51
|
Li J, Qi M, Chang Y, Wang R, Li T, Dong H, Zhang L. Molecular Characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in Captive Wildlife at Zhengzhou Zoo, China. J Eukaryot Microbiol 2016; 62:833-9. [PMID: 26384582 DOI: 10.1111/jeu.12269] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/05/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022]
Abstract
Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are common gastrointestinal protists in humans and animals. Two hundred and three fecal specimens from 80 wildlife species were collected in Zhengzhou Zoo and their genomic DNA extracted. Three intestinal pathogens were characterized with a DNA sequence analysis of different loci. Cryptosporidium felis, C. baileyi, and avian genotype III were identified in three specimens (1.5%), the manul, red-crowned crane, and cockatiel, respectively. Giardia duodenalis was also found in five specimens (2.5%) firstly: assemblage B in a white-cheeked gibbon and beaver, and assemblage F in a Chinese leopard and two Siberian tigers, respectively. Thirteen genotypes of E. bieneusi (seven previously reported genotypes and six new genotypes) were detected in 32 specimens (15.8%), of which most were reported for the first time. A phylogenetic analysis of E. bieneusi showed that five genotypes (three known and two new) clustered in group 1; three known genotypes clustered in group 2; one known genotype clustered in group 4; and the remaining four genotypes clustered in a new group. In conclusion, zoonotic Cryptosporidium spp., G. duodenalis, and E. bieneusi are maintained in wildlife and transmitted between them. Zoonotic disease outbreaks of these infectious agents possibly originate in wildlife reservoirs.
Collapse
Affiliation(s)
- Junqiang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Meng Qi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Yankai Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Tongyi Li
- Zhengzhou Zoo, Zhengzhou, 45000, China
| | - Haiju Dong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| |
Collapse
|
52
|
Lester J, Paige S, Chapman CA, Gibson M, Holland Jones J, Switzer WM, Ting N, Goldberg TL, Frost SDW. Assessing Commitment and Reporting Fidelity to a Text Message-Based Participatory Surveillance in Rural Western Uganda. PLoS One 2016; 11:e0155971. [PMID: 27281020 PMCID: PMC4900526 DOI: 10.1371/journal.pone.0155971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/07/2016] [Indexed: 12/02/2022] Open
Abstract
Syndromic surveillance, the collection of symptom data from individuals prior to or in the absence of diagnosis, is used throughout the developed world to provide rapid indications of outbreaks and unusual patterns of disease. However, the low cost of syndromic surveillance also makes it highly attractive for the developing world. We present a case study of electronic participatory syndromic surveillance, using participant-mobile phones in a rural region of Western Uganda, which has a high infectious disease burden, and frequent local and regional outbreaks. Our platform uses text messages to encode a suite of symptoms, their associated durations, and household disease burden, and we explore the ability of participants to correctly encode their symptoms, with an average of 75.2% of symptom reports correctly formatted between the second and 11th reporting timeslots. Concomitantly we identify divisions between participants able to rapidly adjust to this unusually participatory style of data collection, and those few for whom the study proved more challenging. We then perform analyses of the resulting syndromic time series, examining the clustering of symptoms by time and household to identify patterns such as a tendency towards the within-household sharing of respiratory illness.
Collapse
Affiliation(s)
- James Lester
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Paige
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Global Health Institute, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Colin A. Chapman
- Department of Anthropology and McGill School of Environment, McGill University, Montreal, Canada; and Wildlife Conservation Society, Bronx, New York, United States of America
| | - Mhairi Gibson
- Department of Archaeology and Anthropology, University of Bristol, Bristol, United Kingdom
| | - James Holland Jones
- Department of Anthropology, Woods Institute for the Environment, Stanford University, Stanford, CA, United States of America
| | - William M. Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, OR, United States of America
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Global Health Institute, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Simon D. W. Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
53
|
Thompson R, Ash A. Molecular epidemiology of Giardia and Cryptosporidium infections. INFECTION GENETICS AND EVOLUTION 2016; 40:315-323. [DOI: 10.1016/j.meegid.2015.09.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
|
54
|
Chakraborty D, Hussain S, Reddy DM, Raut S, Tiwari S, Kumar V, Umapathy G. Mammalian gastrointestinal parasites in rainforest remnants of Anamalai Hills, Western Ghats, India. J Biosci 2016; 40:399-406. [PMID: 25963266 DOI: 10.1007/s12038-015-9517-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Habitat fragmentation is postulated to be a major factor influencing infectious disease dynamics in wildlife populations and may also be responsible, at least in part, for the recent spurt in the emergence, or re-emergence, of infectious diseases in humans. The mechanism behind these relationships are poorly understood due to the lack of insights into the interacting local factors and insufficient baseline data in ecological parasitology of wildlife. Here, we studied the gastrointestinal parasites of nonhuman mammalian hosts living in 10 rainforest patches of the Anamalai Tiger Reserve, India. We examined 349 faecal samples of 17 mammalian species and successfully identified 24 gastrointestinal parasite taxa including 1 protozoan, 2 trematode, 3 cestode and 18 nematode taxa. Twenty of these parasites are known parasites of humans. We also found that as much as 73% of all infected samples were infected by multiple parasites. In addition, the smallest and most fragmented forest patches recorded the highest parasite richness; the pattern across fragments, however, seemed to be less straightforward, suggesting potential interplay of local factors.
Collapse
Affiliation(s)
- Debapriyo Chakraborty
- Department of Evolutionary Anthropology, Duke University and Duke Global Health Institute, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Abdel-Moein KA, Saeed H. The zoonotic potential of Giardia intestinalis assemblage E in rural settings. Parasitol Res 2016; 115:3197-202. [PMID: 27112756 DOI: 10.1007/s00436-016-5081-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
Abstract
Giardiasis is a globally re-emerging protozoan disease with veterinary and public health implications. The current study was carried out to investigate the zoonotic potential of livestock-specific assemblage E in rural settings. For this purpose, a total of 40 microscopically positive Giardia stool samples from children with gastrointestinal complaints with or without diarrhea were enrolled in the study as well as fecal samples from 46 diarrheic cattle (18 dairy cows and 28 calves). Animal samples were examined by sedimentation method to identify Giardia spp., and then, all Giardia positive samples from human and animals were processed for molecular detection of livestock-specific assemblage E through amplification of assemblage-specific triosephosphate isomerase (tpi) gene using nested polymerase chain reaction (PCR). The results of the study revealed high unexpected occurrence of assemblage E among human samples (62.5 %), whereas the distribution among patients with diarrhea and those without was 42.1 and 81 %, respectively. On the other hand, the prevalence of Giardia spp. among diarrheic dairy cattle was (8.7 %), while only calves yielded positive results (14.3 %) and all bovine Giardia spp. were genetically classified as Giardia intestinalis assemblage E. Moreover, DNA sequencing of randomly selected one positive human sample and another bovine one revealed 100 and 99 % identity with assemblage E tpi gene sequences available at GenBank after BLAST analysis. In conclusion, the current study highlights the wide dissemination of livestock-specific assemblage E among humans in rural areas, and thus, zoonotic transmission cycle should not be discounted during the control of giardiasis in such settings.
Collapse
Affiliation(s)
- Khaled A Abdel-Moein
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.
| | - Hossam Saeed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
56
|
Prevalence of Cryptosporidium spp., Enterocytozoon bieneusi, Encephalitozoon spp. and Giardia intestinalis in Wild, Semi-Wild and Captive Orangutans (Pongo abelii and Pongo pygmaeus) on Sumatra and Borneo, Indonesia. PLoS One 2016; 11:e0152771. [PMID: 27031241 PMCID: PMC4816420 DOI: 10.1371/journal.pone.0152771] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/18/2016] [Indexed: 11/19/2022] Open
Abstract
Background Orangutans are critically endangered primarily due to loss and fragmentation of their natural habitat. This could bring them into closer contact with humans and increase the risk of zoonotic pathogen transmission. Aims To describe the prevalence and diversity of Cryptosporidium spp., microsporidia and Giardia intestinalis in orangutans at seven sites on Sumatra and Kalimantan, and to evaluate the impact of orangutans’ habituation and location on the occurrence of these zoonotic protists. Result The overall prevalence of parasites in 298 examined animals was 11.1%. The most prevalent microsporidia was Encephalitozoon cuniculi genotype II, found in 21 animals (7.0%). Enterocytozoon bieneusi genotype D (n = 5) and novel genotype Pongo 2 were detected only in six individuals (2.0%). To the best of our knowledge, this is the first report of these parasites in orangutans. Eight animals were positive for Cryptosporidium spp. (2.7%), including C. parvum (n = 2) and C. muris (n = 6). Giardia intestinalis assemblage B, subtype MB6, was identified in a single individual. While no significant differences between the different human contact level groups (p = 0.479–0.670) or between the different islands (p = 0.992) were reported in case of E. bieneusi or E. cuniculi, Cryptosporidium spp. was significantly less frequently detected in wild individuals (p < 2×10−16) and was significantly more prevalent in orangutans on Kalimantan than on Sumatra (p < 2×10−16). Conclusion Our results revealed that wild orangutans are significantly less frequently infected by Cryptosporidium spp. than captive and semi-wild animals. In addition, this parasite was more frequently detected at localities on Kalimantan. In contrast, we did not detect any significant difference in the prevalence of microsporidia between the studied groups of animals. The sources and transmission modes of infections were not determined, as this would require repeated sampling of individuals, examination of water sources, and sampling of humans and animals sharing the habitat with orangutans.
Collapse
|
57
|
Mbae C, Mulinge E, Guleid F, Wainaina J, Waruru A, Njiru ZK, Kariuki S. Molecular Characterization of Giardia duodenalis in Children in Kenya. BMC Infect Dis 2016; 16:135. [PMID: 27005473 PMCID: PMC4802924 DOI: 10.1186/s12879-016-1436-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/16/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Giardia duodenalis is an important intestinal protozoan in humans worldwide with high infection rates occurring in densely populated and low resource settings. The parasite has been recorded to cause diarrhea in children. This study was carried out to identify G. duodenalis assemblages and sub-assemblages in children presenting with diarrhea in Kenya. METHODS A total of 2112 faecal samples were collected from children aged ≤ 5 years and screened for the presence of Giardia cysts using microscopy. A total of 96 (4.5%) samples were identified as Giardia positive samples and were genotyped using glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi) and β-giardin loci. RESULTS The three markers successfully genotyped 72 isolates and grouped 2 (1.4) isolates as Assemblage A, 64 (88.9) as Assemblage B and 7 (9.7%) consisted of mixed infections with assemblage A and B. A further analysis of 50 isolates using GDH Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) categorized 2 assemblage A isolates as sub-assemblage AII while 6 and 14 assemblage B isolates were categorized into sub-assemblage BIII and BIV respectively. A mixed infection with sub-assemblage BIII and BIV was recorded in 28 isolates. Over half (55.6%) of Giardia infections were recorded among the children between 13 to 48 months old. CONCLUSION This paper reports the first data on the assemblages and sub-assemblages of Giardia duodenalis in children representing with diarrhea in Kenya.
Collapse
Affiliation(s)
- C. Mbae
- />Centre for Microbiological Research, KEMRI, P.O Box 19464–00202, Nairobi, Kenya
| | - E. Mulinge
- />Centre for Microbiological Research, KEMRI, P.O Box 19464–00202, Nairobi, Kenya
| | - F. Guleid
- />Centre for Microbiological Research, KEMRI, P.O Box 19464–00202, Nairobi, Kenya
| | - J. Wainaina
- />International Livestock Research Institute, Naivasha Rd, P.O Box 30709, Nairobi, Kenya
| | - A. Waruru
- />Kenya Medical Research Institute, P. O Box 58540–00200, Nairobi, Kenya
| | - Z. K. Njiru
- />Murdoch University, School of Health Professions, Peel Campus, Mandurah, WA 6210 Australia
| | - S. Kariuki
- />Centre for Microbiological Research, KEMRI, P.O Box 19464–00202, Nairobi, Kenya
| |
Collapse
|
58
|
Sricharern W, Inpankaew T, Keawmongkol S, Supanam J, Stich RW, Jittapalapong S. Molecular detection and prevalence of Giardia duodenalis and Cryptosporidium spp. among long-tailed macaques (Macaca fascicularis) in Thailand. INFECTION GENETICS AND EVOLUTION 2016; 40:310-314. [PMID: 26892616 DOI: 10.1016/j.meegid.2016.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 11/28/2022]
Abstract
Giardia duodenalis and Cryptosporidium spp. are divergent protozoal intestinal parasites that infect human beings and other animals, including non-human primates. Although long-tailed macaques (Macaca fascicularis) reside in human communities in Thailand, the prevalence of Giardia spp. and Cryptosporidium spp. in these primates has not been previously investigated. The objective of this study was to evaluate long-tailed macaques living near human communities as possible hosts of these intestinal parasites. In 2014, 200 fecal samples were randomly collected from long-tailed macaques living in different areas of Lopburi province, Thailand, and tested with a panel of PCR assays for Giardia spp. and Cryptosporidium spp. G. duodenalis assemblage B was most frequently detected (6%), while assemblage A and an inconclusive assemblage were detected in single samples, for a total G. duodenalis infection rate of 7%. Two samples (1%) tested positive for Cryptosporidium spp., which were both classified as monkey genotypes. No significant associations were found between G. duodenalis infection and sex or location of macaques. This study indicates that long-tailed macaques can carry G. duodenalis and, to a lesser extent, Cryptosporidium spp. monkey genotype. These results warrant education of residents and tourists to limit contact with long-tailed macaques and to take hygienic precautions to mitigate risk of zoonotic and anthroponotic transmission of these parasites between people and macaques.
Collapse
Affiliation(s)
- Wanat Sricharern
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center of Excellence on Agricultural Biotechnology, Science and Technology Postgraduate Education and Research Development Office, Commission on Higher Education, Ministry of Education (AG-BIO/PERDO-CHE), Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies (National Research University-Kasetsart University), Kasetsart University, Bangkok 10900, Thailand; Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Tawin Inpankaew
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Sarawan Keawmongkol
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center of Excellence on Agricultural Biotechnology, Science and Technology Postgraduate Education and Research Development Office, Commission on Higher Education, Ministry of Education (AG-BIO/PERDO-CHE), Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies (National Research University-Kasetsart University), Kasetsart University, Bangkok 10900, Thailand; Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Juthamas Supanam
- Private Animal Clinic, Meuang District, Lopburi Province 15000, Thailand
| | - Roger W Stich
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Sathaporn Jittapalapong
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand; Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
59
|
Wang H, Qi M, Zhang K, Li J, Huang J, Ning C, Zhang L. Prevalence and genotyping of Giardia duodenalis isolated from sheep in Henan Province, central China. INFECTION GENETICS AND EVOLUTION 2016; 39:330-335. [PMID: 26861620 DOI: 10.1016/j.meegid.2016.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 01/14/2016] [Accepted: 02/05/2016] [Indexed: 11/30/2022]
Abstract
Giardia duodenalis is a gastrointestinal protozoan that infects sheep. It is a well-known zoonotic pathogen and sheep have been implicated as a source of human infection. However, there have been few studies of its potential threat to public health in China. We used a multilocus analysis of the beta-giardin (bg), glutamate dehydrogenase (gdh), and triose phosphate isomerase (tpi) genes to examine the occurrence and genotype distribution of G. duodenalis in sheep in China. In total, 716 fresh faecal specimens, including 89 from pre-weaned lambs (<3 months old) and 627 from post-weaned sheep (>3 months old) from nine intensive sheep farms in Henan Province, China, were examined for Giardia cysts with microscopy. Of these specimens, 6.65% (47/716; 99% CI: 6.2%-6.92%) from five farms were positive for G. duodenalis. The infection rate was significantly higher in pre-weaned lambs than in post-weaned sheep (12.36% versus 5.74%, respectively; P<0.05). Infection rates ranged from 2.8% to 17.2% on the G. duodenalis-positive farms. All G. duodenalis-positive samples were assayed with PCR followed by sequencing at the three gene loci investigated in this study. As a result, two assemblages were detected: assemblage A (n=5) and assemblage E (n=31), with some mixed E and A infections (n=3). The ratios of assemblage A to assemblage E on the different successfully sequenced G. duodenalis-positive farms were 0:1, 3:14, 1:4, and 1:12. Two new tpi sequences and one new gdh sequence were identified. Multilocus genotyping yielded seven multilocus genotypes (MLGs): one new assemblage A MLG and six assemblage E MLGs. In the phylogenetic analysis, the assemblage A MLG was more closely related to AI than to AII or AIII. The detection of G. duodenalis assemblage A in sheep has public health implications, although G. duodenalis assemblage E was predominant. The data provide basic information for control of giardiasis in human and sheep in Henan province, central China.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, PR China; Department of Animal Science, Henan Vocational College of Agriculture, Zhongmu 451450, Henan, PR China
| | - Meng Qi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, PR China
| | - Kaifang Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, PR China
| | - Junqiang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, PR China
| | - Jianying Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, PR China
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, PR China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, PR China.
| |
Collapse
|
60
|
Du SZ, Zhao GH, Shao JF, Fang YQ, Tian GR, Zhang LX, Wang RJ, Wang HY, Qi M, Yu SK. Cryptosporidium spp., Giardia intestinalis, and Enterocytozoon bieneusi in Captive Non-Human Primates in Qinling Mountains. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:395-402. [PMID: 26323837 PMCID: PMC4566506 DOI: 10.3347/kjp.2015.53.4.395] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/07/2015] [Accepted: 07/05/2015] [Indexed: 11/23/2022]
Abstract
Non-human primates (NHPs) are confirmed as reservoirs of Cryptosporidium spp., Giardia intestinalis, and Enterocytozoon bieneusi. In this study, 197 fresh fecal samples from 8 NHP species in Qinling Mountains, northwestern China, were collected and examined using multilocus sequence typing (MLST) method. The results showed that 35 (17.8%) samples were positive for tested parasites, including Cryptosporidium spp. (3.0%), G. intestinalis (2.0%), and E. bieneusi (12.7%). Cryptosporidium spp. were detected in 6 fecal samples of Macaca mulatta, and were identified as C. parvum (n=1) and C. andersoni (n=5). Subtyping analysis showed Cryptosporidium spp. belonged to the C. andersoni MLST subtype (A4, A4, A4, and A1) and C. parvum 60 kDa glycoprotein (gp60) subtype IId A15G2R1. G. intestinalis assemblage E was detected in 3 M. mulatta and 1 Saimiri sciureus. Intra-variations were observed at the triose phosphate isomerase (tpi), beta giardin (bg), and glutamate dehydrogenase (gdh) loci, with 3, 1, and 2 new subtypes found in respective locus. E. bieneusi was found in Cercopithecus neglectus (25.0%), Papio hamadrayas (16.7%), M. mulatta (16.3%), S. sciureus (10%), and Rhinopithecus roxellana (9.5%), with 5 ribosomal internal transcribed spacer (ITS) genotypes: 2 known genotypes (D and BEB6) and 3 novel genotypes (MH, XH, and BSH). These findings indicated the presence of zoonotic potential of Cryptosporidium spp. and E. bieneusi in NHPs in Qinling Mountains. This is the first report of C. andersoni in NHPs. The present study provided basic information for control of cryptosporidiosis, giardiasis, and microsporidiosis in human and animals in this area.
Collapse
Affiliation(s)
- Shuai-Zhi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun-Feng Shao
- Xi'an Qinling Wildlife Park, Xi'an 710000, Shaanxi, China
| | - Yan-Qin Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ge-Ru Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Long-Xian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Rong-Jun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Hai-Yan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Meng Qi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - San-Ke Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
61
|
Rushmore J, Allison AB, Edwards EE, Bagal U, Altizer S, Cranfield MR, Glenn TC, Liu H, Mudakikwa A, Mugisha L, Muller MN, Stumpf RM, Thompson ME, Wrangham R, Yabsley MJ. Screening wild and semi-free ranging great apes for putative sexually transmitted diseases: Evidence of Trichomonadidae infections. Am J Primatol 2015; 77:1075-85. [PMID: 26119266 DOI: 10.1002/ajp.22442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/02/2015] [Indexed: 11/07/2022]
Abstract
Sexually transmitted diseases (STDs) can persist endemically, are known to cause sterility and infant mortality in humans, and could have similar impacts in wildlife populations. African apes (i.e., chimpanzees, bonobos, and to a lesser extent gorillas) show multi-male mating behavior that could offer opportunities for STD transmission, yet little is known about the prevalence and impact of STDs in this endangered primate group. We used serology and PCR-based detection methods to screen biological samples from wild and orphaned eastern chimpanzees and gorillas (N = 172 individuals, including adults, and juveniles) for four classes of pathogens that either commonly cause human STDs or were previously detected in captive apes: trichomonads, Chlamydia spp., Treponema pallidum (syphilis and yaws), and papillomaviruses. Based on results from prior modeling and comparative research, we expected STD prevalence to be highest in females versus males and in sexually mature versus immature individuals. All samples were negative for Chlamydia, Treponema pallidum, and papillomaviruses; however, a high percentage of wild chimpanzee urine and fecal samples showed evidence of trichomonads (protozoa). Analysis revealed that females were more likely than males to have positive urine-but not fecal-samples; however, there was no evidence of age (sexual maturity) differences in infection status. Sequence analysis of chimpanzee trichomonad samples revealed a close relationship to previously described trichomonads within the genus Tetratrichomonas. Phylogenetic comparisons to archived sequences from multiple vertebrate hosts suggests that many of the chimpanzee parasites from our study are likely transmitted via fecal-oral contact, but the transmission of some Tetratrichomonas sequence-types remains unknown and could include sexual contact. Our work emphasizes that only a fraction of infectious agents affecting wild apes are presently known to science, and that further work on great ape STDs could offer insights for the management of endangered great apes and for understanding human STD origins.
Collapse
Affiliation(s)
- Julie Rushmore
- Odum School of Ecology, The University of Georgia, Athens, Georgia
- College of Veterinary Medicine, The University of Georgia, Athens, Georgia
| | - Andrew B Allison
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Erin E Edwards
- College of Veterinary Medicine, The University of Georgia, Athens, Georgia
| | - Ujwal Bagal
- Institute of Bioinformatics, The University of Georgia, Athens, Georgia
| | - Sonia Altizer
- Odum School of Ecology, The University of Georgia, Athens, Georgia
| | - Mike R Cranfield
- Gorilla Doctors, Wildlife Health Center, University of California Davis, Davis, California
- The Department of Molecular and Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Travis C Glenn
- Department of Environmental Health Science, The University of Georgia, Athens, Georgia
| | - Hsi Liu
- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control, Athens, Georgia
| | - Antoine Mudakikwa
- Rwanda Development Board, Department of Tourism and Conservation, Kigali, Rwanda
| | - Lawrence Mugisha
- Conservation and Ecosystem Health Alliance (CEHA), Kampala, Uganda
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Martin N Muller
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico
| | - Rebecca M Stumpf
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Richard Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Michael J Yabsley
- Warnell School of Forestry and Natural Resources, The University of Georgia and the Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, Georgia
| |
Collapse
|
62
|
Qi M, Xi J, Li J, Wang H, Ning C, Zhang L. Prevalence of Zoonotic Giardia duodenalis Assemblage B and First Identification of Assemblage E in Rabbit Fecal Samples Isolates from Central China. J Eukaryot Microbiol 2015; 62:810-4. [PMID: 26040441 DOI: 10.1111/jeu.12239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/24/2015] [Accepted: 05/22/2015] [Indexed: 11/30/2022]
Abstract
Giardia duodenalis is an important zoonotic pathogen, causes diarrhea in humans and animals worldwide. To date, few data are available on the prevalence of G. duodenalis in rabbits in China. In total, 955 fecal samples were collected from rabbits during 2008-2011 in Henan Province, Central China. The overall prevalence of G. duodenalis was 8.4% (80/955) on microscopic analysis, with the highest infection rate (11.3%) in rabbits aged 91-200 d. All G. duodenalis-positive isolates were characterized at the small subunit ribosomal RNA, β-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase genes. Two assemblages and a mixed assemblage were detected in the rabbits: assemblage B (n = 26), assemblage E (n = 2), and a mixed assemblage of B and E (n = 4). Assemblage B isolates showed variability at the nucleotide sequences belonging to the so-called subtype BIV, based on analysis of multiple genes. This is the first report of G. duodenalis assemblage E in rabbits, and one novel subtype of assemblage E was identified through sequence analysis of gdh and bg genes, respectively. Our data suggest that rabbits may be reservoirs of G. duodenalis cysts potentially infectious to humans.
Collapse
Affiliation(s)
- Meng Qi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Jianwei Xi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Junqiang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Haiyan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| |
Collapse
|
63
|
Vermeulen ET, Ashworth DL, Eldridge MDB, Power ML. Investigation into potential transmission sources of Giardia duodenalis in a threatened marsupial (Petrogale penicillata). INFECTION GENETICS AND EVOLUTION 2015; 33:277-80. [PMID: 25986646 DOI: 10.1016/j.meegid.2015.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/20/2015] [Accepted: 05/14/2015] [Indexed: 11/17/2022]
Abstract
Assemblages of the protozoan parasite Giardia duodenalis common in humans and domestic species are increasingly identified in wildlife species, raising concern about the spill-over of pathogens from humans and domestic animals into wildlife. Here, the identity and prevalence of G. duodenalis in populations of a threatened marsupial, the brush-tailed rock-wallaby (Petrogale penicillata), was investigated. Identification of G. duodenalis isolates, across three loci (18S rRNA, β-giardin and gdh), from rock-wallaby fecal samples (n = 318) identified an overall detection rate of 6.3%. No significant difference in G. duodenalis detection was found among captive, wild and supplemented populations. Isolates were assigned to the zoonotic assemblages A and B at 18S rRNA, with sub-assemblages AI and BIV identified at the β-giardin and gdh loci, respectively. Assemblages AI and BIV have previously been identified in human clinical cases, but also in domestic animals and wildlife. The identification of these assemblages in brush-tailed rock-wallabies suggests there are transmission routes of G. duodenalis from humans or other animals to Australian wildlife, both in captivity and in the wild.
Collapse
Affiliation(s)
- Elke T Vermeulen
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Deborah L Ashworth
- Office of Environment and Heritage, PO Box 1967, Hurstville, NSW 2220, Australia.
| | - Mark D B Eldridge
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia; Australian Museum Research Institute, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.
| | - Michelle L Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
64
|
Heimer J, Staudacher O, Steiner F, Kayonga Y, Havugimana JM, Musemakweri A, Harms G, Gahutu JB, Mockenhaupt FP. Age-dependent decline and association with stunting of Giardia duodenalis infection among schoolchildren in rural Huye district, Rwanda. Acta Trop 2015; 145:17-22. [PMID: 25683729 DOI: 10.1016/j.actatropica.2015.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/13/2015] [Accepted: 01/28/2015] [Indexed: 01/08/2023]
Abstract
Giardia duodenalis infection is highly prevalent and a cause of underweight in pre-school children in rural Rwanda. The present study aimed at assessing the age-pattern of Giardia infection and its manifestation in older children, i.e., during school age. Stool samples were collected from 622 schoolchildren at two schools in the Huye district of southern Rwanda (rural, 301; urban, 321) and subjected to G. duodenalis specific PCR assays. Clinical and anthropometric data, socio-economic status and factors potentially associated with G. duodenalis infection were assessed. Of the 622 children (mean age, 10.4 years), 35.7% were infected with G. duodenalis (rural, 43.9%; urban, 28.0%; P<0.0001). Only few indicators of low socio-economic status were found to be associated with infection. In rural but not urban schoolchildren, infection prevalence declined significantly with age. G. duodenalis infection more than doubled the odds of stunting in both rural (adjusted OR, 2.35 (95%CI, 1.25-4.41)) and urban children (adjusted OR, 2.27 (95%CI, 1.01-5.09)). In the study area of rural southern Rwanda, G. duodenalis prevalence among children declined throughout school-age. The data suggest that while lacking overt clinical manifestation at high endemicity, G. duodenalis infection is a common cause of stunting in schoolchildren.
Collapse
Affiliation(s)
- Jakob Heimer
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Staudacher
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Steiner
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yvette Kayonga
- Faculty of Social Work, Catholic University of Rwanda, Huye, Rwanda
| | | | - Andre Musemakweri
- University Teaching Hospital of Butare, University of Rwanda, Butare, Rwanda
| | - Gundel Harms
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jean-Bosco Gahutu
- University Teaching Hospital of Butare, University of Rwanda, Butare, Rwanda
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
65
|
Identical assemblage of Giardia duodenalis in humans, animals and vegetables in an urban area in southern Brazil indicates a relationship among them. PLoS One 2015; 10:e0118065. [PMID: 25761119 PMCID: PMC4356552 DOI: 10.1371/journal.pone.0118065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/04/2015] [Indexed: 11/26/2022] Open
Abstract
Background Giardia duodenalis infects humans and other mammals by ingestion of cysts in contaminated water or food, or directly in environments with poor hygiene. Eight assemblages, designated A–H, are described for this species. Methodology/Principal Findings We investigated by microscopy or by direct immunofluorescence technique the occurrence of G. duodenalis in 380 humans, 34 animals, 44 samples of water and 11 of vegetables. G. duodenalis cysts present in samples were genotyped through PCR-RFLP of β giardin and glutamate dehydrogenase (gdh) genes and sequencing of gdh. The gdh gene was amplified in 76.5% (26/34) of the human faeces samples with positive microscopy and in 2.9% (1/34) of negative samples. In 70.4% (19/27) of the positive samples were found BIV assemblage. In two samples from dogs with positive microscopy and one negative sample, assemblages BIV, C, and D were found. Cysts of Giardia were not detected in water samples, but three samples used for vegetable irrigation showed total coliforms above the allowed limit, and Escherichia coli was observed in one sample. G. duodenalis BIV was detected in two samples of Lactuca sativa irrigated with this sample of water. BIV was a common genotype, with 100% similarity, between different sources or hosts (humans, animals and vegetables), and the one most often found in humans. Conclusions/Significance This is the first study in Brazil that reports the connection among humans, dogs and vegetables in the transmission dynamics of G. duodenalis in the same geographic area finding identical assemblage. BIV assemblage was the most frequently observed among these different links in the epidemiological chain.
Collapse
|
66
|
Parsons MB, Travis D, Lonsdorf EV, Lipende I, Roellig DMA, Kamenya S, Zhang H, Xiao L, Gillespie TR. Epidemiology and molecular characterization of Cryptosporidium spp. in humans, wild primates, and domesticated animals in the Greater Gombe Ecosystem, Tanzania. PLoS Negl Trop Dis 2015; 9:e0003529. [PMID: 25700265 PMCID: PMC4336292 DOI: 10.1371/journal.pntd.0003529] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/09/2015] [Indexed: 11/30/2022] Open
Abstract
Cryptosporidium is an important zoonotic parasite globally. Few studies have examined the ecology and epidemiology of this pathogen in rural tropical systems characterized by high rates of overlap among humans, domesticated animals, and wildlife. We investigated risk factors for Cryptosporidium infection and assessed cross-species transmission potential among people, non-human primates, and domestic animals in the Gombe Ecosystem, Kigoma District, Tanzania. A cross-sectional survey was designed to determine the occurrence and risk factors for Cryptosporidium infection in humans, domestic animals and wildlife living in and around Gombe National Park. Diagnostic PCR revealed Cryptosporidium infection rates of 4.3% in humans, 16.0% in non-human primates, and 9.6% in livestock. Local streams sampled were negative. DNA sequencing uncovered a complex epidemiology for Cryptosporidium in this system, with humans, baboons and a subset of chimpanzees infected with C. hominis subtype IfA12G2; another subset of chimpanzees infected with C. suis; and all positive goats and sheep infected with C. xiaoi. For humans, residence location was associated with increased risk of infection in Mwamgongo village compared to one camp (Kasekela), and there was an increased odds for infection when living in a household with another positive person. Fecal consistency and other gastrointestinal signs did not predict Cryptosporidium infection. Despite a high degree of habitat overlap between village people and livestock, our results suggest that there are distinct Cryptosporidium transmission dynamics for humans and livestock in this system. The dominance of C. hominis subtype IfA12G2 among humans and non-human primates suggest cross-species transmission. Interestingly, a subset of chimpanzees was infected with C. suis. We hypothesize that there is cross-species transmission from bush pigs (Potaochoerus larvatus) to chimpanzees in Gombe forest, since domesticated pigs are regionally absent. Our findings demonstrate a complex nature of Cryptosporidium in sympatric primates, including humans, and stress the need for further studies. Cryptosporidium is a common zoonotic gastrointestinal parasite. In a cross-sectional survey of humans, non-human primates (chimpanzees and baboons) and livestock in the Greater Gombe Ecosystem, Tanzania, Cryptosporidium infection rate was 4.3%, 16.0% and 9.6% respectively. Infection was not associated with clinical disease in people; however, living in a household with an infected person increased one’s risk of infection. Phylogenetic analyses identified clusters of Cryptosporidium with a mixed host background. Surprisingly, the Mitumba chimpanzee community, which shares a natural boundary with a human community, had a lower occurrence of C. hominis compared to the Kasakela chimpanzee community, which resides in the forest interior (less human exposure). However, Kasakela chimpanzees were also infected with C. suis, suggesting a transmission cycle linked to sympatric bush pigs. Our findings highlight the complex nature of zoonotic parasite transmission and stress the need for further studies in similar systems.
Collapse
Affiliation(s)
- Michele B. Parsons
- Program in Population Biology, Ecology, and Evolution and Departments of Environmental Sciences and Environmental Health, Emory University, Atlanta, Georgia, United States of America
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Dominic Travis
- College of Veterinary Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Elizabeth V. Lonsdorf
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
| | | | - Dawn M. Anthony Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- The Jane Goodall Institute, Kigoma, Tanzania,
| | | | - Hongwei Zhang
- Institute of Parasite Disease Prevention and Control, Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thomas R. Gillespie
- Program in Population Biology, Ecology, and Evolution and Departments of Environmental Sciences and Environmental Health, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
67
|
Karim MR, Wang R, Yu F, Li T, Dong H, Li D, Zhang L, Li J, Jian F, Zhang S, Rume FI, Ning C, Xiao L. Multi-locus analysis of Giardia duodenalis from nonhuman primates kept in zoos in China: geographical segregation and host-adaptation of assemblage B isolates. INFECTION GENETICS AND EVOLUTION 2014; 30:82-88. [PMID: 25530435 DOI: 10.1016/j.meegid.2014.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Only a few studies based on single locus characterization have been conducted on the molecular epidemiology of Giardia duodenalis in nonhuman primates (NHPs). The present study was conducted to examine the occurrence and genotype identity of G. duodenalis in NHPs based on multi-locus analysis of the small-subunit ribosomal RNA (SSU rRNA), triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh), and beta-giardin (bg) genes. Fecal specimens were collected from 496 animals of 36 NHP species kept in seven zoos in China and screened for G. duodenalis by tpi-based PCR. G. duodenalis was detected in 92 (18.6%) specimens from 18 NHP species, belonging to assemblage A (n=4) and B (n=88). In positive NHP species, the infection rates ranged from 4.8% to 100%. In tpi sequence analysis, the assemblage A included subtypes A1, A2 and one novel subtype. Multi-locus analysis of the tpi, gdh, and bg genes detected 11 (8 known and 3 new), 6 (3 known and 3 new) and 9 (2 known and 7 new) subtypes in 88, 47 and 35 isolates in assemblage B, respectively. Thirty-two assemblage B isolates with data at all three loci yielded 15 multi-locus genotypes (MLGs), including 2 known and 13 new MLGs. Phylogenetic analysis of concatenated sequences of assemblage B showed that MLGs found here were genetically different from those of humans, NHPs, rabbit and guinea pig in Italy and Sweden. It further indicated that assemblage B isolates in ring-tailed lemurs and squirrel monkeys might be genetically different from those in other NHPs. These data suggest that NHPs are mainly infected with G. duodenalis assemblage B and there might be geographical segregation and host-adaptation in assemblage B in NHPs.
Collapse
Affiliation(s)
- Md Robiul Karim
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Fuchang Yu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Tongyi Li
- Zhengzhou Zoo, Zhengzhou 45000, China
| | - Haiju Dong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | | | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junqiang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Fuchun Jian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Sumei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Farzana Islam Rume
- Department of Microbiology, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
68
|
Paige SB, Frost SDW, Gibson MA, Jones JH, Shankar A, Switzer WM, Ting N, Goldberg TL. Beyond bushmeat: animal contact, injury, and zoonotic disease risk in Western Uganda. ECOHEALTH 2014; 11:534-43. [PMID: 24845574 PMCID: PMC4240769 DOI: 10.1007/s10393-014-0942-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 05/30/2023]
Abstract
Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long-term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where "bushmeat hunting" is the predominant paradigm for human-wildlife contact and zoonotic disease transmission.
Collapse
Affiliation(s)
- Sarah B Paige
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Sak B, Petrželková KJ, Květoňová D, Mynářová A, Pomajbíková K, Modrý D, Cranfield MR, Mudakikwa A, Kváč M. Diversity of microsporidia, Cryptosporidium and Giardia in mountain gorillas (Gorilla beringei beringei) in Volcanoes National Park, Rwanda. PLoS One 2014; 9:e109751. [PMID: 25386754 PMCID: PMC4227647 DOI: 10.1371/journal.pone.0109751] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/11/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Infectious diseases represent the greatest threats to endangered species, and transmission from humans to wildlife under increased anthropogenic pressure has been always stated as a major risk of habituation. AIMS To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, one hundred mountain gorillas (Gorilla beringei beringei) from seven groups habituated either for tourism or for research in Volcanoes National Park, Rwanda were screened for the presence of microsporidia, Cryptosporidium spp. and Giardia spp. using molecular diagnostics. RESULTS The most frequently detected parasites were Enterocytozoon bieneusi found in 18 samples (including genotype EbpA, D, C, gorilla 2 and five novel genotypes gorilla 4-8) and Encephalitozoon cuniculi with genotype II being more prevalent (10 cases) compared to genotype I (1 case). Cryptosporidium muris (2 cases) and C. meleagridis (2 cases) were documented in great apes for the first time. Cryptosporidium sp. infections were identified only in research groups and occurrence of E. cuniculi in research groups was significantly higher in comparison to tourist groups. No difference in prevalence of E. bieneusi was observed between research and tourist groups. CONCLUSION Although our data showed the presence and diversity of important opportunistic protists in Volcanoes gorillas, the source and the routes of the circulation remain unknown. Repeated individual sampling, broad sampling of other hosts sharing the habitat with gorillas and quantification of studied protists would be necessary to acquire more complex data.
Collapse
Affiliation(s)
- Bohumil Sak
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., České Budějovice, Czech Republic
| | - Klára J. Petrželková
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., České Budějovice, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
- Liberec Zoo, Liberec, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., České Budějovice, Czech Republic
| | - Anna Mynářová
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Kateřina Pomajbíková
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - David Modrý
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., České Budějovice, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Michael R. Cranfield
- Gorilla Doctors, Karen C Drayer Wildlife Health Center, Davis, CA, United States of America
| | | | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., České Budějovice, Czech Republic
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
70
|
Ghai RR, Simons ND, Chapman CA, Omeja PA, Davies TJ, Ting N, Goldberg TL. Hidden population structure and cross-species transmission of whipworms (Trichuris sp.) in humans and non-human primates in Uganda. PLoS Negl Trop Dis 2014; 8:e3256. [PMID: 25340752 PMCID: PMC4207677 DOI: 10.1371/journal.pntd.0003256] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts. METHODS AND FINDINGS We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans. CONCLUSIONS AND SIGNIFICANCE Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health.
Collapse
Affiliation(s)
- Ria R. Ghai
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah D. Simons
- Department of Anthropology, University of Oregon, Eugene, Oregon, United States of America
| | - Colin A. Chapman
- Department of Anthropology and McGill School of Environment, Montreal, Quebec, Canada, and Wildlife Conservation Society, Bronx, New York, New York, United States of America
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Patrick A. Omeja
- Makerere University Biological Field Station, Fort Portal, Uganda
| | | | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, Oregon, United States of America
- Institute for Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Tony L. Goldberg
- Makerere University Biological Field Station, Fort Portal, Uganda
- Department of Pathobiological Sciences and Global Health Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
71
|
Karim MR, Zhang S, Jian F, Li J, Zhou C, Zhang L, Sun M, Yang G, Zou F, Dong H, Li J, Rume FI, Qi M, Wang R, Ning C, Xiao L. Multilocus typing of Cryptosporidium spp. and Giardia duodenalis from non-human primates in China. Int J Parasitol 2014; 44:1039-47. [PMID: 25148945 DOI: 10.1016/j.ijpara.2014.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022]
Abstract
Non-human primates (NHPs) are commonly infected with Cryptosporidium spp. and Giardia duodenalis. However, molecular characterisation of these pathogens from NHPs remains scarce. In this study, 2,660 specimens from 26 NHP species in China were examined and characterised by PCR amplification of 18S rRNA, 70kDa heat shock protein (hsp70) and 60kDa glycoprotein (gp60) gene loci for Cryptosporidium; and 1,386 of the specimens by ssrRNA, triosephosphate isomerase (tpi) and glutamate dehydrogenase (gdh) gene loci for Giardia. Cryptosporidium was detected in 0.7% (19/2660) specimens of four NHP species including rhesus macaques (0.7%), cynomolgus monkeys (1.0%), slow lorises (10.0%) and Francois' leaf monkeys (6.7%), belonging to Cryptosporidium hominis (14/19) and Cryptosporidium muris (5/19). Two C. hominis gp60 subtypes, IbA12G3 and IiA17 were observed. Based on the tpi locus, G. duodenalis was identified in 2.2% (30/1,386) of specimens including 2.1% in rhesus macaques, 33.3% in Japanese macaques, 16.7% in Assam macaques, 0.7% in white-headed langurs, 1.6% in cynomolgus monkeys and 16.7% in olive baboons. Sequence analysis of the three targets indicated that all of the Giardia-positive specimens belonged to the zoonotic assemblage B. Highest sequence polymorphism was observed at the tpi locus, including 11 subtypes: three known and eight new ones. Phylogenetic analysis of the subtypes showed that most of them were close to the so-called subtype BIV. Intragenotypic variations at the gdh locus revealed six types of sequences (three known and three new), all of which belonged to so-called subtype BIV. Three specimens had co-infection with C. hominis (IbA12G3) and G. duodenalis (BIV). The presence of zoonotic genotypes and subtypes of Cryptosporidium spp. and G. duodenalis in NHPs suggests that these animals can potentially contribute to the transmission of human cryptosporidiosis and giardiasis.
Collapse
Affiliation(s)
- Md Robiul Karim
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Sumei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Fuchun Jian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiacheng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunxiang Zhou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingfei Sun
- Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangyou Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Yaan 625014, China
| | - Fengcai Zou
- College of Animal Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Haiju Dong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Li
- College of Animal Science &Technology, Guangxi University, Nanning 530004, China
| | - Farzana Islam Rume
- Department of Microbiology, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Meng Qi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
72
|
Wild chimpanzees show group differences in selection of agricultural crops. Sci Rep 2014; 4:5956. [PMID: 25090940 PMCID: PMC4121611 DOI: 10.1038/srep05956] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/16/2014] [Indexed: 11/26/2022] Open
Abstract
The ability of wild animals to respond flexibly to anthropogenic environmental changes, including agriculture, is critical to survival in human-impacted habitats. Understanding use of human foods by wildlife can shed light on the acquisition of novel feeding habits and how animals respond to human-driven land-use changes. Little attention has focused on within-species variation in use of human foods or its causes. We examined crop-feeding in two groups of wild chimpanzees – a specialist frugivore – with differing histories of exposure to agriculture. Both groups exploited a variety of crops, with more accessible crops consumed most frequently. However, crop selection by chimpanzees with long-term exposure to agriculture was more omnivorous (i.e., less fruit-biased) compared to those with more recent exposure, which ignored most non-fruit crops. Our results suggest chimpanzees show increased foraging adaptations to cultivated landscapes over time; however, local feeding traditions may also contribute to group differences in crop-feeding in this species. Understanding the dynamic responses of wildlife to agriculture can help predict current and future adaptability of species to fast-changing anthropogenic landscapes.
Collapse
|
73
|
Epidemiology of pathogenic enterobacteria in humans, livestock, and peridomestic rodents in rural Madagascar. PLoS One 2014; 9:e101456. [PMID: 24983990 PMCID: PMC4077799 DOI: 10.1371/journal.pone.0101456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/06/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Among the families of enteric bacteria are globally important diarrheal agents. Despite their potential for zoonotic and environmental transmission, few studies have examined the epidemiology of these pathogens in rural systems characterized by extensive overlap among humans, domesticated and peridomestic animals. We investigated patterns of infection with Enterotoxigenic Escherichia coli, Shigella spp., Salmonella enterica, Vibrio cholerae, and Yersinia spp. (enterocolitica, and pseudotuberculosis) in Southeastern Madagascar where the potential for the aforementioned interactions is high. In this pilot project we conducted surveys to examine behaviors potentially associated with risk of infection and if infection with specific enterobacteria species was associated with diarrheal disease. METHODOLOGY/PRINCIPAL FINDINGS PCR was conducted on DNA from human, livestock, and rodent fecal samples from three villages. Overall, human prevalence was highest (77%), followed by rodents (51%) and livestock (18%). Rodents were ∼2.8 times more likely than livestock to carry one of the bacteria. The incidence of individual species varied between villages, with the observation that, E. coli and Shigella spp. were consistently associated with co-infections. As an aggregate, there was a significant risk of infection linked to a water source in one village. Individually, different pathogens were associated with certain behaviors, including: those who had used medication, experienced diarrhea in the past four weeks, or do not use toilets. CONCLUSIONS/SIGNIFICANCE Different bacteria were associated with an elevated risk of infection for various human activities or characteristics. Certain bacteria may also predispose people to co-infections. These data suggest that a high potential for transmission among these groups, either directly or via contaminated water sources. As these bacteria were most prevalent in humans, it is possible that they are maintained in humans and that transmission to other species is infrequent. Further studies are needed to understand bacterial persistence, transmission dynamics, and associated consequences in this and similar systems.
Collapse
|
74
|
Sibley SD, Lauck M, Bailey AL, Hyeroba D, Tumukunde A, Weny G, Chapman CA, O’Connor DH, Goldberg TL, Friedrich TC. Discovery and characterization of distinct simian pegiviruses in three wild African Old World monkey species. PLoS One 2014; 9:e98569. [PMID: 24918769 PMCID: PMC4053331 DOI: 10.1371/journal.pone.0098569] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/05/2014] [Indexed: 01/08/2023] Open
Abstract
Within the Flaviviridae, the recently designated genus Pegivirus has expanded greatly due to new discoveries in bats, horses, and rodents. Here we report the discovery and characterization of three simian pegiviruses (SPgV) that resemble human pegivirus (HPgV) and infect red colobus monkeys (Procolobus tephrosceles), red-tailed guenons (Cercopithecus ascanius) and an olive baboon (Papio anubis). We have designated these viruses SPgVkrc, SPgVkrtg and SPgVkbab, reflecting their host species' common names, which include reference to their location of origin in Kibale National Park, Uganda. SPgVkrc and SPgVkrtg were detected in 47% (28/60) of red colobus and 42% (5/12) red-tailed guenons, respectively, while SPgVkbab infection was observed in 1 of 23 olive baboons tested. Infections were not associated with any apparent disease, despite the generally high viral loads observed for each variant. These viruses were monophyletic and equally divergent from HPgV and pegiviruses previously identified in chimpanzees (SPgVcpz). Overall, the high degree of conservation of genetic features among the novel SPgVs, HPgV and SPgVcpz suggests conservation of function among these closely related viruses. Our study describes the first primate pegiviruses detected in Old World monkeys, expanding the known genetic diversity and host range of pegiviruses and providing insight into the natural history of this genus.
Collapse
Affiliation(s)
- Samuel D. Sibley
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael Lauck
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Adam L. Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | | | | - Colin A. Chapman
- Makerere University, Kampala, Uganda
- Department of Anthropology and McGill School of Environment, Montreal, Quebec, Canada
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Makerere University, Kampala, Uganda
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
75
|
Lobo ML, Augusto J, Antunes F, Ceita J, Xiao L, Codices V, Matos O. Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi and other intestinal parasites in young children in Lobata province, Democratic Republic of São Tomé and Principe. PLoS One 2014. [PMID: 24846205 DOI: 10.1371/journal.pone.0097708.ecollection2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rare systemic studies concerning prevalence of intestinal parasites in children have been conducted in the second smallest country in Africa, the Democratic Republic of São Tomé and Príncipe. Fecal specimens from 348 children (214 in-hospital attending the Aires de Menezes Hospital and 134 from Agostinho Neto village) in São Tome Island were studied by parasitological and molecular methods. Of the 134 children from Agostinho Neto, 52.2% presented intestinal parasites. 32.1% and 20.2% of these children had monoparasitism and polyparasitism, respectively. Ascaris lumbricoides (27.6%), G. duodenalis (7.5%), T. trichiura (4.5%) and Entamoeba coli (10.5%) were the more frequent species identified in the children of this village. Giardia duodenalis (7.5%) and E. bieneusi (5.2%) were identified by PCR. Nested-PCR targeting G. duodenalis TPI identified Assemblage A (60%) and Assemblage B (40%). The E. bieneusi ITS-based sequence identified genotypes K (57.1%), KIN1 (28.6%) and KIN3 (14.3%). Among the 214 in-hospital children, 29.4% presented intestinal parasites. In 22.4% and 7.0% of the parasitized children, respectively, one or more species were concurrently detected. By microscopy, A. lumbricoides (10.3%) and Trichiuris trichiura (6.5%) were the most prevalent species among these children, and Cryptosporidium was detected by PCR in 8.9% of children. GP60 locus analysis identified 6.5% of C. hominis (subtypes IaA27R3 [35.7%], IaA23R3 [14.3%], IeA11G3T3 [28.6%] and IeA11G3T3R1 [21.4%]) and 2.3% of C. parvum (subtypes IIaA16G2R1 [20.0%], IIaA15G2R1 [20.0%], IIdA26G1 [40.0%] and IIdA21G1a [20.0%]). G. duodenalis and E. bieneusi were identified in 0.5% and 8.9% of the in-hospital children, respectively. G. duodenalis Assemblage B was characterized. The E. bieneusi genotypes K (52.6%), D (26.4%), A (10.5%) and KIN1 (10.5%) were identified. Although further studies are required to clarify the epidemiology of these infectious diseases in this endemic region the significance of the present results highlights that it is crucial to strength surveillance on intestinal pathogens.
Collapse
Affiliation(s)
- Maria Luísa Lobo
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Augusto
- Centro Hospitalar do Algarve, Hospital de Portimão, Portimão, Portugal
| | | | - José Ceita
- Hospital Aires de Menezes, São Tomé, São Tomé e Príncipe
| | - Lihua Xiao
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Vera Codices
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Olga Matos
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
76
|
Lobo ML, Augusto J, Antunes F, Ceita J, Xiao L, Codices V, Matos O. Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi and other intestinal parasites in young children in Lobata province, Democratic Republic of São Tomé and Principe. PLoS One 2014; 9:e97708. [PMID: 24846205 PMCID: PMC4028242 DOI: 10.1371/journal.pone.0097708] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/22/2014] [Indexed: 11/18/2022] Open
Abstract
Rare systemic studies concerning prevalence of intestinal parasites in children have been conducted in the second smallest country in Africa, the Democratic Republic of São Tomé and Príncipe. Fecal specimens from 348 children (214 in-hospital attending the Aires de Menezes Hospital and 134 from Agostinho Neto village) in São Tome Island were studied by parasitological and molecular methods. Of the 134 children from Agostinho Neto, 52.2% presented intestinal parasites. 32.1% and 20.2% of these children had monoparasitism and polyparasitism, respectively. Ascaris lumbricoides (27.6%), G. duodenalis (7.5%), T. trichiura (4.5%) and Entamoeba coli (10.5%) were the more frequent species identified in the children of this village. Giardia duodenalis (7.5%) and E. bieneusi (5.2%) were identified by PCR. Nested-PCR targeting G. duodenalis TPI identified Assemblage A (60%) and Assemblage B (40%). The E. bieneusi ITS-based sequence identified genotypes K (57.1%), KIN1 (28.6%) and KIN3 (14.3%). Among the 214 in-hospital children, 29.4% presented intestinal parasites. In 22.4% and 7.0% of the parasitized children, respectively, one or more species were concurrently detected. By microscopy, A. lumbricoides (10.3%) and Trichiuris trichiura (6.5%) were the most prevalent species among these children, and Cryptosporidium was detected by PCR in 8.9% of children. GP60 locus analysis identified 6.5% of C. hominis (subtypes IaA27R3 [35.7%], IaA23R3 [14.3%], IeA11G3T3 [28.6%] and IeA11G3T3R1 [21.4%]) and 2.3% of C. parvum (subtypes IIaA16G2R1 [20.0%], IIaA15G2R1 [20.0%], IIdA26G1 [40.0%] and IIdA21G1a [20.0%]). G. duodenalis and E. bieneusi were identified in 0.5% and 8.9% of the in-hospital children, respectively. G. duodenalis Assemblage B was characterized. The E. bieneusi genotypes K (52.6%), D (26.4%), A (10.5%) and KIN1 (10.5%) were identified. Although further studies are required to clarify the epidemiology of these infectious diseases in this endemic region the significance of the present results highlights that it is crucial to strength surveillance on intestinal pathogens.
Collapse
Affiliation(s)
- Maria Luísa Lobo
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Augusto
- Centro Hospitalar do Algarve, Hospital de Portimão, Portimão, Portugal
| | | | - José Ceita
- Hospital Aires de Menezes, São Tomé, São Tomé e Príncipe
| | - Lihua Xiao
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Vera Codices
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Olga Matos
- Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
77
|
Ignatius R, Gahutu JB, Klotz C, Musemakweri A, Aebischer T, Mockenhaupt FP. Detection of Giardia duodenalis assemblage A and B isolates by immunochromatography in stool samples from Rwandan children. Clin Microbiol Infect 2014; 20:O783-5. [PMID: 24533695 DOI: 10.1111/1469-0691.12596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 12/01/2022]
Abstract
We evaluated the performance of an immunochromatographic assay (ICA) in comparison with light microscopy and PCR for the detection of Giardia duodenalis in stool samples from 558 Rwandan children. The association of infection with clinical symptoms was similar for the three diagnostic tools. The ICA equally detected parasites of assemblages A and B and was more sensitive than light microscopy (50.4 versus 29.5% of PCR-positive samples considered true positive; p <0.0001). Hence, the ICA shows superior sensitivity compared with microscopy but still misses half of the G. duodenalis infections detected by PCR in this hyperendemic area.
Collapse
Affiliation(s)
- R Ignatius
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
78
|
Molecular Identification of Giardia duodenalis Isolates from Fars Province, Iran. IRANIAN JOURNAL OF PARASITOLOGY 2014; 9:70-8. [PMID: 25642262 PMCID: PMC4289883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/19/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Giardia duodenalis is one of the most common human intestinal protozoan parasites worldwide and is endemic throughout the world with a vast range of mammalian hosts. The present study aimed to identify the prevalence of G. duodenalis isolates and determine the most common of its assemblages in the patients referring to health centers and hospitals in Fars province, Iran that will be subjected to further molecular investigation. METHODS We collected 1000 human fecal samples from health centers and hospitals in Shiraz, Iran in a one year period from September 2009 to August 2010. Microscopic examination for the presence of G. duodenalis cysts and trophozoites was performed by direct wet mount before and after the concentration techniques. Extraction of DNA was performed by Phenol-Chloroform-Isoamylalcohol (PCI). G. duodenalis-positive specimens were analyzed by PCR. A fragment of the SSU-rDNA (292 bp) gene was amplified by PCR using the forward primer RH11 and the reverse primer RH4. Genotyping was performed using sequence analysis of G. duodenalis glutamate dehydrogenase gene using primers GDHeF, GDHiF, and GDHiR. RESULTS The prevalence of Giardia infection was 10.7% (107/1000) examined based on microscopic examination. PCR identified 80% (40/50) of the samples as positive for G. duodenalis based on SSU-rDNA amplification on sucrose gradient samples. Besides, genotyping results indicated 32 isolates (80%) as assemblage AII and 8 isolates (20%) as assemblage BIII and BIV based on the DNA sequence analysis of the glutamate dehydrogenase locus of G. duodenalis. CONCLUSION The findings of this study emphasize that Iran (Fars Province) is a favorable area for giardiasis with an anthroponotic infection route.
Collapse
|
79
|
Reverse zoonotic disease transmission (zooanthroponosis): a systematic review of seldom-documented human biological threats to animals. PLoS One 2014; 9:e89055. [PMID: 24586500 PMCID: PMC3938448 DOI: 10.1371/journal.pone.0089055] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/04/2013] [Indexed: 11/24/2022] Open
Abstract
Background Research regarding zoonotic diseases often focuses on infectious diseases animals have given to humans. However, an increasing number of reports indicate that humans are transmitting pathogens to animals. Recent examples include methicillin-resistant Staphylococcus aureus, influenza A virus, Cryptosporidium parvum, and Ascaris lumbricoides. The aim of this review was to provide an overview of published literature regarding reverse zoonoses and highlight the need for future work in this area. Methods An initial broad literature review yielded 4763 titles, of which 4704 were excluded as not meeting inclusion criteria. After careful screening, 56 articles (from 56 countries over three decades) with documented human-to-animal disease transmission were included in this report. Findings In these publications, 21 (38%) pathogens studied were bacterial, 16 (29%) were viral, 12 (21%) were parasitic, and 7 (13%) were fungal, other, or involved multiple pathogens. Effected animals included wildlife (n = 28, 50%), livestock (n = 24, 43%), companion animals (n = 13, 23%), and various other animals or animals not explicitly mentioned (n = 2, 4%). Published reports of reverse zoonoses transmission occurred in every continent except Antarctica therefore indicating a worldwide disease threat. Interpretation As we see a global increase in industrial animal production, the rapid movement of humans and animals, and the habitats of humans and wild animals intertwining with great complexity, the future promises more opportunities for humans to cause reverse zoonoses. Scientific research must be conducted in this area to provide a richer understanding of emerging and reemerging disease threats. As a result, multidisciplinary approaches such as One Health will be needed to mitigate these problems.
Collapse
|
80
|
Ghai RR, Chapman CA, Omeja PA, Davies TJ, Goldberg TL. Nodule worm infection in humans and wild primates in Uganda: cryptic species in a newly identified region of human transmission. PLoS Negl Trop Dis 2014; 8:e2641. [PMID: 24421915 PMCID: PMC3888470 DOI: 10.1371/journal.pntd.0002641] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/28/2013] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Soil-transmitted helminths (STHs) are a major health concern in tropical and sub-tropical countries. Oesophagostomum infection is considered endemic to West Africa but has also been identified in Uganda, East Africa, among primates (including humans). However, the taxonomy and ecology of Oesophagostomum in Uganda have not been studied, except for in chimpanzees (Pan troglodytes), which are infected by both O. bifurcum and O. stephanostomum. METHODS AND FINDINGS We studied Oesophagostomum in Uganda in a community of non-human primates that live in close proximity to humans. Prevalence estimates based on microscopy were lower than those based on polymerase chain reaction (PCR), indicating greater sensitivity of PCR. Prevalence varied among host species, with humans and red colobus (Procolobus rufomitratus) infected at lowest prevalence (25% and 41% by PCR, respectively), and chimpanzees, olive baboons (Papio anubis), and l'hoest monkeys (Cercopithecus lhoesti) infected at highest prevalence (100% by PCR in all three species). Phylogenetic regression showed that primates travelling further and in smaller groups are at greatest risk of infection. Molecular phylogenetic analyses revealed three cryptic clades of Oesophagostomum that were not distinguishable based on morphological characteristics of their eggs. Of these, the clade with the greatest host range had not previously been described genetically. This novel clade infects humans, as well as five other species of primates. CONCLUSIONS Multiple cryptic forms of Oesophagostomum circulate in the people and primates of western Uganda, and parasite clades differ in host range and cross-species transmission potential. Our results expand knowledge about human Oesophagostomum infection beyond the West African countries of Togo and Ghana, where the parasite is a known public health concern. Oesophagostomum infection in humans may be common throughout Sub-Saharan Africa, and the transmission of this neglected STH among primates, including zoonotic transmission, may vary among host communities depending on their location and ecology.
Collapse
Affiliation(s)
- Ria R. Ghai
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Colin A. Chapman
- Department of Anthropology and McGill School of Environment, Montreal, Quebec, Canada, and Wildlife Conservation Society, Bronx, New York, New York, United States of America
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Patrick A. Omeja
- Makerere University Biological Field Station, Fort Portal, Uganda
| | | | - Tony L. Goldberg
- Makerere University Biological Field Station, Fort Portal, Uganda
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
81
|
DI PIAZZA F, DI BENEDETTO M, MAIDA C, GLORIOSO S, ADAMO G, MAZZOLA T, FIRENZE A. A study on occupational exposure of Sicilian farmers to Giardia and Cryptosporidium. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2013; 54:212-7. [PMID: 24779283 PMCID: PMC4718323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION A cross-sectional study was undertaken to determine the prevalence of Giardia and Cryptosporidium in calves of Palermo area (Sicily) and to evaluate the occupational risk associated with occurrence of zoonotic genotypes. METHODS A total of 217 faecal samples, from 149 calves (between 2 and 240 days of age) and 68 farmers, were collected in 19 cattle-farms of Palermo area. A questionnaire regarding demographic characteristics and personal hygienic measures was submitted to all farmers. All faecal samples were analyzed by Immunofluorescence assay and Polimerase Chain Reaction (PCR); genotypes were determined by DNA sequencing of Triose Phosphate Isomerase gene for Giardia and Small Subunit Ribosomal RNA gene for Cryptosporidium. RESULTS None farmer tested was positive for Giardia and Cryptosporidium, whereas these protozoa were respectively detected in 53 (including 5 with zoonotic G. duodenalis genotype A) and 17 (of which 1 with zoonotic C. ubiquitum) of the examined calves. DISCUSSION The results indicate that the risk of transmitting both protozoa to farmers in Palermo area is negligible although it cannot be considered null because of identification of human genotypes/species in calves.
Collapse
Affiliation(s)
- F. DI PIAZZA
- Department of Health Sciences and Promotion, University of Palermo, Italy;,Correspondence: Florinda Di Piazza, Department of Health Sciences and Promotion, University of Palermo, Italy - Tel. +39 091 6552509 - Fax +39 091 6554525 - E-mail:
| | - M.A. DI BENEDETTO
- Department of Health Sciences and Promotion, University of Palermo, Italy
| | - C.M. MAIDA
- Department of Health Sciences and Promotion, University of Palermo, Italy
| | - S. GLORIOSO
- Provincial Health Unit 6, Veterinary District, Palermo, Italy
| | - G. ADAMO
- Provincial Health Unit 6, Veterinary District, Palermo, Italy
| | - T. MAZZOLA
- Provincial Health Unit 6, Veterinary District, Palermo, Italy
| | - A. FIRENZE
- Department of Health Sciences and Promotion, University of Palermo, Italy
| |
Collapse
|
82
|
McCord AI, Chapman CA, Weny G, Tumukunde A, Hyeroba D, Klotz K, Koblings AS, Mbora DNM, Cregger M, White BA, Leigh SR, Goldberg TL. Fecal microbiomes of non-human primates in Western Uganda reveal species-specific communities largely resistant to habitat perturbation. Am J Primatol 2013; 76:347-54. [PMID: 24285224 DOI: 10.1002/ajp.22238] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/16/2013] [Accepted: 10/27/2013] [Indexed: 01/15/2023]
Abstract
Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate "microbiomes" remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture-free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus (Procolobus rufomitratus), 100 individual black-and-white colobus (Colobus guereza), 111 individual red-tailed guenons (Cercopithecus ascanius), 578 human volunteers, and 364 domestic animals, including cattle (Bos indicus and B. indicus × B. taurus crosses), goats (Caprus hircus), sheep (Ovis aries), and pigs (Sus scrofa). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black-and-white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra-specific variation among microbiomes. However, intra-specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this system, species-specific processes such as gastrointestinal physiology strongly structure microbial communities, and that primate microbiomes are relatively resistant to perturbation, even across large geographic distances or in the face of habitat disturbance.
Collapse
Affiliation(s)
- Aleia I McCord
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Obendorf J, Renner Viveros P, Fehlings M, Klotz C, Aebischer T, Ignatius R. Increased expression of CD25, CD83, and CD86, and secretion of IL-12, IL-23, and IL-10 by human dendritic cells incubated in the presence of Toll-like receptor 2 ligands and Giardia duodenalis. Parasit Vectors 2013; 6:317. [PMID: 24499474 PMCID: PMC4029533 DOI: 10.1186/1756-3305-6-317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/01/2013] [Indexed: 12/04/2022] Open
Abstract
Background Effects of Giardia duodenalis on dendritic cell (DC) functions may contribute to the pathogenesis of chronic giardiasis. G. duodenalis lysate has been shown to inhibit the activation of murine DCs through the ligands of various Toll-like receptors (TLRs), including TLR2 and TLR4. Our study aimed at translating these findings to human DCs. Findings As described previously for murine DCs, also human DCs were only weakly activated by the parasite itself. LPS-stimulated DCs incubated in the presence of G. duodenalis lysate produced less IL-12/23p40 (p = 0.002), IL-12p70 (p = 0.011), and IL-23 (p = 0.004), but more IL-10 (p = 0.006) than cells incubated in the absence of the parasite. Concomitantly, the expression of CD25, CD83, CD86, and HLA-DR was reduced on G. duodenalis-incubated DCs as compared to control cells. In contrast, human DCs stimulated through TLR2 in combination with TLR1 or TLR6 and G. duodenalis lysate secreted significantly more IL-12/23p40 (p = 0.006), IL-23 (p = 0.002), and IL-10 (p = 0.014) than cells stimulated through TLR2 ligands alone. Ligands for TLR2/TLR1 or TLR2/TLR6 also induced enhanced extracellular expression of CD25, CD83, and CD86 (p < 0.05). Conclusions In contrast to murine DCs, human DCs incubated in the presence of G. duodenalis and stimulated through TLR2 show increased activation as compared to cells incubated in the absence of the parasite. Thus, TLR2 ligands, e.g., delivered by probiotic lactobacilli, might be beneficial in human giardiasis through an adjuvant effect on the induction of cellular immune responses against G. duodenalis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralf Ignatius
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, Spandauer Damm 130, Berlin 14050, Germany.
| |
Collapse
|
84
|
Thompson RCA. Parasite zoonoses and wildlife: One Health, spillover and human activity. Int J Parasitol 2013; 43:1079-88. [PMID: 23892130 PMCID: PMC7126848 DOI: 10.1016/j.ijpara.2013.06.007] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 01/16/2023]
Abstract
This review examines parasite zoonoses and wildlife in the context of the One Health triad that encompasses humans, domestic animals, wildlife and the changing ecosystems in which they live. Human (anthropogenic) activities influence the flow of all parasite infections within the One Health triad and the nature and impact of resulting spillover events are examined. Examples of spillover from wildlife to humans and/or domestic animals, and vice versa, are discussed, as well as emerging issues, particularly the need for parasite surveillance of wildlife populations. Emphasis is given to Trypanosoma cruzi and related species in Australian wildlife, Trichinella, Echinococcus, Giardia, Baylisascaris, Toxoplasma and Leishmania.
Collapse
Affiliation(s)
- R C Andrew Thompson
- School of Veterinary and Health Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
85
|
Giardia in mountain gorillas (Gorilla beringei beringei), forest buffalo (Syncerus caffer), and domestic cattle in Volcanoes National Park, Rwanda. J Wildl Dis 2013; 50:21-30. [PMID: 24171566 DOI: 10.7589/2012-09-229] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mountain gorillas (Gorilla beringei beringei) are critically endangered primates surviving in two isolated populations in protected areas within the Virunga Massif of Rwanda, Uganda, the Democratic Republic of Congo, and in Bwindi Impenetrable National Park in Uganda. Mountain gorillas face intense ecologic pressures due to their proximity to humans. Human communities outside the national parks, and numerous human activities within the national parks (including research, tourism, illegal hunting, and anti-poaching patrols), lead to a high degree of contact between mountain gorillas and wildlife, domestic animals, and humans. To assess the pathogen transmission potential between wildlife and livestock, feces of mountain gorillas, forest buffalo (Syncerus caffer nanus), and domestic cattle (Bos taurus) in Rwanda were examined for the parasites Giardia and Cryptosporidium. Giardia was found in 9% of mountain gorillas, 6% of cattle, and 2% of forest buffalo. Our study represents the first report of Giardia prevalence in forest buffalo. Cryptosporidium-like particles were also observed in all three species. Molecular characterization of Giardia isolates identified zoonotic genotype assemblage B in the gorilla samples and assemblage E in the cattle samples. Significant spatial clustering of Giardia-positive samples was observed in one sector of the park. Although we did not find evidence for transmission of protozoa from forest buffalo to mountain gorillas, the genotypes of Giardia samples isolated from gorillas have been reported in humans, suggesting that the importance of humans in this ecosystem should be more closely evaluated.
Collapse
|
86
|
Lauck M, Switzer WM, Sibley SD, Hyeroba D, Tumukunde A, Weny G, Taylor B, Shankar A, Ting N, Chapman CA, Friedrich TC, Goldberg TL, O'Connor DH. Discovery and full genome characterization of two highly divergent simian immunodeficiency viruses infecting black-and-white colobus monkeys (Colobus guereza) in Kibale National Park, Uganda. Retrovirology 2013; 10:107. [PMID: 24139306 PMCID: PMC4016034 DOI: 10.1186/1742-4690-10-107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 01/06/2023] Open
Abstract
Background African non-human primates (NHPs) are natural hosts for simian immunodeficiency viruses (SIV), the zoonotic transmission of which led to the emergence of HIV-1 and HIV-2. However, our understanding of SIV diversity and evolution is limited by incomplete taxonomic and geographic sampling of NHPs, particularly in East Africa. In this study, we screened blood specimens from nine black-and-white colobus monkeys (Colobus guereza occidentalis) from Kibale National Park, Uganda, for novel SIVs using a combination of serology and “unbiased” deep-sequencing, a method that does not rely on genetic similarity to previously characterized viruses. Results We identified two novel and divergent SIVs, tentatively named SIVkcol-1 and SIVkcol-2, and assembled genomes covering the entire coding region for each virus. SIVkcol-1 and SIVkcol-2 were detected in three and four animals, respectively, but with no animals co-infected. Phylogenetic analyses showed that SIVkcol-1 and SIVkcol-2 form a lineage with SIVcol, previously discovered in black-and-white colobus from Cameroon. Although SIVkcol-1 and SIVkcol-2 were isolated from the same host population in Uganda, SIVkcol-1 is more closely related to SIVcol than to SIVkcol-2. Analysis of functional motifs in the extracellular envelope glycoprotein (gp120) revealed that SIVkcol-2 is unique among primate lentiviruses in containing only 16 conserved cysteine residues instead of the usual 18 or more. Conclusions Our results demonstrate that the genetic diversity of SIVs infecting black-and-white colobus across equatorial Africa is greater than previously appreciated and that divergent SIVs can co-circulate in the same colobine population. We also show that the use of “unbiased” deep sequencing for the detection of SIV has great advantages over traditional serological approaches, especially for studies of unknown or poorly characterized viruses. Finally, the detection of the first SIV containing only 16 conserved cysteines in the extracellular envelope protein gp120 further expands the range of functional motifs observed among SIVs and highlights the complex evolutionary history of simian retroviruses.
Collapse
|
87
|
West KA, Heymann EW, Mueller B, Gillespie TR. Patterns of Infection with Cryptosporidium sp. and Giardia sp. in Three Species of Free-Ranging Primates in the Peruvian Amazon. INT J PRIMATOL 2013. [DOI: 10.1007/s10764-013-9710-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
88
|
Sak B, Petrzelkova KJ, Kvetonova D, Mynarova A, Shutt KA, Pomajbikova K, Kalousova B, Modry D, Benavides J, Todd A, Kvac M. Long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western Lowland Gorillas (Gorilla gorilla gorilla) at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic. PLoS One 2013; 8:e71840. [PMID: 23951255 PMCID: PMC3737207 DOI: 10.1371/journal.pone.0071840] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/03/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Infectious diseases pose one of the greatest threats to endangered species, and a risk of gastrointestinal parasite transmission from humans to wildlife has always been considered as a major concern of tourism. Increased anthropogenic impact on primate populations may result in general changes in communities of their parasites, and also in a direct exchange of parasites between humans and primates. AIMS To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, we conducted a long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western lowland gorillas at different stages of the habituation process, humans, and other wildlife in Dzanga-Sangha Protected Areas in the Central African Republic. RESULTS We detected Encephalitozoon cuniculi genotypes I and II (7.5%), Enterocytozoon bieneusi genotype D and three novel genotypes (gorilla 1-3) (4.0%), Giardia intestinalis subgroup A II (2.0%) and Cryptosporidium bovis (0.5%) in gorillas, whereas in humans we found only G. intestinalis subgroup A II (2.1%). In other wild and domestic animals we recorded E. cuniculi genotypes I and II (2.1%), G. intestinalis assemblage E (0.5%) and C. muris TS03 (0.5%). CONCLUSION Due to the non-specificity of E. cuniculi genotypes we conclude that detection of the exact source of E. cuniculi infection is problematic. As Giardia intestinalis was recorded primarily in gorilla groups with closer human contact, we suggest that human-gorilla transmission has occurred. We call attention to a potentially negative impact of habituation on selected pathogens which might occur as a result of the more frequent presence of humans in the vicinity of both gorillas under habituation and habituated gorillas, rather than as a consequence of the close contact with humans, which might be a more traditional assumption. We encourage to observe the sections concerning hygiene from the IUCN best practice guidelines for all sites where increased human-gorilla contact occurs.
Collapse
Affiliation(s)
- Bohumil Sak
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Nolan MJ, Jex AR, Upcroft JA, Upcroft P, Gasser RB. Barcoding of Giardia duodenalis isolates and derived lines from an established cryobank by a mutation scanning-based approach. Electrophoresis 2013; 32:2075-90. [PMID: 23479788 DOI: 10.1002/elps.201100283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We barcoded 25 in vitro isolates (representing 92 samples) of Giardia duodenalis from humans and other animals, which have been assembled by the Upcroft team at the Queensland Institute of Medical Research over a period of almost three decades. We used mutation scanning-coupled sequencing of loci in the triosephosphate isomerase, glutamate dehydrogenase and β-giardin genes, combined with phylogenetic analysis, to genetically characterise them. Specifically, the isolates (n514) of G. duodenalis from humans from Australia (AD113; BRIS/83/HEPU/106; BRIS/87/HEPU/713; BRIS/89/HEPU/1003; BRIS/92/HEPU/1541; BRIS/92/HEPU/1590; BRIS/92/HEPU/2443; BRIS/93/HEPU/1706), Malaysia (KL/92/IMR/1106) and Afghanistan (WB), a cat from Australia (BAC2), a sheep from Canada (OAS1) and a sulphur-crested cockatoo from Australia (BRIS/95/HEPU/2041) represented assemblage A (sub-assemblage AI-1, AI-2 or AII-2); isolates (n510) from humans from Australia (BRIS/91/HEPU/1279; BRIS/92/HEPU/2342; BRIS/92/HEPU/2348; BRIS/93/HEPU/1638; BRIS/93/HEPU/1653; BRIS/93/HEPU/1705; BRIS/93/HEPU/1718; BRIS/93/HEPU/1727), Papua New Guinea (BRIS/92/HEPU/1487) and Canada (H7) represented assemblage B (sub-assemblage BIV) and an isolate from cattle from Australia (BRIS/92/HEPU/1709) had a match to assemblage E. Isolate BRIS/90/HEPU/1229 from a human from Australia was shown to represent a mixed population of assemblages A and B. These barcoded isolates (including stocks and derived lines) now allow direct comparisons of experimental data among laboratories and represent a massive resource for transcriptomic, proteomic, metabolic and functional genomic studies using advanced molecular technologies.
Collapse
Affiliation(s)
- Matthew J Nolan
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
90
|
Sá RM, Petrášová J, Pomajbíková K, Profousová I, Petrželková KJ, Sousa C, Cable J, Bruford MW, Modrý D. Gastrointestinal symbionts of chimpanzees in Cantanhez National Park, Guinea-Bissau with respect to habitat fragmentation. Am J Primatol 2013; 75:1032-41. [PMID: 23776090 DOI: 10.1002/ajp.22170] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 11/08/2022]
Abstract
One of the major factors threatening chimpanzees (Pan troglodytes verus) in Guinea-Bissau is habitat fragmentation. Such fragmentation may cause changes in symbiont dynamics resulting in increased susceptibility to infection, changes in host specificity and virulence. We monitored gastrointestinal symbiotic fauna of three chimpanzee subpopulations living within Cantanhez National Park (CNP) in Guinea Bissau in the areas with different levels of anthropogenic fragmentation. Using standard coproscopical methods (merthiolate-iodine formalin concentration and Sheather's flotation) we examined 102 fecal samples and identified at least 13 different symbiotic genera (Troglodytella abrassarti, Troglocorys cava, Blastocystis spp., Entamoeba spp., Iodamoeba butschlii, Giardia intestinalis, Chilomastix mesnili, Bertiella sp., Probstmayria gombensis, unidentified strongylids, Strongyloides stercoralis, Strongyloides fuelleborni, and Trichuris sp.). The symbiotic fauna of the CNP chimpanzees is comparable to that reported for other wild chimpanzee populations, although CNP chimpanzees have a higher prevalence of Trichuris sp. Symbiont richness was higher in chimpanzee subpopulations living in fragmented forests compared to the community inhabiting continuous forest area. We reported significantly higher prevalence of G. intestinalis in chimpanzees from fragmented areas, which could be attributed to increased contact with humans and livestock.
Collapse
Affiliation(s)
- Rui M Sá
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Pestehchian N, Rasekh H, Babaei Z, Yousefi HA, Eskandarian AA, Kazemi M, Akbari M. Identification of genotypes of Giardia duodenalis human isolates in Isfahan, Iran, using polymerase chain reaction - Restriction Fragment Length polymorphism. Adv Biomed Res 2012; 1:84. [PMID: 23946932 PMCID: PMC3724326 DOI: 10.4103/2277-9175.105166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 03/13/2012] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Giardia duodenalis is one of the most prevalent intestinal parasites of human. It also infects a wide range of mammals. Two genotype of G.duodenalis (A and B) were commonly reported among humans with different frequency of distribution in different geographical locations. This work was conducted to discriminate genotypes of Giardia duodenalis human isolates in Isfahan city using PCR- RFLP. This is the first molecular study on human isolates of G.duodenalis in the area. METHODS Samples were collected from different health centers of Isfahan city during June 2011 and February 2012. From 175 Giardia positive stool samples 67 specimens were selected randomly. Cysts of Giardia positive samples were concentrated by flotation sucrose. Extraction of genomic DNA from trophozoite and cysts was performed using QIAamp Stool Mini kit with a modified protocol. PCR- RFLP method was used to amplify a fragment of 458bp at the glutamate dehydrogenase locus, and restriction enzymes BspLI and RsaI differentiated human genotypes A and B and their subgroups. RESULTS PCR - RFLP assay of 67 isolates showed 40(59.7%) isolates as Genotype A group II, 23(34.32%) samples as Genotype B Group III and two (2.98%) sample as Genotype B group IV. Mixed genotype of (AII and B) was detected only in two isolates (2.98%). CONCLUSIONS PCR - RFLP assay targeting gdh locus is a sensitive tool and discriminates genotypes, sub genotypes and mixed type of G.duodenalis. Results of our study suggest both anthroponotic and zoonotic origins for the infections respectively.
Collapse
Affiliation(s)
- Nader Pestehchian
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | | | | | |
Collapse
|
92
|
Oates SC, Miller MA, Hardin D, Conrad PA, Melli A, Jessup DA, Dominik C, Roug A, Tinker MT, Miller WA. Prevalence, environmental loading, and molecular characterization of Cryptosporidium and Giardia isolates from domestic and wild animals along the Central California Coast. Appl Environ Microbiol 2012; 78:8762-72. [PMID: 23042185 PMCID: PMC3502930 DOI: 10.1128/aem.02422-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/02/2012] [Indexed: 11/20/2022] Open
Abstract
The risk of disease transmission from waterborne protozoa is often dependent on the origin (e.g., domestic animals versus wildlife), overall parasite load in contaminated waterways, and parasite genotype, with infections being linked to runoff or direct deposition of domestic animal and wildlife feces. Fecal samples collected from domestic animals and wildlife along the central California coast were screened to (i) compare the prevalence and associated risk factors for fecal shedding of Cryptosporidium and Giardia species parasites, (ii) evaluate the relative importance of animal host groups that contribute to pathogen loading in coastal ecosystems, and (iii) characterize zoonotic and host-specific genotypes. Overall, 6% of fecal samples tested during 2007 to 2010 were positive for Cryptosporidium oocysts and 15% were positive for Giardia cysts. Animal host group and age class were significantly associated with detection of Cryptosporidium and Giardia parasites in animal feces. Fecal loading analysis revealed that infected beef cattle potentially contribute the greatest parasite load relative to other host groups, followed by wild canids. Beef cattle, however, shed host-specific, minimally zoonotic Cryptosporidium and Giardia duodenalis genotypes, whereas wild canids shed potentially zoonotic genotypes, including G. duodenalis assemblages A and B. Given that the parasite genotypes detected in cattle were not zoonotic, the public health risk posed by protozoan parasite shedding in cattle feces may be lower than that posed by other animals, such as wild canids, that routinely shed zoonotic genotypes.
Collapse
Affiliation(s)
- Stori C. Oates
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
- Marine Wildlife Veterinary Care and Research Center, Department of Fish and Game, Santa Cruz, California, USA
| | - Melissa A. Miller
- Marine Wildlife Veterinary Care and Research Center, Department of Fish and Game, Santa Cruz, California, USA
| | - Dane Hardin
- Applied Marine Sciences, Santa Cruz, California, USA
| | - Patricia A. Conrad
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Ann Melli
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - David A. Jessup
- Marine Wildlife Veterinary Care and Research Center, Department of Fish and Game, Santa Cruz, California, USA
| | - Clare Dominik
- Applied Marine Sciences, Santa Cruz, California, USA
| | - Annette Roug
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - M. Tim Tinker
- U.S. Geological Survey, Western Ecological Research Center, Long Marine Laboratory, Santa Cruz, California, USA
| | - Woutrina A. Miller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
93
|
Ankarklev J, Hestvik E, Lebbad M, Lindh J, Kaddu-Mulindwa DH, Andersson JO, Tylleskär T, Tumwine JK, Svärd SG. Common coinfections of Giardia intestinalis and Helicobacter pylori in non-symptomatic Ugandan children. PLoS Negl Trop Dis 2012; 6:e1780. [PMID: 22953010 PMCID: PMC3429385 DOI: 10.1371/journal.pntd.0001780] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/23/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The protozoan parasite Giardia intestinalis and the pathogenic bacterium Helicobacter pylori are well known for their high prevalences in human hosts worldwide. The prevalence of both organisms is known to peak in densely populated, low resource settings and children are infected early in life. Different Giardia genotypes/assemblages have been associated with different symptoms and H. pylori with induction of cancer. Despite this, not much data are available from sub-Saharan Africa with regards to the prevalence of different G. intestinalis assemblages and their potential association with H. pylori infections. METHODOLOGY/PRINCIPAL FINDINGS Fecal samples from 427 apparently healthy children, 0-12 years of age, living in urban Kampala, Uganda were analyzed for the presence of H. pylori and G. intestinalis. G. intestinalis was found in 86 (20.1%) out of the children and children age 1<5 years had the highest rates of colonization. H. pylori was found in 189 (44.3%) out of the 427 children and there was a 3-fold higher risk of concomitant G. intestinalis and H. pylori infections compared to non-concomitant G. intestinalis infection, OR = 2.9 (1.7-4.8). No significant association was found in the studied population with regard to the presence of Giardia and gender, type of toilet, source of drinking water or type of housing. A panel of 45 G. intestinalis positive samples was further analyzed using multi-locus genotyping (MLG) on three loci, combined with assemblage-specific analyses. Giardia MLG analysis yielded a total of five assemblage AII, 25 assemblage B, and four mixed assemblage infections. The assemblage B isolates were highly genetically variable but no significant association was found between Giardia assemblage type and H. pylori infection. CONCLUSIONS/SIGNIFICANCE This study shows that Giardia assemblage B dominates in children in Kampala, Uganda and that the presence of H. pylori is an associated risk factor for G. intestinalis infection.
Collapse
Affiliation(s)
- Johan Ankarklev
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Betson M, Sousa-Figueiredo JC, Kabatereine NB, Stothard JR. Use of fecal occult blood tests as epidemiologic indicators of morbidity associated with intestinal schistosomiasis during preventive chemotherapy in young children. Am J Trop Med Hyg 2012; 87:694-700. [PMID: 22927499 PMCID: PMC3516321 DOI: 10.4269/ajtmh.2012.12-0059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There is a need for field-applicable markers to assess morbidity associated with intestinal schistosomiasis, especially in the context of preventive chemotherapy in young children. We investigated whether fecal occult blood (FOB) point-of-care tests could be used to assess intestinal pathology over a 12-month period in a cohort of 382 children (< 5 years of age). We found a strong association between egg-patent schistosomiasis and FOB at baseline (odds ratio [OR] = 3.1, P < 0.0001), 6 months (OR = 3.4, P < 0.0001), and 12 months (OR = 3.5, P < 0.0001), despite repeated chemotherapy. There were tendencies for prevalence of FOB to decrease in children who became egg negative and increase in those who became egg positive. Our results demonstrate overt disease in children less than five years of age. We therefore propose that FOB is useful for assessing dynamics of intestinal morbidity in young children at the community level and monitoring changes in morbidity after mass chemotherapy.
Collapse
Affiliation(s)
- Martha Betson
- *Address correspondence to Martha Betson, Disease Control Strategy Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom. E-mail:
| | | | | | | |
Collapse
|
95
|
Lim YAL, Mahdy MAK, Tan TK, Goh XT, Jex AR, Nolan MJ, Sharma RSK, Gasser RB. First molecular characterization of Giardia duodenalis from goats in Malaysia. Mol Cell Probes 2012; 27:28-31. [PMID: 22971518 DOI: 10.1016/j.mcp.2012.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/16/2022]
Abstract
In the present study, 310 faecal samples from goats from eight different farms in Malaysia were tested for the presence of Giardia using a PCR-coupled approach. The nested PCR for SSU amplified products of the expected size (∼200 bp) from 21 of 310 (6.8%) samples. Sixteen of these 21 products could be sequenced successfully and represented six distinct sequence types. Phylogenetic analysis of the SSU sequence data using Bayesian Inference (BI) identified Giardia assemblages A, B and E. The identification of the 'zoonotic' assemblages A and B suggests that Giardia-infected goats represent a possible reservoir for human giardiasis in Malaysia.
Collapse
Affiliation(s)
- Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Fletcher SM, Stark D, Harkness J, Ellis J. Enteric protozoa in the developed world: a public health perspective. Clin Microbiol Rev 2012; 25:420-49. [PMID: 22763633 PMCID: PMC3416492 DOI: 10.1128/cmr.05038-11] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Several enteric protozoa cause severe morbidity and mortality in both humans and animals worldwide. In developed settings, enteric protozoa are often ignored as a cause of diarrheal illness due to better hygiene conditions, and as such, very little effort is used toward laboratory diagnosis. Although these protozoa contribute to the high burden of infectious diseases, estimates of their true prevalence are sometimes affected by the lack of sensitive diagnostic techniques to detect them in clinical and environmental specimens. Despite recent advances in the epidemiology, molecular biology, and treatment of protozoan illnesses, gaps in knowledge still exist, requiring further research. There is evidence that climate-related changes will contribute to their burden due to displacement of ecosystems and human and animal populations, increases in atmospheric temperature, flooding and other environmental conditions suitable for transmission, and the need for the reuse of alternative water sources to meet growing population needs. This review discusses the common enteric protozoa from a public health perspective, highlighting their epidemiology, modes of transmission, prevention, and control. It also discusses the potential impact of climate changes on their epidemiology and the issues surrounding waterborne transmission and suggests a multidisciplinary approach to their prevention and control.
Collapse
Affiliation(s)
| | - Damien Stark
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australia
- St. Vincent's Hospital, Sydney, Division of Microbiology, SydPath, Darlinghurst, NSW, Australia
| | - John Harkness
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australia
- St. Vincent's Hospital, Sydney, Division of Microbiology, SydPath, Darlinghurst, NSW, Australia
| | - John Ellis
- The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
97
|
Ignatius R, Gahutu JB, Klotz C, Steininger C, Shyirambere C, Lyng M, Musemakweri A, Aebischer T, Martus P, Harms G, Mockenhaupt FP. High prevalence of Giardia duodenalis Assemblage B infection and association with underweight in Rwandan children. PLoS Negl Trop Dis 2012; 6:e1677. [PMID: 22720102 PMCID: PMC3373622 DOI: 10.1371/journal.pntd.0001677] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 04/24/2012] [Indexed: 01/25/2023] Open
Abstract
Background Giardia duodenalis is highly endemic in East Africa but its effects on child health, particularly of submicroscopic infections, i.e., those below the threshold of microscopy, and of genetic subgroups (assemblages), are not well understood. We aimed at addressing these questions and at examining epidemiological characteristics of G. duodenalis in southern highland Rwanda. Methodology/Principal Findings In 583 children <5 years of age from communities and health facilities, intestinal parasites were assessed by triplicate light microscopy and by PCR assays, and G. duodenalis assemblages were genotyped. Cluster effects of villages were taken into account in statistical analysis. The prevalence of G. duodenalis as detected by microscopy was 19.8% but 60.1% including PCR results. Prevalence differed with residence, increased with age, and was reduced by breastfeeding. In 492 community children without, with submicroscopic and with microscopic infection, underweight (weight-for-age z-score <−2 standard deviations) was observed in 19.7%, 22.1%, and 33.1%, respectively, and clinically assessed severe malnutrition in 4.5%, 9.5%, and 16.7%. Multivariate analysis identified microscopically detectable G. duodenalis infection as an independent predictor of underweight and clinically assessed severe malnutrition. Submicroscopic infection showed respective trends. Overall, G. duodenalis was not associated with gastrointestinal symptoms but assemblages A parasites (proportion, 13%) were increased among children with vomiting and abdominal pain. Conclusions/Significance The prevalence of G. duodenalis in high-endemicity areas may be greatly underestimated by light microscopy, particularly when only single stool samples are analysed. Children with submicroscopic infections show limited overt manifestation, but constitute unrecognized reservoirs of transmission. The predominance of assemblage B in Rwanda may be involved in the seemingly unimposing manifestation of G. duodenalis infection. However, the association with impaired child growth points to its actual relevance. Longitudinal studies considering abundant submicroscopic infections are needed to clarify the actual contribution of G. duodenalis to morbidity in areas of high endemicity. Giardia duodenalis is a protozoan parasite causing gastroenteritis. Although the parasite occurs worldwide, its regional prevalence varies considerably. Using PCR as a highly sensitive molecular diagnostic tool, we detected G. duodenalis in 60% of 583 children younger than five years in southern Rwanda. It was by far the most frequent intestinal parasite detected in this population. Importantly, two out of three infections would have been undetected if only the commonly used light microscopy had been applied. Genotyping revealed the presence of two distinct types of parasites, and only the infrequent subtype showed a weak association with gastrointestinal symptoms. However, G. duodenalis infection was associated with underweight and clinically assessed severe malnutrition. The data call for the establishment of more sensitive than light microscopy, yet simple diagnostic tools to identify infected children as well as for the consideration of abundant submicroscopic infections in evaluating the significance of G. duodenalis in high endemicity areas.
Collapse
Affiliation(s)
- Ralf Ignatius
- Institute of Tropical Medicine and International Health, Charité – University Medicine Berlin, Berlin, Germany
| | - Jean Bosco Gahutu
- University Teaching Hospital of Butare, Faculty of Medicine, National University of Rwanda, Butare, Rwanda
| | - Christian Klotz
- Robert Koch-Institute, Department of Mycology and Parasitology, Berlin, Germany
| | - Christian Steininger
- Institute of Tropical Medicine and International Health, Charité – University Medicine Berlin, Berlin, Germany
| | - Cyprien Shyirambere
- University Teaching Hospital of Butare, Faculty of Medicine, National University of Rwanda, Butare, Rwanda
| | - Michel Lyng
- Institute of Tropical Medicine and International Health, Charité – University Medicine Berlin, Berlin, Germany
| | - Andre Musemakweri
- University Teaching Hospital of Butare, Faculty of Medicine, National University of Rwanda, Butare, Rwanda
| | - Toni Aebischer
- Robert Koch-Institute, Department of Mycology and Parasitology, Berlin, Germany
| | - Peter Martus
- Institute of Clinical Epidemiology and Applied Biometry, Eberhard Karls University, Tübingen, Germany
| | - Gundel Harms
- Institute of Tropical Medicine and International Health, Charité – University Medicine Berlin, Berlin, Germany
| | - Frank P. Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité – University Medicine Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
98
|
Ignatius R, Gahutu JB, Klotz C, Steininger C, Shyirambere C, Lyng M, Musemakweri A, Aebischer T, Martus P, Harms G, Mockenhaupt FP. High prevalence of Giardia duodenalis Assemblage B infection and association with underweight in Rwandan children. PLoS Negl Trop Dis 2012. [PMID: 22720102 DOI: 10.137/journal.pntd.0001677.epub] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Giardia duodenalis is highly endemic in East Africa but its effects on child health, particularly of submicroscopic infections, i.e., those below the threshold of microscopy, and of genetic subgroups (assemblages), are not well understood. We aimed at addressing these questions and at examining epidemiological characteristics of G. duodenalis in southern highland Rwanda. METHODOLOGY/PRINCIPAL FINDINGS In 583 children <5 years of age from communities and health facilities, intestinal parasites were assessed by triplicate light microscopy and by PCR assays, and G. duodenalis assemblages were genotyped. Cluster effects of villages were taken into account in statistical analysis. The prevalence of G. duodenalis as detected by microscopy was 19.8% but 60.1% including PCR results. Prevalence differed with residence, increased with age, and was reduced by breastfeeding. In 492 community children without, with submicroscopic and with microscopic infection, underweight (weight-for-age z-score <-2 standard deviations) was observed in 19.7%, 22.1%, and 33.1%, respectively, and clinically assessed severe malnutrition in 4.5%, 9.5%, and 16.7%. Multivariate analysis identified microscopically detectable G. duodenalis infection as an independent predictor of underweight and clinically assessed severe malnutrition. Submicroscopic infection showed respective trends. Overall, G. duodenalis was not associated with gastrointestinal symptoms but assemblages A parasites (proportion, 13%) were increased among children with vomiting and abdominal pain. CONCLUSIONS/SIGNIFICANCE The prevalence of G. duodenalis in high-endemicity areas may be greatly underestimated by light microscopy, particularly when only single stool samples are analysed. Children with submicroscopic infections show limited overt manifestation, but constitute unrecognized reservoirs of transmission. The predominance of assemblage B in Rwanda may be involved in the seemingly unimposing manifestation of G. duodenalis infection. However, the association with impaired child growth points to its actual relevance. Longitudinal studies considering abundant submicroscopic infections are needed to clarify the actual contribution of G. duodenalis to morbidity in areas of high endemicity.
Collapse
Affiliation(s)
- Ralf Ignatius
- Institute of Tropical Medicine and International Health, Charité-University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Epidemiology and molecular relationships of Cryptosporidium spp. in people, primates, and livestock from Western Uganda. PLoS Negl Trop Dis 2012; 6:e1597. [PMID: 22506085 PMCID: PMC3323507 DOI: 10.1371/journal.pntd.0001597] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 02/22/2012] [Indexed: 11/19/2022] Open
Abstract
Background Cryptosporidium is one of the most common parasitic diarrheal agents in the world and is a known zoonosis. We studied Cryptosporidium in people, livestock, and non-human primates in the region of Kibale National Park, Uganda. Land use change near the park has resulted in fragmented forest patches containing small, remnant populations of wild primates that interact intensively with local people and livestock. Our goal was to investigate risk factors for Cryptosporidium infection and to assess cross-species transmission using molecular methods. Methodology/Principal Findings Diagnostic PCR revealed a prevalence of Cryptosporidium of 32.4% in humans, 11.1% in non-human primates, and 2.2% in livestock. In the case of humans, residence in one particular community was associated with increased risk of infection, as was fetching water from an open water source. Although 48.5% of infected people reported gastrointestinal symptoms, this frequency was not significantly different in people who tested negative (44.7%) for Cryptosporidium, nor was co-infection with Giardia duodenalis associated with increased reporting of gastrointestinal symptoms. Fecal consistency was no different in infected versus uninfected people or animals. DNA sequences of the Cryptosporidium oocyst wall protein gene placed all infections within a well-supported C. parvum/C. hominis clade. However, the only two sequences recovered from primates in the core of the park's protected area fell into a divergent sub-clade and were identical to published sequences from C. parvum, C. hominis, and C. cuniculus, suggesting the possibility of a separate sylvatic transmission cycle. Conclusions/Significance Cryptosporidium may be transmitted frequently among species in western Uganda where people, livestock, and wildlife interact intensively as a result of anthropogenic changes to forests, but the parasite may undergo more host-specific transmission where such interactions do not occur. The parasite does not appear to have strong effects on human or animal health, perhaps because of persistent low-level shedding and immunity. Cryptosporidium is a common gastrointestinal parasite known for its zoonotic potential. We found Cryptosporidium in 32.4% of people, 11.1% of non-human primates, and 2.2% of livestock in the region of Kibale National Park, Uganda. In people, infection rates were higher in one community than elsewhere, and fetching water from an open water source increased the probability of infection. Phylogenetic analyses identified clusters of Cryptosporidium with mixed host origins in people, primates, and livestock outside the park; however, parasites from primates inside the park were genetically divergent, suggesting a separate sylvatic transmission cycle. Infection was not associated with clinical disease in people, even in the case of co-infection with the gastrointestinal parasite Giardia duodenalis. Parasites such as Cryptosporidium may be maintained through frequent cross-species transmission in tropical settings where people, livestock, and wildlife interact frequently, but the parasite may undergo more host-specific transmission where such interactions do not occur. Persistent low-level shedding and immunity may limit the clinical effects of infection in such settings.
Collapse
|
100
|
Veronesi F, Piergili Fioretti D, Morganti G, Bietta A, Moretta I, Moretti A, Traversa D. Occurrence of Giardia duodenalis infection in chinchillas (Chincilla lanigera) from Italian breeding facilities. Res Vet Sci 2012; 93:807-10. [PMID: 22265218 DOI: 10.1016/j.rvsc.2011.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/20/2011] [Accepted: 12/23/2011] [Indexed: 11/15/2022]
Abstract
The present work investigated the occurrence of Giardia infection in Chinchilla lanigera reared in three Italian breeding facilities and determined their role as potential zoonotic reservoir. One hundred and four fecal samples were tested for the presence of Giardia spp. cysts using a Direct Fluorescent Assay (DFA). A high positivity rate (39.4%) was found despite all animals were asymptomatic at the time of sampling. Thirty-one positive samples were genetically characterized by sequence analysis of the ITS1-5.8S-ITS2 region of the Giardia ribosomal DNA. Assemblages B (29 isolates) and C (two isolates) were identified. These results showed that Giardia infection can be common in chinchillas, thus spurring further molecular epizootiological studies of the infection to assess the zoonotic potential or host specificity of their isolates, to determine the source of infections, to identify the routes of transmission, and to control the infection among animal populations.
Collapse
Affiliation(s)
- F Veronesi
- Department of Biopathological Sciences and Hygiene of Animal and Food Productions, Section of Parasitology, Faculty of Veterinary Medicine, University of Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|