
70
|
Wilkins HM, Morris JK. New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders. Curr Pharm Des 2018; 23:731-752. [PMID: 28034353 DOI: 10.2174/1381612822666161230144517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mitochondrial function and energy metabolism are impaired in neurodegenerative diseases. There is evidence for these functional declines both within the brain and systemically in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Due to these observations, therapeutics targeted to alter mitochondrial function and energy pathways are increasingly studied in pre-clinical and clinical settings. METHODS The goal of this article was to review therapies with specific implications on mitochondrial energy metabolism published through May 2016 that have been tested for treatment of neurodegenerative diseases. RESULTS We discuss implications for mitochondrial dysfunction in neurodegenerative diseases and how this drives new therapeutic initiatives. CONCLUSION Thus far, treatments have achieved varying degrees of success. Further investigation into the mechanisms driving mitochondrial dysfunction and bioenergetic failure in neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K Morris
- University of Kansas School of Medicine, University of Kansas Alzheimer's Disease Center MS 6002, 3901 Rainbow Blvd, Kansas City, KS 66160. United States
| |
Collapse
|
71
|
Remor AP, da Silva RA, de Matos FJ, Glaser V, de Paula Martins R, Ghisoni K, da Luz Scheffer D, Andia DC, Portinho D, de Souza AP, de Oliveira PA, Prediger RD, Torres AI, Linhares RMM, Walz R, Ronsoni MF, Hohl A, Rafacho A, Aguiar AS, De Paul AL, Latini A. Chronic Metabolic Derangement-Induced Cognitive Deficits and Neurotoxicity Are Associated with REST Inactivation. Mol Neurobiol 2018; 56:1539-1557. [DOI: 10.1007/s12035-018-1175-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/01/2018] [Indexed: 01/14/2023]
|
72
|
Quansah E, Peelaerts W, Langston JW, Simon DK, Colca J, Brundin P. Targeting energy metabolism via the mitochondrial pyruvate carrier as a novel approach to attenuate neurodegeneration. Mol Neurodegener 2018; 13:28. [PMID: 29793507 PMCID: PMC5968614 DOI: 10.1186/s13024-018-0260-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
Several molecular pathways are currently being targeted in attempts to develop disease-modifying therapies to slow down neurodegeneration in Parkinson’s disease. Failure of cellular energy metabolism has long been implicated in sporadic Parkinson’s disease and recent research on rare inherited forms of Parkinson’s disease have added further weight to the importance of energy metabolism in the disease pathogenesis. There exists a new class of anti-diabetic insulin sensitizers in development that inhibit the mitochondrial pyruvate carrier (MPC), a protein which mediates the import of pyruvate across the inner membrane of mitochondria. Pharmacological inhibition of the MPC was recently found to be strongly neuroprotective in multiple neurotoxin-based and genetic models of neurodegeneration which are relevant to Parkinson’s disease. In this review, we summarize the neuroprotective effects of MPC inhibition and discuss the potential putative underlying mechanisms. These mechanisms involve augmentation of autophagy via attenuation of the activity of the mammalian target of rapamycin (mTOR) in neurons, as well as the inhibition of neuroinflammation, which is at least partly mediated by direct inhibition of MPC in glia cells. We conclude that MPC is a novel and potentially powerful therapeutic target that warrants further study in attempts to slow Parkinson’s disease progression.
Collapse
Affiliation(s)
- Emmanuel Quansah
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, 333 Bostwick Ave, Michigan, 49503, USA
| | - Wouter Peelaerts
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, 333 Bostwick Ave, Michigan, 49503, USA.,KU Leuven, Laboratory for Gene Therapy and Neurobiology, 3000, Leuven, Belgium
| | - J William Langston
- Stanford Udall Center, Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - David K Simon
- Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jerry Colca
- Metabolic Solutions Development Company, Kalamazoo, MI, 49007, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, 333 Bostwick Ave, Michigan, 49503, USA.
| |
Collapse
|
73
|
Kakkar AK, Singh H, Medhi B. Old wines in new bottles: Repurposing opportunities for Parkinson's disease. Eur J Pharmacol 2018; 830:115-127. [PMID: 29689247 DOI: 10.1016/j.ejphar.2018.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurological disorder characterized by accumulation of Lewy bodies and profound loss of substantia nigra dopaminergic neurons. PD symptomatology is now recognized to include both cardinal motor as well as clinically significant non-motor symptoms. Despite intensive research, the current understanding of molecular mechanisms underlying neurodegeneration in PD is limited and has hampered the development of novel symptomatic and disease modifying therapies. The currently available treatment options are only partially or transiently effective and fail to restore the lost dopaminergic neurons or retard disease progression. Given the escalating drug development costs, lengthening timelines and declining R&D efficiency, industry and academia are increasingly focusing on ways to repurpose existing molecules as an accelerated route for drug discovery. The field of PD therapeutics is witnessing vigorous repurposing activity supported by big data analytics, computational models, and high-throughput drug screening systems. Here we review the mechanisms, efficacy, and safety of several emerging drugs currently aspiring to be repositioned for PD pharmacotherapy.
Collapse
Affiliation(s)
- Ashish Kumar Kakkar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
74
|
Abstract
Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.
Collapse
Affiliation(s)
- Azhaar Ashraf
- Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, King's College London, London, United Kingdom
| | - Maryam Clark
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Po-Wah So
- Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, King's College London, London, United Kingdom
| |
Collapse
|
75
|
Bonato JM, Bassani TB, Milani H, Vital MABF, de Oliveira RMW. Pioglitazone reduces mortality, prevents depressive-like behavior, and impacts hippocampal neurogenesis in the 6-OHDA model of Parkinson's disease in rats. Exp Neurol 2018; 300:188-200. [DOI: 10.1016/j.expneurol.2017.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022]
|
76
|
König A, Vicente Miranda H, Outeiro TF. Alpha-Synuclein Glycation and the Action of Anti-Diabetic Agents in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2018; 8:33-43. [PMID: 29480231 PMCID: PMC5842785 DOI: 10.3233/jpd-171285] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with complex etiology and variable pathology. While a subset of cases is associated with single-gene mutations, the majority originates from a combination of factors we do not fully understand. Thus, understanding the underlying causes of PD is indispensable for the development of novel therapeutics. Glycation, the non-enzymatic reaction between reactive dicarbonyls and amino groups, gives rise to a variety of different reaction products known as advanced glycation end products (AGEs). AGEs accumulate over a proteins life-time, and increased levels of glycation reaction products play a role in diabetic complications. It is now also becoming evident that PD patients also display perturbed sugar metabolism and protein glycation, including that of alpha-synuclein, a key player in PD. Here, we hypothesize that anti-diabetic drugs targeting the levels of glycation precursors, or promoting the clearance of glycated proteins may also prove beneficial for PD patients.
Collapse
Affiliation(s)
- Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Hugo Vicente Miranda
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
77
|
Ghosh A, Tyson T, George S, Hildebrandt EN, Steiner JA, Madaj Z, Schulz E, Machiela E, McDonald WG, Escobar Galvis ML, Kordower JH, Van Raamsdonk JM, Colca JR, Brundin P. Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson's disease. Sci Transl Med 2017; 8:368ra174. [PMID: 27928028 DOI: 10.1126/scitranslmed.aag2210] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022]
Abstract
Mitochondrial and autophagic dysfunction as well as neuroinflammation are involved in the pathophysiology of Parkinson's disease (PD). We hypothesized that targeting the mitochondrial pyruvate carrier (MPC), a key controller of cellular metabolism that influences mTOR (mammalian target of rapamycin) activation, might attenuate neurodegeneration of nigral dopaminergic neurons in animal models of PD. To test this, we used MSDC-0160, a compound that specifically targets MPC, to reduce its activity. MSDC-0160 protected against 1-methyl-4-phenylpyridinium (MPP+) insult in murine and cultured human midbrain dopamine neurons and in an α-synuclein-based Caenorhabditis elegans model. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, MSDC-0160 improved locomotor behavior, increased survival of nigral dopaminergic neurons, boosted striatal dopamine levels, and reduced neuroinflammation. Long-term targeting of MPC preserved motor function, rescued the nigrostriatal pathway, and reduced neuroinflammation in the slowly progressive Engrailed1 (En1+/-) genetic mouse model of PD. Targeting MPC in multiple models resulted in modulation of mitochondrial function and mTOR signaling, with normalization of autophagy and a reduction in glial cell activation. Our work demonstrates that changes in metabolic signaling resulting from targeting MPC were neuroprotective and anti-inflammatory in several PD models, suggesting that MPC may be a useful therapeutic target in PD.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Trevor Tyson
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Sonia George
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Erin N Hildebrandt
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Emily Schulz
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Emily Machiela
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | - Martha L Escobar Galvis
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Jeffrey H Kordower
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.,Center for Brain Repair, Department of Pathology, Rush Medical College, Chicago, IL 60612, USA
| | - Jeremy M Van Raamsdonk
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Jerry R Colca
- Metabolic Solutions Development Company, Kalamazoo, MI 49007, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
78
|
Santiago JA, Bottero V, Potashkin JA. Biological and Clinical Implications of Comorbidities in Parkinson's Disease. Front Aging Neurosci 2017; 9:394. [PMID: 29255414 PMCID: PMC5722846 DOI: 10.3389/fnagi.2017.00394] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
A wide spectrum of comorbidities has been associated with Parkinson's disease (PD), a progressive neurodegenerative disease that affects more than seven million people worldwide. Emerging evidence indicates that chronic diseases including diabetes, depression, anemia and cancer may be implicated in the pathogenesis and progression of PD. Recent epidemiological studies suggest that some of these comorbidities may increase the risk of PD and precede the onset of motor symptoms. Further, drugs to treat diabetes and cancer have elicited neuroprotective effects in PD models. Nonetheless, the mechanisms underlying the occurrence of these comorbidities remain elusive. Herein, we discuss the biological and clinical implications of comorbidities in the pathogenesis, progression, and clinical management, with an emphasis on personalized medicine applications for PD.
Collapse
Affiliation(s)
- Jose A Santiago
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Virginie Bottero
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Judith A Potashkin
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
79
|
Bobela W, Nazeeruddin S, Knott G, Aebischer P, Schneider BL. Modulating the catalytic activity of AMPK has neuroprotective effects against α-synuclein toxicity. Mol Neurodegener 2017; 12:80. [PMID: 29100525 PMCID: PMC5670705 DOI: 10.1186/s13024-017-0220-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022] Open
Abstract
Background Metabolic perturbations and slower renewal of cellular components associated with aging increase the risk of Parkinson’s disease (PD). Declining activity of AMPK, a critical cellular energy sensor, may therefore contribute to neurodegeneration. Methods Here, we overexpress various genetic variants of the catalytic AMPKα subunit to determine how AMPK activity affects the survival and function of neurons overexpressing human α-synuclein in vivo. Results Both AMPKα1 and α2 subunits have neuroprotective effects against human α-synuclein toxicity in nigral dopaminergic neurons. Remarkably, a modified variant of AMPKα1 (T172Dα1) with constitutive low activity most effectively prevents the loss of dopamine neurons, as well as the motor impairments caused by α-synuclein accumulation. In the striatum, T172Dα1 decreases the formation of dystrophic axons, which contain aggregated α-synuclein. In primary cortical neurons, overexpression of human α-synuclein perturbs mitochondrial and lysosomal activities. Co-expressing AMPKα with α-synuclein induces compensatory changes, which limit the accumulation of lysosomal material and increase the mitochondrial mass. Conclusions Together, these results indicate that modulating AMPK activity can mitigate α-synuclein toxicity in nigral dopamine neurons, which may have implications for the development of neuroprotective treatments against PD. Electronic supplementary material The online version of this article (10.1186/s13024-017-0220-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wojciech Bobela
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Sameer Nazeeruddin
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Graham Knott
- Centre of Interdisciplinary Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Patrick Aebischer
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland.
| |
Collapse
|
80
|
Protective effects of the GLP-1 mimetic exendin-4 in Parkinson's disease. Neuropharmacology 2017; 136:260-270. [PMID: 28927992 DOI: 10.1016/j.neuropharm.2017.09.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023]
Abstract
There is increasing interest in the potential role of glucagon-like peptide-1 (GLP-1) receptor agonists as neuroprotective treatments in neurodegenerative diseases including Parkinson's disease following the publication of the results of the Exenatide-PD trial. Of the current GLP-1 receptor agonists already licensed to treat Type 2 diabetes several including exenatide, liraglutide and lixisenatide are the subject of ongoing clinical trials in PD. The underlying rationale for using drugs licensed and effective for T2DM in PD patients therefore needs to be scrutinized, and the results obtained to date critically reviewed. We review the relationship between insulin resistance and Parkinson's disease, the implications on pathogenesis and the efforts to reposition GLP-1 agonists as potential treatments for Parkinson's disease and give an overview of the pre-clinical and clinical data supporting the use of exenatide in Parkinson's disease with a discussion regarding possible mechanisms of action. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
|
81
|
Brakedal B, Flønes I, Reiter SF, Torkildsen Ø, Dölle C, Assmus J, Haugarvoll K, Tzoulis C. Glitazone use associated with reduced risk of Parkinson's disease. Mov Disord 2017; 32:1594-1599. [PMID: 28861893 PMCID: PMC5697685 DOI: 10.1002/mds.27128] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 01/08/2023] Open
Abstract
Background Whether antidiabetic glitazone drugs protect against Parkinson's disease remains controversial. Although a single clinical trial showed no evidence of disease modulation, retrospective studies suggest that a disease‐preventing effect may be plausible. The objective of this study was to examine if the use of glitazone drugs is associated with a lower incidence of PD among diabetic patients. Methods We compared the incidence of PD between individuals with diabetes who used glitazones, with or without metformin, and individuals using only metformin in the Norwegian Prescription Database. This database contains all prescription drugs dispensed for the entire Norwegian population. We identified 94,349 metformin users and 8396 glitazone users during a 10‐year period and compared the incidence of PD in the 2 groups using Cox regression survival analysis, with glitazone exposure as a time‐dependent covariate. Results Glitazone use was associated with a significantly lower incidence of PD compared with metformin‐only use (hazard ratio, 0.72; 95% confidence interval, 0.55‐0.94; P = 0.01). Conclusions The use of glitazones is associated with a decreased risk of incident PD in populations with diabetes. Further studies are warranted to confirm and understand the role of glitazones in neurodegeneration. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Brage Brakedal
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Irene Flønes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Simone F Reiter
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øivind Torkildsen
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Dölle
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jörg Assmus
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Kristoffer Haugarvoll
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
82
|
Eberhardt O, Topka H. Neurological outcomes of antidiabetic therapy: What the neurologist should know. Clin Neurol Neurosurg 2017; 158:60-66. [PMID: 28477558 DOI: 10.1016/j.clineuro.2017.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/05/2017] [Accepted: 04/15/2017] [Indexed: 02/09/2023]
Abstract
Considering the causative or contributory effects of diabetes mellitus on common neurological diseases such as polyneuropathy, stroke and dementia, modern antidiabetic drugs may be expected to reduce incidence or progression of these conditions. Nevertheless, most observed benefits have been small, except in the context of therapy for diabetes mellitus type I and new-onset polyneuropathy. Recently, semaglutide, a GLP-1 analog, has been shown to significantly reduce stroke incidence in a randomized controlled trial. Beneficial effects of antidiabetic drugs on stroke severity or outcome have been controversial, though. The level of risk conferred by diabetes mellitus, the complex pathophysiology of neurological diseases, issues of trial design, side-effects of antidiabetic drugs as well as co-medication might be interacting factors that determine the performance of antidiabetic therapy with respect to neurological outcomes. It might be speculated that early treatment of prediabetes might prevent cerebral arteriosclerosis, cognitive decline or polyneuropathy more effectively, but this remains to be demonstrated.
Collapse
Affiliation(s)
- Olaf Eberhardt
- Department for Neurology, Clinical Neurophysiology, Clinical Neuropsychology and Stroke Unit, Klinikum Bogenhausen Englschalkinger Str. 77, München, 81925, Germany.
| | - Helge Topka
- Department for Neurology, Clinical Neurophysiology, Clinical Neuropsychology and Stroke Unit, Klinikum Bogenhausen Englschalkinger Str. 77, München, 81925, Germany
| |
Collapse
|
83
|
Orgaz L, Bueno Gil G. Modulating mitochondrial pyruvate carrier: A promising therapeutic target in Parkinson's disease. Mov Disord 2017; 32:719. [DOI: 10.1002/mds.26962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 11/06/2022] Open
|
84
|
Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochem Int 2017; 104:34-48. [DOI: 10.1016/j.neuint.2017.01.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/18/2016] [Accepted: 01/06/2017] [Indexed: 01/18/2023]
|
85
|
Shi X, Zhao M, Fu C, Fu A. Intravenous administration of mitochondria for treating experimental Parkinson's disease. Mitochondrion 2017; 34:91-100. [PMID: 28242362 DOI: 10.1016/j.mito.2017.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/06/2017] [Accepted: 02/23/2017] [Indexed: 12/25/2022]
Abstract
Mitochondrial dysfunction is associated with a large number of human diseases, including neurological and muscular degeneration, cardiovascular disorders, obesity, diabetes, aging and rare mitochondrial diseases. Replacement of dysfunctional mitochondria with functional exogenous mitochondria is proposed as a general principle to treat these diseases. Here we found that mitochondria isolated from human hepatoma cell could naturally enter human neuroblastoma SH-SY5Y cell line, and when the mitochondria were intravenously injected into mice, all of the mice were survived and no obvious abnormality appeared. The results of in vivo distribution suggested that the exogenous mitochondria distributed in various tissues including brain, liver, kidney, muscle and heart, which would benefit for multi-systemically mitochondrial diseases. In normal mice, mitochondrial supplement improved their endurance by increase of energy production in forced swimming test; and in experimental Parkinson's disease (PD) model mice induced by respiratory chain inhibitor MPTP, mitochondrial replacement prevented experimental PD progress through increasing the activity of electron transport chain, decreasing reactive oxygen species level, and preventing cell apoptosis and necrosis. Since effective drugs remain elusive to date for mitochondrial diseases, the strategy of mitochondrial replacement would provide an essential and innovative approach as mitochondrial therapy.
Collapse
Affiliation(s)
- Xianxun Shi
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Ming Zhao
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Chen Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
86
|
Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc 2017; 92:2046-2069. [PMID: 28220655 DOI: 10.1111/brv.12320] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro. Interestingly, PPAR activation can simultaneously reprogram the immune response, stimulate metabolic and mitochondrial functions, promote axonal growth, induce progenitor cells to differentiate into myelinating oligodendrocytes, and improve brain clearance of toxic molecules such as β-amyloid peptide. Although the molecular mechanisms and cross-talk with different molecular pathways are still the focus of intense research, PPARs are considered potential therapeutic targets for several neuropathological conditions, including degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. This review considers recent advances regarding PPARs, as well as new PPAR agonists. We focus on the mechanisms behind the neuroprotective effects exerted by PPARs and summarise the roles of PPARs in different pathologies of the central nervous system, especially those associated with degenerative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Manuel J Santos
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Sussy Bastías-Candia
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Gral. Velásquez 1775, 1000007, Arica, Chile
| | - Claudio Pinto
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.,Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Avoca Street Randwick NSW 2031, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, PO Box 113-D, Avenida Bulnes 01855, 6210427, Punta Arenas, Chile
| |
Collapse
|
87
|
Delamarre A, Meissner WG. Epidemiology, environmental risk factors and genetics of Parkinson's disease. Presse Med 2017; 46:175-181. [PMID: 28189372 DOI: 10.1016/j.lpm.2017.01.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/01/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a frequent neurodegenerative disease with a premotor phase that lasts several years. Risk factors that have been linked to PD are tobacco, caffeine, black tea, pesticides and calcium channel blockers. Some risk factors may be due to inverse causality (e.g. changes in personality during the premotor phase). The genetics of PD are complex with a contribution of Mendelian (e.g. SNCA, LRRK2, Parkin, Pink1,…) and non-Mendelian factors (e.g. single nucleotide polymorphisms). Glucocerebrosidase gene mutations (Gaucher disease) are currently the strongest genetic risk factor for PD. Studying risk factors will help to better understand the pathogenesis of PD.
Collapse
Affiliation(s)
- Anna Delamarre
- CHU de Bordeaux, hôpital Pellegrin, service de neurologie, 33000 Bordeaux, France
| | - Wassilios G Meissner
- CHU de Bordeaux, hôpital Pellegrin, service de neurologie, 33000 Bordeaux, France; CHU de Bordeaux, hôpital Pellegrin, centre de référence maladie rare AMS, 33076 Bordeaux, France; University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Institut des maladies neurodégénératives, UMR 5293, CNRS, 33000 Bordeaux, France.
| |
Collapse
|
88
|
De Pablo-Fernández E, Breen DP, Bouloux PM, Barker RA, Foltynie T, Warner TT. Neuroendocrine abnormalities in Parkinson's disease. J Neurol Neurosurg Psychiatry 2017; 88:176-185. [PMID: 27799297 DOI: 10.1136/jnnp-2016-314601] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022]
Abstract
Neuroendocrine abnormalities are common in Parkinson's disease (PD) and include disruption of melatonin secretion, disturbances of glucose, insulin resistance and bone metabolism, and body weight changes. They have been associated with multiple non-motor symptoms in PD and have important clinical consequences, including therapeutics. Some of the underlying mechanisms have been implicated in the pathogenesis of PD and represent promising targets for the development of disease biomarkers and neuroprotective therapies. In this systems-based review, we describe clinically relevant neuroendocrine abnormalities in Parkinson's disease to highlight their role in overall phenotype. We discuss pathophysiological mechanisms, clinical implications, and pharmacological and non-pharmacological interventions based on the current evidence. We also review recent advances in the field, focusing on the potential targets for development of neuroprotective drugs in Parkinson's disease and suggest future areas for research.
Collapse
Affiliation(s)
- Eduardo De Pablo-Fernández
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, London, UK
| | - David P Breen
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Pierre M Bouloux
- Centre for Neuroendocrinology, Royal Free Campus, UCL Institute of Neurology, London, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, London, UK
| | - Thomas T Warner
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, London, UK
| |
Collapse
|
89
|
Lin KD, Shin SJ. Reply. Ann Neurol 2016; 81:157-158. [DOI: 10.1002/ana.24813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/16/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Kun-Der Lin
- Graduate Institute of Medicine, College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Internal Medicine; Kaohsiung Municipal Ta-Tung Hospital; Kaohsiung Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Shyi-Jang Shin
- Graduate Institute of Medicine, College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|
90
|
Dölle C, Flønes I, Nido GS, Miletic H, Osuagwu N, Kristoffersen S, Lilleng PK, Larsen JP, Tysnes OB, Haugarvoll K, Bindoff LA, Tzoulis C. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun 2016; 7:13548. [PMID: 27874000 PMCID: PMC5121427 DOI: 10.1038/ncomms13548] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/13/2016] [Indexed: 02/01/2023] Open
Abstract
Increased somatic mitochondrial DNA (mtDNA) mutagenesis causes premature aging in mice, and mtDNA damage accumulates in the human brain with aging and neurodegenerative disorders such as Parkinson disease (PD). Here, we study the complete spectrum of mtDNA changes, including deletions, copy-number variation and point mutations, in single neurons from the dopaminergic substantia nigra and other brain areas of individuals with Parkinson disease and neurologically healthy controls. We show that in dopaminergic substantia nigra neurons of healthy individuals, mtDNA copy number increases with age, maintaining the pool of wild-type mtDNA population in spite of accumulating deletions. This upregulation fails to occur in individuals with Parkinson disease, however, resulting in depletion of the wild-type mtDNA population. By contrast, neuronal mtDNA point mutational load is not increased in Parkinson disease. Our findings suggest that dysregulation of mtDNA homeostasis is a key process in the pathogenesis of neuronal loss in Parkinson disease.
Collapse
Affiliation(s)
- Christian Dölle
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.,Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Irene Flønes
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.,Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Gonzalo S Nido
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.,Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Hrvoje Miletic
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway.,Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Nelson Osuagwu
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.,Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Stine Kristoffersen
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway.,Gade Laboratory for Pathology, Department of Clinical Medicine, Haukeland University Hospital and University of Bergen, 5021 Bergen, Norway
| | - Peer K Lilleng
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway.,Gade Laboratory for Pathology, Department of Clinical Medicine, Haukeland University Hospital and University of Bergen, 5021 Bergen, Norway
| | - Jan Petter Larsen
- Network for Medical Sciences, University of Stavanger, 4036 Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.,Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Kristoffer Haugarvoll
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.,Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Laurence A Bindoff
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.,Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.,Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
91
|
Corona JC, Duchen MR. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 2016; 100:153-163. [PMID: 27352979 PMCID: PMC5145801 DOI: 10.1016/j.freeradbiomed.2016.06.023] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
There is increasing evidence for the involvement of mitochondrial dysfunction and oxidative stress in the pathogenesis of many of the major neurodegenerative and neuroinflammatory diseases, suggesting that mitochondrial and antioxidant pathways may represent potential novel therapeutic targets. Recent years have seen a rapidly growing interest in the use of therapeutic strategies that can limit the defects in, or even to restore, mitochondrial function while reducing free radical generation. The peroxisome proliferation-activated receptor gamma (PPARγ), a ligand-activated transcription factor, has a wide spectrum of biological functions, regulating mitochondrial function, mitochondrial turnover, energy metabolism, antioxidant defence and redox balance, immune responses and fatty acid oxidation. In this review, we explore the evidence for potential beneficial effects of PPARγ agonists in a number of neurological disorders, including Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis and Huntington's disease, ischaemia, autoimmune encephalomyelitis and neuropathic pain. We discuss the mechanisms underlying those beneficial effects in particular in relation to mitochondrial function, antioxidant defence, cell death and inflammation, and suggest that the PPARγ agonists show significant promise as therapeutic agents in otherwise intractable neurological disease.
Collapse
Affiliation(s)
- Juan Carlos Corona
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom; Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
92
|
Athauda D, Foltynie T. Insulin resistance and Parkinson's disease: A new target for disease modification? Prog Neurobiol 2016; 145-146:98-120. [PMID: 27713036 DOI: 10.1016/j.pneurobio.2016.10.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
There is growing evidence that patients with Type 2 diabetes have an increased risk of developing Parkinson's disease and share similar dysregulated pathways suggesting common underlying pathological mechanisms. Historically insulin was thought solely to be a peripherally acting hormone responsible for glucose homeostasis and energy metabolism. However accumulating evidence indicates insulin can cross the blood-brain-barrier and influence a multitude of processes in the brain including regulating neuronal survival and growth, dopaminergic transmission, maintenance of synapses and pathways involved in cognition. In conjunction, there is growing evidence that a process analogous to peripheral insulin resistance occurs in the brains of Parkinson's disease patients, even in those without diabetes. This raises the possibility that defective insulin signalling pathways may contribute to the development of the pathological features of Parkinson's disease, and thereby suggests that the insulin signalling pathway may potentially be a novel target for disease modification. Given these growing links between PD and Type 2 diabetes it is perhaps not unsurprising that drugs used the treatment of T2DM are amongst the most promising treatments currently being prioritised for repositioning as possible novel treatments for PD and several clinical trials are under way. In this review, we will examine the underlying cellular links between insulin resistance and the pathogenesis of PD and then we will assess current and future pharmacological strategies being developed to restore neuronal insulin signalling as a potential strategy for slowing neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D Athauda
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| | - T Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
93
|
Simon DK, Simuni T, Elm J, Clark-Matott J, Graebner AK, Baker L, Dunlop SR, Emborg M, Kamp C, Morgan JC, Ross GW, Sharma S, Ravina B. Peripheral Biomarkers of Parkinson's Disease Progression and Pioglitazone Effects. JOURNAL OF PARKINSONS DISEASE 2016; 5:731-6. [PMID: 26444095 PMCID: PMC5061495 DOI: 10.3233/jpd-150666] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pioglitazone, an oral hypoglycemic agent, recently failed to show promise as a disease-modifying agent in a 44-week phase 2 placebo-controlled study in 210 Parkinson's disease (PD) subjects. We analyzed peripheral biomarkers, including leukocyte PGC-1α and target gene expression, plasma interleukin 6 (IL-6) as a marker of inflammation, and urine 8-hydroxydeoxyguanosine (8OHdG) as a marker of oxidative DNA damage. Baseline or changes from baseline in biomarker levels were not associated with the rate of progression of PD. Pioglitazone did not significantly alter biomarker levels. Other agents that more effectively target these mechanisms remain of potential interest as disease modifying therapies in PD.
Collapse
Affiliation(s)
- David K Simon
- Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Tanya Simuni
- Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jordan Elm
- Biostatistics, Medical University of South Carolina, Charleston, SC, USA
| | - Joanne Clark-Matott
- Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Allison K Graebner
- Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Liana Baker
- Clinical Trials Coordination Center, University of Rochester, Medical Center, Rochester, NY, USA
| | | | - Marina Emborg
- Wisconsin National Primate Research Center and Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Cornelia Kamp
- Clinical Materials Services Unit, University of Rochester, Medical Center, Rochester, NY, USA
| | - John C Morgan
- Neurology, Medical College of Georgia, Augusta, GA, USA
| | - G Webster Ross
- Neurology, Veterans Affairs Pacific Islands Health Care System, Honolulu, HI, USA
| | - Saloni Sharma
- Clinical Trials Coordination Center, University of Rochester, Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
94
|
The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson's disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain. Acta Neuropathol Commun 2016; 4:86. [PMID: 27535749 PMCID: PMC4989531 DOI: 10.1186/s40478-016-0346-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s Disease (PD) is the second most common neurodegenerative disease worldwide, affecting 1 % of the population over 65 years of age. Dopaminergic cell death in the substantia nigra and accumulation of Lewy bodies are the defining neuropathological hallmarks of the disease. Neuronal death and dysfunction have been reported in other central nervous system regions, including the retina. Symptoms of PD typically manifest only when more than 70 % of dopaminergic cells are lost, and the definitive diagnosis of PD can only be made histologically at post-mortem, with few biomarkers available. In this study, a rotenone-induced rodent model of PD was employed to investigate retinal manifestations in PD and their usefulness in assessing the efficacy of a novel therapeutic intervention with a liposomal formulation of the PPAR-γ (Peroxisome proliferator-activated receptor gamma) agonist rosiglitazone. Retinal assessment was performed using longitudinal in vivo imaging with DARC (detection of apoptosing retinal cells) and OCT (optical coherence tomography) technologies and revealed increased RGCs (Retinal Ganglion Cells) apoptosis and a transient swelling of the retinal layers at day 20 of the rotenone insult. Follow-up of this model demonstrated characteristic histological neurodegenerative changes in the substantia nigra and striatum by day 60, suggesting that retinal changes precede the “traditional” pathological manifestations of PD. The therapeutic effect of systemic administration of different formulations of rosiglitazone was then evaluated, both in the retina and the brain. Of all treatment regimen tested, sustained release administration of liposome-encapsulated rosiglitazone proved to be the most potent therapeutic strategy, as evidenced by its significant neuroprotective effect on retinal neurons at day 20, and on nigrostriatal neurons at day 60, provided convincing evidence for its potential as a treatment for PD. Our results demonstrate significant retinal changes occurring in this model of PD. We show that rosiglitazone can efficiently protect retinal neurons from the rotenone insult, and that systemic administration of liposome-encapsulated rosiglitazone has an enhanced neuroprotective effect on the retina and CNS (Central Nervous System). To our knowledge, this is the first in vivo evidence of RGCs loss and early retinal thickness alterations in a PD model. Together, these findings suggest that retinal changes may be a good surrogate biomarker for PD, which may be used to assess new treatments both experimentally and clinically.
Collapse
|
95
|
Perruolo G, Viggiano D, Fiory F, Cassese A, Nigro C, Liotti A, Miele C, Beguinot F, Formisano P. Parkinson-like phenotype in insulin-resistant PED/PEA-15 transgenic mice. Sci Rep 2016; 6:29967. [PMID: 27426254 PMCID: PMC4947959 DOI: 10.1038/srep29967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/28/2016] [Indexed: 12/30/2022] Open
Abstract
Neurological abnormalities, such as Parkinson-like disorders (PlD), are often co-morbidities of Type 2 Diabetic (T2D) patients, although the epidemiological link between these two disorders remains controversial. The PED/PEA-15 protein represents a possible candidate linking T2D and PD, because it is increased in subjects with T2D and is highly expressed in the brain. To test this hypothesis, we have analyzed the neurological and neurochemical phenotype of transgenic mice overexpressing PED/PEA-15 (tgPED). These mice develop impaired glucose tolerance and insulin resistance, accompanied by neurological features resembling PlD: feet clasping, slow and delayed locomotor movements in different behavioral tests in absence of clear cognitive deficits, ataxia or anxiety. Morphological analysis of the brains showed selective modifications of metabolic activity in the striatal region. In the same region, we have observed 26% decrease of dopamine fibers, confirmed by immunohistochemistry and Western Blot for tyrosine hydroxylase. Moreover, they also showed 48% reduction of dopamine levels in the striatum. Thus the tgPED mice may represent a genetic animal model of neurological disease linked to T2D.
Collapse
Affiliation(s)
- Giuseppe Perruolo
- URT- Genomica del Diabete, Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS-CNR), Naples, Italy.,Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Davide Viggiano
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy.,Dept Medicine and Health Sciences, Univ. Molise, Italy
| | - Francesca Fiory
- URT- Genomica del Diabete, Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS-CNR), Naples, Italy.,Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Angela Cassese
- URT- Genomica del Diabete, Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS-CNR), Naples, Italy
| | - Cecilia Nigro
- URT- Genomica del Diabete, Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS-CNR), Naples, Italy.,Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Antonietta Liotti
- URT- Genomica del Diabete, Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS-CNR), Naples, Italy.,Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudia Miele
- URT- Genomica del Diabete, Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS-CNR), Naples, Italy.,Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Francesco Beguinot
- URT- Genomica del Diabete, Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS-CNR), Naples, Italy.,Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Pietro Formisano
- URT- Genomica del Diabete, Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS-CNR), Naples, Italy.,Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| |
Collapse
|
96
|
Palleria C, Leporini C, Maida F, Succurro E, De Sarro G, Arturi F, Russo E. Potential effects of current drug therapies on cognitive impairment in patients with type 2 diabetes. Front Neuroendocrinol 2016; 42:76-92. [PMID: 27521218 DOI: 10.1016/j.yfrne.2016.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/13/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus is a complex metabolic disease that can cause serious damage to various organs. Among the best-known complications, an important role is played by cognitive impairment. Impairment of cognitive functioning has been reported both in type 1 and 2 diabetes mellitus. While this comorbidity has long been known, no major advances have been achieved in clinical research; it is clear that appropriate control of blood glucose levels represents the best current (although unsatisfactory) approach in the prevention of cognitive impairment. We have focused our attention on the possible effect on the brain of antidiabetic drugs, despite their effects on blood glucose levels, giving a brief rationale on the mechanisms (e.g. GLP-1, BDNF, ghrelin) that might be involved. Indeed, GLP-1 agonists are currently clinically studied in other neurodegenerative diseases (i.e. Parkinson's and Alzheimer's disease); furthermore, also other antidiabetic drugs have proven efficacy in preclinical studies. Overall, promising results are already available and finding new intervention strategies represents a current need in this field of research.
Collapse
Affiliation(s)
- Caterina Palleria
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Christian Leporini
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Francesca Maida
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, Internal Medicine Unit of "Mater Domini", University Hospital, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, Internal Medicine Unit of "Mater Domini", University Hospital, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100 Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy.
| |
Collapse
|
97
|
Shen T, Pu J, Si X, Ye R, Zhang B. An update on potential therapeutic strategies for Parkinson's disease based on pathogenic mechanisms. Expert Rev Neurother 2016; 16:711-22. [PMID: 27138872 DOI: 10.1080/14737175.2016.1179112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Parkinson's disease is a common neurodegenerative disorder mainly caused by the loss of nigral dopaminergic neurons, of which the pathogenesis remains essentially unknown. Current therapeutic strategies help manage signs and symptoms but have no effect in disease modification. Over the past several decades, scientists have devoted a lot of effort to clarifying the pathological mechanism and searching for new targets for Parkinson's disease treatment. AREAS COVERED Treatment of Parkinson's disease. Expert Commentary: Illustrated in this review are newly found discoveries and evidence that contribute to the understanding of Parkinson's disease pathogenic mechanism. Also discussed are potential therapeutic strategies that are being studied, including disease-modifying and genetically mediated small molecule compounds, cell- and gene-based therapeutic strategies, immunization strategies and anti-diabetic therapy, which may be very promising therapeutic methods in the future.
Collapse
Affiliation(s)
- Ting Shen
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Jiali Pu
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Xiaoli Si
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Rong Ye
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Baorong Zhang
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| |
Collapse
|
98
|
Lindholm D, Mäkelä J, Di Liberto V, Mudò G, Belluardo N, Eriksson O, Saarma M. Current disease modifying approaches to treat Parkinson's disease. Cell Mol Life Sci 2016; 73:1365-79. [PMID: 26616211 PMCID: PMC11108524 DOI: 10.1007/s00018-015-2101-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland.
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland.
| | - Johanna Mäkelä
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Valentina Di Liberto
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Natale Belluardo
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, P.O.Box 56, Viikinkaari 9, 00014, Helsinki, Finland
| |
Collapse
|
99
|
Duda J, Pötschke C, Liss B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. J Neurochem 2016; 139 Suppl 1:156-178. [PMID: 26865375 PMCID: PMC5095868 DOI: 10.1111/jnc.13572] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Dopamine‐releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age‐dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement‐related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium‐ and activity‐dependent manner. Their intrinsically generated and metabolically challenging activity is created and modulated by the orchestrated function of different ion channels and dopamine D2‐autoreceptors. Here, we review increasing evidence that the mechanisms that control activity patterns and calcium homeostasis of SN DA neurons are not only crucial for their dopamine release within a physiological range but also modulate their mitochondrial and lysosomal activity, their metabolic stress levels, and their vulnerability to degeneration in PD. Indeed, impaired calcium homeostasis, lysosomal and mitochondrial dysfunction, and metabolic stress in SN DA neurons represent central converging trigger factors for idiopathic and familial PD. We summarize double‐edged roles of ion channels, activity patterns, calcium homeostasis, and related feedback/feed‐forward signaling mechanisms in SN DA neurons for maintaining and modulating their physiological function, but also for contributing to their vulnerability in PD‐paradigms. We focus on the emerging roles of maintained neuronal activity and calcium homeostasis within a physiological bandwidth, and its modulation by PD‐triggers, as well as on bidirectional functions of voltage‐gated L‐type calcium channels and metabolically gated ATP‐sensitive potassium (K‐ATP) channels, and their probable interplay in health and PD.
We propose that SN DA neurons possess several feedback and feed‐forward mechanisms to protect and adapt their activity‐pattern and calcium‐homeostasis within a physiological bandwidth, and that PD‐trigger factors can narrow this bandwidth. We summarize roles of ion channels in this view, and findings documenting that both, reduced as well as elevated activity and associated calcium‐levels can trigger SN DA degeneration.
This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Johanna Duda
- Department of Applied Physiology, Ulm University, Ulm, Germany
| | | | - Birgit Liss
- Department of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
100
|
A Feed-Forward Circuit of Endogenous PGC-1α and Estrogen Related Receptor α Regulates the Neuronal Electron Transport Chain. PARKINSONS DISEASE 2016; 2016:2405176. [PMID: 27088034 PMCID: PMC4818948 DOI: 10.1155/2016/2405176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/03/2016] [Indexed: 11/18/2022]
Abstract
Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a central regulator of cellular and mitochondrial metabolism. Cellular bioenergetics are critically important in “energy-guzzling” neurons, but the components and wiring of the transcriptional circuit through which PGC-1α regulates the neuronal electron transport chain have not been established. This information may be vital for restoring neuronal bioenergetics gene expression that is compromised during incipient Parkinson's neuropathology and in aging-dependent brain diseases. Here we delineate a neuronal transcriptional circuit controlled by endogenous PGC-1α. We show that a feed-forward circuit of endogenous neuronal PGC-1α and the orphan nuclear estrogen-related receptor α (ERRα) activates the nuclear-encoded mitochondrial electron transport chain. PGC-1α not only trans-activated expression of ERRα, but also coactivated ERRα target genes in complexes I, II, IV, and V of the neuronal electron transport chain via association with evolutionary conserved ERRα promoter binding motifs. Chemical activation of this transcriptional program induced transcription of the neuronal electron transport chain. These data highlight a neuronal transcriptional circuit regulated by PGC-1α that can be therapeutically targeted for Parkinson's and other neurodegenerative diseases.
Collapse
|