51
|
Chinopoulos C. Acute sources of mitochondrial NAD + during respiratory chain dysfunction. Exp Neurol 2020; 327:113218. [PMID: 32035071 DOI: 10.1016/j.expneurol.2020.113218] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/07/2023]
Abstract
It is a textbook definition that in the absence of oxygen or inhibition of the mitochondrial respiratory chain by pharmacologic or genetic means, hyper-reduction of the matrix pyridine nucleotide pool ensues due to impairment of complex I oxidizing NADH, leading to reductive stress. However, even under these conditions, the ketoglutarate dehydrogenase complex (KGDHC) is known to provide succinyl-CoA to succinyl-CoA ligase, thus supporting mitochondrial substrate-level phosphorylation (mSLP). Mindful that KGDHC is dependent on provision of NAD+, hereby sources of acute NADH oxidation are reviewed, namely i) mitochondrial diaphorases, ii) reversal of mitochondrial malate dehydrogenase, iii) reversal of the mitochondrial isocitrate dehydrogenase as it occurs under acidic conditions, iv) residual complex I activity and v) reverse operation of the malate-aspartate shuttle. The concept of NAD+ import through the inner mitochondrial membrane as well as artificial means of manipulating matrix NAD+/NADH are also discussed. Understanding the above mechanisms providing NAD+ to KGDHC thus supporting mSLP may assist in dampening mitochondrial dysfunction underlying neurological disorders encompassing impairment of the electron transport chain.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Tuzolto st. 37-47, Budapest 1094, Hungary.
| |
Collapse
|
52
|
Idebenone Protects against Acute Murine Colitis via Antioxidant and Anti-Inflammatory Mechanisms. Int J Mol Sci 2020; 21:ijms21020484. [PMID: 31940911 PMCID: PMC7013829 DOI: 10.3390/ijms21020484] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is a key player of the inflammatory cascade responsible for the initiation of ulcerative colitis (UC). Although the short chain quinone idebenone is considered a potent antioxidant and a mitochondrial electron donor, emerging evidence suggests that idebenone also displays anti-inflammatory activity. This study evaluated the impact of idebenone in the widely used dextran sodium sulphate (DSS)-induced mouse model of acute colitis. Acute colitis was induced in C57BL/6J mice via continuous exposure to 2.5% DSS over 7 days. Idebenone was co-administered orally at a dose of 200 mg/kg body weight. Idebenone significantly prevented body weight loss and improved the disease activity index (DAI), colon length, and histopathological score. Consistent with its reported antioxidant function, idebenone significantly reduced the colonic levels of malondialdehyde (MDA) and nitric oxide (NO), and increased the expression of the redox factor NAD(P)H (nicotinamide adenine dinucleotide phosphate) dehydrogenase quinone-1 (NQO-1) in DSS-exposed mice. Immunohistochemistry revealed a significantly increased expression of tight junction proteins, which protect and maintain paracellular intestinal permeability. In support of an anti-inflammatory activity, idebenone significantly attenuated the elevated levels of pro-inflammatory cytokines in colon tissue. These results suggest that idebenone could represent a promising therapeutic strategy to interfere with disease pathology in UC by simultaneously inducing antioxidative and anti-inflammatory pathways.
Collapse
|
53
|
Karaarslan C. Leber's Hereditary Optic Neuropathy as a Promising Disease for Gene Therapy Development. Adv Ther 2019; 36:3299-3307. [PMID: 31605306 PMCID: PMC6860503 DOI: 10.1007/s12325-019-01113-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/13/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a relatively common, rapidly progressing inherited optic neuropathy wherein LHON-affected eyes undergo optic nerve atrophy due to retinal ganglion cell (RGC) loss. It is a maternally inherited (or sporadic) mitochondrial disorder caused primarily by mutations in genes that encode components of respiratory complex (RC)1 in mitochondria. Mitochondrial deficiency of RC1 compromises ATP production and oxidative stress management in RGCs. The most common LHON-causing mutations are 11778G>A, 3460G>A, and 14484T>C point mutations in MT-ND4, MT-ND1, and MT-ND6. The unusually high mitochondrial load of RGCs makes them particularly sensitive to these mutations. Patients with LHON may be prescribed ubiquinone (a component of RC3) or idebenone, a ubiquinone analogue with enhanced bioavailability to act downstream of RC1. The challenge of accessing the inner mitochondrial membrane with gene therapy for LHON, and other mitochondrial diseases, may be overcome by incorporation of a specific mitochondrion-targeting sequence (MTS) that enables allotropic expression of a nucleus-transcribed ND4 transgene. Because LHON penetrance is incomplete among carriers of the aforementioned mutations, identification of environmental factors, such as heavy smoking, that interact with genetics in the phenotypic expression of LHON may be helpful toward preventing or delaying disease development. LHON has become a model for mitochondrial and neurogenerative diseases owing to it having a clearly identified genetic cause and its early onset and rapid progression characteristics. Hence, LHON studies and genetic treatment advances may inform research of other diseases.
Collapse
|
54
|
Mitochondrial disorders and the eye. Surv Ophthalmol 2019; 65:294-311. [PMID: 31783046 DOI: 10.1016/j.survophthal.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Mitochondria are cellular organelles that play a key role in energy metabolism and oxidative phosphorylation. Malfunctioning of mitochondria has been implicated as the cause of many disorders with variable inheritance, heterogeneity of systems involved, and varied phenotype. Metabolically active tissues are more likely to be affected, causing an anatomic and physiologic disconnect in the treating physicians' mind between presentation and underlying pathophysiology. We shall focus on disorders of mitochondrial metabolism relevant to an ophthalmologist. These disorders can affect all parts of the visual pathway (crystalline lens, extraocular muscles, retina, optic nerve, and retrochiasm). After the introduction reviewing mitochondrial structure and function, each disorder is reviewed in detail, including approaches to its diagnosis and most current management guidelines.
Collapse
|
55
|
Affiliation(s)
- David J. Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
56
|
Cardioprotective effects of idebenone do not involve ROS scavenging: Evidence for mitochondrial complex I bypass in ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 135:160-171. [DOI: 10.1016/j.yjmcc.2019.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
|
57
|
Visual function in chronic Leber's hereditary optic neuropathy during idebenone treatment initiated 5 to 50 years after onset. Graefes Arch Clin Exp Ophthalmol 2019; 257:2751-2757. [PMID: 31482278 DOI: 10.1007/s00417-019-04444-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by a subacute and progressive impairment and subsequent degeneration of retinal ganglion cells (RGCs). In most cases, it results in optic nerve atrophy and permanently reduced visual acuity (VA). Idebenone has recently been approved in Europe for treating LHON. However, published clinical data has only focused on efficacy in patients within the first years after disease onset. The present study is the first to evaluate possible effects of idebenone treatment in patients with LHON when initiated after more than 5 years from disease onset. METHODS Oral treatment with idebenone 300 mg tid was started in seven patients 5 to 51 years after LHON onset. All patients had genetically confirmed primary LHON mutations (m11778G>A, m14484T>C, and m13051G>A). Visual function of all fourteen eyes was tested every 3 months using logarithmic reading charts and automated static threshold perimetry. The obtained clinical data were analyzed retrospectively using a multivariate analysis for VA and the Wilcoxon signed-rank test for visual field data. RESULTS Before treatment, VA was 0.78 ± 0.38 logMAR (range 0.24 to 1.50 logMAR). During the first year of therapy, VA improved significantly by an average of - 0.20 ± 0.10 logMAR or 10 ± 5 ETDRS letters (P = 0.002; VA range 0.06 to 1.30 logMAR). Seven of fourteen eyes showed an improvement of 2 or more lines. Visual field mean deviation increased from - 8.02 ± 6.11 to - 6.48 ± 5.26 dB after 12 months, but this change was not statistically significant (P = 0.056). CONCLUSIONS The increase in VA of patients who have had LHON for more than 5 years observed soon after start of treatment may not constitute a coincidental spontaneous recovery. We hypothesize that the treatment response in chronic LHON was the result of a reactivated signal transduction in surviving dysfunctional RGCs. The results of this study indicate a beneficial effect of idebenone on improvement of visual function in LHON patients with established optic atrophy.
Collapse
|
58
|
Heaton R, Millichap L, Saleem F, Gannon J, Begum G, Hargreaves IP. Current biochemical treatments of mitochondrial respiratory chain disorders. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1638250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Robert Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Lauren Millichap
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Fatima Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jennifer Gannon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Gemma Begum
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
59
|
Čermáková P, Kovalinka T, Ferenczyová K, Horváth A. Coenzyme Q 2 is a universal substrate for the measurement of respiratory chain enzyme activities in trypanosomatids. ACTA ACUST UNITED AC 2019; 26:17. [PMID: 30901308 PMCID: PMC6430614 DOI: 10.1051/parasite/2019017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
Abstract
The measurement of respiratory chain enzyme activities is an integral part of basic research as well as for specialized examinations in clinical biochemistry. Most of the enzymes use ubiquinone as one of their substrates. For current in vitro measurements, several hydrophilic analogues of native ubiquinone are used depending on the enzyme and the workplace. We tested five readily available commercial analogues and we showed that Coenzyme Q2 is the most suitable for the measurement of all tested enzyme activities. Use of a single substrate in all laboratories for several respiratory chain enzymes will improve our ability to compare data, in addition to simplifying the stock of chemicals required for this type of research.
Collapse
Affiliation(s)
- Petra Čermáková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Tomáš Kovalinka
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Kristína Ferenczyová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
60
|
Woolley KL, Nadikudi M, Koupaei MN, Corban M, McCartney P, Bissember AC, Lewis TW, Gueven N, Smith JA. Amide linked redox-active naphthoquinones for the treatment of mitochondrial dysfunction. MEDCHEMCOMM 2019; 10:399-412. [PMID: 30996858 DOI: 10.1039/c8md00582f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022]
Abstract
Naphthoquinones have been investigated as potential therapeutic molecules for neurodegenerative disorders, which is largely based on their anti-oxidative potential. However, a theoretical framework for the pleiotropic protective effects of naphthoquinone derivatives is largely missing. We synthesized a library of novel short chain 2,3-disubstituted naphthoquinone derivatives and measured their redox characteristics to identify a potential connection with their biological activity. Using two cell lines with different reducing potential, the compounds were tested for their inherent toxicity, acute rescue of ATP levels and cytoprotective activity. For the first time, a structure-activity-relationship for naphthoquinones has been established. Our results clearly demonstrate that it is the group on the alkyl side chain and not solely the redox characteristics of the naphthoquinone unit or lipophilicity that determines the extent of cytoprotection by individual compounds. From this, we developed a number of amide containing naphthoquinones with superior activity in ATP rescue and cell viability models compared to the clinically used benzoquinone idebenone.
Collapse
Affiliation(s)
- Krystel L Woolley
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 2182
| | - Monila Nadikudi
- School of Medicine - Pharmacy , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 1715
| | - Mitra N Koupaei
- School of Medicine - Pharmacy , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 1715
| | - Monika Corban
- School of Medicine - Pharmacy , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 1715
| | | | - Alex C Bissember
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 2182
| | - Trevor W Lewis
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 2182
| | - Nuri Gueven
- School of Medicine - Pharmacy , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 1715
| | - Jason A Smith
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , TAS 7001 , Australia . ; ; Tel: +61 3 6226 2182
| |
Collapse
|
61
|
Khadka D, Kim HJ, Oh GS, Shen A, Lee S, Lee SB, Sharma S, Kim SY, Pandit A, Choe SK, Kwak TH, Yang SH, Sim H, Eom GH, Park R, So HS. Augmentation of NAD + levels by enzymatic action of NAD(P)H quinone oxidoreductase 1 attenuates adriamycin-induced cardiac dysfunction in mice. J Mol Cell Cardiol 2018; 124:45-57. [PMID: 30291911 DOI: 10.1016/j.yjmcc.2018.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/18/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adriamycin (ADR) is a powerful chemotherapeutic agent extensively used to treat various human neoplasms. However, its clinical utility is hampered due to severe adverse side effects i.e. cardiotoxicity and heart failure. ADR-induced cardiomyopathy (AIC) has been reported to be caused by myocardial damage and dysfunction through oxidative stress, DNA damage, and inflammatory responses. Nonetheless, the remedies for AIC are even not established. Therefore, we illustrate the role of NAD+/NADH modulation by NAD(P)H quinone oxidoreductase 1 (NQO1) enzymatic action on AIC. METHODS AND RESULTS AIC was established by intraperitoneal injection of ADR in C57BL/6 wild-type (WT) and NQO1 knockout (NQO1-/-) mice. All Mice were orally administered dunnione (named NQO1 substrate) before and after exposure to ADR. Cardiac biomarker levels in the plasma, cardiac dysfunction, oxidative biomarkers, and mRNA and protein levels of pro-inflammatory mediators were determined compared the cardiac toxicity of each experimental group. All biomarkers of Cardiac damage and oxidative stress, and mRNA levels of pro-inflammatory cytokines including cardiac dysfunction were increased in ADR-treated both WT and NQO1-/- mice. However, this increase was significantly reduced by dunnione in WT, but not in NQO1-/- mice. In addition, a decrease in SIRT1 activity due to a reduction in the NAD+/NADH ratio by PARP-1 hyperactivation was associated with AIC through increased nuclear factor (NF)-κB p65 and p53 acetylation in both WT and NQO1-/- mice. While an elevation in NAD+/NADH ratio via NQO1 enzymatic action using dunnione recovered SIRT1 activity and subsequently deacetylated NF-κB p65 and p53, however not in NQO1-/- mice, thereby attenuating AIC. CONCLUSION Thus, modulation of NAD+/NADH by NQO1 may be a novel therapeutic approach to prevent chemotherapy-associated heart failure, including AIC.
Collapse
Affiliation(s)
- Dipendra Khadka
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Hyung-Jin Kim
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Gi-Su Oh
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - AiHua Shen
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - SeungHoon Lee
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Su-Bin Lee
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Subham Sharma
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Seon Young Kim
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Arpana Pandit
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Seong-Kyu Choe
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Tae Hwan Kwak
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Sei-Hoon Yang
- Internal Medicine, School of Medicine Wonkwang, University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyuk Sim
- Internal Medicine, School of Medicine Wonkwang, University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Medical Research Center for Gene Regulation Chonnam, National University Medical School, Hwasungun Jeollanam-do 58128, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science & Engineering, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hong-Seob So
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea..
| |
Collapse
|
62
|
Tomilov A, Allen S, Hui CK, Bettaieb A, Cortopassi G. Idebenone is a cytoprotective insulin sensitizer whose mechanism is Shc inhibition. Pharmacol Res 2018; 137:89-103. [PMID: 30290222 DOI: 10.1016/j.phrs.2018.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023]
Abstract
When insulin binds insulin receptor, IRS1 signaling is stimulated to trigger the maximal insulin response. p52Shc protein competes directly with IRS1, thus damping and diverting maximal insulin response. Genetic reduction of p52Shc minimizes competition with IRS1, and improves insulin signaling and glucose control in mice, and improves pathophysiological consequences of hyperglycemia. Given the multiple benefits of Shc reduction in vivo, we investigated whether any of 1680 drugs used in humans may function as Shc inhibitors, and thus potentially serve as novel anti-diabetics. Of the 1680, 30 insulin sensitizers were identified by screening in vitro, and of these 30 we demonstrated that 7 bound Shc protein. Of the 7 drugs, idebenone dose-dependently bound Shc protein in the 50-100 nM range, and induced insulin sensitivity and cytoprotection in this same 100 nM range that clinically dosed idebenone reaches in human plasma. By contrast we observe mitochondrial effects of idebenone in the 5,000 nM range that are not reached in human dosing. Multiple assays of target engagement demonstrate that idebenone physically interacts with Shc protein. Idebenone sensitizes mice to insulin in two different mouse models of prediabetes. Genetic depletion of idebenone's target eliminates idebenone's ability to insulin-sensitize in vivo. Thus, idebenone is the first-in-class member of a novel category of insulin-sensitizing and cytoprotective agents, the Shc inhibitors. Idebenone is an approved drug and could be considered for other indications such as type 2 diabetes and fatty liver disease, in which insulin resistance occurs.
Collapse
Affiliation(s)
- Alexey Tomilov
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Sonia Allen
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Chun Kiu Hui
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee, 1215 W. Cumberland Ave, Knoxville, TN, 37996-1920, USA.
| | - Gino Cortopassi
- Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., VM3B, UC Davis, CA, 95616, USA.
| |
Collapse
|
63
|
Seo KS, Kim JH, Min KN, Moon JA, Roh TC, Lee MJ, Lee KW, Min JE, Lee YM. KL1333, a Novel NAD + Modulator, Improves Energy Metabolism and Mitochondrial Dysfunction in MELAS Fibroblasts. Front Neurol 2018; 9:552. [PMID: 30026729 PMCID: PMC6041391 DOI: 10.3389/fneur.2018.00552] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), one of the most common maternally inherited mitochondrial diseases, is caused by mitochondrial DNA mutations that lead to mitochondrial dysfunction. Several treatment options exist, including supplementation with CoQ10, vitamins, and nutrients, but no treatment with proven efficacy is currently available. In this study, we investigated the effects of a novel NAD+ modulator, KL1333, in human fibroblasts derived from a human patient with MELAS. KL1333 is an orally available, small organic molecule that reacts with NAD(P)H:quinone oxidoreductase 1 (NQO1) as a substrate, resulting in increases in intracellular NAD+ levels via NADH oxidation. To elucidate the mechanism of action of KL1333, we used C2C12 myoblasts, L6 myoblasts, and MELAS fibroblasts. Elevated NAD+ levels induced by KL1333 triggered the activation of SIRT1 and AMPK, and subsequently activated PGC-1α in these cells. In MELAS fibroblasts, KL1333 increased ATP levels and decreased lactate and ROS levels, which are often dysregulated in this disease. In addition, mitochondrial functional analyses revealed that KL1333 increased mitochondrial mass, membrane potential, and oxidative capacity. These results indicate that KL1333 improves mitochondrial biogenesis and function, and thus represents a promising therapeutic agent for the treatment of MELAS.
Collapse
Affiliation(s)
- Kang-Sik Seo
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Jin-Hwan Kim
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Ki-Nam Min
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Jeong-A Moon
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Tae-Chul Roh
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Mi-Jung Lee
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Kang-Woo Lee
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Ji-Eun Min
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Young-Mock Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
64
|
Ravasz D, Kacso G, Fodor V, Horvath K, Adam-Vizi V, Chinopoulos C. Reduction of 2-methoxy-1,4-naphtoquinone by mitochondrially-localized Nqo1 yielding NAD + supports substrate-level phosphorylation during respiratory inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:909-924. [PMID: 29746824 DOI: 10.1016/j.bbabio.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 01/07/2023]
Abstract
Provision of NAD+ for oxidative decarboxylation of alpha-ketoglutarate to succinyl-CoA by the ketoglutarate dehydrogenase complex (KGDHC) is critical for maintained operation of succinyl-CoA ligase yielding high-energy phosphates, a process known as mitochondrial substrate-level phosphorylation (mSLP). We have shown previously that when NADH oxidation by complex I is inhibited by rotenone or anoxia, mitochondrial diaphorases yield NAD+, provided that suitable quinones are present (Kiss G et al., FASEB J 2014, 28:1682). This allows for KGDHC reaction to proceed and as an extension of this, mSLP. NAD(P)H quinone oxidoreductase 1 (NQO1) is an enzyme exhibiting diaphorase activity. Here, by using Nqo1-/- and WT littermate mice we show that in rotenone-treated, isolated liver mitochondria 2-methoxy-1,4-naphtoquinone (MNQ) is preferentially reduced by matrix Nqo1 yielding NAD+ to KGDHC, supporting mSLP. This process was sensitive to inhibition by specific diaphorase inhibitors. Reduction of idebenone and its analogues MRQ-20 and MRQ-56, menadione, mitoquinone and duroquinone were unaffected by genetic disruption of the Nqo1 gene. The results allow for the conclusions that i) MNQ is a Nqo1-preferred substrate, and ii) in the presence of suitable quinones, mitochondrially-localized diaphorases other than Nqo1 support NADH oxidation when complex I is inhibited. Our work confirms that complex I bypass can occur by quinones reduced by intramitochondrial diaphorases oxidizing NADH, ultimately supporting mSLP. Finally, it may help to elucidate structure-activity relationships of redox-active quinones with diaphorase enzymes.
Collapse
Affiliation(s)
- Dora Ravasz
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary
| | - Gergely Kacso
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary
| | - Viktoria Fodor
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary
| | - Kata Horvath
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary.
| |
Collapse
|
65
|
Beyrath J, Pellegrini M, Renkema H, Houben L, Pecheritsyna S, van Zandvoort P, van den Broek P, Bekel A, Eftekhari P, Smeitink JAM. KH176 Safeguards Mitochondrial Diseased Cells from Redox Stress-Induced Cell Death by Interacting with the Thioredoxin System/Peroxiredoxin Enzyme Machinery. Sci Rep 2018; 8:6577. [PMID: 29700325 PMCID: PMC5920042 DOI: 10.1038/s41598-018-24900-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/10/2018] [Indexed: 01/01/2023] Open
Abstract
A deficient activity of one or more of the mitochondrial oxidative phosphorylation (OXPHOS) enzyme complexes leads to devastating diseases, with high unmet medical needs. Mitochondria, and more specifically the OXPHOS system, are the main cellular production sites of Reactive Oxygen Species (ROS). Increased ROS production, ultimately leading to irreversible oxidative damage of macromolecules or to more selective and reversible redox modulation of cell signalling, is a causative hallmark of mitochondrial diseases. Here we report on the development of a new clinical-stage drug KH176 acting as a ROS-Redox modulator. Patient-derived primary skin fibroblasts were used to assess the potency of a new library of chromanyl-based compounds to reduce ROS levels and protect cells against redox-stress. The lead compound KH176 was studied in cell-based and enzymatic assays and in silico. Additionally, the metabolism, pharmacokinetics and toxicokinetics of KH176 were assessed in vivo in different animal species. We demonstrate that KH176 can effectively reduce increased cellular ROS levels and protect OXPHOS deficient primary cells against redox perturbation by targeting the Thioredoxin/Peroxiredoxin system. Due to its dual activity as antioxidant and redox modulator, KH176 offers a novel approach to the treatment of mitochondrial (-related) diseases. KH176 efficacy and safety are currently being evaluated in a Phase 2 clinical trial.
Collapse
Affiliation(s)
- Julien Beyrath
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands.
| | - Mina Pellegrini
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | - Herma Renkema
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | - Lisanne Houben
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | | | | | - Petra van den Broek
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Akkiz Bekel
- Inoviem Scientific SAS, Bioparc 3, 850 Boulevard Sébastien Brant, 67400, Illkirch-Graffenstaden, France
| | - Pierre Eftekhari
- Inoviem Scientific SAS, Bioparc 3, 850 Boulevard Sébastien Brant, 67400, Illkirch-Graffenstaden, France
| | - Jan A M Smeitink
- Khondrion BV, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
66
|
Giorgio V, Schiavone M, Galber C, Carini M, Da Ros T, Petronilli V, Argenton F, Carelli V, Acosta Lopez MJ, Salviati L, Prato M, Bernardi P. The idebenone metabolite QS10 restores electron transfer in complex I and coenzyme Q defects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:901-908. [PMID: 29694828 DOI: 10.1016/j.bbabio.2018.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Idebenone is a hydrophilic short-chain coenzyme (Co) Q analogue, which has been used as a potential bypass of defective complex I in both Leber Hereditary Optic Neuropathy and OPA1-dependent Dominant Optic Atrophy. Based on its potential antioxidant effects, it has also been tested in degenerative disorders such as Friedreich's ataxia, Huntington's and Alzheimer's diseases. Idebenone is rapidly modified but the biological effects of its metabolites have been characterized only partially. Here we have studied the effects of quinones generated during in vivo metabolism of idebenone with specific emphasis on 6-(9-carboxynonyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (QS10). QS10 partially restored respiration in cells deficient of complex I or of CoQ without inducing the mitochondrial permeability transition, a detrimental effect of idebenone that may offset its potential benefits [Giorgio et al. (2012) Biochim. Biophys. Acta 1817: 363-369]. Remarkably, respiration was largely rotenone-insensitive in complex I deficient cells and rotenone-sensitive in CoQ deficient cells. These findings indicate that, like idebenone, QS10 can provide a bypass to defective complex I; and that, unlike idebenone, QS10 can partially replace endogenous CoQ. In zebrafish (Danio rerio) treated with rotenone, QS10 was more effective than idebenone in allowing partial recovery of respiration (to 40% and 20% of the basal respiration of untreated embryos, respectively) and allowing zebrafish survival (80% surviving embryos at 60 h post-fertilization, a time point at which all rotenone-treated embryos otherwise died). We conclude that QS10 is potentially more active than idebenone in the treatment of diseases caused by complex I defects, and that it could also be used in CoQ deficiencies of genetic and acquired origin.
Collapse
Affiliation(s)
- Valentina Giorgio
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Chiara Galber
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Carini
- INSTM Trieste Unit, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Tatiana Da Ros
- INSTM Trieste Unit, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Valeria Petronilli
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Manuel J Acosta Lopez
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, IRP Città della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, IRP Città della Speranza, Padova, Italy
| | - Maurizio Prato
- INSTM Trieste Unit, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy; Carbon Nanobiotechnology Laboratory CIC biomaGUNE, Donostia-San Sebastián, Spain; Basque Fdn Sci, Ikerbasque, Bilbao, Spain
| | - Paolo Bernardi
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
67
|
Ripamonti E, D'Angelo G. Measurement of respiratory function decline in patients with Duchenne muscular dystrophy: a conjoint analysis. Neurodegener Dis Manag 2018; 8:89-96. [PMID: 29412787 DOI: 10.2217/nmt-2017-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM In Duchenne muscular dystrophy (DMD), little attention has been paid to severity of respiratory function decline (RFD) based on disease progression. We performed a conjoint analysis among 123 Italian clinicians to generate a scale for RFD in DMD patients. METHODS Before the interview, 11 attributes were selected by discussion among experts. 32 'patient profiles' were generated. Each physician assessed the severity of RFD for each profile. Each level/attribute was assigned an estimated usefulness to understand its impact on RFD. RESULTS The identified attributes were forced vital capacity, forced vital capacity decline, dysphagia, type of ventilation and peak cough flow. These results allowed the development of a scale for RFD severity. CONCLUSION This scale can stratify DMD patients according to the severity of their RFD.
Collapse
Affiliation(s)
| | - Grazia D'Angelo
- Unità Operativa Semplice Patologie Neuromuscolari, Riabilitazione Funzionale, IRCCS "E. Medea", Via Don Luigi Monza, 20, 23842 Bosisio Parini LC, Italy
| |
Collapse
|
68
|
Gonzalez JP, Ramachandran J, Himelman E, Badr MA, Kang C, Nouet J, Fefelova N, Xie LH, Shirokova N, Contreras JE, Fraidenraich D. Normalization of connexin 43 protein levels prevents cellular and functional signs of dystrophic cardiomyopathy in mice. Neuromuscul Disord 2018; 28:361-372. [PMID: 29477453 DOI: 10.1016/j.nmd.2018.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 11/29/2022]
Abstract
Duchenne muscular dystrophy (DMD) associated cardiomyopathy remains incurable. Connexin 43 (Cx43) is upregulated and remodeled in the hearts of mdx mice, a mouse model of DMD. Hearts from Wild Type, mdx, and mdx:Cx43(+/-) mice were studied before (4-6 months) and after (10-15 months) the onset of cardiomyopathy to assess the impact of decreasing Cx43 levels on cardiac pathology in dystrophic mice. Increased connexin 43 protein levels in mdx hearts were not observed in mdx:Cx43(+/-) hearts. Cx43 remodeling in mdx hearts was attenuated in mdx:Cx43(+/-) hearts. At time-point 4-6 months, isolated cardiomyocytes from mdx hearts displayed enhanced ethidium bromide uptake, augmented intracellular calcium signals and increased production of reactive oxygen species. These pathological features were improved in mdx:Cx43(+/-) cardiomyocytes. Isoproterenol-challenged mdx:Cx43(+/-) mice did not show arrhythmias or acute lethality observed in mdx mice. Likewise, isoproterenol-challenged mdx:Cx43(+/-) isolated hearts were also protected from arrhythmogenesis. At time-point 10-15 months, mdx:Cx43(+/-) mice showed decreased cardiac fibrosis and improved ventricular function, relative to mdx mice. These results suggest that normalization of connexin 43 protein levels in mdx mice reduces overall cardiac pathology.
Collapse
Affiliation(s)
- J Patrick Gonzalez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Jayalakshmi Ramachandran
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Eric Himelman
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Myriam A Badr
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Chifei Kang
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Julie Nouet
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Natalia Shirokova
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| |
Collapse
|
69
|
Pilz YL, Bass SJ, Sherman J. A Review of Mitochondrial Optic Neuropathies: From Inherited to Acquired Forms. JOURNAL OF OPTOMETRY 2017; 10:205-214. [PMID: 28040497 PMCID: PMC5595256 DOI: 10.1016/j.optom.2016.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/02/2016] [Accepted: 09/22/2016] [Indexed: 05/28/2023]
Abstract
In recent years, the term mitochondrial optic neuropathy (MON) has increasingly been used within the literature to describe a group of optic neuropathies that exhibit mitochondrial dysfunction in retinal ganglion cells (RGCs). Interestingly, MONs include genetic aetiologies, such as Leber hereditary optic neuropathy (LHON) and dominant optic atrophy (DOA), as well as acquired aetiologies resulting from drugs, nutritional deficiencies, and mixed aetiologies. Regardless of an inherited or acquired cause, patients exhibit the same clinical manifestations with selective loss of the RGCs due to mitochondrial dysfunction. Various novel therapies are being explored to reverse or limit damage to the RGCs. Here we review the pathophysiology, clinical manifestations, differential diagnosis, current treatment, and promising therapeutic targets of MON.
Collapse
MESH Headings
- DNA, Mitochondrial
- Diagnosis, Differential
- Humans
- Mitochondrial Diseases/diagnosis
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/physiopathology
- Mitochondrial Diseases/therapy
- Optic Atrophy, Autosomal Dominant/diagnosis
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Autosomal Dominant/physiopathology
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/physiopathology
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Nerve Diseases/diagnosis
- Optic Nerve Diseases/genetics
- Optic Nerve Diseases/physiopathology
- Optic Nerve Diseases/therapy
- Retinal Ganglion Cells/pathology
Collapse
Affiliation(s)
- Yasmine L Pilz
- State University New York, College of Optometry, New York, USA.
| | - Sherry J Bass
- State University New York, College of Optometry, New York, USA
| | - Jerome Sherman
- State University New York, College of Optometry, New York, USA
| |
Collapse
|
70
|
Koopman WJ, Beyrath J, Fung CW, Koene S, Rodenburg RJ, Willems PH, Smeitink JA. Mitochondrial disorders in children: toward development of small-molecule treatment strategies. EMBO Mol Med 2017; 8:311-27. [PMID: 26951622 PMCID: PMC4818752 DOI: 10.15252/emmm.201506131] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This review presents our current understanding of the pathophysiology and potential treatment strategies with respect to mitochondrial disease in children. We focus on pathologies due to mutations in nuclear DNA‐encoded structural and assembly factors of the mitochondrial oxidative phosphorylation (OXPHOS) system, with a particular emphasis on isolated mitochondrial complex I deficiency. Following a brief introduction into mitochondrial disease and OXPHOS function, an overview is provided of the diagnostic process in children with mitochondrial disorders. This includes the impact of whole‐exome sequencing and relevance of cellular complementation studies. Next, we briefly present how OXPHOS mutations can affect cellular parameters, primarily based on studies in patient‐derived fibroblasts, and how this information can be used for the rational design of small‐molecule treatment strategies. Finally, we discuss clinical trial design and provide an overview of small molecules that are currently being developed for treatment of mitochondrial disease.
Collapse
Affiliation(s)
- Werner Jh Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Cheuk-Wing Fung
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Saskia Koene
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Hgm Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Am Smeitink
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands Khondrion BV, Nijmegen, The Netherlands Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
71
|
Characterization of a Leber's hereditary optic neuropathy (LHON) family harboring two primary LHON mutations m.11778G > A and m.14484T > C of the mitochondrial DNA. Mitochondrion 2017; 36:15-20. [DOI: 10.1016/j.mito.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/20/2016] [Accepted: 10/04/2016] [Indexed: 11/19/2022]
|
72
|
Augustyniak J, Lenart J, Zychowicz M, Stepien PP, Buzanska L. Mitochondrial biogenesis and neural differentiation of human iPSC is modulated by idebenone in a developmental stage-dependent manner. Biogerontology 2017. [PMID: 28643190 PMCID: PMC5514205 DOI: 10.1007/s10522-017-9718-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Idebenone, the synthetic analog of coenzyme Q10 can improve electron transport in mitochondria. Therefore, it is used in the treatment of Alzheimer’s disease and other cognitive impairments. However, the mechanism of its action on neurodevelopment is still to be elucidated. Here we demonstrate that the cellular response of human induced pluripotent stem cells (hiPSC) to idebenone depends on the stage of neural differentiation. When: neural stem cells (NSC), early neural progenitors (eNP) and advanced neural progenitors (NP) have been studied a significant stimulation of mitochondrial biogenesis was observed only at the eNP stage of development. This coexists with the enhancement of cell viability and increase in total cell number. In addition, we report novel idebenone properties in a possible regulation of neural stem cells fate decision: only eNP stage responded with up-regulation of both neuronal (MAP2), astrocytic (GFAP) markers, while at NSC and NP stages significant down-regulation of MAP2 expression was observed, promoting astrocyte differentiation. Thus, idebenone targets specific stages of hiPSC differentiation and may influence the neural stem cell fate decision.
Collapse
Affiliation(s)
- J Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - J Lenart
- Department of Neurochemistry, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - M Zychowicz
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - P P Stepien
- Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - L Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
73
|
Montenegro L, Modica MN, Salerno L, Panico AM, Crascì L, Puglisi G, Romeo G. In Vitro Antioxidant Activity of Idebenone Derivative-Loaded Solid Lipid Nanoparticles. Molecules 2017; 22:molecules22060887. [PMID: 28555014 PMCID: PMC6152785 DOI: 10.3390/molecules22060887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/25/2022] Open
Abstract
Idebenone (IDE) has been proposed for the treatment of neurodegenerative diseases involving mitochondria dysfunctions. Unfortunately, to date, IDE therapeutic treatments have not been as successful as expected. To improve IDE efficacy, in this work we describe a two-step approach: (1) synthesis of IDE ester derivatives by covalent linking IDE to other two antioxidants, trolox (IDETRL) and lipoic acid (IDELIP), to obtain a synergic effect; (2) loading of IDE, IDETRL, or IDELIP into solid lipid nanoparticles (SLN) to improve IDE and its esters’ water solubility while increasing and prolonging their antioxidant activity. IDE and its derivatives loaded SLN showed good physico-chemical and technological properties (spherical shape, mean particle sizes 23–25 nm, single peak in the size distribution, ζ potential values −1.76/−2.89 mV, and good stability at room temperature). In vitro antioxidant activity of these SLN was evaluated in comparison with free drugs by means of oxygen radical absorbance capacity (ORAC) test. IDETRL and IDELIP showed a greater antioxidant activity than IDE and encapsulation of IDE and its derivatives into SLN was able to prolong their antioxidant activity. These results suggest that loading IDETRL and IDELIP into SLN could be a useful strategy to improve IDE efficacy.
Collapse
Affiliation(s)
- Lucia Montenegro
- Department of Drug Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Maria N Modica
- Department of Drug Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Anna Maria Panico
- Department of Drug Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Lucia Crascì
- Department of Drug Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Giovanni Puglisi
- Department of Drug Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
74
|
Chun BY, Rizzo JF. Dominant Optic Atrophy and Leber's Hereditary Optic Neuropathy: Update on Clinical Features and Current Therapeutic Approaches. Semin Pediatr Neurol 2017; 24:129-134. [PMID: 28941528 DOI: 10.1016/j.spen.2017.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dominant optic atrophy (DOA) and Leber hereditary optic neuropathy (LHON) are the two most common inherited optic neuropathies encountered in clinical practice. This review provides a summary of recent advances in the understanding of the clinical manifestations, current treatments, and ongoing clinical trials of these two optic neuropathies. Substantial progress has been made in the understanding of the clinical, genetic, and pathophysiological basis of DOA and LHON. Pathogenic OPA1 gene mutations in DOA and 3 primary mutations of mitochondrial DNA in LHON-induced mitochondrial dysfunction, which in turn leads to increased reactive oxygen species levels in mitochondria and possibly insufficient ATP production. The pathologic hallmark of these inherited optic neuropathies is primary degeneration of retinal ganglion cells, preferentially in the papillomacular bundle, which results in temporal optic disc pallor and central or cecocentral visual loss. There are no effective treatments for patients with LHON and DOA, although clinical trials are underway for the former. Translational research for these diseases is entering an accelerated phase with the availability of animal models, and a variety of pharmacological and genetic therapies are being developed.
Collapse
Affiliation(s)
- Bo Young Chun
- Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu, Korea; Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, Korea
| | - Joseph F Rizzo
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA.
| |
Collapse
|
75
|
Abstract
Idebenone (Raxone(®)), a short-chain benzoquinone, is the only disease-specific drug approved to treat visual impairment in adolescents and adults with Leber's hereditary optic neuropathy (LHON), a rare genetic mitochondrial disease that causes rapid and progressive bilateral vision loss. The mechanism of action of idebenone involves its antioxidant properties and ability to act as a mitochondrial electron carrier. Idebenone overcomes mitochondrial complex I respiratory chain deficiency in patients with LHON by transferring electrons directly to mitochondrial complex III (by-passing complex I), thereby restoring cellular energy (ATP) production and re-activating inactive-but-viable retinal ganglion cells, which ultimately prevents further vision loss and promotes vision recovery. The approval of idebenone in the treatment of LHON was based on the overall data from a randomized clinical trial, a follow-up study and real-world data. Taken together, these studies provide convincing evidence that oral idebenone 900 mg/day for 24 weeks has persistent beneficial effects in preventing further vision impairment and promoting vision recovery in patients with LHON relative to the natural course of the disease. Therefore, idebenone is a valuable agent to treat visual impairment in adolescents and adults with LHON.
Collapse
|
76
|
Yu-Wai-Man P, Soiferman D, Moore DG, Burté F, Saada A. Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy. Mitochondrion 2017; 36:36-42. [PMID: 28093355 PMCID: PMC5644719 DOI: 10.1016/j.mito.2017.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/29/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023]
Abstract
Leber hereditary optic neuropathy (LHON) is an important cause of mitochondrial blindness among young adults. In this study, we investigated the potential of four quinone analogues (CoQ1, CoQ10, decylubiquinone and idebenone) in compensating for the deleterious effect of the m.11778G>A mitochondrial DNA mutation. The LHON fibroblast cell lines tested exhibited reduced cell growth, impaired mitochondrial bioenergetics and elevated levels of reactive oxygen species (ROS). Idebenone increased ATP production and reduced ROS levels, but the effect was partial and cell-specific. The remaining quinone analogues had variable effects and a negative impact on certain mitochondrial parameters was observed in some cell lines.
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK; Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Devorah Soiferman
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - David G Moore
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Florence Burté
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
77
|
Catarino CB, Klopstock T. Use of Idebenone for the Treatment of Leber’s Hereditary Optic Neuropathy. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817731112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Claudia B. Catarino
- Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany
- German Network for Mitochondrial Disorders (mitoNET), Munich, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany
- German Network for Mitochondrial Disorders (mitoNET), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
78
|
Bi R, Logan I, Yao YG. Leber Hereditary Optic Neuropathy: A Mitochondrial Disease Unique in Many Ways. Handb Exp Pharmacol 2017; 240:309-336. [PMID: 27787713 DOI: 10.1007/164_2016_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Leber hereditary optic neuropathy (LHON) was the first mitochondrial disease to be identified as being caused by mutations in the mitochondrial DNA (mtDNA). This disease has been studied extensively in the past two decades, particularly in Brazilian, Chinese and European populations; and many primary mutations have been reported. However, the disease is enigmatic with many unique features, and there still are several important questions to be resolved. The incomplete penetrance, the male-biased disease expression and the prevalence in young adults all defy a proper explanation. It has been reported that the development of LHON is affected by the interaction between mtDNA mutations, mtDNA haplogroup background, nuclear genes, environmental factors and epigenetics. Furthermore, with the help of new animal models for LHON that have been created in recent years, we are continuing to learn more about the mechanism of this disease. The stage has now been reached at which there is a good understanding of both the genetic basis of the disease and its epidemiology, but just how the blindness that follows from the death of cells in the optic nerve can be prevented remains to be a pharmacological challenge. In this chapter, we summarize the progress that has been made in various recent studies on LHON, focusing on the molecular pathogenic mechanisms, clinical features, biochemical effects, the pharmacology and its treatment.
Collapse
Affiliation(s)
- Rui Bi
- Division of Medical Genetics & Evolutionary Medicine, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Yong-Gang Yao
- Division of Medical Genetics & Evolutionary Medicine, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
79
|
Krylova NG, Kulahava TA, Cheschevik VT, Dremza IK, Semenkova GN, Zavodnik IB. Redox regulation of mitochondrial functional activity by quinones. Physiol Int 2016; 103:439-458. [DOI: 10.1556/2060.103.2016.4.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Quinones are among the rare compounds successfully used as therapeutic agents to correct mitochondrial diseases and as specific regulators of mitochondrial function within cells. The aim of the present study was to elucidate the redox-dependent effects of quinones on mitochondrial function. The functional parameters [respiratory activity, membrane potential, and reactive oxygen species (ROS) generation] of isolated rat liver mitochondria and mitochondria in intact cells were measured in the presence of eight exogenously applied quinones that differ in lipophilicity and one-electron reduction potential. The quinones affected the respiratory parameters of mitochondria, and dissipated the mitochondrial membrane potential as well as influenced (either decreased or enhanced) ROS generation, and restored the electron flow during electron transport chain inhibition. The stimulation of ROS production by juglone and 2,5-di-tert-butyl-1,4-benzoquinone was accompanied by a decrease in the acceptor control and respiration control ratios, dissipation of the mitochondrial membrane potential and induction of the reverse electron flow under succinate oxidation in isolated mitochondria. Menadione and 2,3,5-trimethyl-1,4-benzoquinone, which decreased the mitochondrial ROS generation, did not affect the mitochondrial potential and, vice versa, were capable of restoring electron transport during Complex I inhibition. In intact C6 cells, all the quinones, except for coenzyme Q10, decreased the mitochondrial membrane potential. Juglone, 1,4-benzoquinone, and menadione showed the most pronounced effects. These findings indicate that quinones with the reduction potential values E1/2 in the range from −99 to −260 mV were effective redox regulators of mitochondrial electron transport.
Collapse
Affiliation(s)
- NG Krylova
- 1 Department of Biophysics, Faculty of Physics, Belarusian State University, Minsk, Belarus
| | - TA Kulahava
- 1 Department of Biophysics, Faculty of Physics, Belarusian State University, Minsk, Belarus
| | - VT Cheschevik
- 2 Department of Biochemistry, Yanka Kupala State University of Grodno, Grodno, Belarus
| | - IK Dremza
- 2 Department of Biochemistry, Yanka Kupala State University of Grodno, Grodno, Belarus
| | - GN Semenkova
- 3 Department of Radiation Chemistry and Pharmaceutical Technologies, Faculty of Chemistry, Belarusian State University, Minsk, Belarus
| | - IB Zavodnik
- 2 Department of Biochemistry, Yanka Kupala State University of Grodno, Grodno, Belarus
| |
Collapse
|
80
|
Hajmousa G, Vogelaar P, Brouwer LA, van der Graaf AC, Henning RH, Krenning G. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells. Biomaterials 2016; 119:43-52. [PMID: 28006657 DOI: 10.1016/j.biomaterials.2016.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 02/09/2023]
Abstract
Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their specific growth media offers an alternative and simple preservation method to liquid nitrogen cryopreservation or commercial preservation fluids for short-term storage and transport. However, accumulation of cell damage during hypothermia may result in cell injury and death upon rewarming through the production of excess reactive oxygen species (ROS). Here, the ability of the cell culture medium additive SUL-109, a modified 6-chromanol, to protect ASC from hypothermia and rewarming damage is examined. SUL-109 conveys protective effects against cold-induced damage in ASC as is observed by preservation of cell viability, adhesion properties and growth potential. SUL-109 does not reduce the multilineage differentiation capacity of ASC. SUL-109 conveys its protection against hypothermic damage by the preservation of the mitochondrial membrane potential through the activation of mitochondrial membrane complexes I and IV, and increases maximal oxygen consumption in FCCP uncoupled mitochondria. Consequently, SUL-109 alleviates mitochondrial ROS production and preserves ATP production. In summary, here we describe the generation of a single molecule cell preservation agent that protects ASC from hypothermic damage associated with short-term cell preservation that does not affect the differentiation capacity of ASC.
Collapse
Affiliation(s)
- Ghazaleh Hajmousa
- Cardiovascular Regenerative Medicine, Dept. Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands
| | - Pieter Vogelaar
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726GN, Groningen, The Netherlands
| | - Linda A Brouwer
- Cardiovascular Regenerative Medicine, Dept. Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands
| | | | - Robert H Henning
- Dept. Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EB71), 9713GZ, Groningen, The Netherlands
| | - Guido Krenning
- Cardiovascular Regenerative Medicine, Dept. Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands; Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726GN, Groningen, The Netherlands.
| |
Collapse
|
81
|
Investigating Leber's hereditary optic neuropathy: Cell models and future perspectives. Mitochondrion 2016; 32:19-26. [PMID: 27847334 DOI: 10.1016/j.mito.2016.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/19/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) was the first human disease found to be associated with a mitochondrial DNA (mtDNA) point mutation. The most common LHON mutations are 11778G>A, 3460G>A or 14484T>C. The most common clinical features of LHON are optic nerve and retina atrophy. The affected tissue is not available for studies, therefore a variety of other cell types are used. However, all models face difficulties and limitations in mitochondrial disease research. The advantages and disadvantages of different cell models used to study LHON, recent advances in animal model generation and novel approaches in this field are discussed.
Collapse
|
82
|
Bromodomain Inhibitors Correct Bioenergetic Deficiency Caused by Mitochondrial Disease Complex I Mutations. Mol Cell 2016; 64:163-175. [PMID: 27666594 DOI: 10.1016/j.molcel.2016.08.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/01/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022]
Abstract
Mitochondrial diseases comprise a heterogeneous group of genetically inherited disorders that cause failures in energetic and metabolic function. Boosting residual oxidative phosphorylation (OXPHOS) activity can partially correct these failures. Herein, using a high-throughput chemical screen, we identified the bromodomain inhibitor I-BET 525762A as one of the top hits that increases COX5a protein levels in complex I (CI) mutant cybrid cells. In parallel, bromodomain-containing protein 4 (BRD4), a target of I-BET 525762A, was identified using a genome-wide CRISPR screen to search for genes whose loss of function rescues death of CI-impaired cybrids grown under conditions requiring OXPHOS activity for survival. We show that I-BET525762A or loss of BRD4 remodeled the mitochondrial proteome to increase the levels and activity of OXPHOS protein complexes, leading to rescue of the bioenergetic defects and cell death caused by mutations or chemical inhibition of CI. These studies show that BRD4 inhibition may have therapeutic implications for the treatment of mitochondrial diseases.
Collapse
|
83
|
Vafai SB, Mevers E, Higgins KW, Fomina Y, Zhang J, Mandinova A, Newman D, Shaw SY, Clardy J, Mootha VK. Natural Product Screening Reveals Naphthoquinone Complex I Bypass Factors. PLoS One 2016; 11:e0162686. [PMID: 27622560 PMCID: PMC5021346 DOI: 10.1371/journal.pone.0162686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/27/2016] [Indexed: 01/22/2023] Open
Abstract
Deficiency of mitochondrial complex I is encountered in both rare and common diseases, but we have limited therapeutic options to treat this lesion to the oxidative phosphorylation system (OXPHOS). Idebenone and menadione are redox-active molecules capable of rescuing OXPHOS activity by engaging complex I-independent pathways of entry, often referred to as “complex I bypass.” In the present study, we created a cellular model of complex I deficiency by using CRISPR genome editing to knock out Ndufa9 in mouse myoblasts, and utilized this cell line to develop a high-throughput screening platform for novel complex I bypass factors. We screened a library of ~40,000 natural product extracts and performed bioassay-guided fractionation on a subset of the top scoring hits. We isolated four plant-derived 1,4-naphthoquinone complex I bypass factors with structural similarity to menadione: chimaphilin and 3-chloro-chimaphilin from Chimaphila umbellata and dehydro-α-lapachone and dehydroiso-α-lapachone from Stereospermum euphoroides. We also tested a small number of structurally related naphthoquinones from commercial sources and identified two additional compounds with complex I bypass activity: 2-methoxy-1,4-naphthoquinone and 2-methoxy-3-methyl-1,4,-naphthoquinone. The six novel complex I bypass factors reported here expand this class of molecules and will be useful as tool compounds for investigating complex I disease biology.
Collapse
Affiliation(s)
- Scott B. Vafai
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- * E-mail: (SBV); (VKM)
| | - Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Kathleen W. Higgins
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Yevgenia Fomina
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Jianming Zhang
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Anna Mandinova
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, United States of America
| | - David Newman
- Natural Products Branch, National Cancer Institute, Frederick, MD, United States of America
| | - Stanley Y. Shaw
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Vamsi K. Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (SBV); (VKM)
| |
Collapse
|
84
|
Gueven N, Nadikudi M, Daniel A, Chhetri J. Targeting mitochondrial function to treat optic neuropathy. Mitochondrion 2016; 36:7-14. [PMID: 27476756 DOI: 10.1016/j.mito.2016.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/03/2023]
Abstract
Many reports have illustrated a tight connection between vision and mitochondrial function. Not only are most mitochondrial diseases associated with some form of vision impairment, many ophthalmological disorders such as glaucoma, age-related macular degeneration and diabetic retinopathy also show signs of mitochondrial dysfunction. Despite a vast amount of evidence, vision loss is still only treated symptomatically, which is only partially a consequence of resistance to acknowledge that mitochondria could be the common denominator and hence a promising therapeutic target. More importantly, clinical support of this concept is only emerging. Moreover, only a few drug candidates and treatment strategies are in development or approved that selectively aim to restore mitochondrial function. This review rationalizes the currently developed therapeutic approaches that target mitochondrial function by discussing their proposed mode(s) of action and provides an overview on their development status with regards to optic neuropathies.
Collapse
Affiliation(s)
- Nuri Gueven
- Pharmacy, School of Medicine, University of Tasmania, Hobart, TAS, Australia.
| | - Monila Nadikudi
- Pharmacy, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Abraham Daniel
- Pharmacy, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Jamuna Chhetri
- Pharmacy, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
85
|
Kroll K, Shekhova E, Mattern DJ, Thywissen A, Jacobsen ID, Strassburger M, Heinekamp T, Shelest E, Brakhage AA, Kniemeyer O. The hypoxia-induced dehydrogenase HorA is required for coenzyme Q10 biosynthesis, azole sensitivity and virulence ofAspergillus fumigatus. Mol Microbiol 2016; 101:92-108. [DOI: 10.1111/mmi.13377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Kristin Kroll
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Elena Shekhova
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Andreas Thywissen
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, and Friedrich Schiller University Jena; Jena Germany
| | - Maria Strassburger
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology (HKI); Jena Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Department of Microbiology and Molecular Biology; Institute of Microbiology, Friedrich Schiller University; Jena Germany
| | - Ekaterina Shelest
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, and Friedrich Schiller University Jena; Jena Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Department of Microbiology and Molecular Biology; Institute of Microbiology, Friedrich Schiller University; Jena Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Department of Microbiology and Molecular Biology; Institute of Microbiology, Friedrich Schiller University; Jena Germany
| |
Collapse
|
86
|
Schiff M, Rustin P. Idebenone in Friedreich ataxia and Leber's hereditary optic neuropathy: close mechanisms, similar therapy? Brain 2016; 139:e39. [PMID: 27095078 DOI: 10.1093/brain/aww085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Manuel Schiff
- 1 Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France 2 Faculté de Médecine Denis Diderot, Université Paris Diderot - Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France 3 Reference Center for Inherited Metabolic Diseases, Hôpital Robert Debré, Assistance Publique - Hôpitaux de Paris, 48 Boulevard Sérurier, 75019 Paris, France
| | - Pierre Rustin
- 1 Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France 2 Faculté de Médecine Denis Diderot, Université Paris Diderot - Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW To discuss recent advances in potential treatments for Leber hereditary optic neuropathy (LHON), a typically visually devastating hereditary optic neuropathy caused by mutations in the mitochondrial genome. RECENT FINDINGS Idebenone has been proposed as a means of bypassing defective complex I activity and a free radical scavenger to prevent oxidative damage. EPI-743 may have more potency than idebenone, but no clinical trials have been performed. Gene therapy techniques have advanced significantly, including allotopic expression and nuclear transfer. Successful rescue of animal models of LHON with both of these therapies has been demonstrated. Introduction of exogenous DNA into the mitochondrial genome with mitochondrial targeting of viral vectors is another promising technique. SUMMARY There are currently no proven treatments for LHON. However, there are many promising novel treatment modalities that are currently being evaluated, with several clinical trials underway or in the planning stages. Supportive measures and genetic counseling remain of great importance for these patients.
Collapse
|
88
|
A randomized, placebo-controlled trial of the benzoquinone idebenone in a mouse model of OPA1-related dominant optic atrophy reveals a limited therapeutic effect on retinal ganglion cell dendropathy and visual function. Neuroscience 2016; 319:92-106. [PMID: 26820596 DOI: 10.1016/j.neuroscience.2016.01.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/19/2022]
Abstract
Dominant optic atrophy (DOA) arises from mutations in the OPA1 gene that promotes fusion of the inner mitochondrial membrane and plays a role in maintaining ATP levels. Patients display optic disc pallor, retinal ganglion cell (RGC) loss and bilaterally reduced vision. We report a randomized, placebo-controlled trial of idebenone at 2000 mg/kg/day in 56 Opa1 mutant mice (B6;C3-Opa1(Q285STOP)), with RGC dendropathy and visual loss, and 63 wildtype mice. We assessed cellular responses in the retina, brain and liver and RGC morphology, by diolistic labeling, Sholl analysis and quantification of dendritic morphometric features. Vision was assessed by optokinetic responses. ATP levels were raised by 0.57 nmol/mg (97.73%, p=0.035) in brain from idebenone-treated Opa1 mutant mice, but in the liver there was an 80.35% (p=0.011) increase in oxidative damage. NQO1 expression in Opa1 mutant mice was reduced in the brain (to 30.5%, p=0.002) but not in retina, and neither expression level was induced by idebenone. ON-center RGCs failed to show major recovery, other than improvements in secondary dendritic length (by 53.89%, p=0.052) and dendritic territory (by 2.22 × 10(4) μm(2) or 90.24%, p=0.074). An improvement in optokinetic response was observed (by 12.2 ± 3.2s, p=0.003), but this effect was not sustained over time. OFF-center RGCs from idebenone-treated wildtype mice showed shrinkage in total dendritic length by 2.40 mm (48.05%, p=0.025) and a 47.37% diminished Sholl profile (p=0.029). Visual function in wildtype idebenone-treated mice was impaired (2.9 fewer head turns than placebo, p=0.007). Idebenone appears largely ineffective in protecting Opa1 heterozygous RGCs from dendropathy. The detrimental effect of idebenone in wildtype mice has not been previously observed and raises some concerns.
Collapse
|
89
|
New Therapeutic Concept of NAD Redox Balance for Cisplatin Nephrotoxicity. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4048390. [PMID: 26881219 PMCID: PMC4736397 DOI: 10.1155/2016/4048390] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors. In addition to its antitumor activity, cisplatin affects normal cells and may induce adverse effects such as ototoxicity, nephrotoxicity, and peripheral neuropathy. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and inflammatory responses are closely associated with cisplatin-induced nephrotoxicity; however, the precise mechanism remains unclear. The cofactor nicotinamide adenine dinucleotide (NAD+) has emerged as a key regulator of cellular energy metabolism and homeostasis. Recent studies have demonstrated associations between disturbance in intracellular NAD+ levels and clinical progression of various diseases through the production of reactive oxygen species and inflammation. Furthermore, we demonstrated that reduction of the intracellular NAD+/NADH ratio is critically involved in cisplatin-induced kidney damage through inflammation and oxidative stress and that increase of the cellular NAD+/NADH ratio suppresses cisplatin-induced kidney damage by modulation of potential damage mediators such as oxidative stress and inflammatory responses. In this review, we describe the role of NAD+ metabolism in cisplatin-induced nephrotoxicity and discuss a potential strategy for the prevention or treatment of cisplatin-induced adverse effects with a particular focus on NAD+-dependent cellular pathways.
Collapse
|
90
|
Sedel F, Bernard D, Mock DM, Tourbah A. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis. Neuropharmacology 2015; 110:644-653. [PMID: 26327679 DOI: 10.1016/j.neuropharm.2015.08.028] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/24/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022]
Abstract
Progressive multiple sclerosis (MS) is a severely disabling neurological condition, and an effective treatment is urgently needed. Recently, high-dose biotin has emerged as a promising therapy for affected individuals. Initial clinical data have shown that daily doses of biotin of up to 300 mg can improve objective measures of MS-related disability. In this article, we review the biology of biotin and explore the properties of this ubiquitous coenzyme that may explain the encouraging responses seen in patients with progressive MS. The gradual worsening of neurological disability in patients with progressive MS is caused by progressive axonal loss or damage. The triggers for axonal loss in MS likely include both inflammatory demyelination of the myelin sheath and primary neurodegeneration caused by a state of virtual hypoxia within the neuron. Accordingly, targeting both these pathological processes could be effective in the treatment of progressive MS. Biotin is an essential co-factor for five carboxylases involved in fatty acid synthesis and energy production. We hypothesize that high-dose biotin is exerting a therapeutic effect in patients with progressive MS through two different and complementary mechanisms: by promoting axonal remyelination by enhancing myelin production and by reducing axonal hypoxia through enhanced energy production. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Frédéric Sedel
- MedDay Pharmaceuticals, ICM-Brain and Spine Institute-IPEPs, Groupe Hospitalier Pitié Salpêtrière, 47 Boulevard de l'Hopital, 75013 Paris, France.
| | - Delphine Bernard
- MedDay Pharmaceuticals, ICM-Brain and Spine Institute-IPEPs, Groupe Hospitalier Pitié Salpêtrière, 47 Boulevard de l'Hopital, 75013 Paris, France.
| | - Donald M Mock
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR 72205, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR 72205, USA.
| | - Ayman Tourbah
- Department of Neurology and Faculté de Médecine de Reims, CHU de Reims, URCA, 45 Rue Cognacq Jay, 51092 Reims Cedex, France.
| |
Collapse
|
91
|
Lin P, Liu J, Ren M, Ji K, Li L, Zhang B, Gong Y, Yan C. Idebenone protects against oxidized low density lipoprotein induced mitochondrial dysfunction in vascular endothelial cells via GSK3β/β-catenin signalling pathways. Biochem Biophys Res Commun 2015; 465:548-55. [DOI: 10.1016/j.bbrc.2015.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022]
|
92
|
Kim HJ, Pandit A, Oh GS, Shen A, Lee SB, Khadka D, Lee S, Shim H, Yang SH, Cho EY, Kwak TH, Choe SK, Park R, So HS. Dunnione ameliorates cisplatin ototoxicity through modulation of NAD(+) metabolism. Hear Res 2015; 333:235-246. [PMID: 26341473 DOI: 10.1016/j.heares.2015.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/14/2022]
Abstract
Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that cisplatin-induced ototoxicity is related to oxidative stress and DNA damage. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of energy metabolism and cellular homeostasis. Here, we demonstrate that the levels and activities of sirtuin-1 (SIRT1) are suppressed by the reduction of intracellular NAD(+) levels in cisplatin-mediated ototoxicity. We provide evidence that the decreases in SIRT1 activity and expression facilitated by increasing poly(ADP-ribose) polymerase-1 (PARP-1) activation and microRNA-34a levels through cisplatin-mediated p53 activation aggravate the associated ototoxicity. Furthermore, we show that the induction of cellular NAD(+) levels using dunnione, which targets intracellular NQO1, prevents the toxic effects of cisplatin through the regulation of PARP-1 and SIRT1 activity. These results suggest that direct modulation of cellular NAD(+) levels by pharmacological agents could be a promising therapeutic approach for protection from cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Hyung-Jin Kim
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Arpana Pandit
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Gi-Su Oh
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - AiHua Shen
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Su-Bin Lee
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Dipendra Khadka
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - SeungHoon Lee
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Hyeok Shim
- Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Sei-Hoon Yang
- Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Eun-Young Cho
- Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Tae Hwan Kwak
- PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon, 305-500, Republic of Korea
| | - Seong-Kyu Choe
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Raekil Park
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Hong-Seob So
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea.
| |
Collapse
|
93
|
Mordente A, Silvestrini A, Martorana GE, Tavian D, Meucci E. Inhibition of Anthracycline Alcohol Metabolite Formation in Human Heart Cytosol: A Potential Role for Several Promising Drugs. Drug Metab Dispos 2015; 43:1691-701. [DOI: 10.1124/dmd.115.065110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
|
94
|
Arend N, Wertheimer C, Laubichler P, Wolf A, Kampik A, Kernt M. Idebenone Prevents Oxidative Stress, Cell Death and Senescence of Retinal Pigment Epithelium Cells by Stabilizing BAX/Bcl-2 Ratio. Ophthalmologica 2015; 234:73-82. [PMID: 26044821 DOI: 10.1159/000381726] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/13/2015] [Indexed: 11/19/2022]
Abstract
PURPOSE Age-related macular degeneration (AMD) is one of the leading causes of blindness. Degeneration of the retinal pigment epithelium (RPE) is pathognomonic for the disease, and oxidative stress plays an important role in the pathogenesis of this disease. This study investigates potential antiapoptotic and cytoprotective effects of idebenone on cultured RPE cells (ARPE-19) under conditions of oxidative stress. METHODS ARPE-19 cells were treated with 1-100 µ<smlcap>M</smlcap> idebenone. Cell viability (MTT assay), induction of intracellular reactive oxygen species (ROS) and histone-associated DNA fragments in mono- and oligonucleosomes, expression of proapoptotic BAX and antiapoptotic Bcl-2 as well as senescence-associated β-galactosidase (SA-β-Gal) activity were investigated under exposure to hydrogen peroxide (H2O2). RESULTS Idebenone concentrations from 1 to 20 µ<smlcap>M</smlcap> showed no toxic effects on ARPE-19 cells. When cells were treated with H2O2, pretreatment with 5, 7.5, 10, and 20 µ<smlcap>M</smlcap> idebenone led to a significant increase in the viability of ARPE-19 cells. In addition, idebenone pretreatment significantly attenuated the induction of SA-β-Gal and intracellular ROS as well as the amount of histone-associated DNA fragments after treatment with H2O2. The reduction of proapoptotic BAX and the elevation of antiapoptotic Bcl-2 under idebenone show that this process is rather mediated by inhibiting H2O2-induced apoptosis, not necrosis. CONCLUSION In this study, idebenone increased survival of ARPE-19 cells and reduced cell death, senescence, and oxidative stress by stabilizing the BAX/Bcl-2 ratio.
Collapse
Affiliation(s)
- Nicole Arend
- Department of Ophthalmology, Ludwig Maximilian University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
95
|
Buyse GM, Voit T, Schara U, Straathof CSM, D'Angelo MG, Bernert G, Cuisset JM, Finkel RS, Goemans N, McDonald CM, Rummey C, Meier T. Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): a double-blind randomised placebo-controlled phase 3 trial. Lancet 2015; 385:1748-1757. [PMID: 25907158 DOI: 10.1016/s0140-6736(15)60025-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cardiorespiratory failure is the leading cause of death in Duchenne muscular dystrophy. Based on preclinical and phase 2 evidence, we assessed the efficacy and safety of idebenone in young patients with Duchenne muscular dystrophy who were not taking concomitant glucocorticoids. METHODS In a multicentre phase 3 trial in Belgium, Germany, the Netherlands, Switzerland, France, Sweden, Austria, Italy, Spain, and the USA, patients (age 10-18 years old) with Duchenne muscular dystrophy were randomly assigned in a one-to-one ratio with a central interactive web response system with a permuted block design with four patients per block to receive idebenone (300 mg three times a day) or matching placebo orally for 52 weeks. Study personnel and patients were masked to treatment assignment. The primary endpoint was change in peak expiratory flow (PEF) as percentage predicted (PEF%p) from baseline to week 52, measured with spirometry. Analysis was by intention to treat (ITT) and a modified ITT (mITT), which was prospectively defined to exclude patients with at least 20% difference in the yearly change in PEF%p, measured with hospital-based and weekly home-based spirometry. This study is registered with ClinicalTrials.gov, number NCT01027884. FINDINGS 31 patients in the idebenone group and 33 in the placebo group comprised the ITT population, and 30 and 27 comprised the mITT population. Idebenone significantly attenuated the fall in PEF%p from baseline to week 52 in the mITT (-3·05%p [95% CI -7·08 to 0·97], p=0·134, vs placebo -9·01%p [-13·18 to -4·84], p=0·0001; difference 5·96%p [0·16 to 11·76], p=0·044) and ITT populations (-2·57%p [-6·68 to 1·54], p=0·215, vs -8·84%p [-12·73 to -4·95], p<0·0001; difference 6·27%p [0·61 to 11·93], p=0·031). Idebenone also had a significant effect on PEF (L/min), weekly home-based PEF, FVC, and FEV1. The effect of idebenone on respiratory function outcomes was similar between patients with previous corticosteroid use and steroid-naive patients. Treatment with idebenone was safe and well tolerated with adverse event rates were similar in both groups. Nasopharyngitis and headache were the most common adverse events (idebenone, eight [25%] and six [19%] of 32 patients; placebo, nine [26%] and seven [21%] of 34 patients). Transient and mild diarrhoea was more common in the idebenone group than in the placebo group (eight [25%] vs four [12%] patients). INTERPRETATION Idebenone reduced the loss of respiratory function and represents a new treatment option for patients with Duchenne muscular dystrophy. FUNDING Santhera Pharmaceuticals.
Collapse
Affiliation(s)
| | - Thomas Voit
- Institut de Myologie, Université Pierre et Marie Curie INSERM UMR 974, CNRS FRE 3617, Groupe Hospitalier de la Pitié Salpetrière, Paris, France
| | | | | | - M Grazia D'Angelo
- Istituto di Ricovero e Cura a Carattere Scientifico Eugenio Medea, Lecco, Italy
| | | | | | | | | | - Craig M McDonald
- University of California Davis Medical Center, Sacramento, CA, USA
| | | | | |
Collapse
|
96
|
Kim HJ, Oh GS, Shen A, Lee SB, Khadka D, Pandit A, Shim H, Yang SH, Cho EY, Song J, Kwak TH, Choe SK, Park R, So HS. Nicotinamide adenine dinucleotide: An essential factor in preserving hearing in cisplatin-induced ototoxicity. Hear Res 2015; 326:30-9. [PMID: 25891352 DOI: 10.1016/j.heares.2015.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced ototoxicity. Although much attention has been directed at identifying ways to protect the inner ear from cisplatin-induced damage, the precise underlying mechanisms have not yet been elucidated. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of cellular energy metabolism and homeostasis. NAD(+) acts as a cofactor for various enzymes including sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs), and therefore, maintaining adequate NAD(+) levels has therapeutic benefits because of its effect on NAD(+)-dependent enzymes. Recent studies demonstrated that disturbance in intracellular NAD(+) levels is critically involved in cisplatin-induced cochlear damage associated with oxidative stress, DNA damage, and inflammatory responses. In this review, we describe the importance of NAD(+) in cisplatin-induced ototoxicity and discuss potential strategies for the prevention or treatment of cisplatin-induced ototoxicity with a particular focus on NAD(+)-dependent cellular pathways.
Collapse
Affiliation(s)
- Hyung-Jin Kim
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Gi-Su Oh
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - AiHua Shen
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Su-Bin Lee
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Dipendra Khadka
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Arpana Pandit
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Hyeok Shim
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Sei-Hoon Yang
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Eun-Young Cho
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Jeho Song
- Department of Sports Industry and Welfare, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Tae Hwan Kwak
- PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon, 305-500, Republic of Korea
| | - Seong-Kyu Choe
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Raekil Park
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Hong-Seob So
- Center for Metabolic Function Regulation & Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea.
| |
Collapse
|
97
|
Pinho BR, Santos MM, Fonseca-Silva A, Valentão P, Andrade PB, Oliveira JMA. How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs. Br J Pharmacol 2015; 169:1072-90. [PMID: 23758163 DOI: 10.1111/bph.12186] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/08/2013] [Accepted: 03/15/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Mitochondria are a drug target in mitochondrial dysfunction diseases and in antiparasitic chemotherapy. While zebrafish is increasingly used as a biomedical model, its potential for mitochondrial research remains relatively unexplored. Here, we perform the first systematic analysis of how mitochondrial respiratory chain inhibitors affect zebrafish development and cardiovascular function, and assess multiple quinones, including ubiquinone mimetics idebenone and decylubiquinone, and the antimalarial atovaquone. EXPERIMENTAL APPROACH Zebrafish (Danio rerio) embryos were chronically and acutely exposed to mitochondrial inhibitors and quinone analogues. Concentration-response curves, developmental and cardiovascular phenotyping were performed together with sequence analysis of inhibitor-binding mitochondrial subunits in zebrafish versus mouse, human and parasites. Phenotype rescuing was assessed in co-exposure assays. KEY RESULTS Complex I and II inhibitors induced developmental abnormalities, but their submaximal toxicity was not additive, suggesting active alternative pathways for complex III feeding. Complex III inhibitors evoked a direct normal-to-dead transition. ATP synthase inhibition arrested gastrulation. Menadione induced hypochromic anaemia when transiently present following primitive erythropoiesis. Atovaquone was over 1000-fold less lethal in zebrafish than reported for Plasmodium falciparum, and its toxicity partly rescued by the ubiquinone precursor 4-hydroxybenzoate. Idebenone and decylubiquinone delayed rotenone- but not myxothiazol- or antimycin-evoked cardiac dysfunction. CONCLUSION AND IMPLICATIONS This study characterizes pharmacologically induced mitochondrial dysfunction phenotypes in zebrafish, laying the foundation for comparison with future studies addressing mitochondrial dysfunction in this model organism. It has relevant implications for interpreting zebrafish disease models linked to complex I/II inhibition. Further, it evidences zebrafish's potential for in vivo efficacy or toxicity screening of ubiquinone analogues or antiparasitic mitochondria-targeted drugs.
Collapse
Affiliation(s)
- Brígida R Pinho
- REQUIMTE, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
98
|
Wang H, Xu Z, Wu A, Dong Y, Zhang Y, Yue Y, Xie Z. 2-deoxy-D-glucose enhances anesthetic effects in mice. Anesth Analg 2015; 120:312-9. [PMID: 25390277 DOI: 10.1213/ane.0000000000000520] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The mechanisms of general anesthesia by volatile drugs remain largely unknown. Mitochondrial dysfunction and reduction in energy levels have been suggested to be associated with general anesthesia status. 2-Deoxy-D-glucose (2-DG), an analog of glucose, inhibits hexokinase and reduces cellular levels of adenosine triphosphate (ATP). 3-Nitropropionic acid is another compound which can deplete ATP levels. In contrast, idebenone and L-carnitine could rescue deficits of energy. We therefore sought to determine whether 2-DG and/or 3-nitropropionic acid can enhance the anesthetic effects of isoflurane, and whether idebenone and L-carnitine can reverse the actions of 2-DG. METHODS C57BL/6J mice (8 months old) received different concentrations of isoflurane with and without the treatments of 2-DG, 3-nitropropionic acid, idebenone, and L-carnitine. Isoflurane-induced loss of righting reflex (LORR) was determined in the mice. ATP levels in H4 human neuroglioma cells were assessed after these treatments. Finally, 31P-magnetic resonance spectroscopy was used to determine the effects of isoflurane on brain ATP levels in the mice. RESULTS 2-DG enhanced isoflurane-induced LORR (P = 0.002, N = 15). 3-Nitropropionic acid also enhanced the anesthetic effects of isoflurane (P = 0.005, N = 15). Idebenone (idebenone + saline versus idebenone + 2-DG: P = 0.165, N = 15), but not L-carnitine (L-carnitine + saline versus L-carnitine + 2-DG: P < 0.0001, N = 15), inhibited the effects of 2-DG on enhancing isoflurane-induced LORR in the mice, as evidenced by 2-DG not enhancing isoflurane-induced LORR in the mice pretreated with idebenone. Idebenone (idebenone + saline versus idebenone + 2-DG: P = 0.177, N = 6), but not L-carnitine (L-carnitine + saline versus L-carnitine + 2-DG: P = 0.029, N = 6), also mitigated the effects of 2-DG on reducing ATP levels in cells, as evidenced by 2-DG not decreasing ATP levels in the cells pretreated with idebenone. Finally, isoflurane decreased ATP levels in both cultured cells and mouse brains (β-ATP: P = 0.003, N = 10; β-ATP/phosphocreatine: P = 0.006, N = 10; β-ATP/inorganic phosphate: P = 0.001, N = 10). CONCLUSIONS These results from our pilot studies have established a system and generated a hypothesis that 2-DG enhances anesthetic effects via reducing energy levels. These findings should promote further studies to investigate anesthesia mechanisms.
Collapse
Affiliation(s)
- Hui Wang
- From the *Department of Anesthesia, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; †Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts; and ‡Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
99
|
Loss of dihydrolipoyl succinyltransferase (DLST) leads to reduced resting heart rate in the zebrafish. Basic Res Cardiol 2015; 110:14. [PMID: 25697682 PMCID: PMC4335124 DOI: 10.1007/s00395-015-0468-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
Abstract
The genetic underpinnings of heart rate regulation are only poorly understood. In search for genetic regulators of cardiac pacemaker activity, we isolated in a large-scale mutagenesis screen the embryonic lethal, recessive zebrafish mutant schneckentempo (ste). Homozygous ste mutants exhibit a severely reduced resting heart rate with normal atrio-ventricular conduction and contractile function. External electrical pacing reveals that defective excitation generation in cardiac pacemaker cells underlies bradycardia in ste−/− mutants. By positional cloning and gene knock-down analysis we find that loss of dihydrolipoyl succinyltransferase (DLST) function causes the ste phenotype. The mitochondrial enzyme DLST is an essential player in the citric acid cycle that warrants proper adenosine-tri-phosphate (ATP) production. Accordingly, ATP levels are significantly diminished in ste−/− mutant embryos, suggesting that limited energy supply accounts for reduced cardiac pacemaker activity in ste−/− mutants. We demonstrate here for the first time that the mitochondrial enzyme DLST plays an essential role in the modulation of the vertebrate heart rate by controlling ATP production in the heart.
Collapse
|
100
|
Border between natural product and drug: comparison of the related benzoquinones idebenone and coenzyme Q10. Redox Biol 2015; 4:289-95. [PMID: 25625583 PMCID: PMC4803797 DOI: 10.1016/j.redox.2015.01.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 12/23/2022] Open
Abstract
Coenzyme Q10 is a ubiquitous component of cellular membranes and belongs to the class of benzoquinones that mainly differ with regards to the length and composition of their hydrophobic tail. The characteristic quinone group can accept electrons from various biological sources and is converted by a one electron transfer to the unstable semiquinone or by a two electron transfer to the more stable hydroquinone. This feature makes CoQ10 the bona fide cellular electron transfer molecule within the mitochondrial respiratory chain and also makes it a potent cellular antioxidant. These activities serve as justification for its popular use as food supplement. Another quinone with similarities to the naturally occurring CoQ10 is idebenone, which shares its quinone moiety with CoQ10, but at the same time differs from CoQ10 by the presence of a much shorter, less lipophilic tail. However, despite its similarity to CoQ10, idebenone cannot be isolated from any natural sources but instead was synthesized and selected as a pharmacologically active compound in the 1980s by Takeda Pharmaceuticals purely based on its pharmacological properties. Several recent clinical trials demonstrated some therapeutic efficacy of idebenone in different indications and as a consequence, many practitioners question if the freely available CoQ10 could not be used instead. Here, we describe the molecular and pharmacological features of both molecules that arise from their structural differences to answer the question if idebenone is merely a CoQ10 analogue as frequently perpetuated in the literature or a pharmaceutical drug with entirely different features. The benzoquinones CoQ10 and idebenone have vastly different solubility. Both molecules need to get activated by cellular reductases. Due to their solubility both molecules are in different cellular compartments. Therefore, both quinones are activated by different enzymes. Thus, their solubility strongly determines their biological activities.
Collapse
|