51
|
Auditory properties in the parabelt regions of the superior temporal gyrus in the awake macaque monkey: an initial survey. J Neurosci 2015; 35:4140-50. [PMID: 25762661 DOI: 10.1523/jneurosci.3556-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The superior temporal gyrus (STG) is on the inferior-lateral brain surface near the external ear. In macaques, 2/3 of the STG is occupied by an auditory cortical region, the "parabelt," which is part of a network of inferior temporal areas subserving communication and social cognition as well as object recognition and other functions. However, due to its location beneath the squamous temporal bone and temporalis muscle, the STG, like other inferior temporal regions, has been a challenging target for physiological studies in awake-behaving macaques. We designed a new procedure for implanting recording chambers to provide direct access to the STG, allowing us to evaluate neuronal properties and their topography across the full extent of the STG in awake-behaving macaques. Initial surveys of the STG have yielded several new findings. Unexpectedly, STG sites in monkeys that were listening passively responded to tones with magnitudes comparable to those of responses to 1/3 octave band-pass noise. Mapping results showed longer response latencies in more rostral sites and possible tonotopic patterns parallel to core and belt areas, suggesting the reversal of gradients between caudal and rostral parabelt areas. These results will help further exploration of parabelt areas.
Collapse
|
52
|
Osmanski MS, Wang X. Behavioral dependence of auditory cortical responses. Brain Topogr 2015; 28:365-78. [PMID: 25690831 PMCID: PMC4409507 DOI: 10.1007/s10548-015-0428-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
Neural responses in the auditory cortex have historically been measured from either anesthetized or awake but non-behaving animals. A growing body of work has begun to focus instead on recording from auditory cortex of animals actively engaged in behavior tasks. These studies have shown that auditory cortical responses are dependent upon the behavioral state of the animal. The longer ascending subcortical pathway of the auditory system and unique characteristics of auditory processing suggest that such dependencies may have a more profound influence on cortical processing in the auditory system compared to other sensory systems. It is important to understand the nature of these dependencies and their functional implications. In this article, we review the literature on this topic pertaining to cortical processing of sounds.
Collapse
Affiliation(s)
- Michael S Osmanski
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Traylor 410, Baltimore, MD, 21025, USA,
| | | |
Collapse
|
53
|
Karns CM, Isbell E, Giuliano RJ, Neville HJ. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories. Dev Cogn Neurosci 2015; 13:53-67. [PMID: 26002721 PMCID: PMC4470421 DOI: 10.1016/j.dcn.2015.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 01/19/2015] [Accepted: 03/01/2015] [Indexed: 10/28/2022] Open
Abstract
Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) across five age groups: 3-5 years; 10 years; 13 years; 16 years; and young adults. Using a naturalistic dichotic listening paradigm, we characterized the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages.
Collapse
Affiliation(s)
- Christina M Karns
- Department of Psychology, University of Oregon, Eugene, OR 97405, United States.
| | - Elif Isbell
- Department of Psychology, University of Oregon, Eugene, OR 97405, United States
| | - Ryan J Giuliano
- Department of Psychology, University of Oregon, Eugene, OR 97405, United States
| | - Helen J Neville
- Department of Psychology, University of Oregon, Eugene, OR 97405, United States
| |
Collapse
|
54
|
Music perception: information flow within the human auditory cortices. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 829:293-303. [PMID: 25358716 DOI: 10.1007/978-1-4939-1782-2_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Information processing of all acoustic stimuli involves temporal lobe regions referred to as auditory cortices, which receive direct afferents from the auditory thalamus. However, the perception of music (as well as speech or spoken language) is a complex process that also involves secondary and association cortices that conform a large functional network. Using different analytical techniques and stimulation paradigms, several studies have shown that certain areas are particularly sensitive to specific acoustic characteristics inherent to music (e.g., rhythm). This chapter reviews the functional anatomy of the auditory cortices, and highlights specific experiments that suggest the existence of distinct cortical networks for the perception of music and speech.
Collapse
|
55
|
Plasticity in developing brain: active auditory exposure impacts prelinguistic acoustic mapping. J Neurosci 2015; 34:13349-63. [PMID: 25274814 DOI: 10.1523/jneurosci.0972-14.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A major task across infancy is the creation and tuning of the acoustic maps that allow efficient native language processing. This process crucially depends on ongoing neural plasticity and keen sensitivity to environmental cues. Development of sensory mapping has been widely studied in animal models, demonstrating that cortical representations of the sensory environment are continuously modified by experience. One critical period for optimizing human language mapping is early in the first year; however, the neural processes involved and the influence of passive compared with active experience are as yet incompletely understood. Here we demonstrate that, while both active and passive acoustic experience from 4 to 7 months of age, using temporally modulated nonspeech stimuli, impacts acoustic mapping, active experience confers a significant advantage. Using event-related potentials (ERPs), we show that active experience increases perceptual vigilance/attention to environmental acoustic stimuli (e.g., larger and faster P2 peaks) when compared with passive experience or maturation alone. Faster latencies are also seen for the change discrimination peak (N2*) that has been shown to be a robust infant predictor of later language through age 4 years. Sharpening is evident for both trained and untrained stimuli over and above that seen for maturation alone. Effects were also seen on ERP morphology for the active experience group with development of more complex waveforms more often seen in typically developing 12- to 24-month-old children. The promise of selectively "fine-tuning" acoustic mapping as it emerges has far-reaching implications for the amelioration and/or prevention of developmental language disorders.
Collapse
|
56
|
Harinen K, Rinne T. Acoustical and categorical tasks differently modulate activations of human auditory cortex to vowels. BRAIN AND LANGUAGE 2014; 138:71-79. [PMID: 25313844 DOI: 10.1016/j.bandl.2014.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/07/2014] [Accepted: 09/21/2014] [Indexed: 06/04/2023]
Abstract
The present study compared activations to prototype, nonprototype, nonphonemic, and cross-category vowel pairs during vowel discrimination, category discrimination, 2-back, and visual tasks. Our results support previous findings that areas of the superior temporal gyrus (STG) are sensitive to the speech-level difference between prototype vs. nonprototype and phonemic vs. nonphonemic vowels. Further, consistent with previous studies, we found enhanced activations in anterior-posterior STG and inferior parietal lobule (IPL) during the vowel discrimination and 2-back tasks, respectively. Unlike the vowel discrimination task, the category discrimination task was associated with strong IPL activations. Our results provide evidence that activations in STG and IPL strongly depend on whether the task requires analysis of detailed acoustical information or operations on categorical representations. Based on previous studies investigating activations during categorical pitch and spatial tasks, we argue that this distinction is probably not specific to speech.
Collapse
Affiliation(s)
- Kirsi Harinen
- Institute of Behavioural Sciences, University of Helsinki, Finland.
| | - Teemu Rinne
- Institute of Behavioural Sciences, University of Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto University School of Science, Finland
| |
Collapse
|
57
|
Angulo-Perkins A, Aubé W, Peretz I, Barrios FA, Armony JL, Concha L. Music listening engages specific cortical regions within the temporal lobes: differences between musicians and non-musicians. Cortex 2014; 59:126-37. [PMID: 25173956 DOI: 10.1016/j.cortex.2014.07.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 02/22/2014] [Accepted: 07/18/2014] [Indexed: 11/26/2022]
Abstract
Music and speech are two of the most relevant and common sounds in the human environment. Perceiving and processing these two complex acoustical signals rely on a hierarchical functional network distributed throughout several brain regions within and beyond the auditory cortices. Given their similarities, the neural bases for processing these two complex sounds overlap to a certain degree, but particular brain regions may show selectivity for one or the other acoustic category, which we aimed to identify. We examined 53 subjects (28 of them professional musicians) by functional magnetic resonance imaging (fMRI), using a paradigm designed to identify regions showing increased activity in response to different types of musical stimuli, compared to different types of complex sounds, such as speech and non-linguistic vocalizations. We found a region in the anterior portion of the superior temporal gyrus (aSTG) (planum polare) that showed preferential activity in response to musical stimuli and was present in all our subjects, regardless of musical training, and invariant across different musical instruments (violin, piano or synthetic piano). Our data show that this cortical region is preferentially involved in processing musical, as compared to other complex sounds, suggesting a functional role as a second-order relay, possibly integrating acoustic characteristics intrinsic to music (e.g., melody extraction). Moreover, we assessed whether musical experience modulates the response of cortical regions involved in music processing and found evidence of functional differences between musicians and non-musicians during music listening. In particular, bilateral activation of the planum polare was more prevalent, but not exclusive, in musicians than non-musicians, and activation of the right posterior portion of the superior temporal gyrus (planum temporale) differed between groups. Our results provide evidence of functional specialization for music processing in specific regions of the auditory cortex and show domain-specific functional differences possibly correlated with musicianship.
Collapse
Affiliation(s)
- Arafat Angulo-Perkins
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Querétaro, México
| | - William Aubé
- International Laboratory for Brain, Music and Sound (BRAMS), Montreal, Québec, Canada; Department of Psychology, Université de Montréal, Montreal, Québec, Canada
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound (BRAMS), Montreal, Québec, Canada; Department of Psychology, Université de Montréal, Montreal, Québec, Canada
| | - Fernando A Barrios
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Querétaro, México
| | - Jorge L Armony
- International Laboratory for Brain, Music and Sound (BRAMS), Montreal, Québec, Canada; Department of Psychology, Université de Montréal, Montreal, Québec, Canada; Douglas Institute and Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Querétaro, México; International Laboratory for Brain, Music and Sound (BRAMS), Montreal, Québec, Canada.
| |
Collapse
|
58
|
Moerel M, De Martino F, Formisano E. An anatomical and functional topography of human auditory cortical areas. Front Neurosci 2014; 8:225. [PMID: 25120426 PMCID: PMC4114190 DOI: 10.3389/fnins.2014.00225] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/08/2014] [Indexed: 12/22/2022] Open
Abstract
While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that—whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis—the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.
Collapse
Affiliation(s)
- Michelle Moerel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands ; Maastricht Brain Imaging Center, Maastricht University Maastricht, Netherlands ; Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Minneapolis, MN, USA
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands ; Maastricht Brain Imaging Center, Maastricht University Maastricht, Netherlands
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands ; Maastricht Brain Imaging Center, Maastricht University Maastricht, Netherlands
| |
Collapse
|
59
|
Nourski KV, Steinschneider M, McMurray B, Kovach CK, Oya H, Kawasaki H, Howard MA. Functional organization of human auditory cortex: investigation of response latencies through direct recordings. Neuroimage 2014; 101:598-609. [PMID: 25019680 DOI: 10.1016/j.neuroimage.2014.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/01/2014] [Accepted: 07/05/2014] [Indexed: 12/28/2022] Open
Abstract
The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| | - Mitchell Steinschneider
- Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bob McMurray
- Department of Psychology, Department of Communication Sciences and Disorders, Department of Linguistics, The University of Iowa, Iowa City, IA, 52242 USA
| | | | - Hiroyuki Oya
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|
60
|
Wasserthal C, Brechmann A, Stadler J, Fischl B, Engel K. Localizing the human primary auditory cortex in vivo using structural MRI. Neuroimage 2014; 93 Pt 2:237-51. [PMID: 23891882 PMCID: PMC3902056 DOI: 10.1016/j.neuroimage.2013.07.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022] Open
Abstract
Currently there are no routine methods to delineate the primary auditory cortex (PAC) of humans in vivo. Due to the large differences in the location of the PAC between subjects, labels derived from post-mortem brains may be inaccurate when applied to different samples of in vivo brains. Recent magnetic resonance (MR) imaging studies suggested that MR-tissue properties can be used to define the location of the PAC region in vivo. The basis for such an approach is that the PAC region is more strongly myelinated than the secondary areas. We developed a fully automatic method to identify the PAC in conventional anatomical data using a combination of two complementary MR contrasts, i.e., T1 and T2, at 3T with 0.7mm isotropic resolution. Our algorithm maps the anatomical MR data to reconstructed cortical surfaces and uses a classification approach to create an artificial contrast that is highly sensitive to the effects of an increased myelination of the cortex. Consistent with the location of the PAC defined in post-mortem brains, we found a compact region on the medial two thirds of Heschl's gyrus in both hemispheres of all 39 subjects. With further improvements in signal-to-noise ratio of the anatomical data and manual correction of segmentation errors, the results suggest that the primary auditory cortex can be defined in the living brain of single subjects.
Collapse
Affiliation(s)
- Christian Wasserthal
- Special-Lab Non-Invasive Brain Imaging, Leibniz-Institute for Neurobiology Magdeburg, Germany
| | - André Brechmann
- Special-Lab Non-Invasive Brain Imaging, Leibniz-Institute for Neurobiology Magdeburg, Germany.
| | - Jörg Stadler
- Special-Lab Non-Invasive Brain Imaging, Leibniz-Institute for Neurobiology Magdeburg, Germany
| | - Bruce Fischl
- Athinoula A Martinos Center, Dept. of Radiology, MGH, Harvard Medical School, MA, USA; MIT HST/Computer Science and AI Lab, MA, USA
| | - Karin Engel
- Special-Lab Non-Invasive Brain Imaging, Leibniz-Institute for Neurobiology Magdeburg, Germany
| |
Collapse
|
61
|
Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex. J Neurosci 2014; 33:19451-69. [PMID: 24336712 DOI: 10.1523/jneurosci.2880-13.2013] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.
Collapse
|
62
|
Hall AJ, Brown TA, Grahn JA, Gati JS, Nixon PL, Hughes SM, Menon RS, Lomber SG. There's more than one way to scan a cat: Imaging cat auditory cortex with high-field fMRI using continuous or sparse sampling. J Neurosci Methods 2014; 224:96-106. [DOI: 10.1016/j.jneumeth.2013.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
|
63
|
Bharadwaj HM, Lee AKC, Shinn-Cunningham BG. Measuring auditory selective attention using frequency tagging. Front Integr Neurosci 2014; 8:6. [PMID: 24550794 PMCID: PMC3913882 DOI: 10.3389/fnint.2014.00006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/10/2014] [Indexed: 11/14/2022] Open
Abstract
Frequency tagging of sensory inputs (presenting stimuli that fluctuate periodically at rates to which the cortex can phase lock) has been used to study attentional modulation of neural responses to inputs in different sensory modalities. For visual inputs, the visual steady-state response (VSSR) at the frequency modulating an attended object is enhanced, while the VSSR to a distracting object is suppressed. In contrast, the effect of attention on the auditory steady-state response (ASSR) is inconsistent across studies. However, most auditory studies analyzed results at the sensor level or used only a small number of equivalent current dipoles to fit cortical responses. In addition, most studies of auditory spatial attention used dichotic stimuli (independent signals at the ears) rather than more natural, binaural stimuli. Here, we asked whether these methodological choices help explain discrepant results. Listeners attended to one of two competing speech streams, one simulated from the left and one from the right, that were modulated at different frequencies. Using distributed source modeling of magnetoencephalography results, we estimate how spatially directed attention modulates the ASSR in neural regions across the whole brain. Attention enhances the ASSR power at the frequency of the attended stream in contralateral auditory cortex. The attended-stream modulation frequency also drives phase-locked responses in the left (but not right) precentral sulcus (lPCS), a region implicated in control of eye gaze and visual spatial attention. Importantly, this region shows no phase locking to the distracting stream. Results suggest that the lPCS in engaged in an attention-specific manner. Modeling results that take account of the geometry and phases of the cortical sources phase locked to the two streams (including hemispheric asymmetry of lPCS activity) help to explain why past ASSR studies of auditory spatial attention yield seemingly contradictory results.
Collapse
Affiliation(s)
- Hari M Bharadwaj
- Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA ; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Charlestown, MA, USA ; Department of Biomedical Engineering, Boston University Boston, MA, USA
| | - Adrian K C Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Charlestown, MA, USA ; Department of Speech and Hearing Sciences, Institute for Learning and Brain Sciences, University of Washington Seattle, WA, USA
| | - Barbara G Shinn-Cunningham
- Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA ; Department of Biomedical Engineering, Boston University Boston, MA, USA
| |
Collapse
|
64
|
Nourski KV, Steinschneider M, Oya H, Kawasaki H, Jones RD, Howard MA. Spectral organization of the human lateral superior temporal gyrus revealed by intracranial recordings. Cereb Cortex 2014; 24:340-52. [PMID: 23048019 PMCID: PMC3888366 DOI: 10.1093/cercor/bhs314] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The place of the posterolateral superior temporal (PLST) gyrus within the hierarchical organization of the human auditory cortex is unknown. Understanding how PLST processes spectral information is imperative for its functional characterization. Pure-tone stimuli were presented to subjects undergoing invasive monitoring for refractory epilepsy. Recordings were made using high-density subdural grid electrodes. Pure tones elicited robust high gamma event-related band power responses along a portion of PLST adjacent to the transverse temporal sulcus (TTS). Responses were frequency selective, though typically broadly tuned. In several subjects, mirror-image response patterns around a low-frequency center were observed, but typically, more complex and distributed patterns were seen. Frequency selectivity was greatest early in the response. Classification analysis using a sparse logistic regression algorithm yielded above-chance accuracy in all subjects. Classifier performance typically peaked at 100-150 ms after stimulus onset, was comparable for the left and right hemisphere cases, and was stable across stimulus intensities. Results demonstrate that representations of spectral information within PLST are temporally dynamic and contain sufficient information for accurate discrimination of tone frequencies. PLST adjacent to the TTS appears to be an early stage in the hierarchy of cortical auditory processing. Pure-tone response patterns may aid auditory field identification.
Collapse
Affiliation(s)
| | - Mitchell Steinschneider
- Department of Neurology
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | - Robert D. Jones
- Department of Neurology, The University of Iowa, Iowa, IA 52242, USA
| | | |
Collapse
|
65
|
Auditory-cortex short-term plasticity induced by selective attention. Neural Plast 2014; 2014:216731. [PMID: 24551458 PMCID: PMC3914570 DOI: 10.1155/2014/216731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/15/2013] [Indexed: 11/23/2022] Open
Abstract
The ability to concentrate on relevant sounds in the acoustic environment is crucial for everyday function and communication. Converging lines of evidence suggests that transient functional changes in auditory-cortex neurons, “short-term plasticity”, might explain this fundamental function. Under conditions of strongly focused attention, enhanced processing of attended sounds can take place at very early latencies (~50 ms from sound onset) in primary auditory cortex and possibly even at earlier latencies in subcortical structures. More robust selective-attention short-term plasticity is manifested as modulation of responses peaking at ~100 ms from sound onset in functionally specialized nonprimary auditory-cortical areas by way of stimulus-specific reshaping of neuronal receptive fields that supports filtering of selectively attended sound features from task-irrelevant ones. Such effects have been shown to take effect in ~seconds following shifting of attentional focus. There are findings suggesting that the reshaping of neuronal receptive fields is even stronger at longer auditory-cortex response latencies (~300 ms from sound onset). These longer-latency short-term plasticity effects seem to build up more gradually, within tens of seconds after shifting the focus of attention. Importantly, some of the auditory-cortical short-term plasticity effects observed during selective attention predict enhancements in behaviorally measured sound discrimination performance.
Collapse
|
66
|
Amaral AA, Langers DRM. The relevance of task-irrelevant sounds: hemispheric lateralization and interactions with task-relevant streams. Front Neurosci 2013; 7:264. [PMID: 24409115 PMCID: PMC3873511 DOI: 10.3389/fnins.2013.00264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/16/2013] [Indexed: 11/13/2022] Open
Abstract
The effect of unattended task-irrelevant auditory stimuli in the context of an auditory task is not well understood. Using human functional magnetic resonance imaging (fMRI) we compared blood oxygenation level dependent (BOLD) signal changes resulting from monotic task-irrelevant stimulation, monotic task-relevant stimulation and dichotic stimulation with an attended task-relevant stream to one ear and an unattended task-irrelevant stream to the other ear simultaneously. We found strong bilateral BOLD signal changes in the auditory cortex (AC) resulting from monotic stimulation in a passive listening condition. Consistent with previous work, these responses were largest on the side contralateral to stimulation. AC responses to the unattended (task-irrelevant) sounds were preferentially contralateral and strongest for the most difficult condition. Stronger bilateral AC responses occurred during monotic passive-listening than to an unattended stream presented in a dichotic condition, with attention focused on one ear. Additionally, the visual cortex showed negative responses compared to the baseline in all stimulus conditions including passive listening. Our results suggest that during dichotic listening, with attention focused on one ear, (1) the contralateral and the ipsilateral auditory pathways are suppressively interacting; and (2) cross-modal inhibition occurs during purely acoustic stimulation. These findings support the existence of response suppressions within and between modalities in the presence of competing interfering stimuli.
Collapse
Affiliation(s)
- Ana A Amaral
- International Neuroscience Doctoral Programme, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal ; Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Dave R M Langers
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen Groningen, Netherlands ; National Institute for Health Research, Nottingham Hearing Biomedical Research Unit, School of Medicine, University of Nottingham Nottingham, UK
| |
Collapse
|
67
|
Huang S, Chang WT, Belliveau JW, Hämäläinen M, Ahveninen J. Lateralized parietotemporal oscillatory phase synchronization during auditory selective attention. Neuroimage 2013; 86:461-9. [PMID: 24185023 DOI: 10.1016/j.neuroimage.2013.10.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/24/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022] Open
Abstract
Based on the infamous left-lateralized neglect syndrome, one might hypothesize that the dominating right parietal cortex has a bilateral representation of space, whereas the left parietal cortex represents only the contralateral right hemispace. Whether this principle applies to human auditory attention is not yet fully clear. Here, we explicitly tested the differences in cross-hemispheric functional coupling between the intraparietal sulcus (IPS) and auditory cortex (AC) using combined magnetoencephalography (MEG), EEG, and functional MRI (fMRI). Inter-regional pairwise phase consistency (PPC) was analyzed from data obtained during dichotic auditory selective attention task, where subjects were in 10-s trials cued to attend to sounds presented to one ear and to ignore sounds presented in the opposite ear. Using MEG/EEG/fMRI source modeling, parietotemporal PPC patterns were (a) mapped between all AC locations vs. IPS seeds and (b) analyzed between four anatomically defined AC regions-of-interest (ROI) vs. IPS seeds. Consistent with our hypothesis, stronger cross-hemispheric PPC was observed between the right IPS and left AC for attended right-ear sounds, as compared to PPC between the left IPS and right AC for attended left-ear sounds. In the mapping analyses, these differences emerged at 7-13Hz, i.e., at the theta to alpha frequency bands, and peaked in Heschl's gyrus and lateral posterior non-primary ACs. The ROI analysis revealed similarly lateralized differences also in the beta and lower theta bands. Taken together, our results support the view that the right parietal cortex dominates auditory spatial attention.
Collapse
Affiliation(s)
- Samantha Huang
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Wei-Tang Chang
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - John W Belliveau
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Matti Hämäläinen
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Jyrki Ahveninen
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
68
|
Abstract
The challenge of understanding how the brain processes natural signals is compounded by the fact that such signals are often tied closely to specific natural behaviors and natural environments. This added complexity is especially true for auditory communication signals that can carry information at multiple hierarchical levels, and often occur in the context of other competing communication signals. Selective attention provides a mechanism to focus processing resources on specific components of auditory signals, and simultaneously suppress responses to unwanted signals or noise. Although selective auditory attention has been well-studied behaviorally, very little is known about how selective auditory attention shapes the processing on natural auditory signals, and how the mechanisms of auditory attention are implemented in single neurons or neural circuits. Here we review the role of selective attention in modulating auditory responses to complex natural stimuli in humans. We then suggest how the current understanding can be applied to the study of selective auditory attention in the context natural signal processing at the level of single neurons and populations in animal models amenable to invasive neuroscience techniques. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
|
69
|
Uppenkamp S, Röhl M. Human auditory neuroimaging of intensity and loudness. Hear Res 2013; 307:65-73. [PMID: 23973563 DOI: 10.1016/j.heares.2013.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022]
Abstract
The physical intensity of a sound, usually expressed in dB on a logarithmic ratio scale, can easily be measured using technical equipment. Loudness is the perceptual correlate of sound intensity, and is usually determined by means of some sort of psychophysical scaling procedure. The interrelation of sound intensity and perceived loudness is still a matter of debate, and the physiological correlate of loudness perception in the human auditory pathway is not completely understood. Various studies indicate that the activation in human auditory cortex is more a representation of loudness sensation rather than of physical sound pressure level. This raises the questions (1), at what stage or stages in the ascending auditory pathway is the transformation of the physical stimulus into its perceptual correlate completed, and (2), to what extent other factors affecting individual loudness judgements might modulate the brain activation as registered by auditory neuroimaging. An overview is given about recent studies on the effects of sound intensity, duration, bandwidth and individual hearing status on the activation in the human auditory system, as measured by various approaches in auditory neuroimaging. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Stefan Uppenkamp
- Medizinische Physik, Carl von Ossietzky Universität, 26111 Oldenburg, Germany.
| | | |
Collapse
|
70
|
Ahveninen J, Huang S, Belliveau JW, Chang WT, Hämäläinen M. Dynamic oscillatory processes governing cued orienting and allocation of auditory attention. J Cogn Neurosci 2013; 25:1926-43. [PMID: 23915050 DOI: 10.1162/jocn_a_00452] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In everyday listening situations, we need to constantly switch between alternative sound sources and engage attention according to cues that match our goals and expectations. The exact neuronal bases of these processes are poorly understood. We investigated oscillatory brain networks controlling auditory attention using cortically constrained fMRI-weighted magnetoencephalography/EEG source estimates. During consecutive trials, participants were instructed to shift attention based on a cue, presented in the ear where a target was likely to follow. To promote audiospatial attention effects, the targets were embedded in streams of dichotically presented standard tones. Occasionally, an unexpected novel sound occurred opposite to the cued ear to trigger involuntary orienting. According to our cortical power correlation analyses, increased frontoparietal/temporal 30-100 Hz gamma activity at 200-1400 msec after cued orienting predicted fast and accurate discrimination of subsequent targets. This sustained correlation effect, possibly reflecting voluntary engagement of attention after the initial cue-driven orienting, spread from the TPJ, anterior insula, and inferior frontal cortices to the right FEFs. Engagement of attention to one ear resulted in a significantly stronger increase of 7.5-15 Hz alpha in the ipsilateral than contralateral parieto-occipital cortices 200-600 msec after the cue onset, possibly reflecting cross-modal modulation of the dorsal visual pathway during audiospatial attention. Comparisons of cortical power patterns also revealed significant increases of sustained right medial frontal cortex theta power, right dorsolateral pFC and anterior insula/inferior frontal cortex beta power, and medial parietal cortex and posterior cingulate cortex gamma activity after cued versus novelty-triggered orienting (600-1400 msec). Our results reveal sustained oscillatory patterns associated with voluntary engagement of auditory spatial attention, with the frontoparietal and temporal gamma increases being best predictors of subsequent behavioral performance.
Collapse
Affiliation(s)
- Jyrki Ahveninen
- Harvard Medical School-Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | | | | | | | | |
Collapse
|
71
|
Huang S, Seidman LJ, Rossi S, Ahveninen J. Distinct cortical networks activated by auditory attention and working memory load. Neuroimage 2013; 83:1098-108. [PMID: 23921102 DOI: 10.1016/j.neuroimage.2013.07.074] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 02/03/2023] Open
Abstract
Auditory attention and working memory (WM) allow for selection and maintenance of relevant sound information in our minds, respectively, thus underlying goal-directed functioning in everyday acoustic environments. It is still unclear whether these two closely coupled functions are based on a common neural circuit, or whether they involve genuinely distinct subfunctions with separate neuronal substrates. In a full factorial functional MRI (fMRI) design, we independently manipulated the levels of auditory-verbal WM load and attentional interference using modified Auditory Continuous Performance Tests. Although many frontoparietal regions were jointly activated by increases of WM load and interference, there was a double dissociation between prefrontal cortex (PFC) subareas associated selectively with either auditory attention or WM. Specifically, anterior dorsolateral PFC (DLPFC) and the right anterior insula were selectively activated by increasing WM load, whereas subregions of middle lateral PFC and inferior frontal cortex (IFC) were associated with interference only. Meanwhile, a superadditive interaction between interference and load was detected in left medial superior frontal cortex, suggesting that in this area, activations are not only overlapping, but reflect a common resource pool recruited by increased attentional and WM demands. Indices of WM-specific suppression of anterolateral non-primary auditory cortices (AC) and attention-specific suppression of primary AC were also found, possibly reflecting suppression/interruption of sound-object processing of irrelevant stimuli during continuous task performance. Our results suggest a double dissociation between auditory attention and working memory in subregions of anterior DLPFC vs. middle lateral PFC/IFC in humans, respectively, in the context of substantially overlapping circuits.
Collapse
Affiliation(s)
- Samantha Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | | | | | | |
Collapse
|
72
|
Saenz M, Langers DRM. Tonotopic mapping of human auditory cortex. Hear Res 2013; 307:42-52. [PMID: 23916753 DOI: 10.1016/j.heares.2013.07.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 11/26/2022]
Abstract
Since the early days of functional magnetic resonance imaging (fMRI), retinotopic mapping emerged as a powerful and widely-accepted tool, allowing the identification of individual visual cortical fields and furthering the study of visual processing. In contrast, tonotopic mapping in auditory cortex proved more challenging primarily because of the smaller size of auditory cortical fields. The spatial resolution capabilities of fMRI have since advanced, and recent reports from our labs and several others demonstrate the reliability of tonotopic mapping in human auditory cortex. Here we review the wide range of stimulus procedures and analysis methods that have been used to successfully map tonotopy in human auditory cortex. We point out that recent studies provide a remarkably consistent view of human tonotopic organisation, although the interpretation of the maps continues to vary. In particular, there remains controversy over the exact orientation of the primary gradients with respect to Heschl's gyrus, which leads to different predictions about the location of human A1, R, and surrounding fields. We discuss the development of this debate and argue that literature is converging towards an interpretation that core fields A1 and R fold across the rostral and caudal banks of Heschl's gyrus, with tonotopic gradients laid out in a distinctive V-shaped manner. This suggests an organisation that is largely homologous with non-human primates. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Melissa Saenz
- Laboratoire de Recherche en Neuroimagerie (LREN), CHUV, Department of Clinical Neurosciences, Lausanne University Hospital, Mont Paisible 16, Lausanne 1011, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| | | |
Collapse
|
73
|
Seydell-Greenwald A, Greenberg AS, Rauschecker JP. Are you listening? Brain activation associated with sustained nonspatial auditory attention in the presence and absence of stimulation. Hum Brain Mapp 2013; 35:2233-52. [PMID: 23913818 DOI: 10.1002/hbm.22323] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 02/22/2013] [Accepted: 04/15/2013] [Indexed: 11/12/2022] Open
Abstract
Neuroimaging studies investigating the voluntary (top-down) control of attention largely agree that this process recruits several frontal and parietal brain regions. Since most studies used attention tasks requiring several higher-order cognitive functions (e.g. working memory, semantic processing, temporal integration, spatial orienting) as well as different attentional mechanisms (attention shifting, distractor filtering), it is unclear what exactly the observed frontoparietal activations reflect. The present functional magnetic resonance imaging study investigated, within the same participants, signal changes in (1) a "Simple Attention" task in which participants attended to a single melody, (2) a "Selective Attention" task in which they simultaneously ignored another melody, and (3) a "Beep Monitoring" task in which participants listened in silence for a faint beep. Compared to resting conditions with identical stimulation, all tasks produced robust activation increases in auditory cortex, cross-modal inhibition in visual and somatosensory cortex, and decreases in the default mode network, indicating that participants were indeed focusing their attention on the auditory domain. However, signal increases in frontal and parietal brain areas were only observed for tasks 1 and 2, but completely absent for task 3. These results lead to the following conclusions: under most conditions, frontoparietal activations are crucial for attention since they subserve higher-order cognitive functions inherently related to attention. However, under circumstances that minimize other demands, nonspatial auditory attention in the absence of stimulation can be maintained without concurrent frontal or parietal activations.
Collapse
Affiliation(s)
- Anna Seydell-Greenwald
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington DC, 20007
| | | | | |
Collapse
|
74
|
Altmann CF, Ono K, Callan A, Matsuhashi M, Mima T, Fukuyama H. Environmental reverberation affects processing of sound intensity in right temporal cortex. Eur J Neurosci 2013; 38:3210-20. [PMID: 23869792 DOI: 10.1111/ejn.12318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/13/2013] [Accepted: 06/20/2013] [Indexed: 11/28/2022]
Abstract
Although sound reverberation is considered a nuisance variable in most studies investigating auditory processing, it can serve as a cue for loudness constancy, a phenomenon describing constant loudness perception in spite of changing sound source distance. In this study, we manipulated room reverberation characteristics to test their effect on psychophysical loudness constancy and we tested with magnetoencephalography on human subjects for neural responses reflecting loudness constancy. Psychophysically, we found that loudness constancy was present in strong, but not weak, reverberation conditions. In contrast, the dependence of sound distance judgment on actual distance was similar across conditions. We observed brain activity reflecting behavioral loudness constancy, i.e. inverse scaling of the evoked magnetic fields with distance for weak reverberation but constant responses across distance for strong reverberation from ~210 to 270 ms after stimulus onset. Distributed magnetoencephalography source reconstruction revealed underlying neural generators within the right middle temporal and right inferior anterior temporal lobe. Our data suggest a dissociation of loudness constancy and distance perception, implying a direct usage of reverberation cues for constructing constant loudness across distance. Furthermore, our magnetoencephalography data suggest involvement of auditory association areas in the right middle and right inferior anterior temporal cortex in this process.
Collapse
Affiliation(s)
- Christian F Altmann
- Graduate School of Medicine, Human Brain Research Center, Kyoto University, Kyoto, Japan; Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
75
|
Ahveninen J, Kopčo N, Jääskeläinen IP. Psychophysics and neuronal bases of sound localization in humans. Hear Res 2013; 307:86-97. [PMID: 23886698 DOI: 10.1016/j.heares.2013.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Localization of sound sources is a considerable computational challenge for the human brain. Whereas the visual system can process basic spatial information in parallel, the auditory system lacks a straightforward correspondence between external spatial locations and sensory receptive fields. Consequently, the question how different acoustic features supporting spatial hearing are represented in the central nervous system is still open. Functional neuroimaging studies in humans have provided evidence for a posterior auditory "where" pathway that encompasses non-primary auditory cortex areas, including the planum temporale (PT) and posterior superior temporal gyrus (STG), which are strongly activated by horizontal sound direction changes, distance changes, and movement. However, these areas are also activated by a wide variety of other stimulus features, posing a challenge for the interpretation that the underlying areas are purely spatial. This review discusses behavioral and neuroimaging studies on sound localization, and some of the competing models of representation of auditory space in humans. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Jyrki Ahveninen
- Harvard Medical School - Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | | | | |
Collapse
|
76
|
Lee AKC, Larson E, Maddox RK, Shinn-Cunningham BG. Using neuroimaging to understand the cortical mechanisms of auditory selective attention. Hear Res 2013; 307:111-20. [PMID: 23850664 DOI: 10.1016/j.heares.2013.06.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 11/30/2022]
Abstract
Over the last four decades, a range of different neuroimaging tools have been used to study human auditory attention, spanning from classic event-related potential studies using electroencephalography to modern multimodal imaging approaches (e.g., combining anatomical information based on magnetic resonance imaging with magneto- and electroencephalography). This review begins by exploring the different strengths and limitations inherent to different neuroimaging methods, and then outlines some common behavioral paradigms that have been adopted to study auditory attention. We argue that in order to design a neuroimaging experiment that produces interpretable, unambiguous results, the experimenter must not only have a deep appreciation of the imaging technique employed, but also a sophisticated understanding of perception and behavior. Only with the proper caveats in mind can one begin to infer how the cortex supports a human in solving the "cocktail party" problem. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Adrian K C Lee
- Institute for Learning and Brain Sciences, University of Washington, WA 98195, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
77
|
Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex 2013; 49:2822-33. [PMID: 23706955 DOI: 10.1016/j.cortex.2013.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 01/16/2013] [Accepted: 04/04/2013] [Indexed: 11/20/2022]
Abstract
Natural and behaviorally relevant sounds are characterized by temporal modulations of their waveforms, which carry important cues for sound segmentation and communication. Still, there is little consensus as to how this temporal information is represented in auditory cortex. Here, by using functional magnetic resonance imaging (fMRI) optimized for studying the auditory system, we report the existence of a topographically ordered spatial representation of temporal sound modulation rates in human auditory cortex. We found a topographically organized sensitivity within auditory cortex to sounds with varying modulation rates, with enhanced responses to lower modulation rates (2 and 4 Hz) on lateral parts of Heschl's gyrus (HG) and faster modulation rates (16 and 32 Hz) on medial HG. The representation of temporal modulation rates was distinct from the representation of sound frequencies (tonotopy) that was orientated roughly orthogonal. Moreover, the combination of probabilistic anatomical maps with a previously proposed functional delineation of auditory fields revealed that the distinct maps of temporal and spectral sound features both prevail within two presumed primary auditory fields hA1 and hR. Our results reveal a topographically ordered representation of temporal sound cues in human primary auditory cortex that is complementary to maps of spectral cues. They thereby enhance our understanding of the functional parcellation and organization of auditory cortical processing.
Collapse
|
78
|
Nardo D, Santangelo V, Macaluso E. Spatial orienting in complex audiovisual environments. Hum Brain Mapp 2013; 35:1597-614. [PMID: 23616340 DOI: 10.1002/hbm.22276] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/22/2013] [Accepted: 02/07/2013] [Indexed: 11/11/2022] Open
Abstract
Previous studies on crossmodal spatial orienting typically used simple and stereotyped stimuli in the absence of any meaningful context. This study combined computational models, behavioural measures and functional magnetic resonance imaging to investigate audiovisual spatial interactions in naturalistic settings. We created short videos portraying everyday life situations that included a lateralised visual event and a co-occurring sound, either on the same or on the opposite side of space. Subjects viewed the videos with or without eye-movements allowed (overt or covert orienting). For each video, visual and auditory saliency maps were used to index the strength of stimulus-driven signals, and eye-movements were used as a measure of the efficacy of the audiovisual events for spatial orienting. Results showed that visual salience modulated activity in higher-order visual areas, whereas auditory salience modulated activity in the superior temporal cortex. Auditory salience modulated activity also in the posterior parietal cortex, but only when audiovisual stimuli occurred on the same side of space (multisensory spatial congruence). Orienting efficacy affected activity in the visual cortex, within the same regions modulated by visual salience. These patterns of activation were comparable in overt and covert orienting conditions. Our results demonstrate that, during viewing of complex multisensory stimuli, activity in sensory areas reflects both stimulus-driven signals and their efficacy for spatial orienting; and that the posterior parietal cortex combines spatial information about the visual and the auditory modality.
Collapse
Affiliation(s)
- Davide Nardo
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | | | | |
Collapse
|
79
|
Tuning in to sound: frequency-selective attentional filter in human primary auditory cortex. J Neurosci 2013; 33:1858-63. [PMID: 23365225 DOI: 10.1523/jneurosci.4405-12.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cocktail parties, busy streets, and other noisy environments pose a difficult challenge to the auditory system: how to focus attention on selected sounds while ignoring others? Neurons of primary auditory cortex, many of which are sharply tuned to sound frequency, could help solve this problem by filtering selected sound information based on frequency-content. To investigate whether this occurs, we used high-resolution fMRI at 7 tesla to map the fine-scale frequency-tuning (1.5 mm isotropic resolution) of primary auditory areas A1 and R in six human participants. Then, in a selective attention experiment, participants heard low (250 Hz)- and high (4000 Hz)-frequency streams of tones presented at the same time (dual-stream) and were instructed to focus attention onto one stream versus the other, switching back and forth every 30 s. Attention to low-frequency tones enhanced neural responses within low-frequency-tuned voxels relative to high, and when attention switched the pattern quickly reversed. Thus, like a radio, human primary auditory cortex is able to tune into attended frequency channels and can switch channels on demand.
Collapse
|
80
|
Oh J, Kwon JH, Yang PS, Jeong J. Auditory Imagery Modulates Frequency-specific Areas in the Human Auditory Cortex. J Cogn Neurosci 2013; 25:175-87. [DOI: 10.1162/jocn_a_00280] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Neural responses in early sensory areas are influenced by top–down processing. In the visual system, early visual areas have been shown to actively participate in top–down processing based on their topographical properties. Although it has been suggested that the auditory cortex is involved in top–down control, functional evidence of topographic modulation is still lacking. Here, we show that mental auditory imagery for familiar melodies induces significant activation in the frequency-responsive areas of the primary auditory cortex (PAC). This activation is related to the characteristics of the imagery: when subjects were asked to imagine high-frequency melodies, we observed increased activation in the high- versus low-frequency response area; when the subjects were asked to imagine low-frequency melodies, the opposite was observed. Furthermore, we found that A1 is more closely related to the observed frequency-related modulation than R in tonotopic subfields of the PAC. Our findings suggest that top–down processing in the auditory cortex relies on a mechanism similar to that used in the perception of external auditory stimuli, which is comparable to early visual systems.
Collapse
Affiliation(s)
| | | | - Po Song Yang
- 1The Catholic University of Korea
- 3Daejeon St. Mary's Hospital
| | | |
Collapse
|
81
|
Abstract
In contrast to vision, where retinotopic mapping alone can define areal borders, primary auditory areas such as A1 are best delineated by combining in vivo tonotopic mapping with postmortem cyto- or myeloarchitectonics from the same individual. We combined high-resolution (800 μm) quantitative T(1) mapping with phase-encoded tonotopic methods to map primary auditory areas (A1 and R) within the "auditory core" of human volunteers. We first quantitatively characterize the highly myelinated auditory core in terms of shape, area, cortical depth profile, and position, with our data showing considerable correspondence to postmortem myeloarchitectonic studies, both in cross-participant averages and in individuals. The core region contains two "mirror-image" tonotopic maps oriented along the same axis as observed in macaque and owl monkey. We suggest that these two maps within the core are the human analogs of primate auditory areas A1 and R. The core occupies a much smaller portion of tonotopically organized cortex on the superior temporal plane and gyrus than is generally supposed. The multimodal approach to defining the auditory core will facilitate investigations of structure-function relationships, comparative neuroanatomical studies, and promises new biomarkers for diagnosis and clinical studies.
Collapse
|
82
|
Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity. J Neurosci 2013; 32:14205-16. [PMID: 23055490 DOI: 10.1523/jneurosci.1388-12.2012] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Auditory cortical processing of complex meaningful sounds entails the transformation of sensory (tonotopic) representations of incoming acoustic waveforms into higher-level sound representations (e.g., their category). However, the precise neural mechanisms enabling such transformations remain largely unknown. In the present study, we use functional magnetic resonance imaging (fMRI) and natural sounds stimulation to examine these two levels of sound representation (and their relation) in the human auditory cortex. In a first experiment, we derive cortical maps of frequency preference (tonotopy) and selectivity (tuning width) by mathematical modeling of fMRI responses to natural sounds. The tuning width maps highlight a region of narrow tuning that follows the main axis of Heschl's gyrus and is flanked by regions of broader tuning. The narrowly tuned portion on Heschl's gyrus contains two mirror-symmetric frequency gradients, presumably defining two distinct primary auditory areas. In addition, our analysis indicates that spectral preference and selectivity (and their topographical organization) extend well beyond the primary regions and also cover higher-order and category-selective auditory regions. In particular, regions with preferential responses to human voice and speech occupy the low-frequency portions of the tonotopic map. We confirm this observation in a second experiment, where we find that speech/voice selective regions exhibit a response bias toward the low frequencies characteristic of human voice and speech, even when responding to simple tones. We propose that this frequency bias reflects the selective amplification of relevant and category-characteristic spectral bands, a useful processing step for transforming a sensory (tonotopic) sound image into higher level neural representations.
Collapse
|
83
|
Abstract
Functional magnetic resonance imaging (fMRI) in humans and macaques allows a test of the hypothesis that there is a specialized neural ensemble for pitch within auditory cortex: a pitch center. fMRI measures the blood oxygenation level-dependent (BOLD) response related to regional synaptic activity (Logothetis et al., 2001). The distinction between synaptic activity and spike firing, and species differences encourage caution when comparing BOLD activity in humans and macaques to recordings from single neurons in ferret and marmoset in the previous mini-review. The BOLD data provide support for the pitch-center concept, with ongoing debate about its location.
Collapse
|
84
|
Sensory processing during viewing of cinematographic material: computational modeling and functional neuroimaging. Neuroimage 2012. [PMID: 23202431 DOI: 10.1016/j.neuroimage.2012.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The investigation of brain activity using naturalistic, ecologically-valid stimuli is becoming an important challenge for neuroscience research. Several approaches have been proposed, primarily relying on data-driven methods (e.g. independent component analysis, ICA). However, data-driven methods often require some post-hoc interpretation of the imaging results to draw inferences about the underlying sensory, motor or cognitive functions. Here, we propose using a biologically-plausible computational model to extract (multi-)sensory stimulus statistics that can be used for standard hypothesis-driven analyses (general linear model, GLM). We ran two separate fMRI experiments, which both involved subjects watching an episode of a TV-series. In Exp 1, we manipulated the presentation by switching on-and-off color, motion and/or sound at variable intervals, whereas in Exp 2, the video was played in the original version, with all the consequent continuous changes of the different sensory features intact. Both for vision and audition, we extracted stimulus statistics corresponding to spatial and temporal discontinuities of low-level features, as well as a combined measure related to the overall stimulus saliency. Results showed that activity in occipital visual cortex and the superior temporal auditory cortex co-varied with changes of low-level features. Visual saliency was found to further boost activity in extra-striate visual cortex plus posterior parietal cortex, while auditory saliency was found to enhance activity in the superior temporal cortex. Data-driven ICA analyses of the same datasets also identified "sensory" networks comprising visual and auditory areas, but without providing specific information about the possible underlying processes, e.g., these processes could relate to modality, stimulus features and/or saliency. We conclude that the combination of computational modeling and GLM enables the tracking of the impact of bottom-up signals on brain activity during viewing of complex and dynamic multisensory stimuli, beyond the capability of purely data-driven approaches.
Collapse
|
85
|
Venuti P, Caria A, Esposito G, De Pisapia N, Bornstein MH, de Falco S. Differential brain responses to cries of infants with autistic disorder and typical development: an fMRI study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2012; 33:2255-2264. [PMID: 22835685 PMCID: PMC3496246 DOI: 10.1016/j.ridd.2012.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 05/27/2023]
Abstract
This study used fMRI to measure brain activity during adult processing of cries of infants with autistic disorder (AD) compared to cries of typically developing (TD) infants. Using whole brain analysis, we found that cries of infants with AD compared to those of TD infants elicited enhanced activity in brain regions associated with verbal and prosodic processing, perhaps because altered acoustic patterns of AD cries render them especially difficult to interpret, and increased activity in brain regions associated with emotional processing, indicating that AD cries also elicit more negative feelings and may be perceived as more aversive and/or arousing. Perceived distress engendered by AD cries related to increased activation in brain regions associated with emotional processing. This study supports the hypothesis that cry is an early and meaningful anomaly displayed by children with AD. It could be that cries associated with AD alter parent-child interactions much earlier than the time that reliable AD diagnosis normally occurs.
Collapse
Affiliation(s)
- Paola Venuti
- Department of Cognitive Science and Education, University of Trento, Trento, Italy.
| | | | | | | | | | | |
Collapse
|
86
|
Itoh K, Okumiya-Kanke Y, Nakayama Y, Kwee IL, Nakada T. Effects of musical training on the early auditory cortical representation of pitch transitions as indexed by change-N1. Eur J Neurosci 2012; 36:3580-92. [DOI: 10.1111/j.1460-9568.2012.08278.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Kosuke Itoh
- Center for Integrated Human Brain Science; Brain Research Institute; University of Niigata; 1-757 Asahimachi; Niigata; 951-8585; Japan
| | | | - Yoh Nakayama
- Yamaha Music Foundation; Music Research Institute; Tokyo; Japan
| | - Ingrid L. Kwee
- Department of Neurology; University of California; Davis; CA; USA
| | | |
Collapse
|
87
|
Dykstra AR, Koh CK, Braida LD, Tramo MJ. Dissociation of detection and discrimination of pure tones following bilateral lesions of auditory cortex. PLoS One 2012; 7:e44602. [PMID: 22957087 PMCID: PMC3434164 DOI: 10.1371/journal.pone.0044602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 08/09/2012] [Indexed: 12/04/2022] Open
Abstract
It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5±2.1 dB in the left ear and 6.5±1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6±0.22 dB; right ear: 1.7±0.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed.
Collapse
Affiliation(s)
- Andrew R Dykstra
- Program in Speech and Hearing Biosciences and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
88
|
Huang S, Belliveau JW, Tengshe C, Ahveninen J. Brain networks of novelty-driven involuntary and cued voluntary auditory attention shifting. PLoS One 2012; 7:e44062. [PMID: 22937153 PMCID: PMC3429427 DOI: 10.1371/journal.pone.0044062] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/30/2012] [Indexed: 01/03/2023] Open
Abstract
In everyday life, we need a capacity to flexibly shift attention between alternative sound sources. However, relatively little work has been done to elucidate the mechanisms of attention shifting in the auditory domain. Here, we used a mixed event-related/sparse-sampling fMRI approach to investigate this essential cognitive function. In each 10-sec trial, subjects were instructed to wait for an auditory "cue" signaling the location where a subsequent "target" sound was likely to be presented. The target was occasionally replaced by an unexpected "novel" sound in the uncued ear, to trigger involuntary attention shifting. To maximize the attention effects, cues, targets, and novels were embedded within dichotic 800-Hz vs. 1500-Hz pure-tone "standard" trains. The sound of clustered fMRI acquisition (starting at t = 7.82 sec) served as a controlled trial-end signal. Our approach revealed notable activation differences between the conditions. Cued voluntary attention shifting activated the superior intra--parietal sulcus (IPS), whereas novelty-triggered involuntary orienting activated the inferior IPS and certain subareas of the precuneus. Clearly more widespread activations were observed during voluntary than involuntary orienting in the premotor cortex, including the frontal eye fields. Moreover, we found -evidence for a frontoinsular-cingular attentional control network, consisting of the anterior insula, inferior frontal cortex, and medial frontal cortices, which were activated during both target discrimination and voluntary attention shifting. Finally, novels and targets activated much wider areas of superior temporal auditory cortices than shifting cues.
Collapse
Affiliation(s)
- Samantha Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
89
|
Cate AD, Herron TJ, Kang X, Yund EW, Woods DL. Intermodal attention modulates visual processing in dorsal and ventral streams. Neuroimage 2012; 63:1295-304. [PMID: 22917986 DOI: 10.1016/j.neuroimage.2012.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/13/2012] [Accepted: 08/05/2012] [Indexed: 11/26/2022] Open
Abstract
Attending to visual objects while ignoring information from other modalities is necessary for performing difficult visual discriminations, but it is unclear how selecting between sensory modalities alters processing within the visual system. We used an audio-visual intermodal selective attention paradigm with fMRI to study the effects of visual attention on cortical activity in the absence of competitive interactions between multiple visual stimuli. Complex stimuli (faces and words) activated higher visual areas even in the absence of visual attention. These stimulus-dependent activations (SDAs) covered foveal retinotopic cortex, extended ventrally to the anterior fusiform gyrus and dorsally to include multiple distinct foci in the intraparietal sulcus (IPS). Attention amplified the baseline response in posterior retinotopic regions and altered activity in different ways in the extrastriate dorsal and ventral pathways. The majority of the IPS was strongly and exclusively activated by visual attention: attention-related modulations (ARMs) encompassed and spread well beyond the focal SDAs. In contrast, in the fusiform gyrus only a small subset of the regions activated by unattended stimuli showed ARMs. Ventral cortex was also heterogeneous: we found a distinct ventrolateral region in the occipitotemporal sulcus (OTS) that was activated exclusively by attention, showing neither SDAs nor any significant stimulus preferences. Attention-dependent activations in the IPS and the OTS suggest that these regions play critical roles in intermodal visual attention.
Collapse
Affiliation(s)
- A D Cate
- Psychology Department, Virginia Polytechnic Institute and State University, 109 Williams Hall, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
90
|
Henning Stieglitz L, Seidel K, Wiest R, Beck J, Raabe A. Localization of primary language areas by arcuate fascicle fiber tracking. Neurosurgery 2012; 70:56-64; discussion 64-5. [PMID: 21760558 DOI: 10.1227/neu.0b013e31822cb882] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To reduce the risk of disabling postoperative functional deficit in patients with lesions in the dominant hemisphere, information about the localization of eloquent language areas is mandatory. OBJECTIVE To demonstrate the feasibility of arcuate fascicle (AF) tractography for proper localization of eloquent language areas in the superior temporal (STG) and inferior frontal gyrus (IFG). METHODS Between January and June 2010, we performed surgery in 13 patients with highly eloquent lesions with close spatial relationship to the primary language areas. All of them received preoperative diffusion tensor imaging for AF tractography. The STG and IFG were delineated at the ends of the AF. Five patients underwent functional magnetic resonance imaging of the primary language areas. The results were compared with tractography. RESULTS Tractography of the AF without prior knowledge of the localization of the STG and IFG was feasible in all cases. In the cases with functional magnetic resonance imaging, the activation maps matched the tractography results. In all but 1 patient, preservation of the primary language areas was possible, proven by the good neurological outcome. One patient suffered from a language dysfunction caused by a lesion in the medial and inferior temporal gyrus along the surgical pathway. CONCLUSION Tractography of the AF is a useful tool for identification of parts of the main primary language areas. Using tractography as a localization procedure to determine the primary language areas aids in the delineation of the STG and IFG and thus may help reduce the risk of postoperative permanent neurological deficit.
Collapse
|
91
|
Hsieh IH, Fillmore P, Rong F, Hickok G, Saberi K. FM-selective networks in human auditory cortex revealed using fMRI and multivariate pattern classification. J Cogn Neurosci 2012; 24:1896-907. [PMID: 22640390 DOI: 10.1162/jocn_a_00254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Frequency modulation (FM) is an acoustic feature of nearly all complex sounds. Directional FM sweeps are especially pervasive in speech, music, animal vocalizations, and other natural sounds. Although the existence of FM-selective cells in the auditory cortex of animals has been documented, evidence in humans remains equivocal. Here we used multivariate pattern analysis to identify cortical selectivity for direction of a multitone FM sweep. This method distinguishes one pattern of neural activity from another within the same ROI, even when overall level of activity is similar, allowing for direct identification of FM-specialized networks. Standard contrast analysis showed that despite robust activity in auditory cortex, no clusters of activity were associated with up versus down sweeps. Multivariate pattern analysis classification, however, identified two brain regions as selective for FM direction, the right primary auditory cortex on the supratemporal plane and the left anterior region of the superior temporal gyrus. These findings are the first to directly demonstrate existence of FM direction selectivity in the human auditory cortex.
Collapse
Affiliation(s)
- I-Hui Hsieh
- National Central University, Jhongli City, Taiwan.
| | | | | | | | | |
Collapse
|
92
|
London S, Bishop CW, Miller LM. Spatial attention modulates the precedence effect. J Exp Psychol Hum Percept Perform 2012; 38:1371-9. [PMID: 22545599 DOI: 10.1037/a0028348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Communication and navigation in real environments rely heavily on the ability to distinguish objects in acoustic space. However, auditory spatial information is often corrupted by conflicting cues and noise such as acoustic reflections. Fortunately the brain can apply mechanisms at multiple levels to emphasize target information and mitigate such interference. In a rapid phenomenon known as the precedence effect, reflections are perceptually fused with the veridical primary sound. The brain can also use spatial attention to highlight a target sound at the expense of distracters. Although attention has been shown to modulate many auditory perceptual phenomena, rarely does it alter how acoustic energy is first parsed into objects, as with the precedence effect. This brief report suggests that both endogenous (voluntary) and exogenous (stimulus-driven) spatial attention have a profound influence on the precedence effect depending on where they are oriented. Moreover, we observed that both types of attention could enhance perceptual fusion while only exogenous attention could hinder it. These results demonstrate that attention, by altering how auditory objects are formed, guides the basic perceptual organization of our acoustic environment.
Collapse
Affiliation(s)
- Sam London
- Center for Mind and Brain, University of California, Davis, CA, USA.
| | | | | |
Collapse
|
93
|
Stimulus-focused attention speeds up auditory processing. Int J Psychophysiol 2012; 84:155-63. [PMID: 22326595 DOI: 10.1016/j.ijpsycho.2012.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/23/2022]
|
94
|
Burton H, Firszt JB, Holden T, Agato A, Uchanski RM. Activation lateralization in human core, belt, and parabelt auditory fields with unilateral deafness compared to normal hearing. Brain Res 2012; 1454:33-47. [PMID: 22502976 DOI: 10.1016/j.brainres.2012.02.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/26/2012] [Indexed: 11/19/2022]
Abstract
We studied activation magnitudes in core, belt, and parabelt auditory cortex in adults with normal hearing (NH) and unilateral hearing loss (UHL) using an interrupted, single-event design and monaural stimulation with random spectrographic sounds. NH patients had one ear blocked and received stimulation on the side matching the intact ear in UHL. The objective was to determine whether the side of deafness affected lateralization and magnitude of evoked blood oxygen level-dependent responses across different auditory cortical fields (ACFs). Regardless of ear of stimulation, NH showed larger contralateral responses in several ACFs. With right ear stimulation in UHL, ipsilateral responses were larger compared to NH in core and belt ACFs, indicating neuroplasticity in the right hemisphere. With left ear stimulation in UHL, only posterior core ACFs showed larger ipsilateral responses, suggesting that most ACFs in the left hemisphere had greater resilience against reduced crossed inputs from a deafferented right ear. Parabelt regions located posterolateral to core and belt auditory cortex showed reduced activation in UHL compared to NH irrespective of RE/LE stimulation and lateralization of inputs. Thus, the effect in UHL compared to NH differed by ACF and ear of deafness.
Collapse
Affiliation(s)
- Harold Burton
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
95
|
Funabiki Y, Murai T, Toichi M. Cortical activation during attention to sound in autism spectrum disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2012; 33:518-524. [PMID: 22119700 DOI: 10.1016/j.ridd.2011.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/17/2011] [Indexed: 05/31/2023]
Abstract
Individuals with autism spectrum disorders (ASDs) can demonstrate hypersensitivity to sounds as well as a lack of awareness of them. Several functional imaging studies have suggested an abnormal response in the auditory cortex of such subjects, but it is not known whether these subjects have dysfunction in the auditory cortex or are simply not listening. We measured changes in blood oxygenated hemoglobin (OxyHb) in the prefrontal and temporal cortices using near-infrared spectroscopy during various listening and ignoring tasks in 11 ASD and 12 control subjects. Here we show that the auditory cortex in ASD subjects responds to sounds fully during attention. OxyHb in the auditory cortex increased with intentional listening but not with ignoring of the same auditory stimulus in a similar fashion in both groups. Cortical responses differed not in the auditory but in the prefrontal region between the ASD and control groups. Thus, unawareness to sounds in ASD could be interpreted as due to inattention rather than dysfunction of the auditory cortex. Difficulties in attention control may account for the contrary behaviors of hypersensitivity and unawareness to sound in ASD.
Collapse
Affiliation(s)
- Yasuko Funabiki
- School of Human Health Science, Kyoto University, 53 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
96
|
Teshiba TM, Ling J, Ruhl DA, Bedrick BS, Peña A, Mayer AR. Evoked and intrinsic asymmetries during auditory attention: implications for the contralateral and neglect models of functioning. ACTA ACUST UNITED AC 2012; 23:560-9. [PMID: 22371310 DOI: 10.1093/cercor/bhs039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Unlike the visual system, a direct mapping of extrapersonal space does not exist within human auditory cortex (AC). Thus, models (contralateral bias vs. neglect) of how auditory spatial attention is allocated remain debated, as does the role of hemispheric asymmetries. To further examine these questions, 27 participants completed an exogenous auditory orienting task while undergoing functional magnetic resonance imaging. Resting-state data were also collected to characterize intrinsic activity within the AC. Current results provide the first evidence of hemispheric specialization in the "where" (right secondary AC) auditory processing stream during both evoked (orienting task) and intrinsic (resting-state data) activity, suggesting that spontaneous and evoked activity may be synchronized by similar cortical hierarchies. Strong evidence for a contralateral bias model was observed during rapid deployment stages (facilitation) of auditory attention in bilateral AC. However, contralateral bias increased for left and decreased for right AC (neglect model) after longer stimulus onset asynchronies (inhibition of return), suggesting a role for higher-order cortical structures in modulating AC functioning. Prime candidates for attentional modulation include the frontoparietal network, which demonstrated right hemisphere lateralization across multiple attentional states.
Collapse
Affiliation(s)
- Terri M Teshiba
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | | | | | | | | | | |
Collapse
|
97
|
Langers DRM, de Kleine E, van Dijk P. Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci 2012; 6:2. [PMID: 22347171 PMCID: PMC3269775 DOI: 10.3389/fnsys.2012.00002] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/16/2012] [Indexed: 01/12/2023] Open
Abstract
The pathophysiology underlying tinnitus, a hearing disorder characterized by the chronic perception of phantom sound, has been related to aberrant plastic reorganization of the central auditory system. More specifically, tinnitus is thought to involve changes in the tonotopic representation of sound. In the present study we used high-resolution functional magnetic resonance imaging to determine tonotopic maps in the auditory cortex of 20 patients with tinnitus but otherwise near-normal hearing, and compared these to equivalent outcomes from 20 healthy controls with matched hearing thresholds. Using a dedicated experimental paradigm and data-driven analysis techniques, multiple tonotopic gradients could be robustly distinguished in both hemispheres, arranged in a pattern consistent with previous findings. Yet, maps were not found to significantly differ between the two groups in any way. In particular, we found no evidence for an overrepresentation of high sound frequencies, matching the tinnitus pitch. A significant difference in evoked response magnitude was found near the low-frequency tonotopic endpoint on the lateral extreme of left Heschl's gyrus. Our results suggest that macroscopic tonotopic reorganization in the auditory cortex is not required for the emergence of tinnitus, and is not typical for tinnitus that accompanies normal hearing to mild hearing loss.
Collapse
Affiliation(s)
- Dave R M Langers
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | | | | |
Collapse
|
98
|
Harinen K, Aaltonen O, Salo E, Salonen O, Rinne T. Task-dependent activations of human auditory cortex to prototypical and nonprototypical vowels. Hum Brain Mapp 2012; 34:1272-81. [PMID: 22287197 DOI: 10.1002/hbm.21506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 11/10/2022] Open
Abstract
Research in auditory neuroscience has largely neglected the possible effects of different listening tasks on activations of auditory cortex (AC). In the present study, we used high-resolution fMRI to compare human AC activations with sounds presented during three auditory and one visual task. In all tasks, subjects were presented with pairs of Finnish vowels, noise bursts with pitch and Gabor patches. In the vowel pairs, one vowel was always either a prototypical /i/ or /ae/ (separately defined for each subject) or a nonprototype. In different task blocks, subjects were either required to discriminate (same/different) vowel pairs, to rate vowel "goodness" (first/second sound was a better exemplar of the vowel class), to discriminate pitch changes in the noise bursts, or to discriminate Gabor orientation changes. We obtained distinctly different AC activation patterns to identical sounds presented during the four task conditions. In particular, direct comparisons between the vowel tasks revealed stronger activations during vowel discrimination in the anterior and posterior superior temporal gyrus (STG), while the vowel rating task was associated with increased activations in the inferior parietal lobule (IPL). We also found that AC areas in or near Heschl's gyrus (HG) were sensitive to the speech-specific difference between a vowel prototype and nonprototype during active listening tasks. These results show that AC activations to speech sounds are strongly dependent on the listening tasks.
Collapse
Affiliation(s)
- Kirsi Harinen
- Institute of Behavioural Sciences, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
99
|
Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials. PLoS One 2011; 6:e28522. [PMID: 22163029 PMCID: PMC3232232 DOI: 10.1371/journal.pone.0028522] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/09/2011] [Indexed: 12/03/2022] Open
Abstract
The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN), an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR) and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN) a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system.
Collapse
|
100
|
Abstract
The primary auditory cortex (PAC) is central to human auditory abilities, yet its location in the brain remains unclear. We measured the two largest tonotopic subfields of PAC (hA1 and hR) using high-resolution functional MRI at 7 T relative to the underlying anatomy of Heschl's gyrus (HG) in 10 individual human subjects. The data reveals a clear anatomical-functional relationship that, for the first time, indicates the location of PAC across the range of common morphological variants of HG (single gyri, partial duplications, and complete duplications). In 20/20 individual hemispheres, two primary mirror-symmetric tonotopic maps were clearly observed with gradients perpendicular to HG. PAC spanned both divisions of HG in cases of partial and complete duplications (11/20 hemispheres), not only the anterior division as commonly assumed. Specifically, the central union of the two primary maps (the hA1-R border) was consistently centered on the full Heschl's structure: on the gyral crown of single HGs and within the sulcal divide of duplicated HGs. The anatomical-functional variants of PAC appear to be part of a continuum, rather than distinct subtypes. These findings significantly revise HG as a marker for human PAC and suggest that tonotopic maps may have shaped HG during human evolution. Tonotopic mappings were based on only 16 min of fMRI data acquisition, so these methods can be used as an initial mapping step in future experiments designed to probe the function of specific auditory fields.
Collapse
|