51
|
Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 2018; 475:1611-1634. [PMID: 29743249 PMCID: PMC5941316 DOI: 10.1042/bcj20170164] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 02/08/2023]
Abstract
Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.
Collapse
|
52
|
Gao F, Chen J, Zhu H. A potential strategy for treating atherosclerosis: improving endothelial function via AMP-activated protein kinase. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1024-1029. [PMID: 29675553 DOI: 10.1007/s11427-017-9285-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Endothelial dysfunction is caused by many factors, such as dyslipidemia, endoplasmic reticulum (ER) stress, and inflammation. It has been demonstrated that endothelial dysfunction is the initial process of atherosclerosis. AMP-activated protein kinase (AMPK) is an important metabolic switch that plays a crucial role in lipid metabolism and inflammation. However, recent evidence indicates that AMPK could be a target for atherosclerosis by improving endothelial function. For instance, activation of AMPK inhibits the production of reactive oxygen species induced by mitochondrial dysfunction, ER stress, and NADPH oxidase. Moreover, activation of AMPK inhibits the production of pro-inflammatory factors induced by dyslipidemia and hyperglycemia and restrains production of perivascular adipose tissue-released adipokines. AMPK activation prevents endothelial dysfunction by increasing the bioavailability of nitric oxide. Therefore, we focused on the primary risk factors involved in endothelial dysfunction, and summarize the features of AMPK in the protection of endothelial function, by providing signaling pathways thought to be important in the pathological progress of risk factors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiemei Chen
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
53
|
Sun Q, Lu NN, Feng L. Apigetrin inhibits gastric cancer progression through inducing apoptosis and regulating ROS-modulated STAT3/JAK2 pathway. Biochem Biophys Res Commun 2018; 498:164-170. [PMID: 29408335 DOI: 10.1016/j.bbrc.2018.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022]
Abstract
Apigetrin (APG), as a flavonoid, has many cellular bioactivities, including regulation of oxidative stress, and induction of apoptosis. However, the means by which APG suppresses human gastric cancer are still little to be understood. In the present study, the anti-cancer effects of APG on human gastric cancer cells were investigated. The results indicated that APG could suppress the proliferation and induce apoptosis in gastric cancer cells. Its role in apoptosis induction was through reducing Bcl-2, and enhancing Bax, Caspase-9/-3 and poly ADP-ribose polymerase (PARP) cleavage. In addition, APG incubation resulted in the generation of intracellular reactive oxygen species (ROS) in cells. Meanwhile, APG suppressed constitutive and interleukin-6 (IL-6)-stimulated signal transducer and activator of transcription 3 (STAT3), Janus kinase 2 gene (JAK2) and Src activation. However, ROS scavenger, N-acety-l-cysteine (NAC), diminished apoptosis induced by APG. And APG-triggered de-phosphorylation of STAT3/JAK2 was rescued by NAC pre-treatment. In vivo, APG administration significantly inhibited the gastric cancer cell xenograft tumorigenesis through inducing apoptosis and inhibiting STAT3/JAK2 pathways. Taken together, the findings above illustrated that APG might be used as a promising candidate against human gastric cancer progression.
Collapse
Affiliation(s)
- Qian Sun
- Pharmacy Intravenous Admixture Service Centre, Affiliated Hospital of Jining Medical University, Jining 272029, China
| | - Na-Na Lu
- Department of Neonatology, Jining No.1 People's Hospital, Jining 272029, China
| | - Lei Feng
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining 272029, China.
| |
Collapse
|
54
|
Schiattarella GG, Cattaneo F, Carrizzo A, Paolillo R, Boccella N, Ambrosio M, Damato A, Pironti G, Franzone A, Russo G, Magliulo F, Pirozzi M, Storto M, Madonna M, Gargiulo G, Trimarco V, Rinaldi L, De Lucia M, Garbi C, Feliciello A, Esposito G, Vecchione C, Perrino C. Akap1
Regulates Vascular Function and Endothelial Cells Behavior. Hypertension 2018; 71:507-517. [DOI: 10.1161/hypertensionaha.117.10185] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/29/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Gabriele Giacomo Schiattarella
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Fabio Cattaneo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Albino Carrizzo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Roberta Paolillo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Nicola Boccella
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Mariateresa Ambrosio
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Antonio Damato
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Gianluigi Pironti
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Anna Franzone
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Giusi Russo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Fabio Magliulo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Marinella Pirozzi
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Marianna Storto
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Michele Madonna
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Giuseppe Gargiulo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Valentina Trimarco
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Laura Rinaldi
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Massimiliano De Lucia
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Corrado Garbi
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Antonio Feliciello
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Giovanni Esposito
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Carmine Vecchione
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Cinzia Perrino
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| |
Collapse
|
55
|
The Intratumoral Heterogeneity of Cancer Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1063:131-145. [DOI: 10.1007/978-3-319-77736-8_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
56
|
Kim SH, Son KM, Kim KY, Yu SN, Park SG, Kim YW, Nam HW, Suh JT, Ji JH, Ahn SC. Deoxypodophyllotoxin induces cytoprotective autophagy against apoptosis via inhibition of PI3K/AKT/mTOR pathway in osteosarcoma U2OS cells. Pharmacol Rep 2017. [DOI: 10.1016/j.pharep.2017.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
57
|
Lee JY, McMurtry SA, Stevens T. Single cell cloning generates lung endothelial colonies with conserved growth, angiogenic, and bioenergetic characteristics. Pulm Circ 2017; 7:777-792. [PMID: 28841087 PMCID: PMC5703126 DOI: 10.1177/2045893217731295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/03/2017] [Indexed: 01/13/2023] Open
Abstract
Pulmonary artery, capillary, and vein endothelial cells possess distinctive structures and functions, which represent a form of vascular segment specific macroheterogeneity. However, within each of these segmental populations, individual cell functional variability represents a poorly characterized microheterogeneity. Here, we hypothesized that single cell clonogenic assays would reveal microheterogeneity among the parent cell population and enable isolation of highly representative cells with committed parental characteristics. To test this hypothesis, pulmonary microvascular endothelial cells (PMVECs) and pulmonary arterial endothelial cells (PAECs) were isolated from different Sprague Dawley rats. Serum stimulated proliferation of endothelial populations and single cell clonogenic potential were evaluated. In vitro Matrigel assays were utilized to analyze angiogenic potential and the Seahorse assay was used to evaluate bioenergetic profiles. PMVEC populations grew faster and had a higher proliferative potential than PAEC populations. Fewer PMVECs were needed to form networks on Matrigel when compared with PAECs. PMVECs primarily utilized aerobic glycolysis, while PAECs relied more heavily on oxidative phosphorylation, to support bioenergetic demands. Repeated single cell cloning and expansion of PAEC colonies generated homogeneous first-generation clones that were highly reflective of the parental population in terms of growth, angiogenic potential, and bioenergetic profiles. Repeated single cell cloning of the first-generation clones generated second-generation clones with increased proliferative potential while maintaining other parental characteristics. Second-generation clones were highly homogeneous populations. Thus, single cell cloning reveals microheterogeneity among the parent cell population and enables isolation of highly representative cells with parental characteristics.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
- Department of Internal Medicine, University of South Alabama, Mobile, AL, USA
- Division of Pulmonary and Critical Care Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Sarah A. McMurtry
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
- Department of Internal Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
58
|
Jiang F. Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol 2017; 43:1021-1028. [PMID: 27558982 DOI: 10.1111/1440-1681.12649] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/30/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
The importance of autophagy in cardiovascular physiology and cardiovascular disease is increasingly recognized; however, the precise biological effects and underlying mechanisms of autophagy in the cardiovascular system are still poorly understood. In the last few years, the effects of autophagy in endothelial cells have attracted great interests. This article provides a summary of our current knowledge on the regulatory factors, signalling mechanisms, and functional outcomes of autophagy in endothelial cells. It is suggested that in most situations, induction of an autophagic response has cytoprotective effects. The beneficial effects of autophagy in endothelial cells are likely to be context-dependent, since autophagy may also contribute to cell death under certain circumstances. In addition to regulating endothelial cell survival or death, autophagy is also involved in modulating other important functions, such as nitric oxide production, angiogenesis and haemostasis/thrombosis. The mounting data will help us draw a clear picture of the roles of autophagy in endothelial cell biology and dysfunction. Given the pivotal role of endothelial dysfunction in the pathogenesis of vascular disease, disruptions of autophagy in endothelial cells are likely to have significant contributions. This is supported by some preliminary ex vivo data indicating that compromised autophagic functions may be important in the development of endothelial dysfunctions associated with diabetes and ageing.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
59
|
Thwe PM, Pelgrom LR, Cooper R, Beauchamp S, Reisz JA, D'Alessandro A, Everts B, Amiel E. Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses. Cell Metab 2017; 26:558-567.e5. [PMID: 28877459 PMCID: PMC5657596 DOI: 10.1016/j.cmet.2017.08.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/21/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Abstract
Dendritic cell (DC) activation by Toll-like receptor (TLR) agonists causes rapid glycolytic reprogramming that is required to meet the metabolic demands of their immune activation. Recent efforts in the field have identified an important role for extracellular glucose sourcing to support DC activation. However, the contributions of intracellular glucose stores to these processes have not been well characterized. We demonstrate that DCs possess intracellular glycogen stores and that cell-intrinsic glycogen metabolism supports the early effector functions of TLR-activated DCs. Inhibition of glycogenolysis significantly attenuates TLR-mediated DC maturation and impairs their ability to initiate lymphocyte activation. We further report that DCs exhibit functional compartmentalization of glucose- and glycogen-derived carbons, where these substrates preferentially contribute to distinct metabolic pathways. This work provides novel insights into nutrient homeostasis in DCs, demonstrating that differential utilization of glycogen and glucose metabolism regulates their optimal immune function.
Collapse
Affiliation(s)
- Phyu M Thwe
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA; Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Leonard R Pelgrom
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Rachel Cooper
- Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Saritha Beauchamp
- Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eyal Amiel
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA; Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
60
|
Ndombera FT. Anti-cancer agents and reactive oxygen species modulators that target cancer cell metabolism. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractTraditionally the perspective on reactive oxygen species (ROS) has centered on the role they play as carcinogenic or cancer-causing radicals. Over the years, characterization and functional studies have revealed the complexity of ROS as signaling molecules that regulate various physiological cellular responses or whose levels are altered in various diseases. Cancer cells often maintain high basal level of ROS and are vulnerable to any further increase in ROS levels beyond a certain protective threshold. Consequently, ROS-modulation has emerged as an anticancer strategy with synthesis of various ROS-inducing or responsive agents that target cancer cells. Of note, an increased carbohydrate uptake and/or induction of death receptors of cancer cells was exploited to develop glycoconjugates that potentially induce cellular stress, ROS and apoptosis. This mini review highlights the development of compounds that target cancer cells by taking advantage of redox or metabolic alteration in cancer cells.
Collapse
|
61
|
Zheng Z, Ma H, Zhang X, Tu F, Wang X, Ha T, Fan M, Liu L, Xu J, Yu K, Wang R, Kalbfleisch J, Kao R, Williams D, Li C. Enhanced Glycolytic Metabolism Contributes to Cardiac Dysfunction in Polymicrobial Sepsis. J Infect Dis 2017; 215:1396-1406. [PMID: 28368517 DOI: 10.1093/infdis/jix138] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background Cardiac dysfunction is present in >40% of sepsis patients and is associated with mortality rates of up to 70%. Recent evidence suggests that glycolytic metabolism plays a critical role in host defense and inflammation. Activation of Toll-like receptors on immune cells can enhance glycolytic metabolism. This study investigated whether modulation of glycolysis by inhibition of hexokinase will be beneficial to septic cardiomyopathy. Methods Male C57B6/J mice were treated with a hexokinase inhibitor (2-deoxy-d-glucose [2-DG], 0.25-2 g/kg, n = 6-8) before cecal ligation and puncture (CLP) induced sepsis. Untreated septic mice served as control. Sham surgically operated mice treated with or without the 2-DG inhibitor served as sham controls. Cardiac function was assessed 6 hours after CLP sepsis by echocardiography. Serum was harvested for measurement of inflammatory cytokines and lactate. Results Sepsis-induced cardiac dysfunction was significantly attenuated by administration of 2-DG. Ejection fraction and fractional shortening in 2-DG-treated septic mice were significantly (P < .05) greater than in untreated CLP mice. 2-DG administration also significantly improved survival outcome, reduced kidney and liver injury, attenuated sepsis-increased serum levels of tumor necrosis factor α and interleukin 1β as well as lactate, and enhanced the expression of Sirt1 and Sirt3 in the myocardium, which play an important role in mitochondrial function and metabolism. In addition, 2-DG administration suppresses sepsis-increased expression of apoptotic inducers Bak and Bax as well as JNK phosphorylation in the myocardium. Conclusions Glycolytic metabolism plays an important role in mediating sepsis-induced septic cardiomyopathy. The mechanisms may involve regulation of inflammatory response and apoptotic signaling.
Collapse
Affiliation(s)
- Zhibo Zheng
- Departments of Surgery.,Biometry and Medical Computing, and
| | - He Ma
- Departments of Surgery.,Department of Nephrology, BenQ Medical Center, Nanjing Medical University, and
| | | | | | | | - Tuanzhu Ha
- Departments of Surgery.,Department of Nephrology, BenQ Medical Center, Nanjing Medical University, and
| | | | - Li Liu
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, and
| | | | - Kaijiang Yu
- Department of Internal Medicine and Intensive Care Unit, Harbin Medical University Cancer Hospital,Heilonjiang,China
| | - Ruitao Wang
- Department of Internal Medicine and Intensive Care Unit, Harbin Medical University Cancer Hospital,Heilonjiang,China
| | - John Kalbfleisch
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City.,Department of Nephrology, BenQ Medical Center, Nanjing Medical University, and
| | - Race Kao
- Departments of Surgery.,Department of Nephrology, BenQ Medical Center, Nanjing Medical University, and
| | - David Williams
- Departments of Surgery.,Department of Nephrology, BenQ Medical Center, Nanjing Medical University, and
| | - Chuanfu Li
- Departments of Surgery.,Department of Nephrology, BenQ Medical Center, Nanjing Medical University, and
| |
Collapse
|
62
|
Affiliation(s)
- Komal Saraswat
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
63
|
Fu D, Yu JY, Connell AR, Yang S, Hookham MB, McLeese R, Lyons TJ. Beneficial Effects of Berberine on Oxidized LDL-Induced Cytotoxicity to Human Retinal Müller Cells. Invest Ophthalmol Vis Sci 2017; 57:3369-79. [PMID: 27367504 PMCID: PMC4961062 DOI: 10.1167/iovs.16-19291] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose Limited mechanistic understanding of diabetic retinopathy (DR) has hindered therapeutic advances. Berberine, an isoquinolone alkaloid, has shown favorable effects on glucose and lipid metabolism in animal and human studies, but effects on DR are unknown. We previously demonstrated intraretinal extravasation and modification of LDL in human diabetes, and toxicity of modified LDL to human retinal Müller cells. We now explore pathogenic effects of modified LDL on Müller cells, and the efficacy of berberine in mitigating this cytotoxicity. Methods Confluent human Müller cells were exposed to in vitro–modified ‘highly oxidized, glycated (HOG-) LDL versus native-LDL (N-LDL; 200 mg protein/L) for 6 or 24 hours, with/without pretreatment with berberine (5 μM, 1 hour) and/or the adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, Compound C (5 μM, 1 hour). Using techniques including Western blots, reactive oxygen species (ROS) detection assay, and quantitative real-time PCR, the following outcomes were assessed: cell viability (CCK-8 assay), autophagy (LC3, Beclin-1, ATG-5), apoptosis (cleaved caspase 3, cleaved poly-ADP ribose polymerase), oxidative stress (ROS, nuclear factor erythroid 2-related factor 2, glutathione peroxidase 1, NADPH oxidase 4), angiogenesis (VEGF, pigment epithelium-derived factor), inflammation (inducible nitric oxide synthase, intercellular adhesion molecule 1, IL-6, IL-8, TNF-α), and glial cell activation (glial fibrillary acidic protein). Results Native-LDL had no effect on cultured human Müller cells, but HOG-LDL exhibited marked toxicity, significantly decreasing viability and inducing autophagy, apoptosis, oxidative stress, expression of angiogenic factors, inflammation, and glial cell activation. Berberine attenuated all the effects of HOG-LDL (all P < 0.05), and its effects were mitigated by AMPK inhibition (P < 0.05). Conclusions Berberine inhibits modified LDL-induced Müller cell injury by activating the AMPK pathway, and merits further study as an agent for preventing and/or treating DR.
Collapse
Affiliation(s)
- Dongxu Fu
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Jeremy Y Yu
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Anna R Connell
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Shihe Yang
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michelle B Hookham
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Rebecca McLeese
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Timothy J Lyons
- Centre for Experimental Medicine School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
64
|
Caja S, Enríquez JA. Mitochondria in endothelial cells: Sensors and integrators of environmental cues. Redox Biol 2017; 12:821-827. [PMID: 28448943 PMCID: PMC5406579 DOI: 10.1016/j.redox.2017.04.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/23/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
The involvement of angiogenesis in disease and its potential as a therapeutic target have been firmly established over recent decades. Endothelial cells (ECs) are central elements in vessel homeostasis and regulate the passage of material and cells into and out of the bloodstream. EC proliferation and migration are modified by alterations to mitochondrial biogenesis and dynamics resulting from several signals and environmental cues, such as oxygen, hemodynamics, and nutrients. As intermediary signals, mitochondrial ROS are released as important downstream modulators of the expression of angiogenesis-related genes. In this review, we discuss the physiological actions of these signals and aberrant responses during vascular disorders. Mitochondria in EC act as integrators of environmental cues. Circulating signals modify mitochondrial dynamics, altering EC phenotype. ROS release by EC mitochondria regulates expression of vascular genes.
Collapse
Affiliation(s)
- Sergio Caja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jose Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; Centro de Investigaciones en RED (CIBERFES), Melchor Fernández Almagro, 28029 Madrid, Spain.
| |
Collapse
|
65
|
Allen E, Missiaen R, Bergers G. Trimming the Vascular Tree in Tumors: Metabolic and Immune Adaptations. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:21-29. [PMID: 28396525 PMCID: PMC8335596 DOI: 10.1101/sqb.2016.81.030940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Angiogenesis, the formation of new blood vessels, has become a well-established hallmark of cancer. Its functional importance for the manifestation and progression of tumors has been further validated by the beneficial therapeutic effects of angiogenesis inhibitors, most notably ones targeting the vascular endothelial growth factor (VEGF) signaling pathways. However, with the transient and short-lived nature of the patient response, it has become evident that tumors have the ability to adapt to the pressures of vascular growth restriction. Several escape mechanisms have been described that adapt tumors to therapy-induced low-oxygen tension by either reinstating tumor growth by vascular rebound or by altering tumor behavior without the necessity to reinitiate revascularization. We review here two bypass mechanisms that either instigate angiogenic and immune-suppressive polarization of intratumoral innate immune cells to facilitate VEGF-independent angiogenesis or enable metabolic adaptation and reprogramming of endothelial cells and tumor cells to adapt to low-oxygen tension.
Collapse
Affiliation(s)
- Elizabeth Allen
- KU-Leuven and VIB-Center for Cancer Biology, 3000 Leuven, Belgium
| | - Rindert Missiaen
- KU-Leuven and VIB-Center for Cancer Biology, 3000 Leuven, Belgium
| | - Gabriele Bergers
- KU-Leuven and VIB-Center for Cancer Biology, 3000 Leuven, Belgium
| |
Collapse
|
66
|
Targeting endothelial metabolism for anti-angiogenesis therapy: A pharmacological perspective. Vascul Pharmacol 2017; 90:8-18. [DOI: 10.1016/j.vph.2017.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 12/19/2022]
|
67
|
Yu L, Lu M, Jia D, Ma J, Ben-Jacob E, Levine H, Kaipparettu BA, Onuchic JN. Modeling the Genetic Regulation of Cancer Metabolism: Interplay between Glycolysis and Oxidative Phosphorylation. Cancer Res 2017; 77:1564-1574. [PMID: 28202516 DOI: 10.1158/0008-5472.can-16-2074] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
Abnormal metabolism is a hallmark of cancer, yet its regulation remains poorly understood. Cancer cells were considered to utilize primarily glycolysis for ATP production, referred to as the Warburg effect. However, recent evidence suggests that oxidative phosphorylation (OXPHOS) plays a crucial role during cancer progression. Here we utilized a systems biology approach to decipher the regulatory principle of glycolysis and OXPHOS. Integrating information from literature, we constructed a regulatory network of genes and metabolites, from which we extracted a core circuit containing HIF-1, AMPK, and ROS. Our circuit analysis showed that while normal cells have an oxidative state and a glycolytic state, cancer cells can access a hybrid state with both metabolic modes coexisting. This was due to higher ROS production and/or oncogene activation, such as RAS, MYC, and c-SRC. Guided by the model, we developed two signatures consisting of AMPK and HIF-1 downstream genes, respectively, to quantify the activity of glycolysis and OXPHOS. By applying the AMPK and HIF-1 signatures to The Cancer Genome Atlas patient transcriptomics data of multiple cancer types and single-cell RNA-seq data of lung adenocarcinoma, we confirmed an anticorrelation between AMPK and HIF-1 activities and the association of metabolic states with oncogenes. We propose that the hybrid phenotype contributes to metabolic plasticity, allowing cancer cells to adapt to various microenvironments. Using model simulations, our theoretical framework of metabolism can serve as a platform to decode cancer metabolic plasticity and design cancer therapies targeting metabolism. Cancer Res; 77(7); 1564-74. ©2017 AACR.
Collapse
Affiliation(s)
- Linglin Yu
- Center for Theoretical Biological Physics, Rice University, Houston, Texas.,Applied Physics Program, Rice University, Houston, Texas
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Rice University, Houston, Texas. .,The Jackson Laboratory, Bar Harbor, Maine
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, Texas.,Systems, Synthetic and Physical Biology Program, Rice University, Houston, Texas
| | - Jianpeng Ma
- Center for Theoretical Biological Physics, Rice University, Houston, Texas.,Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University, Houston, Texas.,School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas.,Department of Biosciences, Rice University, Houston, Texas.,Department of Physics and Astronomy, Rice University, Houston, Texas
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas. .,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas. .,Department of Biosciences, Rice University, Houston, Texas.,Department of Physics and Astronomy, Rice University, Houston, Texas.,Department of Chemistry, Rice University, Houston, Texas
| |
Collapse
|
68
|
Abstract
Angiogenesis has traditionally been viewed from the perspective of how endothelial cells (ECs) coordinate migration and proliferation in response to growth factor activation to form new vessel branches. However, ECs must also coordinate their metabolism and adapt metabolic fluxes to the rising energy and biomass demands of branching vessels. Recent studies have highlighted the importance of such metabolic regulation in the endothelium and uncovered core metabolic pathways and mechanisms of regulation that drive the angiogenic process. In this review, we discuss our current understanding of EC metabolism, how it intersects with angiogenic signal transduction, and how alterations in metabolic pathways affect vessel morphogenesis. Understanding EC metabolism promises to reveal new perspectives on disease mechanisms in the vascular system with therapeutic implications for disorders with aberrant vessel growth and function.
Collapse
Affiliation(s)
- Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany; .,International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.,German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, D-13347 Berlin, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| |
Collapse
|
69
|
Cabezas-Cruz A, Alberdi P, Valdés JJ, Villar M, de la Fuente J. Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis. Front Cell Infect Microbiol 2017; 7:23. [PMID: 28229048 PMCID: PMC5293764 DOI: 10.3389/fcimb.2017.00023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of human, equine, and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. A. phagocytophilum has become an emerging tick-borne pathogen in the United States, Europe, Africa, and Asia, with increasing numbers of infected people and animals every year. It has been recognized that intracellular pathogens manipulate host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. However, our current knowledge on how A. phagocytophilum affect these processes in the tick vector, Ixodes scapularis is limited. In this study, a genome-wide search for components of major carbohydrate metabolic pathways was performed in I. scapularis ticks for which the genome was recently published. The enzymes involved in the seven major carbohydrate metabolic pathways glycolysis, gluconeogenesis, pentose phosphate, tricarboxylic acid cycle (TCA), glyceroneogenesis, and mitochondrial oxidative phosphorylation and β-oxidation were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis major carbohydrate metabolic pathway components in response to A. phagocytophilum infection of tick tissues and cultured cells. The results showed that major carbohydrate metabolic pathways are conserved in ticks. A. phagocytophilum infection inhibits gluconeogenesis and mitochondrial metabolism, but increases the expression of glycolytic genes. A model was proposed to explain how A. phagocytophilum could simultaneously control tick cell glucose metabolism and cytoskeleton organization, which may be achieved in part by up-regulating and stabilizing hypoxia inducible factor 1 alpha in a hypoxia-independent manner. The present work provides a more comprehensive view of the major carbohydrate metabolic pathways involved in the response to A. phagocytophilum infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Institute of Parasitology, Biology Center, Czech Academy of SciencesCeské Budejovice, Czechia
- Faculty of Science, University of South BohemiaCeské Budejovice, Czechia
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM)Ciudad Real, Spain
| | - James J. Valdés
- Institute of Parasitology, Biology Center, Czech Academy of SciencesCeské Budejovice, Czechia
- Department of Virology, Veterinary Research InstituteBrno, Czechia
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM)Ciudad Real, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM)Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
70
|
Aneuploidy of a murine immortalized endothelial cell line, MS1. J Oral Biosci 2017. [DOI: 10.1016/j.job.2016.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
Shafique E, Torina A, Reichert K, Colantuono B, Nur N, Zeeshan K, Ravichandran V, Liu Y, Feng J, Zeeshan K, Benjamin LE, Irani K, Harrington EO, Sellke FW, Abid MR. Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium. Cardiovasc Res 2017; 113:234-246. [PMID: 28088753 DOI: 10.1093/cvr/cvw249] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/25/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS There are conflicting reports on the role of reactive oxygen species (ROS) i.e. beneficial vs. harmful, in vascular endothelium. Here, we aim to examine whether duration of exposure to ROS and/or subcellular ROS levels are responsible for the apparently paradoxical effects of oxidants on endothelium. METHODS AND RESULTS We have recently generated binary (Tet-ON/OFF) conditional transgenic mice (Tet-Nox2:VE-Cad-tTA) that can induce 1.8 ± 0.42-fold increase in NADPH oxidase (NOX)-derived ROS specifically in vascular endothelium upon withdrawal of tetracycline from the drinking water. Animals were divided in two groups: one exposed to high endogenous ROS levels for 8 weeks (short-term) and the other for 20 weeks (long-term). Using endothelial cells (EC) isolated from mouse hearts (MHEC), we demonstrate that both short-term and long-term increase in NOX-ROS induced AMPK-mediated activation of eNOS. Interestingly, although endothelium-dependent nitric oxide (NO)-mediated coronary vasodilation was significantly increased after short-term increase in NOX-ROS, coronary vasodilation was drastically reduced after long-term increase in ROS. We also show that short-term ROS increase induced proliferation in EC and angiogenic sprouting in the aorta. In contrast, long-term increase in cytosolic ROS resulted in nitrotyrosine-mediated inactivation of mitochondrial (mito) antioxidant MnSOD, increase in mito-ROS, loss of mitochondrial membrane potential (Δψm), decreased EC proliferation and angiogenesis. CONCLUSION The findings suggest that NOX-derived ROS results in increased mito-ROS. Whereas short-term increase in mito-ROS was counteracted by MnSOD, long-term increase in ROS resulted in nitrotyrosine-mediated inactivation of MnSOD, leading to unchecked increase in mito-ROS and loss of Δψm followed by inhibition of endothelial function and proliferation.
Collapse
Affiliation(s)
- Ehtesham Shafique
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Anali Torina
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Karla Reichert
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Bonnie Colantuono
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Nasifa Nur
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Khawaja Zeeshan
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Vani Ravichandran
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Yuhong Liu
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA.,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA
| | - Jun Feng
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA.,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA
| | - Khawaja Zeeshan
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | | | - Kaikobad Irani
- University of Iowa Carver School of Medicine, Iowa, IA, USA
| | - Elizabeth O Harrington
- Providence VA Medical Center, Providence, RI, USA.,Brown University, Providence, RI, USA
| | - Frank W Sellke
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA.,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA
| | - Md Ruhul Abid
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA; .,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA.,Brown University, Providence, RI, USA
| |
Collapse
|
72
|
Wang Q, Wu S, Zhu H, Ding Y, Dai X, Ouyang C, Han YM, Xie Z, Zou MH. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy 2017; 13:404-422. [PMID: 28085543 DOI: 10.1080/15548627.2016.1263776] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PRKAA (protein kinase, AMP-activated, α catalytic subunit) regulates mitochondrial biogenesis, function, and turnover. However, the molecular mechanisms by which PRKAA regulates mitochondrial dynamics remain poorly characterized. Here, we report that PRKAA regulated mitochondrial fission via the autophagy-dependent degradation of DNM1L (dynamin 1-like). Deletion of Prkaa1/AMPKα1 or Prkaa2/AMPKα2 resulted in defective autophagy, DNM1L accumulation, and aberrant mitochondrial fragmentation in the mouse aortic endothelium. Furthermore, autophagy inhibition by chloroquine treatment or ATG7 small interfering RNA (siRNA) transfection, upregulated DNM1L expression and triggered DNM1L-mediated mitochondrial fragmentation. In contrast, autophagy activation by overexpression of ATG7 or chronic administration of rapamycin, the MTOR inhibitor, promoted DNM1L degradation and attenuated mitochondrial fragmentation in Prkaa2-deficient (prkaa2-/-) mice, suggesting that defective autophagy contributes to enhanced DNM1L expression and mitochondrial fragmentation. Additionally, the autophagic receptor protein SQSTM1/p62, which bound to DNM1L and led to its translocation into the autophagosome, was involved in DNM1L degradation by the autophagy-lysosome pathway. Gene silencing of SQSTM1 markedly reduced the association between SQSTM1 and DNM1L, impaired the degradation of DNM1L, and enhanced mitochondrial fragmentation in PRKAA-deficient endothelial cells. Finally, the genetic (DNM1L siRNA) or pharmacological (mdivi-1) inhibition of DNMA1L ablated mitochondrial fragmentation in the mouse aortic endothelium and prevented the acetylcholine-induced relaxation of isolated mouse aortas. This suggests that aberrant DNM1L is responsible for enhanced mitochondrial fragmentation and endothelial dysfunction in prkaa knockout mice. Overall, our results show that PRKAA deletion promoted mitochondrial fragmentation in vascular endothelial cells by inhibiting the autophagy-dependent degradation of DNM1L.
Collapse
Affiliation(s)
- Qilong Wang
- a Center for Molecular and Translational Medicine, Georgia State University , Atlanta , GA USA
| | - Shengnan Wu
- a Center for Molecular and Translational Medicine, Georgia State University , Atlanta , GA USA
| | - Huaiping Zhu
- a Center for Molecular and Translational Medicine, Georgia State University , Atlanta , GA USA
| | - Ye Ding
- a Center for Molecular and Translational Medicine, Georgia State University , Atlanta , GA USA
| | - Xiaoyan Dai
- a Center for Molecular and Translational Medicine, Georgia State University , Atlanta , GA USA
| | - Changhan Ouyang
- a Center for Molecular and Translational Medicine, Georgia State University , Atlanta , GA USA
| | - Young-Min Han
- a Center for Molecular and Translational Medicine, Georgia State University , Atlanta , GA USA
| | - Zhonglin Xie
- a Center for Molecular and Translational Medicine, Georgia State University , Atlanta , GA USA
| | - Ming-Hui Zou
- a Center for Molecular and Translational Medicine, Georgia State University , Atlanta , GA USA
| |
Collapse
|
73
|
Ranftler C, Meisslitzer-Ruppitsch C, Neumüller J, Ellinger A, Pavelka M. Golgi apparatus dis- and reorganizations studied with the aid of 2-deoxy-D-glucose and visualized by 3D-electron tomography. Histochem Cell Biol 2016; 147:415-438. [PMID: 27975144 PMCID: PMC5359389 DOI: 10.1007/s00418-016-1515-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/31/2022]
Abstract
We studied Golgi apparatus disorganizations and reorganizations in human HepG2 hepatoblastoma cells by using the nonmetabolizable glucose analogue 2-deoxy-d-glucose (2DG) and analyzing the changes in Golgi stack architectures by 3D-electron tomography. Golgi stacks remodel in response to 2DG-treatment and are replaced by tubulo-glomerular Golgi bodies, from which mini-Golgi stacks emerge again after removal of 2DG. The Golgi stack changes correlate with the measured ATP-values. Our findings indicate that the classic Golgi stack architecture is impeded, while cells are under the influence of 2DG at constantly low ATP-levels, but the Golgi apparatus is maintained in forms of the Golgi bodies and Golgi stacks can be rebuilt as soon as 2DG is removed. The 3D-electron microscopic results highlight connecting regions that interlink membrane compartments in all phases of Golgi stack reorganizations and show that the compact Golgi bodies mainly consist of continuous intertwined tubules. Connections and continuities point to possible new transport pathways that could substitute for other modes of traffic. The changing architectures visualized in this work reflect Golgi stack dynamics that may be essential for basic cell physiologic and pathologic processes and help to learn, how cells respond to conditions of stress.
Collapse
Affiliation(s)
- Carmen Ranftler
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | | | - Josef Neumüller
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Adolf Ellinger
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Margit Pavelka
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.
| |
Collapse
|
74
|
Das S, Filippone SM, Williams DS, Das A, Kukreja RC. Beet root juice protects against doxorubicin toxicity in cardiomyocytes while enhancing apoptosis in breast cancer cells. Mol Cell Biochem 2016; 421:89-101. [DOI: 10.1007/s11010-016-2789-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
|
75
|
Patella F, Neilson LJ, Athineos D, Erami Z, Anderson KI, Blyth K, Ryan KM, Zanivan S. In-Depth Proteomics Identifies a Role for Autophagy in Controlling Reactive Oxygen Species Mediated Endothelial Permeability. J Proteome Res 2016; 15:2187-97. [PMID: 27246970 DOI: 10.1021/acs.jproteome.6b00166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Endothelial cells (ECs) form the inner layer of blood vessels and physically separate the blood from the surrounding tissue. To support tissues with nutrients and oxygen, the endothelial monolayer is semipermeable. When EC permeability is altered, blood vessels are not functional, and this is associated with disease. A comprehensive knowledge of the mechanisms regulating EC permeability is key in developing strategies to target this mechanism in pathologies. Here we have used an in vitro model of human umbilical vein endothelial cells mimicking the formation of a physiologically permeable vessel and performed time-resolved in-depth molecular profiling using stable isotope labeling by amino acids in cell culture mass spectrometry (MS)-proteomics. Autophagy is induced when ECs are assembled into a physiologically permeable monolayer. By using siRNA and drug treatment to block autophagy in combination with functional assays and MS proteomics, we show that ECs require autophagy flux to maintain intracellular reactive oxygen species levels, and this is required to maintain the physiological permeability of the cells.
Collapse
Affiliation(s)
| | - Lisa J Neilson
- Cancer Research UK, Beatson Institute , Glasgow G611BD, U.K
| | | | - Zahra Erami
- Cancer Research UK, Beatson Institute , Glasgow G611BD, U.K
| | | | - Karen Blyth
- Cancer Research UK, Beatson Institute , Glasgow G611BD, U.K
| | - Kevin M Ryan
- Cancer Research UK, Beatson Institute , Glasgow G611BD, U.K
| | - Sara Zanivan
- Cancer Research UK, Beatson Institute , Glasgow G611BD, U.K
| |
Collapse
|
76
|
Cai H, Scott E, Kholghi A, Andreadi C, Rufini A, Karmokar A, Britton RG, Horner-Glister E, Greaves P, Jawad D, James M, Howells L, Ognibene T, Malfatti M, Goldring C, Kitteringham N, Walsh J, Viskaduraki M, West K, Miller A, Hemingway D, Steward WP, Gescher AJ, Brown K. Cancer chemoprevention: Evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice. Sci Transl Med 2016. [PMID: 26223300 DOI: 10.1126/scitranslmed.aaa7619] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Resveratrol is widely promoted as a potential cancer chemopreventive agent, but a lack of information on the optimal dose prohibits rationally designed trials to assess efficacy. To challenge the assumption that "more is better," we compared the pharmacokinetics and activity of a dietary dose with an intake 200 times higher. The dose-response relationship for concentrations generated and the metabolite profile of [(14)C]-resveratrol in colorectal tissue of cancer patients helped us to define clinically achievable levels. In Apc(Min) mice (a model of colorectal carcinogenesis) that received a high-fat diet, the low resveratrol dose suppressed intestinal adenoma development more potently than did the higher dose. Efficacy correlated with activation of adenosine monophosphate-activated protein kinase (AMPK) and increased expression of the senescence marker p21. Nonlinear dose responses were observed for AMPK and mechanistic target of rapamycin (mTOR) signaling in mouse adenoma cells, culminating in autophagy and senescence. In human colorectal tissues exposed to low dietary concentrations of resveratrol ex vivo, we measured enhanced AMPK phosphorylation and autophagy. The expression of the cytoprotective NAD(P)H dehydrogenase, quinone 1 (NQO1) enzyme was also increased in tissues from cancer patients participating in our [(14)C]-resveratrol trial. These findings warrant a revision of developmental strategies for diet-derived agents designed to achieve cancer chemoprevention.
Collapse
Affiliation(s)
- Hong Cai
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Edwina Scott
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Abeer Kholghi
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Catherine Andreadi
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Alessandro Rufini
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Ankur Karmokar
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Robert G Britton
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Emma Horner-Glister
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Peter Greaves
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Dhafer Jawad
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Mark James
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Lynne Howells
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Ted Ognibene
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA
| | - Michael Malfatti
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA
| | - Christopher Goldring
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Neil Kitteringham
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Joanne Walsh
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Maria Viskaduraki
- Bioinformatics and Biostatistics Support Hub, University of Leicester, Maurice Shock Building, Leicester LE1 9HN, UK
| | - Kevin West
- University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | - Andrew Miller
- University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | - David Hemingway
- University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | - William P Steward
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Andreas J Gescher
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Karen Brown
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK.
| |
Collapse
|
77
|
Krętowski R, Borzym-Kluczyk M, Stypułkowska A, Brańska-Januszewska J, Ostrowska H, Cechowska-Pasko M. Low glucose dependent decrease of apoptosis and induction of autophagy in breast cancer MCF-7 cells. Mol Cell Biochem 2016; 417:35-47. [PMID: 27160935 PMCID: PMC4887537 DOI: 10.1007/s11010-016-2711-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/27/2016] [Indexed: 01/06/2023]
Abstract
Cancer cells have developed a number of adaptation mechanisms involving the signal activation of the transduction pathways, which promotes the progression and metastasis. Our results showed that the percentage of apoptotic MCF-7 cells incubated in the low glucose medium for 48 h was lower in comparison to those cultured in the high glucose medium, despite the high expression of the proapoptotic transcription factor-CHOP. Furthermore, the MCF-7 cells incubated in the low glucose medium for 48 h showed a higher expression of NF-κB p100/p52 subunits compared to cells incubated in the high glucose medium. Moreover, our findings demonstrated that the shortage of glucose strongly induces autophagy in MCF-7 cells. The activation of this process is not associated with the changes in the expression of mTOR kinase. We suggest, that the antiapoptotic chaperone ORP150 induction, transcription factor NF-κB2 activation, and increased autophagy constitute mechanisms protecting the MCF-7 cells against apoptosis.
Collapse
Affiliation(s)
- Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland
| | - Małgorzata Borzym-Kluczyk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland
| | - Anna Stypułkowska
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland
| | | | - Halina Ostrowska
- Department of Biology, Medical University of Białystok, Białystok, Poland
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222, Białystok, Poland.
| |
Collapse
|
78
|
López-Lluch G, Navas P. Calorie restriction as an intervention in ageing. J Physiol 2016; 594:2043-60. [PMID: 26607973 PMCID: PMC4834802 DOI: 10.1113/jp270543] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/21/2015] [Indexed: 12/20/2022] Open
Abstract
Ageing causes loss of function in tissues and organs, is accompanied by a chronic inflammatory process and affects life- and healthspan. Calorie restriction (CR) is a non-genetic intervention that prevents age-associated diseases and extends longevity in most of the animal models studied so far. CR produces a pleiotropic effect and improves multiple metabolic pathways, generating benefits to the whole organism. Among the effects of CR, modulation of mitochondrial activity and a decrease in oxidative damage are two of the hallmarks. Oxidative damage is reduced by the induction of endogenous antioxidant systems and modulation of the peroxidability index in cell membranes. Mitochondrial activity changes are regulated by inhibition of IGF-1 and Target of Rapamycin (TOR)-dependent activities and activation of AMP-dependent kinase (AMPK) and the sirtuin family of proteins. The activity of PGC-1α and FoxO is regulated by these systems and is involved in mitochondria biogenesis, oxidative metabolism activity and mitochondrial turnover. The use of mimetics and the regulation of common factors have demonstrated that these molecular pathways are essential to explain the effect of CR in the organism. Finally, the anti-inflammatory effect of CR is an interesting emerging factor to be taken into consideration. In the present revision we focus on the general effect of CR and other mimetics in longevity, focusing especially on the cardiovascular system and skeletal muscle.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera km. 1, 41013, Sevilla, Spain
| | - Plácido Navas
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera km. 1, 41013, Sevilla, Spain
| |
Collapse
|
79
|
Kim SH, Choi YJ, Kim KY, Yu SN, Seo YK, Chun SS, Noh KT, Suh JT, Ahn SC. Salinomycin simultaneously induces apoptosis and autophagy through generation of reactive oxygen species in osteosarcoma U2OS cells. Biochem Biophys Res Commun 2016; 473:607-13. [DOI: 10.1016/j.bbrc.2016.03.132] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 11/26/2022]
|
80
|
Li C, Reif MM, Craige SM, Kant S, Keaney JF. Endothelial AMPK activation induces mitochondrial biogenesis and stress adaptation via eNOS-dependent mTORC1 signaling. Nitric Oxide 2016; 55-56:45-53. [PMID: 26989010 DOI: 10.1016/j.niox.2016.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 12/19/2022]
Abstract
Metabolic stress sensors like AMP-activated protein kinase (AMPK) are known to confer stress adaptation and promote longevity in lower organisms. This study demonstrates that activating the metabolic stress sensor AMP-activated protein kinase (AMPK) in endothelial cells helps maintain normal cellular function by promoting mitochondrial biogenesis and stress adaptation. To better define the mechanisms whereby AMPK promotes endothelial stress resistance, we used 5-aminoimidazole-4-carboxamide riboside (AICAR) to chronically activate AMPK and observed stimulation of mitochondrial biogenesis in wild type mouse endothelium, but not in endothelium from endothelial nitric oxide synthase knockout (eNOS-null) mice. Interestingly, AICAR-enhanced mitochondrial biogenesis was blocked by pretreatment with the mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin. Further, AICAR stimulated mTORC1 as determined by phosphorylation of its known downstream effectors in wild type, but not eNOS-null, endothelial cells. Together these data indicate that eNOS is needed to couple AMPK activation to mTORC1 and thus promote mitochondrial biogenesis and stress adaptation in the endothelium. These data suggest a novel mechanism for mTORC1 activation that is significant for investigations in vascular dysfunction.
Collapse
Affiliation(s)
- Chunying Li
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Michaella M Reif
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Siobhan M Craige
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
81
|
Shan Y, Guan F, Zhao X, Wang M, Chen Y, Wang Q, Feng X. Macranthoside B Induces Apoptosis and Autophagy Via Reactive Oxygen Species Accumulation in Human Ovarian Cancer A2780 Cells. Nutr Cancer 2016; 68:280-9. [PMID: 26943028 DOI: 10.1080/01635581.2016.1142587] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Macranthoside B (MB), a saponin compound in Lonicera macranthoides, can block cell proliferation and induce cell death in several types of cancer cells; however, the precise mechanisms by which MB exerts its anticancer effects remain poorly understood. MB blocked A2780 human ovarian carcinoma cell proliferation both dose- and time-dependently. MB induced apoptosis, with increased poly (ADP-ribose) polymerase (PARP) and caspase-3/9 cleavage. MB also caused autophagy in A2780 cells, with light chain 3 (LC3)-II elevation. Inhibiting MB-induced autophagy with the autophagy inhibitor 3-methyladenine (3-MA) significantly decreased apoptosis, with a reduction of growth inhibition; inhibiting MB-induced apoptosis with the pan-caspase inhibitor Z-VAD-FMK did not decrease autophagy but elevated LC3-II levels, indicating that MB-induced autophagy is cytotoxic and may be upstream of apoptosis. Furthermore, MB increased intracellular reactive oxygen species (ROS) levels, with activated 5' adenosine monophosphate-activated protein kinase (AMPK), decreased mammalian target of rapamycin (mTOR) and P70S6 kinase phosphorylation, and increased PARP and caspase-3/9 cleavage, and LC3-II elevation; treatment with the ROS scavenger N-acetyl cysteine and the AMPK inhibitor Compound C diminished this effect. Therefore, the ROS/AMPK/mTOR pathway mediates the effect of MB on induction of apoptosis via autophagy in human ovarian carcinoma cells.
Collapse
Affiliation(s)
- Yu Shan
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Fuqin Guan
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Xingzeng Zhao
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Ming Wang
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Yu Chen
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Qizhi Wang
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Xu Feng
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| |
Collapse
|
82
|
|
83
|
Tan VP, Miyamoto S. Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. J Mol Cell Cardiol 2016; 95:31-41. [PMID: 26773603 DOI: 10.1016/j.yjmcc.2016.01.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022]
Abstract
The ability of adult cardiomyocytes to regenerate is limited, and irreversible loss by cell death plays a crucial role in heart diseases. Autophagy is an evolutionarily conserved cellular catabolic process through which long-lived proteins and damaged organelles are targeted for lysosomal degradation. Autophagy is important in cardiac homeostasis and can serve as a protective mechanism by providing an energy source, especially in the face of sustained starvation. Cellular metabolism is closely associated with cell survival, and recent evidence suggests that metabolic and autophagic signaling pathways exhibit a high degree of crosstalk and are functionally interdependent. In this review, we discuss recent progress in our understanding of regulation of autophagy and its crosstalk with metabolic signaling, with a focus on the nutrient-sensing mTOR complex 1 (mTORC1) pathway.
Collapse
Affiliation(s)
- Valerie P Tan
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
84
|
Hao X, Yang B, Liu X, Yang H, Liu X. Expression of Beclin1 in the colonic mucosa tissues of patients with ulcerative colitis. Int J Clin Exp Med 2015; 8:21098-21105. [PMID: 26885041 PMCID: PMC4723886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
To investigate the expression of Beclin1 in the colonic mucosa tissue of patients with ulcerative colitis (UC), which acts as a regulator of autophagy and might play a part in the disease progression potentially. A total of 112 patients were selected from September 2013 to November 2014, and their colonic mucosal tissues were collected as the subject of study. Among them, 75 cases were diagnosed with ulcerative colitis (UC), 37 cases were diagnosed with irritable bowel syndrome (IRS) during the same time, which was set as the control group. The mucosal tissues were processed with ELISA and IHCA to measure the expression level of Beclin1, and correlation analysis was performed to demonstrate its role in the disease progression. The expression level pf Beclin1 was significantly higher in the UC patients compared with the control group (P<0.05). Meanwhile, it's positively correlated with the severity of disease, the endoscopic classification and the pathologic staging results, which has statistical significance (P<0.05). Beclin1 was expressed at a higher level in UC patients, and correlated with the severity of the disease, indicating the abnormal regulation of autophagy in the disease progression.
Collapse
Affiliation(s)
- Xiaoqian Hao
- Department of Gastroenterology, Affiliated Hospital of Qingdao UniversityQingdao 266003, China
- Department of Gastroenterology, Weifang Traditional Chinese HospitalWeifang 261041, China
| | - Bin Yang
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical UniversityWeifang 261031, China
| | - Xingshan Liu
- Department of Gastroenterology, Weifang Traditional Chinese HospitalWeifang 261041, China
| | - Huixiang Yang
- Department of Gastroenterology, Weifang Traditional Chinese HospitalWeifang 261041, China
| | - Xishuang Liu
- Department of Gastroenterology, Affiliated Hospital of Qingdao UniversityQingdao 266003, China
| |
Collapse
|
85
|
Liang X, Zhang T, Shi L, Kang C, Wan J, Zhou Y, Zhu J, Mi M. Ampelopsin protects endothelial cells from hyperglycemia-induced oxidative damage by inducing autophagy via the AMPK signaling pathway. Biofactors 2015; 41:463-75. [PMID: 26644014 DOI: 10.1002/biof.1248] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
Diabetic angiopathy is a major diabetes-specific complication that often begins with endothelial dysfunction induced by hyperglycemia; however, the pathological mechanisms of this progression remain unclear. Ampelopsin is a natural flavonol that has strong antioxidant activity, but little information is available regarding its antidiabetic effect. This study focused on the effect of ampelopsin on hyperglycemia-induced oxidative damage and the underlying mechanism of this effect in human umbilical vein endothelial cells (HUVECs). We found that hyperglycemia impaired autophagy in HUVECs through the inhibition of AMP-activated protein kinase (AMPK), which directly led to endothelial cell damage. Ampelopsin significantly attenuated the detrimental effect of hyperglycemia-induced cell dysfunction in a concentration-dependent manner in HUVECs. Ampelopsin significantly upregulated LC3-II, Beclin1, and Atg5 protein levels but downregulated p62 protein levels in HUVECs. Transmission electron microscopy and confocal microscopy indicated that ampelopsin notably induced autophagosomes and LC3-II dots, respectively. Additionally, the autophagy-specific inhibitor 3-MA, as well as Atg5 and Beclin1 siRNA pretreatment, markedly attenuated ampelopsin-induced autophagy, which subsequently abolished the protective effect of ampelopsin against hyperglycemia in HUVECs. Moreover, ampelopsin also increased AMPK activity and inhibited mTOR (mammalian target of rapamycin) complex activation. Ampelopsin-induced autophagy was attenuated by the AMPK antagonist compound C but strengthened by the AMPK agonist AICAR (5-minoimidazole-4-carboxamide ribonucleotide). Furthermore, AMPK siRNA transfection eliminated ampelopsin's alleviation of cell injury induced by hyperglycemia. The protective effect of ampelopsin against hyperglycemia-induced cell damage, which functions by targeting autophagy via AMPK activation, makes it a promising pharmacological treatment for type-2 diabetes.
Collapse
Affiliation(s)
- Xinyu Liang
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Ting Zhang
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Linying Shi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Chao Kang
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Jing Wan
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Yong Zhou
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Jundong Zhu
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | | |
Collapse
|
86
|
Fang L, Li X, Zhong Y, Yu J, Yu L, Dai H, Yan M. Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats. J Neurochem 2015; 135:431-40. [PMID: 26251121 DOI: 10.1111/jnc.13277] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/19/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
Abstract
Cerebral microvascular endothelial cells (ECs) are crucial for brain vascular repair and maintenance, but their physiological function may be impaired during ischemic stroke and diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, could exacerbate ischemia-induced EC injury and dysfunction. We investigated the protective effect of autophagy on cultured human brain microvascular endothelial cells (HBMEC) that underwent MGO treatment. A further study was conducted to explore the underlying mechanisms of the protective effect. Autophagic activity was assessed by evaluating protein levels, using western blot. 3-methyladenine (3-MA), bafilomycin A1, ammonium chloride (AC), Beclin 1 siRNA, and chloroquine (CQ) were used to cause autophagy inhibition. Alarmar blue assay and lactate dehydrogenase release assay were used to evaluate cell viability. Streptozotocin was administered to induce type I diabetes in rats and post-permanent middle cerebral artery occlusion was performed to elicit cerebral ischemia. Blood-brain barrier permeability was also assessed. Our study found that MGO reduced HBMEC cell viability in a concentration- and time-dependent manner, and triggered the responsive autophagy activation. Autophagy inhibitors bafilomycin A1, AC, 3-MA, and BECN1 siRNA exacerbated MGO-induced HBMEC injury. FAK phosphorylation inhibitor PF573228 inhibited MGO-triggered autophagy and enhanced lactate dehydrogenase release. Meanwhile, similar autophagy activation in brain vascular ECs was observed during permanent middle cerebral artery occlusion-induced cerebral ischemia in diabetic rats, while chloroquine-induced autophagy inhibition enhanced blood-brain barrier permeability. Taken together, our study indicates that autophagy triggered by MGO defends HBMEC against injuries.
Collapse
Affiliation(s)
- Lili Fang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Li
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinbo Zhong
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haibin Dai
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Yan
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
87
|
Panieri E, Santoro MM. ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci 2015; 72:3281-303. [PMID: 25972278 PMCID: PMC11113497 DOI: 10.1007/s00018-015-1928-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/29/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to provide an overview of redox mechanisms, sources and antioxidants that control signaling events in ECs. In particular, we describe which molecules are involved in redox signaling and how they influence the relationship between ECs and other vascular component with regard to angiogenesis. Recent and new tools to investigate physiological ROS signaling will be also discussed. Such findings are providing an overview of the ROS biology relevant for endothelial cells in the context of normal and pathological angiogenic conditions.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Massimo M. Santoro
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, VIB, 3000 Leuven, Belgium
- Laboratory of Endothelial Molecular Biology, Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
88
|
Huang CC, Wang SY, Lin LL, Wang PW, Chen TY, Hsu WM, Lin TK, Liou CW, Chuang JH. Glycolytic inhibitor 2-deoxyglucose simultaneously targets cancer and endothelial cells to suppress neuroblastoma growth in mice. Dis Model Mech 2015; 8:1247-54. [PMID: 26398947 PMCID: PMC4610240 DOI: 10.1242/dmm.021667] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/04/2015] [Indexed: 01/31/2023] Open
Abstract
Neuroblastoma is characterized by a wide range of clinical manifestations and associated with poor prognosis when there is amplification of MYCN oncogene or high expression of Myc oncoproteins. In a previous in vitro study, we found that the glycolytic inhibitor 2-deoxyglucose (2DG) could suppress the growth of neuroblastoma cells, particularly in those with MYCN amplification. In this study, we established a mouse model of neuroblastoma xenografts with SK-N-DZ and SK-N-AS cells treated with 2DG by intraperitoneal injection twice a week for 3 weeks at 100 or 500 mg/kg body weight. We found that 2DG was effective in suppressing the growth of both MYCN-amplified SK-N-DZ and MYCN-non-amplified SK-N-AS neuroblastoma xenografts, which was associated with downregulation of HIF-1α, PDK1 and c-Myc, and a reduction in the number of tumor blood vessels. In vitro study showed that 2DG can suppress proliferation, cause apoptosis and reduce migration of murine endothelial cells, with inhibition of the formation of lamellipodia and filopodia and disorganization of F-actin filaments. The results suggest that 2DG might simultaneously target cancer cells and endothelial cells in the neuroblastoma xenografts in mice regardless of the status of MYCN amplification, providing a potential therapeutic opportunity to use 2DG or other glycolytic inhibitors for the treatment of patients with refractory neuroblastoma.
Collapse
Affiliation(s)
- Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Shuo-Yu Wang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 710, Taiwan Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Li-Ling Lin
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Pei-Wen Wang
- The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan Department of Internal and Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ting-Ya Chen
- The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Tsu-Kung Lin
- The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chia-Wei Liou
- The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jiin-Haur Chuang
- The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan The Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
89
|
Liu J, Bi X, Chen T, Zhang Q, Wang SX, Chiu JJ, Liu GS, Zhang Y, Bu P, Jiang F. Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis 2015; 6:e1827. [PMID: 26181207 PMCID: PMC4650738 DOI: 10.1038/cddis.2015.193] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/26/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022]
Abstract
Disturbed cell autophagy is found in various cardiovascular disease conditions. Biomechanical stimuli induced by laminar blood flow have important protective actions against the development of various vascular diseases. However, the impacts and underlying mechanisms of shear stress on the autophagic process in vascular endothelial cells (ECs) are not entirely understood. Here we investigated the impacts of shear stress on autophagy in human vascular ECs. We found that shear stress induced by laminar flow, but not that by oscillatory or low-magnitude flow, promoted autophagy. Time-course analysis and flow cessation experiments confirmed that this effect was not a transient adaptive stress response but appeared to be a sustained physiological action. Flow had no effect on the mammalian target of rapamycin-ULK pathway, whereas it significantly upregulated Sirt1 expression. Inhibition of Sirt1 blunted shear stress-induced autophagy. Overexpression of wild-type Sirt1, but not the deacetylase-dead mutant, was sufficient to induce autophagy in ECs. Using both of gain- and loss-of-function experiments, we showed that Sirt1-dependent activation of FoxO1 was critical in mediating shear stress-induced autophagy. Shear stress also induced deacetylation of Atg5 and Atg7. Moreover, shear stress-induced Sirt1 expression and autophagy were redox dependent, whereas Sirt1 might act as a redox-sensitive transducer mediating reactive oxygen species-elicited autophagy. Functionally, we demonstrated that flow-conditioned cells are more resistant to oxidant-induced cell injury, and this cytoprotective effect was abolished after inhibition of autophagy. In summary, these results suggest that Sirt1-mediated autophagy in ECs may be a novel mechanism by which laminar flow produces its vascular-protective actions.
Collapse
Affiliation(s)
- J Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - X Bi
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - T Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Q Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - S-X Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - J-J Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - G-S Liu
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, East Melbourne, Victoria, Australia
| | - Y Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - P Bu
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - F Jiang
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| |
Collapse
|
90
|
Craige SM, Kant S, Keaney JF. Reactive oxygen species in endothelial function - from disease to adaptation - . Circ J 2015; 79:1145-55. [PMID: 25986771 DOI: 10.1253/circj.cj-15-0464] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endothelial function is largely dictated by its ability to rapidly sense environmental cues and adapt to these stimuli through changes in vascular tone, inflammation/immune recruitment, and angiogenesis. When any one of these abilities is compromised, the endothelium becomes dysfunctional, which ultimately leads to disease. Reactive oxygen species (ROS) have been established at the forefront of endothelial dysfunction; however, more careful examination has demonstrated that ROS are fundamental to each of the sensing/signaling roles of the endothelium. The purpose of this review is to document endothelial ROS production in both disease and physiological adaptation. Through understanding new endothelial signaling paradigms, we will gain insight into more targeted therapeutic strategies for vascular diseases.
Collapse
|
91
|
Seals DR, Kaplon RE, Gioscia-Ryan RA, LaRocca TJ. You're only as old as your arteries: translational strategies for preserving vascular endothelial function with aging. Physiology (Bethesda) 2015; 29:250-64. [PMID: 24985329 DOI: 10.1152/physiol.00059.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health.
Collapse
Affiliation(s)
- Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Rachelle E Kaplon
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
92
|
Mi YJ, Geng GJ, Zou ZZ, Gao J, Luo XY, Liu Y, Li N, Li CL, Chen YQ, Yu XY, Jiang J. Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cells. PLoS One 2015; 10:e0120426. [PMID: 25799586 PMCID: PMC4370589 DOI: 10.1371/journal.pone.0120426] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/22/2015] [Indexed: 01/16/2023] Open
Abstract
Despite recent advances in the therapy of non-small cell lung cancer (NSCLC), the chemotherapy efficacy against NSCLC is still unsatisfactory. Previous studies show the herbal antimalarial drug dihydroartemisinin (DHA) displays cytotoxic to multiple human tumors. Here, we showed that DHA decreased cell viability and colony formation, induced apoptosis in A549 and PC-9 cells. Additionally, we first revealed DHA inhibited glucose uptake in NSCLC cells. Moreover, glycolytic metabolism was attenuated by DHA, including inhibition of ATP and lactate production. Consequently, we demonstrated that the phosphorylated forms of both S6 ribosomal protein and mechanistic target of rapamycin (mTOR), and GLUT1 levels were abrogated by DHA treatment in NSCLC cells. Furthermore, the upregulation of mTOR activation by high expressed Rheb increased the level of glycolytic metabolism and cell viability inhibited by DHA. These results suggested that DHA-suppressed glycolytic metabolism might be associated with mTOR activation and GLUT1 expression. Besides, we showed GLUT1 overexpression significantly attenuated DHA-triggered NSCLC cells apoptosis. Notably, DHA synergized with 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor) to reduce cell viability and increase cell apoptosis in A549 and PC-9 cells. However, the combination of the two compounds displayed minimal toxicity to WI-38 cells, a normal lung fibroblast cell line. More importantly, 2DG synergistically potentiated DHA-induced activation of caspase-9, -8 and -3, as well as the levels of both cytochrome c and AIF of cytoplasm. However, 2DG failed to increase the reactive oxygen species (ROS) levels elicited by DHA. Overall, the data shown above indicated DHA plus 2DG induced apoptosis was involved in both extrinsic and intrinsic apoptosis pathways in NSCLC cells.
Collapse
Affiliation(s)
- Yan-jun Mi
- Department of thoracic surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Medical Oncology, Chenggong Hospital of Xiamen University, Xiamen, China
| | - Guo-jun Geng
- Department of thoracic surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zheng-zhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jing Gao
- Department of Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xian-yang Luo
- Department of Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yu Liu
- Department of thoracic surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ning Li
- Department of thoracic surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chun-lei Li
- Department of thoracic surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yu-qiang Chen
- Department of Medical Oncology, Chenggong Hospital of Xiamen University, Xiamen, China
| | - Xiu-yi Yu
- Department of thoracic surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- * E-mail: (XYY); (JJ)
| | - Jie Jiang
- Department of thoracic surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- * E-mail: (XYY); (JJ)
| |
Collapse
|
93
|
Assessment of the effect of laser irradiations at different wavelengths (660, 810, 980, and 1064 nm) on autophagy in a rat model of mucositis. Lasers Med Sci 2015; 30:1289-95. [PMID: 25732242 DOI: 10.1007/s10103-015-1727-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023]
Abstract
It is known that high-dose radiation has an effect on tissue healing, but tissue healing does not occur when low dose radiation is applied. To clarify this issue, we compare the treatment success of low dose radiation with programmed cell death mechanisms on wounded tissue. In this study, we aimed to investigate the interactions of low and high-dose radiation using an autophagic mechanism. We included 35 adult Wistar-Albino rats in this study. All animals were injected with 100 mg/kg of 5-fluorouracil (5-FU) on the first day and 65 mg/kg of 5-FU on the third day. The tips of 18-gauge needles were used to develop a superficial scratching on the left cheek pouch mucosa by dragging in a linear movement on third and fifth days. After mucositis formation was clinically detected, animals were divided into five groups (n = 7). Different wavelengths of laser irradiations (1064 nm, Fidelis Plus, Fotona, Slovenia; 980 nm, FOX laser, A.R.C., Germany; 810 nm, Fotona XD, Fotona, Slovenia; 660 nm, HELBO, Medizintechnik GmbH, Wels, Austria) were performed on four groups once daily for 4 days. The laser irradiation was not performed on the control group. To get the tissue from the left cheek at the end of fourth day from all animals, oval excisional biopsy was performed. Molecular analysis assessments of pathological and normal tissue taken were performed. For this purpose, the expression analysis of autophagy genes was performed. The results were evaluated by normalization and statistics analysis. We found that Ulk1, Beclin1, and Atg5 expression levels were increased in the rats when the Nd:YAG laser was applied. This increase showed that a 1064-nm laser is needed to activate the autophagic mechanism. However, in the diode applications, we found that Beclin1, Atg10, Atg5, and Atg7 expressions numerically decreased. Atg5 is responsible for the elongation of autophagosome. Becn1 is a control gene in the control mechanism of autophagy. The reduction of the expression of these genes leads us to think that it may depend on the effect of drug (5-FU) used to form model. Expressions of therapeutic genes increase to ensure hemostasis, but in our study, expressions were found to decrease. More detailed studies are needed.
Collapse
|
94
|
Hess JA, Khasawneh MK. Cancer metabolism and oxidative stress: Insights into carcinogenesis and chemotherapy via the non-dihydrofolate reductase effects of methotrexate. BBA CLINICAL 2015; 3:152-61. [PMID: 26674389 PMCID: PMC4661551 DOI: 10.1016/j.bbacli.2015.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/08/2015] [Accepted: 01/21/2015] [Indexed: 12/31/2022]
Abstract
Methotrexate has been in use as an anti-cancer agent for over 60 years. Though inhibition of dihydrofolate reductase is its best known mechanisms of action, its non-dihydrofolate reductase dependent mechanisms disrupt metabolic pathways resulting in a depletion of NAD(P)H and increasing oxidative stress. These mechanisms highlight a novel dependence of cancer cells on their metabolic abnormalities to buffer oxidative stress and chemotherapeutic agents interfere with these cellular abilities. Mitochondria appear to play a significant role in maintaining cancer cell viability and alterations in metabolism seen in cancer cells aid this mitochondrial ability. Further research is needed to understand the effects of other chemotherapeutic agents on these pathways. Methotrexate inhibits multiple enzymes beyond dihydrofolate reductase. Mitochondria serve a critical role in buffering cellular oxidative stress. Metabolic derangements seen in cancer fuel this mitochondrial rescue function. Methotrexate toxicity occurs secondary to a handicapping of this buffering function. Many chemotherapeutic agents appear to have mechanisms affecting these pathways.
Collapse
Affiliation(s)
- Joshua A Hess
- Department of Internal Medicine and Pediatrics, Marshall University School of Medicine, 1600 Medical Center Drive, Huntington, WV 25701, United States
| | - Mohamad K Khasawneh
- Marshall University School of Medicine, Edwards Comprehensive Cancer Center, 1400 Hal Greer Blvd., Huntington, WV 25701, United States
| |
Collapse
|
95
|
Zhang L, Dai F, Cui L, Jing H, Fan P, Tan X, Guo Y, Zhou G. Novel role for TRPC4 in regulation of macroautophagy by a small molecule in vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:377-87. [DOI: 10.1016/j.bbamcr.2014.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
|
96
|
Ruiz-Pérez MV, Medina MÁ, Urdiales JL, Keinänen TA, Sánchez-Jiménez F. Polyamine metabolism is sensitive to glycolysis inhibition in human neuroblastoma cells. J Biol Chem 2015; 290:6106-19. [PMID: 25593318 DOI: 10.1074/jbc.m114.619197] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polyamines are essential for cell proliferation, and their levels are elevated in many human tumors. The oncogene n-myc is known to potentiate polyamine metabolism. Neuroblastoma, the most frequent extracranial solid tumor in children, harbors the amplification of n-myc oncogene in 25% of the cases, and it is associated with treatment failure and poor prognosis. We evaluated several metabolic features of the human neuroblastoma cell lines Kelly, IMR-32, and SK-N-SH. We further investigated the effects of glycolysis impairment in polyamine metabolism in these cell lines. A previously unknown linkage between glycolysis impairment and polyamine reduction is unveiled. We show that glycolysis inhibition is able to trigger signaling events leading to the reduction of N-Myc protein levels and a subsequent decrease of both ornithine decarboxylase expression and polyamine levels, accompanied by cell cycle blockade preceding cell death. New anti-tumor strategies could take advantage of the direct relationship between glucose deprivation and polyamine metabolism impairment, leading to cell death, and its apparent dependence on n-myc. Combined therapies targeting glucose metabolism and polyamine synthesis could be effective in the treatment of n-myc-expressing tumors.
Collapse
Affiliation(s)
- M Victoria Ruiz-Pérez
- From the Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), 29071 Málaga, Spain,
| | - Miguel Ángel Medina
- From the Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), 29071 Málaga, Spain, Unidad 741, CIBER de Enfermedades Raras (CIBERER), Málaga, Spain, and
| | - José Luis Urdiales
- From the Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), 29071 Málaga, Spain, Unidad 741, CIBER de Enfermedades Raras (CIBERER), Málaga, Spain, and
| | - Tuomo A Keinänen
- the School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627 FIN-70211 Kuopio, Finland
| | - Francisca Sánchez-Jiménez
- From the Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), 29071 Málaga, Spain, Unidad 741, CIBER de Enfermedades Raras (CIBERER), Málaga, Spain, and
| |
Collapse
|
97
|
Wang Q, Xie Z, Zhang W, Zhou J, Wu Y, Zhang M, Zhu H, Zou MH. Myeloperoxidase deletion prevents high-fat diet-induced obesity and insulin resistance. Diabetes 2014; 63:4172-85. [PMID: 25024373 PMCID: PMC4238009 DOI: 10.2337/db14-0026] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activation of myeloperoxidase (MPO), a heme protein primarily expressed in granules of neutrophils, is associated with the development of obesity. However, whether MPO mediates high-fat diet (HFD)-induced obesity and obesity-associated insulin resistance remains to be determined. Here, we found that consumption of an HFD resulted in neutrophil infiltration and enhanced MPO expression and activity in epididymal white adipose tissue, with an increase in body weight gain and impaired insulin signaling. MPO knockout (MPO(-/-)) mice were protected from HFD-enhanced body weight gain and insulin resistance. The MPO inhibitor 4-aminobenzoic acid hydrazide reduced peroxidase activity of neutrophils and prevented HFD-enhanced insulin resistance. MPO deficiency caused high body temperature via upregulation of uncoupling protein-1 and mitochondrial oxygen consumption in brown adipose tissue. Lack of MPO also attenuated HFD-induced macrophage infiltration and expression of proinflammatory cytokines. We conclude that activation of MPO in adipose tissue contributes to the development of obesity and obesity-associated insulin resistance. Inhibition of MPO may be a potential strategy for prevention and treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Qilong Wang
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zhonglin Xie
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Wencheng Zhang
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jun Zhou
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yue Wu
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Miao Zhang
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Huaiping Zhu
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Ming-Hui Zou
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
98
|
Feng X, Zhang Y, Wang P, Liu Q, Wang X. Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death. Photochem Photobiol Sci 2014; 13:1793-803. [PMID: 25363473 DOI: 10.1039/c4pp00288a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Malignant cells are highly dependent on aerobic glycolysis, which differs significantly from normal cells (the Warburg effect). Interference of this metabolic process has been considered as an innovative method for developing selective cancer therapy. A recent study demonstrated that the glycolysis inhibitor 2-deoxyglucose (2-DG) can potentiate PDT efficacy, whereas the possible mechanisms have not been carefully investigated. This study firstly proved the general potentiation of PDT efficacy by 2-DG and 3-bromopyruvate (3-BP) in human breast cancer MDA-MB-231 cells, and carefully elucidated the underlying mechanism in the process. Our results showed that both 2-DG and 3-BP could significantly promote a PDT-induced cell cytotoxic effect when compared with either monotherapy. Synergistic potentiation of mitochondria- and caspase-dependent cell apoptosis was observed, including a mitochondrial membrane potential (MMP) drop, Bax translocation, and caspase-3 activation. Besides, ROS generation and the expression of oxidative stress related proteins such as P38 MAPK phosphorylation and JNK phosphorylation were notably increased after the combined treatments. Moreover, when pretreated with the ROS scavenger N-acetylcysteine (NAC), the ROS generation, the MMP drop, cell apoptosis and cytotoxicity were differently inhibited, suggesting that ROS was vertical in the pro-apoptotic process induced by 2-DG/3-BP combined with PDT treatment. These results indicate that the combination of glycolytic antagonists and PDT may be a promising therapeutic strategy to effectively kill cancer cells.
Collapse
Affiliation(s)
- Xiaolan Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | | | | | | | | |
Collapse
|
99
|
Pang YY, Wang T, Chen FY, Wu YL, Shao X, Xiao F, Huang HH, Zhong H, Zhong JH. Glycolytic inhibitor 2-deoxy-d-glucose suppresses cell proliferation and enhances methylprednisolone sensitivity in non-Hodgkin lymphoma cells through down-regulation of HIF-1α and c-MYC. Leuk Lymphoma 2014; 56:1821-30. [PMID: 25219592 DOI: 10.3109/10428194.2014.963575] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metabolic reprogramming is linked to tumorigenesis, disease progression, clinical outcome and resistance to chemotherapy. However, the significance of glycolytic metabolism in non-Hodgkin lymphoma (NHL) remains unclear. Here we report that both NHL patient-samples and cell lines exhibited significant up-regulation of glycolytic metabolism. The glycolytic inhibitor 2-deoxy-d-glucose (2-DG) inhibited glucose consumption, lactic acid generation and cell proliferation and induced cell cycle arrest in NHL cell lines under both normoxia and hypoxia, and hypoxia could even enhance the inhibitory effects of 2-DG. Furthermore, 2-DG combined with methylprednisolone synergistically inhibited cell proliferation, induced cell apoptosis and cell cycle arrest, and thus increased the sensitivity of NHL cells to methylprednisolone via down-regulation of HIF-1α and c-MYC. In conclusion, these results present a novel insight into critical roles of glycolytic pathway activation in NHL progression and glucocorticoid resistance. Inhibition of the glycolytic pathway may provide a new therapeutic strategy for the treatment of NHL.
Collapse
Affiliation(s)
- Yu-Yang Pang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai , China
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ 2014; 22:248-57. [PMID: 25323588 DOI: 10.1038/cdd.2014.173] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence reveals that metabolic and cell survival pathways are closely related, sharing common signaling molecules. Hexokinase catalyzes the phosphorylation of glucose, the rate-limiting first step of glycolysis. Hexokinase II (HK-II) is a predominant isoform in insulin-sensitive tissues such as heart, skeletal muscle, and adipose tissues. It is also upregulated in many types of tumors associated with enhanced aerobic glycolysis in tumor cells, the Warburg effect. In addition to the fundamental role in glycolysis, HK-II is increasingly recognized as a component of a survival signaling nexus. This review summarizes recent advances in understanding the protective role of HK-II, controlling cellular growth, preventing mitochondrial death pathway and enhancing autophagy, with a particular focus on the interaction between HK-II and Akt/mTOR pathway to integrate metabolic status with the control of cell survival.
Collapse
Affiliation(s)
- D J Roberts
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - S Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| |
Collapse
|