51
|
Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep 2017; 7:44929. [PMID: 28322317 PMCID: PMC5359561 DOI: 10.1038/srep44929] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/16/2017] [Indexed: 12/29/2022] Open
Abstract
Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus.
Collapse
|
52
|
Koop G, Vrieling M, Storisteanu DML, Lok LSC, Monie T, van Wigcheren G, Raisen C, Ba X, Gleadall N, Hadjirin N, Timmerman AJ, Wagenaar JA, Klunder HM, Fitzgerald JR, Zadoks R, Paterson GK, Torres C, Waller AS, Loeffler A, Loncaric I, Hoet AE, Bergström K, De Martino L, Pomba C, de Lencastre H, Ben Slama K, Gharsa H, Richardson EJ, Chilvers ER, de Haas C, van Kessel K, van Strijp JAG, Harrison EM, Holmes MA. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci Rep 2017; 7:40660. [PMID: 28106142 PMCID: PMC5247767 DOI: 10.1038/srep40660] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/08/2016] [Indexed: 11/09/2022] Open
Abstract
Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific. Here, we identify and characterise a novel S. aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin specificity is driven solely by the S-component.
Collapse
Affiliation(s)
- Gerrit Koop
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Manouk Vrieling
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Daniel M. L. Storisteanu
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Laurence S. C. Lok
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Tom Monie
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Glenn van Wigcheren
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Claire Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Nicholas Gleadall
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Nazreen Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Arjen J. Timmerman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Central Veterinary Institute of Wageningen UR, 8200 AB Lelystad, The Netherlands
| | - Heleen M. Klunder
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, EH25 9RG, Edinburgh, United Kingdom
| | - Ruth Zadoks
- Moredun Research Institute, Bush Loan, Penicuik EH26 0PZ, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, Logroño 26006, Spain
| | - Andrew S. Waller
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, United Kingdom
| | - Anette Loeffler
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, North Mymms, Hertfordshire AL9 7TA, United Kingdom
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Armando E. Hoet
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
- Veterinary Public Health Program, College of Public Health, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Karin Bergström
- Department of Animal Health and Antimicrobial Strategies, SVA, SE-751 89 Uppsala, Sweden
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, Infectious Diseases Section, University of Naples “Federico II”, 80137 Naples, Italy
| | - Constança Pomba
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 LISBOA, Portugal
| | - Hermínia de Lencastre
- Laboratório de Genética Molecular, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB/UNL), Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY10065, USA
| | - Karim Ben Slama
- Laboratoire de Microorganismes et Biomolécules actives, Département de Biologie, Faculté de Sciences de Tunis, 2092 Tunis, Tunisia
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisia
| | - Haythem Gharsa
- Laboratoire de Microorganismes et Biomolécules actives, Département de Biologie, Faculté de Sciences de Tunis, 2092 Tunis, Tunisia
| | - Emily J. Richardson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Carla de Haas
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Kok van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jos A. G. van Strijp
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| |
Collapse
|
53
|
Molecular epidemiological analysis to assess the influence of pet-ownership in the biodiversity of Staphylococcus aureus and MRSA in dog- and non-dog-owning healthy households. Epidemiol Infect 2017; 145:1135-1147. [PMID: 28091338 DOI: 10.1017/s0950268816003228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been suggested that zoonotic transmission of Staphylococcus aureus (SA) and methicillin-resistant S. aureus (MRSA) can occur between owners and their pets within the same household. However, the influence that pet-ownership could have in the biodiversity of SA/MRSA strains circulating among owners is not fully understood. The objective of this study was to perform a molecular epidemiological analysis to evaluate and compare the biodiversity of SA/MRSA strains in dog-owning and non-dog-owning healthy households within the same community. Antimicrobial resistance, SCCmec type, USA type and clonality were assessed. Overall, 33·1% (165/499) of human subjects carried SA and 2·8% (14/499) carried MRSA. Among dogs, 7·1% (8/113) carried SA but none were MRSA positive. No difference was detected in the diversity index of SA/MRSA pulsotypes between dog-owning and non-dog-owning households; but, a marked variation was still observed in the pulsotypes circulating in each type of household. Additionally, simultaneous carriage of the same SA pulsotype in owner(s) and dog was observed in 57% of households with positive humans and pets. These results demonstrate that dogs can indeed participate in the circulation of SA/MRSA pulsotypes within a home and that the presence of a pet does not seem to favour certain strains within their household.
Collapse
|
54
|
rRNA Operon Copy Number Can Explain the Distinct Epidemiology of Hospital-Associated Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2016; 60:7313-7320. [PMID: 27671073 DOI: 10.1128/aac.01613-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/21/2016] [Indexed: 11/20/2022] Open
Abstract
The distinct epidemiology of original hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) and early community-associated MRSA (CA-MRSA) is largely unexplained. S. aureus carries either five or six rRNA operon copies. Evidence is provided for a scenario in which MRSA has adapted to the hospital environment by rRNA operon loss (six to five copies) due to antibiotic pressure. Early CA-MRSA, in contrast, results from wild-type methicillin-susceptible S. aureus (MSSA) that acquired mecA without loss of an rRNA operon. Of the HA-MRSA isolates (n = 77), 67.5% had five rRNA operon copies, compared to 23.2% of the CA-MRSA isolates (n = 69) and 7.7% of MSSA isolates (n = 195) (P < 0.001). In addition, 105 MSSA isolates from cystic fibrosis patients were tested, because these patients are repeatedly treated with antibiotics; 32.4% of these isolates had five rRNA operon copies. For all subsets, a correlation between resistance profile and rRNA copy number was found. Furthermore, we showed that in vitro antibiotic pressure may result in rRNA operon copy loss. We also showed that without antibiotic pressure, S. aureus isolates containing six rRNA copies are more fit than isolates with five copies. We conclude that HA-MRSA and cystic fibrosis isolates most likely have adapted to an environment with high antibiotic pressure by the loss of an rRNA operon copy. This loss has facilitated resistance development, which promoted survival in these niches. However, strain fitness decreased, which explains their lack of success in the community. In contrast, CA-MRSA isolates retained six rRNA operon copies, rendering them fitter and thereby able to survive and spread in the community.
Collapse
|
55
|
Aires-de-Sousa M. Methicillin-resistant Staphylococcus aureus among animals: current overview. Clin Microbiol Infect 2016; 23:373-380. [PMID: 27851997 DOI: 10.1016/j.cmi.2016.11.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/04/2023]
Abstract
Currently, methicillin-resistant Staphylococcus aureus (MRSA) is a universal threat. After being well established in the healthcare setting, it has emerged in the community among people with no risk factors for MRSA acquisition, therefore imposing a new threat. The subsequent detection of MRSA colonizing or infecting animals as well as in food of animal origin was of major concern, revealing new reservoirs for MRSA. The major MRSA clonal lineages circulating in the different settings, i.e. in hospitals, in the community and among animals, are described here, differentiating between clones colonizing companion and food-chain animals. Particular attention is given to the widely spread livestock-associated MRSA clonal complex (CC) 398, which is mainly associated with professional exposure but may be of high pathogenicity. The recent detection of a mecA homologue, designated mecC, with a wide geographical distribution in Europe, and including a large diversity of hosts (food-chain, companion and wildlife animals and also detected in water samples) adds to the threat. Domestication as well as globalization of the livestock industry have intensified exchanges between human and animal bacteria. We report here several cases of transmission of MRSA between companion or food-chain animals and humans, as well as some MRSA clones of human origin that have adapted to new animal hosts eventually by losing useless virulence factors or acquiring new mobile genetic elements.
Collapse
Affiliation(s)
- M Aires-de-Sousa
- Escola Superior de Saúde da Cruz Vermelha Portuguesa, Lisboa, Portugal.
| |
Collapse
|
56
|
Kümmel J, Stessl B, Gonano M, Walcher G, Bereuter O, Fricker M, Grunert T, Wagner M, Ehling-Schulz M. Staphylococcus aureus Entrance into the Dairy Chain: Tracking S. aureus from Dairy Cow to Cheese. Front Microbiol 2016; 7:1603. [PMID: 27790200 PMCID: PMC5061776 DOI: 10.3389/fmicb.2016.01603] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/26/2016] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is one of the most important contagious mastitis pathogens in dairy cattle. Due to its zoonotic potential, control of S. aureus is not only of great economic importance in the dairy industry but also a significant public health concern. The aim of this study was to decipher the potential of bovine udder associated S. aureus as reservoir for S. aureus contamination in dairy production and processing. From 18 farms, delivering their milk to an alpine dairy plant for the production of smeared semi-hard and hard cheese. one thousand hundred seventy six one thousand hundred seventy six quarter milk (QM) samples of all cows in lactation (n = 294) and representative samples form bulk tank milk (BTM) of all farms were surveyed for coagulase positive (CPS) and coagulase negative Staphylococci (CNS). Furthermore, samples from different steps of the cheese manufacturing process were tested for CPS and CNS. As revealed by chemometric-assisted FTIR spectroscopy and molecular subtyping (spa typing and multi locus sequence typing), dairy cattle represent indeed an important, yet underreported, entrance point of S. aureus into the dairy chain. Our data clearly show that certain S. aureus subtypes are present in primary production as well as in the cheese processing at the dairy plant. However, although a considerable diversity of S. aureus subtypes was observed in QM and BTM at the farms, only certain S. aureus subtypes were able to enter and persist in the cheese manufacturing at the dairy plant and could be isolated from cheese until day 14 of ripening. Farm strains belonging to the FTIR cluster B1 and B3, which show genetic characteristics (t2953, ST8, enterotoxin profile: sea/sed/sej) of the recently described S. aureus genotype B, most successfully contaminated the cheese production at the dairy plant. Thus, our study fosters the hypothesis that genotype B S. aureus represent a specific challenge in control of S. aureus in the dairy chain that requires effective clearance strategies and hygienic measures already in primary production to avoid a potential transfer of enterotoxic strains or enterotoxins into the dairy processing and the final retail product.
Collapse
Affiliation(s)
- Judith Kümmel
- Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary MedicineVienna, Austria; Clinic for Ruminants, Department for Farm Animals and Herd Management, University of Veterinary MedicineVienna, Austria
| | - Beatrix Stessl
- Department for Farm Animals and Herd Management, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Austria
| | - Monika Gonano
- Department for Farm Animals and Herd Management, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Austria
| | - Georg Walcher
- Department for Farm Animals and Herd Management, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Austria
| | | | - Martina Fricker
- Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Austria
| | - Tom Grunert
- Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Austria
| | - Martin Wagner
- Department for Farm Animals and Herd Management, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Austria
| | - Monika Ehling-Schulz
- Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
57
|
Abstract
Staphylococcus aureus is a major human pathogen and an important cause of livestock infections. The first S. aureus genomes to be published, 15 years ago, provided the first view of genome structure and gene content. Since then, thousands of genomes from a wide array of strains from different sources have been sequenced. Comparison of these sequences has resulted in broad insights into population structure, bacterial evolution, clone emergence and expansion, and the molecular basis of niche adaptation. Furthermore, this information is now being applied clinically in outbreak investigations to inform infection control measures and to determine appropriate treatment regimens. In this review, we summarize some of the broad insights into S. aureus biology gained from the analysis of genomes and discuss future directions and opportunities in this dynamic field of research.
Collapse
Affiliation(s)
- J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom;
| | - Matthew T G Holden
- School of Medicine, University of St. Andrews, St. Andrews, Fife KY16 9S5, United Kingdom;
| |
Collapse
|
58
|
Whole-Genome Sequencing for Routine Pathogen Surveillance in Public Health: a Population Snapshot of Invasive Staphylococcus aureus in Europe. mBio 2016; 7:mBio.00444-16. [PMID: 27150362 PMCID: PMC4959656 DOI: 10.1128/mbio.00444-16] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The implementation of routine whole-genome sequencing (WGS) promises to transform our ability to monitor the emergence and spread of bacterial pathogens. Here we combined WGS data from 308 invasive Staphylococcus aureus isolates corresponding to a pan-European population snapshot, with epidemiological and resistance data. Geospatial visualization of the data is made possible by a generic software tool designed for public health purposes that is available at the project URL (http://www.microreact.org/project/EkUvg9uY?tt=rc). Our analysis demonstrates that high-risk clones can be identified on the basis of population level properties such as clonal relatedness, abundance, and spatial structuring and by inferring virulence and resistance properties on the basis of gene content. We also show that in silico predictions of antibiotic resistance profiles are at least as reliable as phenotypic testing. We argue that this work provides a comprehensive road map illustrating the three vital components for future molecular epidemiological surveillance: (i) large-scale structured surveys, (ii) WGS, and (iii) community-oriented database infrastructure and analysis tools. The spread of antibiotic-resistant bacteria is a public health emergency of global concern, threatening medical intervention at every level of health care delivery. Several recent studies have demonstrated the promise of routine whole-genome sequencing (WGS) of bacterial pathogens for epidemiological surveillance, outbreak detection, and infection control. However, as this technology becomes more widely adopted, the key challenges of generating representative national and international data sets and the development of bioinformatic tools to manage and interpret the data become increasingly pertinent. This study provides a road map for the integration of WGS data into routine pathogen surveillance. We emphasize the importance of large-scale routine surveys to provide the population context for more targeted or localized investigation and the development of open-access bioinformatic tools to provide the means to combine and compare independently generated data with publicly available data sets.
Collapse
|
59
|
Virulence gene profiles in Staphylococcus aureus isolated from cows with subclinical mastitis in eastern Poland. J DAIRY RES 2016; 83:228-35. [PMID: 27032339 DOI: 10.1017/s002202991600008x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Staphylococcus aureus is arguably the most important pathogen involved in bovine mastitis. The aim of this study was to determine the virulence gene profiles of 124 Staph. aureus isolates from subclinical mastitis in cows in eastern Poland. The presence of 30 virulence genes encoding adhesins, proteases and superantigenic toxins was investigated by PCR. The 17 different combinations of adhesin genes were identified. Occurrence of eno (91·1%) and fib (82·3%) genes was found to be common. The frequency of other adhesion genes fnbA, fnbB, ebps were 14·5, 50, 25%, respectively, and for cna and bbp were 1·6%. The etA and etD genes, encoding exfoliative toxins, were present in genomes of 5·6 and 8·9% isolates, respectively. The splA and sspA, encoding serine protease, were detected in above 90% isolates. The most frequent enterotoxin genes were sei (21%), sem (19·4%), sen (19·4%), seg (18·5%) and seo (13·7%). The tst gene was harboured by 2·4% isolates. The 19 combinations of the superantigenic toxin genes were obtained and found in 35·5% of isolates. Three of them (seg, sei, sem, sen, seo; sec, seg, sei, sem, sen, seo and seg, sei, sem, sen) were the most frequent and found in 16·1% of the isolates. The most common virulotype, present in 17·7% of the isolates, was fib, eno, fnbB, splA, splE, sspA. The results indicate the variation in the presence of virulence genes in Staph. aureus isolates and considerable diversity of isolates that are able to cause mastitis in cows.
Collapse
|
60
|
Moon BY, Park JY, Robinson DA, Thomas JC, Park YH, Thornton JA, Seo KS. Mobilization of Genomic Islands of Staphylococcus aureus by Temperate Bacteriophage. PLoS One 2016; 11:e0151409. [PMID: 26953931 PMCID: PMC4783081 DOI: 10.1371/journal.pone.0151409] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/26/2016] [Indexed: 01/21/2023] Open
Abstract
The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaβ, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaβ by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus.
Collapse
Affiliation(s)
- Bo Youn Moon
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America
- Department of Microbiology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, 151–742, South Korea
| | - Joo Youn Park
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - D. Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Jonathan C. Thomas
- Department of Biology, University of Bolton, Bolton, Greater Manchester, BL3 5AB United Kingdom
| | - Yong Ho Park
- Department of Microbiology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, 151–742, South Korea
| | - Justin A. Thornton
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Keun Seok Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America
- * E-mail:
| |
Collapse
|
61
|
Davis RW, Brannen AD, Hossain MJ, Monsma S, Bock PE, Nahrendorf M, Mead D, Lodes M, Liles MR, Panizzi P. Complete genome of Staphylococcus aureus Tager 104 provides evidence of its relation to modern systemic hospital-acquired strains. BMC Genomics 2016; 17:179. [PMID: 26940863 PMCID: PMC4778325 DOI: 10.1186/s12864-016-2433-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/03/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) infections range in severity due to expression of certain virulence factors encoded on mobile genetic elements (MGE). As such, characterization of these MGE, as well as single nucleotide polymorphisms, is of high clinical and microbiological importance. To understand the evolution of these dangerous pathogens, it is paramount to define reference strains that may predate MGE acquisition. One such candidate is S. aureus Tager 104, a previously uncharacterized strain isolated from a patient with impetigo in 1947. RESULTS We show here that S. aureus Tager 104 can survive in the bloodstream and infect naïve organs. We also demonstrate a procedure to construct and validate the assembly of S. aureus genomes, using Tager 104 as a proof-of-concept. In so doing, we bridged confounding gap regions that limited our initial attempts to close this 2.82 Mb genome, through integration of data from Illumina Nextera paired-end, PacBio RS, and Lucigen NxSeq mate-pair libraries. Furthermore, we provide independent confirmation of our segmental arrangement of the Tager 104 genome by the sole use of Lucigen NxSeq libraries filled by paired-end MiSeq reads and alignment with SPAdes software. Genomic analysis of Tager 104 revealed limited MGE, and a νSaβ island configuration that is reminiscent of other hospital acquired S. aureus genomes. CONCLUSIONS Tager 104 represents an early-branching ancestor of certain hospital-acquired strains. Combined with its earlier isolation date and limited content of MGE, Tager 104 can serve as a viable reference for future comparative genome studies.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| | - Andrew D Brannen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| | - Mohammad J Hossain
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA.
| | - Scott Monsma
- Lucigen Corporation, 2905 Parmenter St, Middleton, WI, 53562, USA.
| | - Paul E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St., Boston, MA, 02114, USA.
| | - David Mead
- Lucigen Corporation, 2905 Parmenter St, Middleton, WI, 53562, USA.
| | - Michael Lodes
- Lucigen Corporation, 2905 Parmenter St, Middleton, WI, 53562, USA.
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA.
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| |
Collapse
|
62
|
Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 2016; 13:641-50. [PMID: 26373372 DOI: 10.1038/nrmicro3527] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Unlike lytic phages, temperate phages that enter lysogeny maintain a long-term association with their bacterial host. In this context, mutually beneficial interactions can evolve that support efficient reproduction of both phages and bacteria. Temperate phages are integrated into the bacterial chromosome as large DNA insertions that can disrupt gene expression, and they may pose a fitness burden on the cell. However, they have also been shown to benefit their bacterial hosts by providing new functions in a bacterium-phage symbiotic interaction termed lysogenic conversion. In this Opinion article, we discuss another type of bacterium-phage interaction, active lysogeny, in which phages or phage-like elements are integrated into the bacterial chromosome within critical genes or operons and serve as switches that regulate bacterial genes via genome excision.
Collapse
Affiliation(s)
- Ron Feiner
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Argov
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lev Rabinovich
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nadejda Sigal
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anat A Herskovits
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
63
|
Bouchard DS, Seridan B, Saraoui T, Rault L, Germon P, Gonzalez-Moreno C, Nader-Macias FME, Baud D, François P, Chuat V, Chain F, Langella P, Nicoli J, Le Loir Y, Even S. Lactic Acid Bacteria Isolated from Bovine Mammary Microbiota: Potential Allies against Bovine Mastitis. PLoS One 2015; 10:e0144831. [PMID: 26713450 PMCID: PMC4694705 DOI: 10.1371/journal.pone.0144831] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/25/2015] [Indexed: 12/31/2022] Open
Abstract
Bovine mastitis is a costly disease in dairy cattle worldwide. As of yet, the control of bovine mastitis is mostly based on prevention by thorough hygienic procedures during milking. Additional strategies include vaccination and utilization of antibiotics. Despite these measures, mastitis is not fully under control, thus prompting the need for alternative strategies. The goal of this study was to isolate autochthonous lactic acid bacteria (LAB) from bovine mammary microbiota that exhibit beneficial properties that could be used for mastitis prevention and/or treatment. Sampling of the teat canal led to the isolation of 165 isolates, among which a selection of ten non-redundant LAB strains belonging to the genera Lactobacillus and Lactococcus were further characterized with regard to several properties: surface properties (hydrophobicity, autoaggregation); inhibition potential of three main mastitis pathogens, Staphylococcus aureus, Escherichia coli and Streptococcus uberis; colonization capacities of bovine mammary epithelial cells (bMEC); and immunomodulation properties. Three strains, Lactobacillus brevis 1595 and 1597 and Lactobacillus plantarum 1610, showed high colonization capacities and a medium surface hydrophobicity. These strains are good candidates to compete with pathogens for mammary gland colonization. Moreover, nine strains exhibited anti-inflammatory properties, as illustrated by the lower IL-8 secretion by E. coli-stimulated bMEC in the presence of these LAB. Full genome sequencing of five candidate strains allowed to check for undesirable genetic elements such as antibiotic resistance genes and to identify potential bacterial determinants involved in the beneficial properties. This large screening of beneficial properties while checking for undesirable genetic markers allowed the selection of promising candidate LAB strains from bovine mammary microbiota for the prevention and/or treatment of bovine mastitis.
Collapse
Affiliation(s)
- Damien S. Bouchard
- UMR 1253 STLO, INRA, Rennes, France
- UMR1253 STLO, Agrocampus Ouest, Rennes, France
| | - Bianca Seridan
- UMR 1253 STLO, INRA, Rennes, France
- UMR1253 STLO, Agrocampus Ouest, Rennes, France
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Taous Saraoui
- UMR 1253 STLO, INRA, Rennes, France
- UMR1253 STLO, Agrocampus Ouest, Rennes, France
| | - Lucie Rault
- UMR 1253 STLO, INRA, Rennes, France
- UMR1253 STLO, Agrocampus Ouest, Rennes, France
| | - Pierre Germon
- UMR 1282 Infectiologie et Santé Publique, INRA, Nouzilly, France
| | | | | | - Damien Baud
- Genomic Research Laboratory, Geneva University Hospital, Geneva, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Geneva University Hospital, Geneva, Switzerland
| | - Victoria Chuat
- UMR 1253 STLO, INRA, Rennes, France
- UMR1253 STLO, Agrocampus Ouest, Rennes, France
| | | | | | - Jacques Nicoli
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Yves Le Loir
- UMR 1253 STLO, INRA, Rennes, France
- UMR1253 STLO, Agrocampus Ouest, Rennes, France
| | - Sergine Even
- UMR 1253 STLO, INRA, Rennes, France
- UMR1253 STLO, Agrocampus Ouest, Rennes, France
- * E-mail:
| |
Collapse
|
64
|
Spoor LE, Richardson E, Richards AC, Wilson GJ, Mendonca C, Gupta RK, McAdam PR, Nutbeam-Tuffs S, Black NS, O'Gara JP, Lee CY, Corander J, Ross Fitzgerald J. Recombination-mediated remodelling of host-pathogen interactions during Staphylococcus aureus niche adaptation. Microb Genom 2015; 1:e000036. [PMID: 28348819 PMCID: PMC5320625 DOI: 10.1099/mgen.0.000036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 11/23/2022] Open
Abstract
Large-scale recombination events have led to the emergence of epidemic clones of several major bacterial pathogens. However, the functional impact of the recombination on clonal success is not understood. Here, we identified a novel widespread hybrid clone (ST71) of livestock-associated Staphylococcus aureus that evolved from an ancestor belonging to the major bovine lineage CC97, through multiple large-scale recombination events with other S. aureus lineages occupying the same ruminant niche. The recombination events, affecting a 329 kb region of the chromosome spanning the origin of replication, resulted in allele replacement and loss or gain of an array of genes influencing host–pathogen interactions. Of note, molecular functional analyses revealed that the ST71 hybrid clone has acquired multiple novel pathogenic traits associated with acquired and innate immune evasion and bovine extracellular matrix adherence. These findings provide a paradigm for the impact of large-scale recombination events on the rapid evolution of bacterial pathogens within defined ecological niches.
Collapse
Affiliation(s)
- Laura E Spoor
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Emily Richardson
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Amy C Richards
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Gillian J Wilson
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Chriselle Mendonca
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Ravi Kr Gupta
- Department of Microbiology and Immunology, University of Arkansas School for Medical Sciences, Little Rock, Arkansas, USA
| | - Paul R McAdam
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Stephen Nutbeam-Tuffs
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Nikki S Black
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - James P O'Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Chia Y Lee
- Department of Microbiology and Immunology, University of Arkansas School for Medical Sciences, Little Rock, Arkansas, USA
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - J Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
65
|
Viana Martín D, Selva L, Penadés M, Corpa JM. Screening of virulence genes in Staphylococcus aureus isolates from rabbits. WORLD RABBIT SCIENCE 2015. [DOI: 10.4995/wrs.2015.3961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p><em>Staphylococcus aureus</em> is a versatile pathogen able to cause disease in both humans and animals. In rabbits, this bacterium infects animals of different ages, producing several purulent lesions. The ability of <em>S. aureus</em> to cause disease depends on a combination of virulence factors. The aim of this study was therefore to investigate the distribution of bacterial virulence determinants in 69 <em>S. aureus</em> isolates from rabbits. Some virulence factors (7 adhesins, 1 toxin and 1 protease) were positive in all rabbit <em>S. aureus</em> isolates analysed, while others (1 adhesin and 10 toxins) were always negative. The remaining virulence factors were more variable among isolates. An association between genotype and the different profiles of virulence factors was observed, but not with the type of lesion (P<0.05). One strain of each genotype was further analysed by multilocus sequence typing, generating ST121, ST96 and ST2951, determining a greater number of enterotoxins in ST121 isolates compared to ST96 and ST2951 isolates, which could justify the different pathogenicity between strains. </p>
Collapse
|
66
|
El-Ashker M, Gwida M, Tomaso H, Monecke S, Ehricht R, El-Gohary F, Hotzel H. Staphylococci in cattle and buffaloes with mastitis in Dakahlia Governorate, Egypt. J Dairy Sci 2015; 98:7450-9. [PMID: 26364099 DOI: 10.3168/jds.2015-9432] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022]
Abstract
The aim of this study was to provide the first detailed insight into the population structure of Staphylococcus aureus in one modern dairy farm (Gamasa) and several household cows and buffaloes in Dakahlia Governorate, Egypt. Eight hundred seventy-two quarter milk samples of 218 dairy cattle and buffaloes with clinical and subclinical mastitis were investigated. Bacteria were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and staphylococci were further characterized by DNA sequencing of 16S rRNA genes and microarray analysis. Staphylococcus aureus was present in 5.6% of all collected samples, whereas methicillin-resistant S. aureus (MRSA) represented 24.5% of all identified S. aureus (12/49). Six clonal complexes (CC) of S. aureus were detected. Staphylococcus aureus CC398 (ST291/813)-MSSA (methicillin-susceptible S. aureus) was identified frequently in the Gamasa farm in addition to a few CC5-MRSA-V isolates. However, a small number of different isolates of S. aureus were found in household cattle and buffaloes harboring different CC. The presence of these genotypes of S. aureus in milk might indicate a public health hazard, because all of these CC have previously been isolated from human patients. Thus, a recommendation was given to the owner of the dairy farm to review the hygiene regimen on the farm. In perspective, further investigation regarding S. aureus screening of all lactating cows and personnel on the farm is warranted.
Collapse
Affiliation(s)
- Maged El-Ashker
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany.
| | - Mayada Gwida
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany; Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
| | - Stefan Monecke
- Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Fiedlerstr. 42, 01307 Dresden, Germany; InfectoGnostics Research Campus, 07743 Jena, Germany; Alere Technologies GmbH, Löbstedter Str. 103-105, 07749 Jena, Germany
| | - Ralf Ehricht
- InfectoGnostics Research Campus, 07743 Jena, Germany; Alere Technologies GmbH, Löbstedter Str. 103-105, 07749 Jena, Germany
| | - Fatma El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|
67
|
Budd KE, McCoy F, Monecke S, Cormican P, Mitchell J, Keane OM. Extensive Genomic Diversity among Bovine-Adapted Staphylococcus aureus: Evidence for a Genomic Rearrangement within CC97. PLoS One 2015; 10:e0134592. [PMID: 26317849 PMCID: PMC4552844 DOI: 10.1371/journal.pone.0134592] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/11/2015] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus is an important pathogen associated with both human and veterinary disease and is a common cause of bovine mastitis. Genomic heterogeneity exists between S. aureus strains and has been implicated in the adaptation of specific strains to colonise particular mammalian hosts. Knowledge of the factors required for host specificity and virulence is important for understanding the pathogenesis and management of S. aureus mastitis. In this study, a panel of mastitis-associated S. aureus isolates (n = 126) was tested for resistance to antibiotics commonly used to treat mastitis. Over half of the isolates (52%) demonstrated resistance to penicillin and ampicillin but all were susceptible to the other antibiotics tested. S. aureus isolates were further examined for their clonal diversity by Multi-Locus Sequence Typing (MLST). In total, 18 different sequence types (STs) were identified and eBURST analysis demonstrated that the majority of isolates grouped into clonal complexes CC97, CC151 or sequence type (ST) 136. Analysis of the role of recombination events in determining S. aureus population structure determined that ST diversification through nucleotide substitutions were more likely to be due to recombination compared to point mutation, with regions of the genome possibly acting as recombination hotspots. DNA microarray analysis revealed a large number of differences amongst S. aureus STs in their variable genome content, including genes associated with capsule and biofilm formation and adhesion factors. Finally, evidence for a genomic arrangement was observed within isolates from CC97 with the ST71-like subgroup showing evidence of an IS431 insertion element having replaced approximately 30 kb of DNA including the ica operon and histidine biosynthesis genes, resulting in histidine auxotrophy. This genomic rearrangement may be responsible for the diversification of ST71 into an emerging bovine adapted subgroup.
Collapse
Affiliation(s)
- Kathleen E. Budd
- Animal & Bioscience Department, AGRIC, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Finola McCoy
- Animal Health Ireland, Carrick-on-Shannon, Co. Leitrim, Ireland
| | - Stefan Monecke
- Alere Technologies GmbH, Löbstedter Straße 103–105, D-07749 Jena, Germany
| | - Paul Cormican
- Animal & Bioscience Department, AGRIC, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Jennifer Mitchell
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Orla M. Keane
- Animal & Bioscience Department, AGRIC, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- * E-mail:
| |
Collapse
|
68
|
Alibayov B, Zdenkova K, Sykorova H, Demnerova K. Molecular analysis of Staphylococcus aureus pathogenicity islands (SaPI) and their superantigens combination of food samples. J Microbiol Methods 2015; 107:197-204. [PMID: 25447888 DOI: 10.1016/j.mimet.2014.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
Staphylococcus aureus produces a wide variety of superantigenic activity Staphylococcal enterotoxins (SE) and they are a major cause of food poisoning. These superantigens are associated with mobile genetic elements such as plasmids, prophages and S. aureus pathogenicity islands (SaPI). The presence of well-known eight SaPI integrase and 13 enterotoxin genes (sea, seb, sec, sed, see, seg, seh, sei, sej, sel, sek, seq, and tst) in 93 S. aureus strains were investigated. All S. aureus isolates were characterized by pulsed-field gel electrophoresis (PFGE), and the genes were detected using five sets of multiplex PCR (mPCR). The most predominant toxin genes were sea (19%), seb (15%), sec (54%), sell (48%), selk (46%), selq (52%), seg (22%), and sei (19%). Analysis showed that many S. aureus isolates harbored multiple toxin genes. An mPCR-based assay was developed for the determination of all SaPI and their superantigen gene combinations. Twenty three isolates revealed the gene combination sec, sell and tst, typical of the SaPIbov1 and SaPIn1/m1 pathogenicity islands. Twelve isolates revealed the selk and selq gene combination consistent with SaPI3. Eight isolates exhibited the sec and sell genes without the tst gene typical of SaPImw2. We established a correlation between superantigenic toxin genotypes in S. aureus in terms of combinations of toxin gene-encoding SaPI. These results provide a rapid method for determining superantigenic toxin genotypes in S. aureus strains. A total of 24 PFGE patterns were generated. To our knowledge, this is a first study analyzing the correlation of all known SaPI and their enterotoxins in S. aureus using mPCR.
Collapse
Affiliation(s)
- Babek Alibayov
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, Institute of Chemical Technology, Prague, Czech Republic.
| | | | | | | |
Collapse
|
69
|
Sharma-Kuinkel BK, Mongodin EF, Myers JR, Vore KL, Canfield GS, Fraser CM, Rude TH, Fowler VG, Gill SR. Potential Influence of Staphylococcus aureus Clonal Complex 30 Genotype and Transcriptome on Hematogenous Infections. Open Forum Infect Dis 2015. [PMID: 26213692 PMCID: PMC4512144 DOI: 10.1093/ofid/ofv093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background. The contemporary Staphylococcus aureus clonal complex (CC) 30 lineage is associated with complicated infections, including endocarditis and osteomyelitis. This lineage diverged from the phage-type 80/81 S aureus clone responsible for a major bacterial epidemic of the 20th century. The genome and transcriptome features that contribute to complicated infections of the CC30 lineage are unknown. Methods. Twenty-nine clinical methicillin-resistant S aureus (MRSA) strains (8 from CC30 and 21 from other major CCs were evaluated for virulence using murine and Galleria mellonella sepsis models. Genomic features of CC30 were identified by comparative genome sequencing and RNA-Seq transcriptome analysis of the 29 strains and 31 previously sequenced S aureus genomes. Results. The CC30 isolates displayed lower virulence in the sepsis models compared with other CCs [P < .0001]. Comparisons of orthologous proteins and transcriptome analysis identified genes (eg, nitric oxide reductase) and changes in metabolic pathways (eg, pyrimidine metabolism) that contribute to the distinct CC30 phenotype. Previously reported nonsynonymous single-nucleotide polymorphisms (SNPs) were found in accessory gene regulator C (agrC) and α-hemolysin (hla), molecules important for virulence. Additional nonsynonymous SNPs conserved across clinical CC30 isolates when compared with the first sequenced contemporary CC30 clone, MRSA-16, were identified in multiple genes, suggesting continuing evolutionary divergence in this lineage. Conclusions. Genomic and transcriptional analyses suggest that the CC30 lineage has acquired metabolic features that contribute to persistent and complicated infections. Absence of sepsis-induced mortality in animal models may be due in part to its unique genomic profile and suggests that specific genotypes of S aureus elicit distinct types of infection types.
Collapse
Affiliation(s)
| | - Emmanuel F Mongodin
- Institute for Genome Sciences , University of Maryland School of Medicine , Baltimore
| | - Jason R Myers
- Department of Microbiology and Immunology , University of Rochester , New York ; University of Rochester Genomics Research Center , University of Rochester , New York
| | - Kelly L Vore
- Department of Microbiology and Immunology , University of Rochester , New York
| | - Greg S Canfield
- Department of Microbiology and Immunology , University of Rochester , New York
| | - Claire M Fraser
- Institute for Genome Sciences , University of Maryland School of Medicine , Baltimore
| | - Thomas H Rude
- Department of Medicine , Duke University Medical Center , Durham, North Carolina
| | - Vance G Fowler
- Department of Medicine , Duke University Medical Center , Durham, North Carolina ; Duke Clinical Research Institute , Durham, North Carolina
| | - Steven R Gill
- Department of Microbiology and Immunology , University of Rochester , New York ; University of Rochester Genomics Research Center , University of Rochester , New York
| |
Collapse
|
70
|
Bovine Staphylococcus aureus Secretes the Leukocidin LukMF' To Kill Migrating Neutrophils through CCR1. mBio 2015; 6:e00335. [PMID: 26045537 PMCID: PMC4462618 DOI: 10.1128/mbio.00335-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although Staphylococcus aureus is best known for infecting humans, bovine-specific strains are a major cause of mastitis in dairy cattle. The bicomponent leukocidin LukMF′, exclusively harbored by S. aureus of ruminant origin, is a virulence factor associated with bovine infections. In this study, the molecular basis of the host specificity of LukMF′ is elucidated by identification of chemokine receptor CCR1 as its target. Bovine neutrophils, the major effector cells in the defense against staphylococci, express significant cell surface levels of CCR1, whereas human neutrophils do not. This causes the particular susceptibility of bovine neutrophils to pore formation induced by LukMF′. Bovine S. aureus strains produce high levels of LukMF′ in vitro. In culture supernatant of the mastitis field isolate S1444, LukMF′ was the most important cytotoxic agent for bovine neutrophils. In a fibrin gel matrix, the effects of the in situ secreted toxins on neutrophils migrating toward S. aureus were visualized. Under these physiological ex vivo conditions, bovine S. aureus S1444 efficiently killed approaching neutrophils at a distance through secretion of LukMF′. Altogether, our findings illustrate the coevolution of pathogen and host, provide new targets for therapeutic and vaccine approaches to treat staphylococcal diseases in the cow, and emphasize the importance of staphylococcal toxins in general. This study explains the mechanism of action of LukMF′, a bicomponent toxin found in bovine lineages of S. aureus that is associated with mastitis in cattle. At a molecular level, we describe how LukMF′ can specifically kill bovine neutrophils. Here, we demonstrate the contribution of toxins in the determination of host specificity and contribute to the understanding of mechanisms of coevolution of pathogen and host. Our study provides new targets that can be used in therapeutic and vaccine approaches to treat staphylococcal diseases in the cow. We also demonstrate the importance of toxins in specific elimination of immune cells, which has broader implications, especially in human infections.
Collapse
|
71
|
Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island. Sci Rep 2015; 5:9784. [PMID: 25891795 PMCID: PMC4402969 DOI: 10.1038/srep09784] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/19/2015] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a major pathogen of humans and animals. The capacity of S. aureus to adapt to different host species and tissue types is strongly influenced by the acquisition of mobile genetic elements encoding determinants involved in niche adaptation. The genomic islands νSaα and νSaβ are found in almost all S. aureus strains and are characterized by extensive variation in virulence gene content. However the basis for the diversity and the mechanism underlying mobilization of the genomic islands between strains are unexplained. Here, we demonstrated that the genomic island, νSaβ, encoding an array of virulence factors including staphylococcal superantigens, proteases, and leukotoxins, in addition to bacteriocins, was transferrable in vitro to human and animal strains of multiple S. aureus clones via a resident prophage. The transfer of the νSaβ appears to have been accomplished by multiple conversions of transducing phage particles carrying overlapping segments of the νSaβ. Our findings solve a long-standing mystery regarding the diversification and spread of the genomic island νSaβ, highlighting the central role of bacteriophages in the pathogenic evolution of S. aureus.
Collapse
|
72
|
Koymans KJ, Vrieling M, Gorham RD, van Strijp JAG. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. Curr Top Microbiol Immunol 2015; 409:441-489. [PMID: 26919864 DOI: 10.1007/82_2015_5017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Manouk Vrieling
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
73
|
Read TD, Massey RC. Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology. Genome Med 2014; 6:109. [PMID: 25593593 PMCID: PMC4295408 DOI: 10.1186/s13073-014-0109-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genome-wide association studies (GWASs) have become an increasingly important approach for eukaryotic geneticists, facilitating the identification of hundreds of genetic polymorphisms that are responsible for inherited diseases. Despite the relative simplicity of bacterial genomes, the application of GWASs to identify polymorphisms responsible for important bacterial phenotypes has only recently been made possible through advances in genome sequencing technologies. Bacterial GWASs are now about to come of age thanks to the availability of massive datasets, and because of the potential to bridge genomics and traditional genetic approaches that is provided by improving validation strategies. A small number of pioneering GWASs in bacteria have been published in the past 2 years, examining from 75 to more than 3,000 strains. The experimental designs have been diverse, taking advantage of different processes in bacteria for generating variation. Analysis of data from bacterial GWASs can, to some extent, be performed using software developed for eukaryotic systems, but there are important differences in genome evolution that must be considered. The greatest experimental advantage of bacterial GWASs is the potential to perform downstream validation of causality and dissection of mechanism. We review the recent advances and remaining challenges in this field and propose strategies to improve the validation of bacterial GWASs.
Collapse
Affiliation(s)
- Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA ; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ruth C Massey
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
74
|
Peton V, Bouchard DS, Almeida S, Rault L, Falentin H, Jardin J, Jan G, Hernandez D, François P, Schrenzel J, Azevedo V, Miyoshi A, Berkova N, Even S, Le Loir Y. Fine-tuned characterization of Staphylococcus aureus Newbould 305, a strain associated with mild and chronic mastitis in bovines. Vet Res 2014; 45:106. [PMID: 25316113 PMCID: PMC4230361 DOI: 10.1186/s13567-014-0106-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/01/2014] [Indexed: 11/17/2022] Open
Abstract
S. aureus is a major aetiological agent of ruminant mastitis worldwide. The chronic nature of S. aureus mastitis makes it difficult to cure and prone to resurgence. In order to identify the bacterial factors involved in this chronicity, Newbould 305 (N305), a strain that can reproducibly induce mild and chronic mastitis in an experimental setting, was characterized in depth. We employed genomic and proteomic techniques combined with phenotype characterization, in order to comprehensively analyse N305. The results were compared with data obtained on S. aureus RF122, a strain representative of the major clone involved in severe bovine mastitis worldwide. Five mobile genetic elements were identified in the N305 genome as carrying virulence factors which correlated with phenotypic features such as cytotoxicity, mammary epithelial cell invasion or host-adaptation. In particular, the presence and characteristics of surface exposed proteins correlated well with the greater adhesion and internalization capacities of N305 in bovine mammary epithelial cells. N305 also displayed less diversity of toxin genes but secreted larger quantities of these toxins, associated with a higher cytotoxicity potential. Our data are consistent with the invasiveness and host-adaptation features which contribute to the chronicity of S. aureus mastitis. Mobile genetic elements, exoproteins and surface exposed proteins constitute good targets for further research to explore the underlying mechanisms related to mastitis chronicity.
Collapse
Affiliation(s)
- Vincent Peton
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Damien S Bouchard
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Sintia Almeida
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | - Lucie Rault
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Hélène Falentin
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Julien Jardin
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Gwénaël Jan
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - David Hernandez
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals (HUG), CH-1211, Geneva 14, Switzerland.
| | - Patrice François
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals (HUG), CH-1211, Geneva 14, Switzerland.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals (HUG), CH-1211, Geneva 14, Switzerland.
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | - Anderson Miyoshi
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | - Nadia Berkova
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Sergine Even
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Yves Le Loir
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| |
Collapse
|
75
|
de Melo DA, Coelho IDS, da Motta CC, Rojas ACCM, Dubenczuk FC, Coelho SDMDO, de Souza MMS. Impairments of mecA gene detection in bovine Staphylococcus spp. Braz J Microbiol 2014; 45:1075-82. [PMID: 25477945 PMCID: PMC4204949 DOI: 10.1590/s1517-83822014000300041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 03/14/2014] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus antimicrobial resistance, especially to beta-lactams, favors treatment failures and its persistence in herd environment. This work aimed to develop a more specific primer for mecA gene detection based on the comparison of the conserved regions from distinct host origins and also investigated the presence of homologue mecA(LGA251) in bovine strains. A total of 43 Staphylococcus spp. were included in this study, comprising 38 bovine S. aureus, two human and three equine coagulase-negative staphylococci (CNS). Phenotypical methicillin-resistance detection was performed through oxacillin agar-screening and cefoxitin disk-diffusion test. None isolate tested positive for mecA(LGA251) gene. For mecA gene PCR, new primers were designed based on the sequences of human S. aureus (HE681097) and bovine S. sciuri (AY820253) mecA. The new primers based on the S. aureus mecA sequence amplified fragments of human and equine CNS and the ones based on S. sciuri mecA sequence only yielded fragments for S. aureus bovine strains. Multiples alignments of mecA gene sequences from bovine, human and equine revealed punctual but significant differences in bovine strains that can lead to the mecA gene detection impairment. The observed divergences of mecA gene sequences are not a matter of animal or human origin, it is a specificity of bovine samples.
Collapse
Affiliation(s)
- Dayanne Araújo de Melo
- Departamento de Microbiologia e Imunologia Veterinária Universidade Federal Rural do Rio de Janeiro SeropédicaRJ Brazil Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Irene da Silva Coelho
- Departamento de Microbiologia e Imunologia Veterinária Universidade Federal Rural do Rio de Janeiro SeropédicaRJ Brazil Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Cássia Couto da Motta
- Departamento de Microbiologia e Imunologia Veterinária Universidade Federal Rural do Rio de Janeiro SeropédicaRJ Brazil Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Anna Carolina Coelho Marín Rojas
- Departamento de Microbiologia e Imunologia Veterinária Universidade Federal Rural do Rio de Janeiro SeropédicaRJ Brazil Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Felipe Carlos Dubenczuk
- Departamento de Microbiologia e Imunologia Veterinária Universidade Federal Rural do Rio de Janeiro SeropédicaRJ Brazil Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Shana de Mattos de Oliveira Coelho
- Departamento de Microbiologia e Imunologia Veterinária Universidade Federal Rural do Rio de Janeiro SeropédicaRJ Brazil Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Miliane Moreira Soares de Souza
- Departamento de Microbiologia e Imunologia Veterinária Universidade Federal Rural do Rio de Janeiro SeropédicaRJ Brazil Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
76
|
Bergonier D, Sobral D, Feßler AT, Jacquet E, Gilbert FB, Schwarz S, Treilles M, Bouloc P, Pourcel C, Vergnaud G. Staphylococcus aureus from 152 cases of bovine, ovine and caprine mastitis investigated by Multiple-locus variable number of tandem repeat analysis (MLVA). Vet Res 2014; 45:97. [PMID: 25315988 PMCID: PMC4195859 DOI: 10.1186/s13567-014-0097-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 09/05/2014] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus is one of the main etiological agents of mastitis in ruminants. In the present retrospective study, we evaluated the potential interest of a previously described automated multiple loci Variable Number of Tandem Repeats (VNTR) Assay (MLVA) comprising 16 loci as a first line tool to investigate the population structure of S. aureus from mastitis. We determined the genetic diversity of S. aureus strains from cases of clinical and subclinical mastitis in dairy cattle (n = 118, of which 16 were methicillin-resistant), sheep (n = 18) and goats (n = 16). The 152 strains could be subdivided into 115 MLVA genotypes (including 14 genotypes for the ovine strains and 15 genotypes for the caprine strains). This corresponds to a discriminatory index (D) value of 0.9936. Comparison with published MLVA data obtained using the same protocol applied to strains from diverse human and animal origins revealed a low number (8.5%) of human-related MLVA genotypes among the present collection. Eighteen percent of the S. aureus mastitis collection belonged to clonal complexes apparently not associated with other pathological conditions. Some of them displayed a relatively low level of diversity in agreement with a restricted ecological niche. These findings provide arguments suggesting that specific S. aureus lineages particularly adapted to ruminant mammary glands have emerged and that MLVA is a convenient tool to provide a broad overview of the population, owing to the availability via internet of databases compiling published MLVA genotypes.
Collapse
Affiliation(s)
- Dominique Bergonier
- INRA, UMR1225, IHAP, 31076, Toulouse, France. .,Université de Toulouse, INP, ENVT, UMR1225, IHAP, 31076, Toulouse, France. .,UMT INRA-ENVT-Institut de l'Élevage "Small Ruminants Health Management", 31076, Toulouse, France.
| | - Daniel Sobral
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, 91400, Orsay, France. .,CNRS, Orsay, France. .,Ceeram (Centre Européen d'Expertise et de Recherche sur les Agents Microbiens), 44240, La Chapelle sur Erdre, France.
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, 31535, Neustadt-Mariensee, Germany.
| | - Eric Jacquet
- ICSN, CNRS, UPR2301, IMAGIF qPCR-Platform, 91198, Gif-sur-Yvette, France.
| | | | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, 31535, Neustadt-Mariensee, Germany.
| | - Michaël Treilles
- Laboratoire départemental d'analyses de la Manche (LDA50), 50000, Saint-Lô, France.
| | - Philippe Bouloc
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, 91400, Orsay, France. .,CNRS, Orsay, France.
| | - Christine Pourcel
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, 91400, Orsay, France. .,CNRS, Orsay, France.
| | - Gilles Vergnaud
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, 91400, Orsay, France. .,CNRS, Orsay, France. .,ENSTA ParisTech, 91762, Palaiseau, France.
| |
Collapse
|
77
|
Chlebowicz MA, Mašlaňová I, Kuntová L, Grundmann H, Pantůček R, Doškař J, van Dijl JM, Buist G. The Staphylococcal Cassette Chromosome mec type V from Staphylococcus aureus ST398 is packaged into bacteriophage capsids. Int J Med Microbiol 2014; 304:764-74. [DOI: 10.1016/j.ijmm.2014.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/27/2014] [Accepted: 05/25/2014] [Indexed: 11/24/2022] Open
|
78
|
Everitt RG, Didelot X, Batty EM, Miller RR, Knox K, Young BC, Bowden R, Auton A, Votintseva A, Larner-Svensson H, Charlesworth J, Golubchik T, Ip CLC, Godwin H, Fung R, Peto TEA, Walker AS, Crook DW, Wilson DJ. Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus. Nat Commun 2014; 5:3956. [PMID: 24853639 PMCID: PMC4036114 DOI: 10.1038/ncomms4956] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/24/2014] [Indexed: 01/28/2023] Open
Abstract
Horizontal gene transfer is an important driver of bacterial evolution, but genetic exchange in the core genome of clonal species, including the major pathogen Staphylococcus aureus, is incompletely understood. Here we reveal widespread homologous recombination in S. aureus at the species level, in contrast to its near-complete absence between closely related strains. We discover a patchwork of hotspots and coldspots at fine scales falling against a backdrop of broad-scale trends in rate variation. Over megabases, homoplasy rates fluctuate 1.9-fold, peaking towards the origin-of-replication. Over kilobases, we find core recombination hotspots of up to 2.5-fold enrichment situated near fault lines in the genome associated with mobile elements. The strongest hotspots include regions flanking conjugative transposon ICE6013, the staphylococcal cassette chromosome (SCC) and genomic island νSaα. Mobile element-driven core genome transfer represents an opportunity for adaptation and challenges our understanding of the recombination landscape in predominantly clonal pathogens, with important implications for genotype–phenotype mapping. Horizontal gene transfer occurs in most bacteria, yet it is unclear whether it happens in clonal species. Here, Everitt et al. show widespread within-species recombination, driven by mobile elements, in the genome of the pathogen Staphylococcus aureus, but no recombination between closely related strains.
Collapse
Affiliation(s)
- Richard G Everitt
- 1] Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK [2]
| | - Xavier Didelot
- 1] Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK [2]
| | - Elizabeth M Batty
- 1] Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK [2] Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ruth R Miller
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kyle Knox
- Department of Primary Care Health Sciences, University of Oxford, 23-38 Hythe Bridge Street, Oxford OX1 2ET, UK
| | - Bernadette C Young
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rory Bowden
- 1] Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK [2] Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Adam Auton
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Antonina Votintseva
- 1] Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK [2] Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Hanna Larner-Svensson
- 1] Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK [2] Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jane Charlesworth
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Tanya Golubchik
- 1] Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK [2] Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Camilla L C Ip
- 1] Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK [2] Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Heather Godwin
- Oxford University Hospitals National Health Service Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rowena Fung
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Daniel J Wilson
- 1] Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK [2] Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
79
|
Schurig-Briccio LA, Yano T, Rubin H, Gennis RB. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:954-63. [PMID: 24709059 DOI: 10.1016/j.bbabio.2014.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 02/01/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is currently one of the principal multiple drug resistant bacterial pathogens causing serious infections, many of which are life-threatening. Consequently, new therapeutic targets are required to combat such infections. In the current work, we explore the type 2 Nicotinamide adenine dinucleotide reduced form (NADH) dehydrogenases (NDH-2s) as possible drug targets and look at the effects of phenothiazines, known to inhibit NDH-2 from Mycobacterium tuberculosis. NDH-2s are monotopic membrane proteins that catalyze the transfer of electrons from NADH via flavin adenine dinucleotide (FAD) to the quinone pool. They are required for maintaining the NADH/Nicotinamide adenine dinucleotide (NAD(+)) redox balance and contribute indirectly to the generation of proton motive force. NDH-2s are not present in mammals, but are the only form of respiratory NADH dehydrogenase in several pathogens, including S. aureus. In this work, the two putative ndh genes present in the S. aureus genome were identified, cloned and expressed, and the proteins were purified and characterized. Phenothiazines were shown to inhibit both of the S. aureus NDH-2s with half maximal inhibitory concentration (IC50) values as low as 8μM. However, evaluating the effects of phenothiazines on whole cells of S. aureus was complicated by the fact that they are also acting as uncouplers of oxidative phosphorylation. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Lici A Schurig-Briccio
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Takahiro Yano
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Harvey Rubin
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA.
| |
Collapse
|
80
|
|
81
|
Holtfreter S, Radcliff FJ, Grumann D, Read H, Johnson S, Monecke S, Ritchie S, Clow F, Goerke C, Bröker BM, Fraser JD, Wiles S. Characterization of a mouse-adapted Staphylococcus aureus strain. PLoS One 2013; 8:e71142. [PMID: 24023720 PMCID: PMC3759423 DOI: 10.1371/journal.pone.0071142] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/02/2013] [Indexed: 11/29/2022] Open
Abstract
More effective antibiotics and a protective vaccine are desperately needed to combat the ‘superbug’ Staphylococcus aureus. While in vivo pathogenicity studies routinely involve infection of mice with human S. aureus isolates, recent genetic studies have demonstrated that S. aureus lineages are largely host-specific. The use of such animal-adapted S. aureus strains may therefore be a promising approach for developing more clinically relevant animal infection models. We have isolated a mouse-adapted S. aureus strain (JSNZ) which caused a severe outbreak of preputial gland abscesses among male C57BL/6J mice. We aimed to extensively characterize this strain on a genomic level and determine its virulence potential in murine colonization and infection models. JSNZ belongs to the MLST type ST88, rare among human isolates, and lacks an hlb-converting phage encoding human-specific immune evasion factors. Naive mice were found to be more susceptible to nasal and gastrointestinal colonization with JSNZ than with the human-derived Newman strain. Furthermore, naïve mice required antibiotic pre-treatment to become colonized with Newman. In contrast, JSNZ was able to colonize mice in the absence of antibiotic treatment suggesting that this strain can compete with the natural flora for space and nutrients. In a renal abscess model, JSNZ caused more severe disease than Newman with greater weight loss and bacterial burden. In contrast to most other clinical isolates, JSNZ can also be readily genetically modified by phage transduction and electroporation. In conclusion, the mouse-adapted strain JSNZ may represent a valuable tool for studying aspects of mucosal colonization and for screening novel vaccines and therapies directed at preventing colonization.
Collapse
Affiliation(s)
- Silva Holtfreter
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Fiona J. Radcliff
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Dorothee Grumann
- Department of Immunology, University of Greifswald, Greifswald, Germany
| | - Hannah Read
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Sarah Johnson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Stefan Monecke
- Institute for Medical Microbiology and Hygiene, Technical University of Dresden, Dresden, Germany
- Alere Technologies, Jena, Germany
| | - Stephen Ritchie
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Christiane Goerke
- Institute for Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Barbara M. Bröker
- Department of Immunology, University of Greifswald, Greifswald, Germany
| | - John D. Fraser
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Siouxsie Wiles
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
82
|
Staphylococcus aureus in veterinary medicine. INFECTION GENETICS AND EVOLUTION 2013; 21:602-15. [PMID: 23974078 DOI: 10.1016/j.meegid.2013.08.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 11/24/2022]
Abstract
Staphylococcus aureus is a major opportunistic pathogen in humans and one of the most important pathogenic Staphylococcus species in veterinary medicine. S. aureus is dangerous because of its deleterious effects on animal health and its potential for transmission from animals to humans and vice-versa. It thus has a huge impact on animal health and welfare and causes major economic losses in livestock production. Increasing attention is therefore being paid to both livestock and companion animals in terms of this pathogen. In this review, we summarise the current knowledge on the animal host adaptation of S. aureus. Different types of S. aureus infections in animals are also presented, with particular emphasis on mastitis in dairy herds, which is probably the costliest and therefore the best documented S. aureus infection seen in animals.
Collapse
|
83
|
Lim SK, Nam HM, Jang GC, Lee HS, Jung SC, Kim TS. Transmission and persistence of methicillin-resistant Staphylococcus aureus in milk, environment, and workers in dairy cattle farms. Foodborne Pathog Dis 2013; 10:731-6. [PMID: 23746358 DOI: 10.1089/fpd.2012.1436] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to determine the presence and persistence of methicillin-resistant Staphylococcus aureus (MRSA) in milk, farm environment, and farmers on 22 dairy cattle farms in Korea during 2008-2009. Genetic relatedness among the MRSA isolates was also investigated. Of 1146 samples examined, 35 of 559 (6.3%) quarter milk samples from 371 cows, four of 86 (4.7%) hand and nose samples from 43 farmers, and 6 of 501 (1.2%) farm environment samples were MRSA positive. Except for three isolates, all MRSA were classified into ST72-spa t324-SCCmec IV with PVL negative, the most predominant clonal type among community-associated MRSA in South Korea. All 35 MRSA-positive milk samples from 19 cows were obtained from a single farm (Farm G) out of 22 (4.5%) farms tested. The farm G was revisited 1 year later and milk samples were collected for examination of MRSA again. Two of six previous MRSA-positive cattle that had been kept on the farm still harbored MRSA genetically identical to MRSA strains, which were isolated from the same farm a year ago. The results of this study provide the evidence of transmission of MRSA among cattle, farm environment, and farmers and also long-term persistence of MRSA in animals.
Collapse
Affiliation(s)
- Suk-Kyung Lim
- Animal, Plant, and Fisheries Quarantine and Inspection Agency, Gyeonggi-do, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
84
|
Hiramatsu K, Ito T, Tsubakishita S, Sasaki T, Takeuchi F, Morimoto Y, Katayama Y, Matsuo M, Kuwahara-Arai K, Hishinuma T, Baba T. Genomic Basis for Methicillin Resistance in Staphylococcus aureus. Infect Chemother 2013; 45:117-36. [PMID: 24265961 PMCID: PMC3780952 DOI: 10.3947/ic.2013.45.2.117] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 12/31/2022] Open
Abstract
Since the discovery of the first strain in 1961 in England, MRSA, the most notorious multidrug-resistant hospital pathogen, has spread all over the world. MRSA repeatedly turned down the challenges by number of chemotherapeutics, the fruits of modern organic chemistry. Now, we are in short of effective therapeutic agents against MRSA prevailing among immuno-compromised patients in the hospital. On top of this, we recently became aware of the rise of diverse clones of MRSA, some of which have increased pathogenic potential compared to the classical hospital-associated MRSA, and the others from veterinary sources. They increased rapidly in the community, and started menacing otherwise healthy individuals by causing unexpected acute infection. This review is intended to provide a whole picture of MRSA based on its genetic makeup as a versatile pathogen and our tenacious colonizer.
Collapse
Affiliation(s)
- Keiichi Hiramatsu
- Department of Bacteriology, Juntendo University, Tokyo, Japan
- Research Center for Infection Control Science, Juntendo University, Tokyo, Japan
| | - Teruyo Ito
- Department of Bacteriology, Juntendo University, Tokyo, Japan
| | - Sae Tsubakishita
- Department of Veterinary Science, Rakuno Gakuen University, Hokkaido, Japan
| | | | | | - Yuh Morimoto
- Department of Bacteriology, Juntendo University, Tokyo, Japan
- Research Center for Infection Control Science, Juntendo University, Tokyo, Japan
| | - Yuki Katayama
- Department of Bacteriology, Juntendo University, Tokyo, Japan
| | - Miki Matsuo
- Department of Bacteriology, Juntendo University, Tokyo, Japan
| | | | - Tomomi Hishinuma
- Department of Bacteriology, Juntendo University, Tokyo, Japan
- Research Center for Infection Control Science, Juntendo University, Tokyo, Japan
| | - Tadashi Baba
- Department of Bacteriology, Juntendo University, Tokyo, Japan
- Research Center for Infection Control Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
85
|
Chua KYL, Howden BP, Jiang JH, Stinear T, Peleg AY. Population genetics and the evolution of virulence in Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2013; 21:554-62. [PMID: 23628638 DOI: 10.1016/j.meegid.2013.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is one of the most important human pathogens, causing life-threatening infection in the community and hospital setting. The population genetics of S. aureus and the evolution of virulence is the focus of this review. We describe the various techniques in determining S. aureus population structure and discuss the insights gained from whole genome sequencing of various S. aureus strains. The emergence of community-acquired, methicillin-resistant S. aureus provides a framework for the discussion on evolution of virulence, and the role of horizontal gene transfer in the development of virulence and antibiotic resistance is explored. The knowledge generated from population genetics has the potential to inform strategies to assist in the prevention or treatment of this highly successful human pathogen.
Collapse
Affiliation(s)
- Kyra Y L Chua
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3052, Australia; Austin Centre for Infection Research (ACIR), Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia; Microbiology Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3052, Australia; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; Austin Centre for Infection Research (ACIR), Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia; Microbiology Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Jhih-Hang Jiang
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy Stinear
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3052, Australia
| | - Anton Y Peleg
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria 3181, Australia; Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
86
|
Human-to-bovine jump of Staphylococcus aureus CC8 is associated with the loss of a β-hemolysin converting prophage and the acquisition of a new staphylococcal cassette chromosome. PLoS One 2013; 8:e58187. [PMID: 23505465 PMCID: PMC3594393 DOI: 10.1371/journal.pone.0058187] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/31/2013] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus can colonize and infect both humans and animals, but isolates from both hosts tend to belong to different lineages. Our recent finding of bovine-adapted S. aureus showing close genetic relationship to the human S. aureus clonal complex 8 (CC8) allowed us to examine the genetic basis of host adaptation in this particular CC. Using total chromosome microarrays, we compared the genetic makeup of 14 CC8 isolates obtained from cows suffering subclinical mastitis, with nine CC8 isolates from colonized or infected human patients, and nine S. aureus isolates belonging to typical bovine CCs. CC8 isolates were found to segregate in a unique group, different from the typical bovine CCs. Within this CC8 group, human and bovine isolates further segregated into three subgroups, among which two contained a mix of human and bovine isolates, and one contained only bovine isolates. This distribution into specific clusters and subclusters reflected major differences in the S. aureus content of mobile genetic elements (MGEs). Indeed, while the mixed human-bovine clusters carried commonly human-associated β-hemolysin converting prophages, the bovine-only isolates were devoid of such prophages but harbored an additional new non-mec staphylococcal cassette chromosome (SCC) unique to bovine CC8 isolates. This composite cassette carried a gene coding for a new LPXTG-surface protein sharing homologies with a protein found in the environmental bacterium Geobacillus thermoglucosidans. Thus, in contrast to human CC8 isolates, the bovine-only CC8 group was associated with the combined loss of β-hemolysin converting prophages and gain of a new SCC probably acquired in the animal environment. Remaining questions are whether the new LPXTG-protein plays a role in bovine colonization or infection, and whether the new SCC could further acquire antibiotic-resistance genes and carry them back to human.
Collapse
|
87
|
Chua KYL, Stinear TP, Howden BP. Functional genomics of Staphylococcus aureus. Brief Funct Genomics 2013; 12:305-15. [PMID: 23430683 DOI: 10.1093/bfgp/elt006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus remains a major opportunistic human pathogen, and while in many individuals it is associated with asymptomatic colonization, it is also capable of causing a range of clinical syndromes from minor skin infections to life-threatening septicemia. Staphylococcus aureus has also demonstrated a remarkable capacity to acquire antimicrobial resistance. Recent technological advances in genomics have led to an avalanche of studies providing deep insights into how S. aureus is evolving globally and within the human host. However, there are still significant experimental barriers in using these insights to try and better understand the biology of S. aureus. Here, we summarize recent advances in the understanding of S. aureus through the use of genomic approaches, and contemplate what the near future holds for truly functional genomics that will allow us to better understand the biology of this pathogen.
Collapse
|
88
|
Fabres-Klein MH, Klein RC, De Paula SO, Ribon AOB. Immunorelevant proteins for the diagnosis of bovine staphylococcal mastitis. World J Microbiol Biotechnol 2013; 29:1155-60. [PMID: 23386318 DOI: 10.1007/s11274-013-1274-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/28/2013] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus is a leading cause of bovine mastitis, a condition in which the udder of the cow is inflamed, reducing the quality and quantity of milk produced. Staphylococcal mastitis is a common infection that can develop into a chronic form. The segregation of infected animals is an important preventive practice but relies on an effective diagnostic method. For this purpose, we constructed a genomic library of S. aureus, and a screening step was conducted with antiserum produced using the total protein extract of the pathogen. The nucleotide sequences of the immunoselected clones were aligned with the genome of bovine S. aureus RF122, which enabled the identification of 65 different loci, including proteins related to metabolism, adhesion and cell wall production, toxins, regulatory proteins, and hypothetical proteins. The subcellular location of the immunoreactive polypeptides was also determined. Fifty-two percent were cytoplasmic, 34 % were located in areas exposed to the host's immune system, and for 14 %, the location could not be determined. In silico analysis of the presence of these proteins in mastitis pathogens showed that Fib, ClfA, and the hypothetical protein SAB0166 were the only proteins specific for S. aureus. Therefore, these proteins are promising candidates for the serodiagnosis of staphylococcal mastitis.
Collapse
Affiliation(s)
- M H Fabres-Klein
- Laboratory of Molecular Biotechnology, Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | |
Collapse
|
89
|
Genome sequence of Staphylococcus aureus Newbould 305, a strain associated with mild bovine mastitis. J Bacteriol 2013; 194:6292-3. [PMID: 23105046 DOI: 10.1128/jb.01188-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus is a major etiological agent of mastitis in ruminants. We report here the genome sequence of bovine strain Newbould 305, isolated in the 1950s in a case of bovine mastitis and now used as a model strain able to reproducibly induce chronic mastitis in cows.
Collapse
|
90
|
Abstract
Background Drug resistance in bacterial pathogens is an increasing problem, which stimulates research. However, our understanding of drug resistance mechanisms remains incomplete. Fortunately, the fast-growing number of fully sequenced bacterial strains now enables us to develop new methods to identify mutations associated with drug resistance. Results We present a new comparative approach to identify genes and mutations that are likely to be associated with drug resistance mechanisms. In order to test the approach, we collected genotype and phenotype data of 100 fully sequenced strains of S. aureus and 10 commonly used drugs. Then, applying the method, we re-discovered the most common genetic determinants of drug resistance and identified some novel putative associations. Conclusions Firstly, the collected data may help other researchers to develop and verify similar techniques. Secondly, the proposed method is successful in identifying drug resistance determinants. Thirdly, the in-silico identified genetic mutations, which are putatively involved in drug resistance mechanisms, may increase our understanding of the drug resistance mechanisms.
Collapse
|
91
|
McCarthy AJ, Lindsay JA, Loeffler A. Are all meticillin-resistant Staphylococcus aureus (MRSA) equal in all hosts? Epidemiological and genetic comparison between animal and human MRSA. Vet Dermatol 2012; 23:267-75, e53-4. [PMID: 22823579 DOI: 10.1111/j.1365-3164.2012.01072.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Meticillin-resistant Staphylococcus aureus (MRSA) continues to pose a major threat to human health. In animals, MRSA has become established as a veterinary pathogen in pets and horses; in livestock, it presents a concern for public health as a reservoir that can infect humans and as a source of transferrable resistance genes. Genetic analyses have revealed that the epidemiology of MRSA is different in different animal hosts. While human hospital-associated MRSA lineages are most commonly involved in pet infection and carriage, horse-specific MRSA most often represent 'traditional' equine S. aureus lineages. A recent development in the epidemiology of animal MRSA is the emergence of pig-adapted strains, such as CC398 and CC9, which appear to have arisen independently in the pig population. Recent insight into the genome structure and the evolution of S. aureus has helped to explain key aspects of these three distinct epidemiological scenarios. This nonsystematic literature review summarizes the structure and variations of the S. aureus genome and gives an overview of the current distribution of MRSA lineages in various animal species. It also discusses present knowledge about the emergence and evolution of MRSA in animals, adaptation to different host species and response to selective pressure from animal-specific environments. An improved understanding of the genetics and selective pressure that underpin the adaptive behaviour of S. aureus may be used in the future to predict new developments in staphylococcal diseases and to investigate novel control strategies required at a time of increasing resistance to antimicrobial agents.
Collapse
Affiliation(s)
- Alex J McCarthy
- Centre for Infection, Division of Clinical Sciences, St George's University of London, London SW17 0RE, UK
| | | | | |
Collapse
|
92
|
Wladyka B, Wielebska K, Wloka M, Bochenska O, Dubin G, Dubin A, Mak P. Isolation, biochemical characterization, and cloning of a bacteriocin from the poultry-associated Staphylococcus aureus strain CH-91. Appl Microbiol Biotechnol 2012. [PMID: 23196985 PMCID: PMC3724985 DOI: 10.1007/s00253-012-4578-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus strain CH-91, isolated from a broiler chicken with atopic dermatitis, has a highly proteolytic phenotype that is correlated with the disease. We describe the isolation and biochemical and molecular characterization of the AI-type lantibiotic BacCH91 from S. aureus CH-91 culture medium. The bacteriocin was purified using a three-stage procedure comprising precipitation with ammonium sulfate, extraction with organic solvents, and reversed-phase HPLC. The BacCH91 peptide is thermostable and highly resistant to cleavage by both prokaryotic and eukaryotic peptidases. The MIC for the Gram-positive bacteria ranged from 2.5 nM for Microococcus luteus through 1.3-6.0 μM for staphylococcal strains up to more than 100 μM for Lactococcus lactis. BacCH91 was ineffective against the Gram-negative strains tested at the maximal concentration (100 μM). The amino acid sequence of BacCH91 is similar to that of epidermin and gallidermin. The encoding gene (bacCH91) occurred in two allelic variants distinguishable in the restriction fragment length polymorphism assay. Variant I, identified in S. aureus CH-91, dominated in S. aureus strains of poultry origin, although strains with variant II were also identified in this group. S. aureus strains of human origin were characterized exclusively by variant II.
Collapse
Affiliation(s)
- Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
93
|
Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei. Appl Environ Microbiol 2012. [PMID: 23183972 DOI: 10.1128/aem.03323-12] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent invasion of bMEC by two S. aureus bovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively. L. casei strains affected adhesion and/or internalization of S. aureus in a strain-dependent manner. Interestingly, L. casei CIRM-BIA 667 reduced S. aureus Newbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two other L. casei strains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate of S. aureus was not affected by L. casei. It should be noted that L. casei was internalized at a low rate but survived in bMEC cells with a better efficiency than that of S. aureus RF122. Inhibition of S. aureus adhesion was maintained with heat-killed L. casei, whereas contact between live L. casei and S. aureus or bMEC was required to prevent S. aureus internalization. This first study of the antagonism of LAB toward S. aureus in a mammary context opens avenues for the development of novel control strategies against this major pathogen.
Collapse
|
94
|
Molecular analysis of human and canine Staphylococcus aureus strains reveals distinct extended-host-spectrum genotypes independent of their methicillin resistance. Appl Environ Microbiol 2012; 79:655-62. [PMID: 23160118 DOI: 10.1128/aem.02704-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus causes a wide range of infectious diseases in humans and various animal species. Although presumptive host-specific factors have been reported, certain genetic lineages seem to lack specific host tropism, infecting a broad range of hosts. Such Extended-Host-Spectrum Genotypes (EHSGs) have been described in canine infections, caused by common regional human methicillin-resistant S. aureus (MRSA) lineages. However, information is scarce about the occurrence of methicillin-susceptible S. aureus (MSSA) EHSGs. To gain deeper insight into EHSG MSSA and EHSG MRSA of human and canine origin, a comparative molecular study was carried out, including a convenience sample of 120 current S. aureus (70 MRSA and 50 MSSA) isolates obtained from infected dogs. spa typing revealed 48 different spa types belonging to 16 different multilocus sequence typing clonal complexes (MLST-CCs). Based on these results, we further compared a subset of canine (n = 48) and human (n = 14) strains, including isolates of clonal complexes CC5, CC22, CC8, CC398, CC15, CC45, and CC30 by macrorestriction (pulsed-field gel electrophoresis [PFGE]) and DNA-microarray analysis. None of the methods employed was able to differentiate between clusters of human and canine strains independently of their methicillin resistance. In contrast, DNA-microarray analysis revealed 79% of the 48 canine isolates as carriers of the bacteriophage-encoded human-specific immune evasion cluster (IEC). In conclusion, the high degree of similarity between human and canine S. aureus strains regardless of whether they are MRSA or MSSA envisions the existence of common genetic traits that enable these strains as EHSGs, challenging the concept of resistance-driven spillover of MRSA.
Collapse
|
95
|
Moodley A, Espinosa-Gongora C, Nielsen SS, McCarthy AJ, Lindsay JA, Guardabassi L. Comparative host specificity of human- and pig- associated Staphylococcus aureus clonal lineages. PLoS One 2012; 7:e49344. [PMID: 23166643 PMCID: PMC3498157 DOI: 10.1371/journal.pone.0049344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/10/2012] [Indexed: 01/27/2023] Open
Abstract
Bacterial adhesion is a crucial step in colonization of the skin. In this study, we investigated the differential adherence to human and pig corneocytes of six Staphylococcus aureus strains belonging to three human-associated [ST8 (CC8), ST22 (CC22) and ST36(CC30)] and two pig-associated [ST398 (CC398) and ST433(CC30)] clonal lineages, and their colonization potential in the pig host was assessed by in vivo competition experiments. Corneocytes were collected from 11 humans and 21 pigs using D-squame® adhesive discs, and bacterial adherence to corneocytes was quantified by a standardized light microscopy assay. A previously described porcine colonization model was used to assess the potential of the six strains to colonize the pig host. Three pregnant, S. aureus-free sows were inoculated intravaginally shortly before farrowing with different strain mixes [mix 1) human and porcine ST398; mix 2) human ST36 and porcine ST433; and mix 3) human ST8, ST22, ST36 and porcine ST398] and the ability of individual strains to colonize the nasal cavity of newborn piglets was evaluated for 28 days after birth by strain-specific antibiotic selective culture. In the corneocyte assay, the pig-associated ST433 strain and the human-associated ST22 and ST36 strains showed significantly greater adhesion to porcine and human corneocytes, respectively (p<0.0001). In contrast, ST8 and ST398 did not display preferential host binding patterns. In the in vivo competition experiment, ST8 was a better colonizer compared to ST22, ST36, and ST433 prevailed over ST36 in colonizing the newborn piglets. These results are partly in agreement with previous genetic and epidemiological studies indicating the host specificity of ST22, ST36 and ST433 and the broad-host range of ST398. However, our in vitro and in vivo experiments revealed an unexpected ability of ST8 to adhere to porcine corneocytes and persist in the nasal cavity of pigs.
Collapse
Affiliation(s)
- Arshnee Moodley
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | | | | | | | | | | |
Collapse
|
96
|
Moser A, Stephan R, Corti S, Johler S. Comparison of genomic and antimicrobial resistance features of latex agglutination test-positive and latex agglutination test-negative Staphylococcus aureus isolates causing bovine mastitis. J Dairy Sci 2012; 96:329-34. [PMID: 23127911 DOI: 10.3168/jds.2012-5944] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022]
Abstract
The dairy industry suffers massive economic losses due to staphylococcal mastitis in cattle. The Staphaureux latex agglutination test (Oxoid, Basel, Switzerland) was reported to lead to negative results in 54% of bovine Staphylococcus aureus strains, and latex-negative strains are thought to be less virulent than Staphaurex latex-positive strains. However, comparative information on virulence and resistance profiles of these 2 groups of Staph. aureus is scarce. Our objective was to associate the latex agglutination phenotype of Staph. aureus strains isolated from bovine mastitis milk with data on clonal complexes, virulence genes, and antibiotic resistance to (1) determine the virulence profiles of the Staphaureux test positive and Staphaurex test negative groups, and (2) provide data needed to improve treatment of bovine mastitis and to identify potential vaccine targets. Seventy-eight Staph. aureus strains isolated from 78 cows on 57 Swiss farms were characterized. Latex agglutination was tested by Staphaureux kit, and resistance profiles were generated by disk diffusion. A DNA microarray was used to assign clonal complexes (CC) and to determine virulence and resistance gene profiles. By the Staphaureux test, 49% of the isolates were latex-positive and 51% were latex-negative. All latex-negative strains were assigned to CC151, whereas latex-positive strains were assigned to various clonal complexes, including CC97 (n=16), CC8 (n=10), CC479 (n=5), CC20 (n=4), CC7 (n=1), CC9 (n=1), and CC45 (n=1). Although the latex-negative isolates were susceptible to all antimicrobial agents tested, 24% of latex-positive isolates were classified as intermediate with regard to cefalexin-kanamycin and 13% were resistant to both ampicillin and penicillin. Microarray profiles of latex-negative isolates were highly similar, but differed largely from those of latex-positive isolates. Although the latex-negative group lacked several enterotoxin genes and sak, it exhibited significantly higher prevalence rates of genes encoding enterotoxin C, toxic shock syndrome toxin, and leukocidins (lukM/lukF-P83, lukD). Our findings suggest that latex-negative isolates represent a group of closely related strains with specific resistance and virulence gene patterns.
Collapse
Affiliation(s)
- A Moser
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
97
|
Polakowska K, Lis MW, Helbin WM, Dubin G, Dubin A, Niedziolka JW, Miedzobrodzki J, Wladyka B. The virulence of Staphylococcus aureus correlates with strain genotype in a chicken embryo model but not a nematode model. Microbes Infect 2012; 14:1352-62. [DOI: 10.1016/j.micinf.2012.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 02/06/2023]
|
98
|
Zhang C, Song L, Chen H, Liu Y, Qin Y, Ning Y. Antimicrobial susceptibility and molecular subtypes of Staphylococcus aureus isolated from pig tonsils and cow's milk in China. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2012; 76:268-274. [PMID: 23543952 PMCID: PMC3460605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/09/2011] [Indexed: 06/02/2023]
Abstract
This study investigated and compared the antimicrobial resistance patterns and ribotypes of Staphylococcus aureus isolated from pig tonsils and cow's milk in China. A total of 90 isolates of S. aureus was included: 42 strains were isolated from tonsils of pigs and 48 from half-udder milk. The broth microdilution method and the double-disc diffusion test (D test) were used for antimicrobial susceptibility testing. The mecA gene for methicillin-resistant S. aureus (MRSA) and the ermA, ermB, ermC, and msrA genes for erythromycin-resistant strains were detected by polymerase chain reaction (PCR). The isolates were ribotyped with the Riboprinter system. The highest frequency of resistance was observed with clindamycin (91.1%), followed by penicillin (90.0%), and erythromycin (85.6%). All strains were susceptible to vancomycin and trimethoprim-sulfamethoxazole. The D test showed that 54.5% (42/77) of erythromycin-resistant isolates had the constitutive resistance phenotype and 45.5% (35/77) had the inducible resistance phenotype to clindamycin. A higher proportion of resistance to cephalosporins, macrolides, fluoroquinolones, and pleuromutilins was observed in pig isolates than in milk isolates (P < 0.05). The mecA gene was detected in all MRSA isolates; 89.6% of erythromycin-resistant strains harbored the ermC gene and 16.9% harbored the ermB gene. A total of 35 different ribogroups was found among the isolates investigated; 83.3% of pig strains belonged to 1 cluster with a similarity coefficient of 0.84. In contrast, 3 main clusters were observed among 68.8% of milk strains, which indicates a high degree of host specificity.
Collapse
Affiliation(s)
| | | | | | | | | | - Yibao Ning
- Address all correspondence to Dr. Yibao Ning; telephone: +8610 62103674; fax: +8610 62103674; e-mail:
| |
Collapse
|
99
|
|
100
|
Jamrozy DM, Fielder MD, Butaye P, Coldham NG. Comparative genotypic and phenotypic characterisation of methicillin-resistant Staphylococcus aureus ST398 isolated from animals and humans. PLoS One 2012; 7:e40458. [PMID: 22792335 PMCID: PMC3394705 DOI: 10.1371/journal.pone.0040458] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 06/07/2012] [Indexed: 01/13/2023] Open
Abstract
The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) ST398 among pigs in certain European countries and North America and its occurrence in other animal species raises a question concerning the molecular mechanisms mediating the success of this lineage. In this study a panel of S. aureus strains belonging to sequence type (ST) 5 (n = 4), ST8 (n = 5), ST15 (n = 5), ST22 (n = 8), clonal complex (CC) 30 (n = 8), CC97 (n = 8), CC130 (n = 4), CC151 (n = 4) and ST398 (n = 18) were screened by DNA microarray and PCR for the carriage of virulence and antimicrobial resistance genes. Isolates belonging to the same sequence type/clonal complex (ST/CC) were found to share similar virulence gene profiles. The ST398 lineage displayed the lowest content of virulence genes, which consisted mainly of genes detected among the majority or all of the analysed lineages. All MRSA ST398 isolates lacked accessory virulence genes that were detected in other ST/CC. In contrast to virulence genotype, the antimicrobial resistance genes profiles varied between isolates belonging to the same ST/CC and profile similarities could be observed for isolates from different lineages. MRSA ST398 isolates in particular displayed significant diversity and high content of antimicrobial resistance genes. This was comparable with certain MRSA belonging to other sequence types particularly the equine MRSA ST8. The apparent lack of significant virulence genes among MRSA ST398 strains, demonstrates that the lineage features a unique genetic background but no ST398-specific virulence markers could be identified.
Collapse
Affiliation(s)
- Dorota M Jamrozy
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, New Haw, United Kingdom.
| | | | | | | |
Collapse
|