51
|
Arena AF, Escudero J, Shaye DD. A metazoan-specific C-terminal motif in EXC-4 and Gα-Rho/Rac signaling regulate cell outgrowth during tubulogenesis in C. elegans. Development 2022; 149:285944. [PMID: 36398726 PMCID: PMC10108608 DOI: 10.1242/dev.200748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Chloride intracellular channels (CLICs) are conserved proteins for which the cellular and molecular functions remain mysterious. An important insight into CLIC function came from the discovery that Caenorhabditis elegans EXC-4/CLIC regulates morphogenesis of the excretory canal (ExCa) cell, a single-cell tube. Subsequent work showed that mammalian CLICs regulate vascular development and angiogenesis, and human CLIC1 can rescue exc-4 mutants, suggesting conserved function in biological tube formation (tubulogenesis) and maintenance. However, the cell behaviors and signaling pathways regulated by EXC-4/CLICs during tubulogenesis in vivo remain largely unknown. We report a new exc-4 mutation, affecting a C-terminal residue conserved in virtually all metazoan CLICs, that reveals a specific role for EXC-4 in ExCa outgrowth. Cell culture studies suggest a function for CLICs in heterotrimeric G protein (Gα/β/γ)-Rho/Rac signaling, and Rho-family GTPases are common regulators of cell outgrowth. Using our new exc-4 mutant, we describe a previously unknown function for Gα-encoding genes (gpa-12/Gα12/13, gpa-7/Gαi, egl-30/Gαq and gsa-1/Gαs), ced-10/Rac and mig-2/RhoG in EXC-4-mediated ExCa outgrowth. Our results demonstrate that EXC-4/CLICs are primordial players in Gα-Rho/Rac-signaling, a pathway that is crucial for tubulogenesis in C. elegans and in vascular development.
Collapse
Affiliation(s)
- Anthony F Arena
- Department of Physiology and Biophysics, University of Illinois at Chicago - College of Medicine, Chicago, IL 60612, USA.,Graduate Education in Biomedical Sciences program, University of Illinois at Chicago - College of Medicine, Chicago, IL 60612, USA
| | - Julianna Escudero
- Department of Physiology and Biophysics, University of Illinois at Chicago - College of Medicine, Chicago, IL 60612, USA
| | - Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago - College of Medicine, Chicago, IL 60612, USA.,Center for Cardiovascular Research, University of Illinois at Chicago - College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
52
|
Bioactive potential and spectroscopical characterization of a novel family of plant pigments betalains derived from dopamine. Food Res Int 2022; 162:111956. [DOI: 10.1016/j.foodres.2022.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
|
53
|
Yamakawa T, Yuslimatin Mujizah E, Matsuno K. Notch Signalling Under Maternal-to-Zygotic Transition. Fly (Austin) 2022; 16:347-359. [PMID: 36346359 PMCID: PMC9645253 DOI: 10.1080/19336934.2022.2139981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The development of all animal embryos is initially directed by the gene products supplied by their mothers. With the progression of embryogenesis, the embryo's genome is activated to command subsequent developments. This transition, which has been studied in many model animals, is referred to as the Maternal-to-Zygotic Transition (MZT). In many organisms, including flies, nematodes, and sea urchins, genes involved in Notch signaling are extensively influenced by the MZT. This signaling pathway is highly conserved across metazoans; moreover, it regulates various developmental processes. Notch signaling defects are commonly associated with various human diseases. The maternal contribution of its factors was first discovered in flies. Subsequently, several genes were identified from mutant embryos with a phenotype similar to Notch mutants only upon the removal of the maternal contributions. Studies on these maternal genes have revealed various novel steps in the cascade of Notch signal transduction. Among these genes, pecanex and almondex have been functionally characterized in recent studies. Therefore, in this review, we will focus on the roles of these two maternal genes in Notch signaling and discuss future research directions on its maternal function.
Collapse
Affiliation(s)
- Tomoko Yamakawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan,CONTACT Tomoko Yamakawa Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | | | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
54
|
Chen L, Roake CM, Maccallini P, Bavasso F, Dehghannasiri R, Santonicola P, Mendoza-Ferreira N, Scatolini L, Rizzuti L, Esposito A, Gallotta I, Francia S, Cacchione S, Galati A, Palumbo V, Kobin MA, Tartaglia G, Colantoni A, Proietti G, Wu Y, Hammerschmidt M, De Pittà C, Sales G, Salzman J, Pellizzoni L, Wirth B, Di Schiavi E, Gatti M, Artandi S, Raffa GD. TGS1 impacts snRNA 3'-end processing, ameliorates survival motor neuron-dependent neurological phenotypes in vivo and prevents neurodegeneration. Nucleic Acids Res 2022; 50:12400-12424. [PMID: 35947650 PMCID: PMC9757054 DOI: 10.1093/nar/gkac659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency. TGS1 loss in HeLa cells leads to the accumulation of immature U2 and U4atac snRNAs with long 3' tails that are often uridylated. snRNAs with defective 3' terminations also accumulate in Drosophila Tgs1 mutants. Consistent with defective snRNA maturation, TGS1 and SMN mutant cells also exhibit partially overlapping transcriptome alterations that include aberrantly spliced and readthrough transcripts. Together, these results identify a neuroprotective function for TGS1 and reinforce the view that defective snRNA maturation affects neuronal viability and function.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Caitlin M Roake
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Ludovico Rizzuti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | | | - Ivan Gallotta
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Sofia Francia
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Marie A Kobin
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Gian Gaetano Tartaglia
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Alessio Colantoni
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Gabriele Proietti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Yunming Wu
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | | | - Gabriele Sales
- Department of Biology, University of Padova, Padua, Italy
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, NY 10032, USA
- Department of Neurology, Columbia University, NY 10032, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, IBBR, CNR, Naples, Italy
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
| | - Steven E Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
55
|
Soni P, Anupom T, Lesanpezeshki L, Rahman M, Hewitt JE, Vellone M, Stodieck L, Blawzdziewicz J, Szewczyk NJ, Vanapalli SA. Microfluidics-integrated spaceflight hardware for measuring muscle strength of Caenorhabditis elegans on the International Space Station. NPJ Microgravity 2022; 8:50. [PMID: 36344513 PMCID: PMC9640571 DOI: 10.1038/s41526-022-00241-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Caenorhabditis elegans is a low-cost genetic model that has been flown to the International Space Station to investigate the influence of microgravity on changes in the expression of genes involved in muscle maintenance. These studies showed that genes that encode muscle attachment complexes have decreased expression under microgravity. However, it remains to be answered whether the decreased expression leads to concomitant changes in animal muscle strength, specifically across multiple generations. We recently reported the NemaFlex microfluidic device for the measurement of muscle strength of C. elegans (Rahman et al., Lab Chip, 2018). In this study, we redesign our original NemaFlex device and integrate it with flow control hardware for spaceflight investigations considering mixed animal culture, constraints on astronaut time, crew safety, and on-orbit operations. The technical advances we have made include (i) a microfluidic device design that allows animals of a given size to be sorted from unsynchronized cultures and housed in individual chambers, (ii) a fluid handling protocol for injecting the suspension of animals into the microfluidic device that prevents channel clogging, introduction of bubbles, and crowding of animals in the chambers, and (iii) a custom-built worm-loading apparatus interfaced with the microfluidic device that allows easy manipulation of the worm suspension and prevents fluid leakage into the surrounding environment. Collectively, these technical advances enabled the development of new microfluidics-integrated hardware for spaceflight studies in C. elegans. Finally, we report Earth-based validation studies to test this new hardware, which has led to it being flown to the International Space Station.
Collapse
|
56
|
Hooper FW, Morrow J, Rodriguez J, Webb C. Teaching the Applications of CRISPR/Cas9: Using the African Turquoise Killifish as a Novel Model of Aging and Age-Related Diseases. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2022; 20:R5-R8. [PMID: 39036719 PMCID: PMC11256378 DOI: 10.59390/xzql5300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2024]
Abstract
The development of genome editing technologies, including the novel CRISPR/Cas9 technique, has advanced scientific research concerning the contribution of genetics to disease through the creation of new model organisms. The subject of this review is a 2015 study done by Harel et al. from the journal Cell. This study is a prime example of using CRISPR/Cas9 to create a new model organism to accurately model the effects of aging and age-related diseases on a short-lived vertebrate. This study found that the African turquoise killifish is a reliable model to study the physiological process of aging due to its compressed lifespan. In addition, it provides a genotype-to-phenotype platform to study genes related to the hallmarks of aging and age-related diseases. This paper demonstrates this by showing that killifish deficient in the protein subunit of telomerase display telomerase-related pathologies faster than other established vertebrate models. From a teaching perspective, this paper could be used as a resource for educators to teach students about new technologies emerging in the field of neuroscience and the importance of model organisms. Specifically, for upper-level undergraduate students, this paper could serve as a real-world example of how scientific techniques such as CRISPR/Cas9 could be used to answer scientific questions. Further, it shows how these techniques could bring forward new model organisms better suited to answer the scientific questions being asked. Learning these techniques and being open minded to new approaches will be advantageous to students' future careers in science.
Collapse
Affiliation(s)
- Frances W Hooper
- Department of Psychology and Neuroscience, University of St Andrews, St Andrews, UK KY16 9JP
| | - Jonathan Morrow
- Department of Psychology and Neuroscience, University of St Andrews, St Andrews, UK KY16 9JP
| | - Jasmine Rodriguez
- Department of Psychology and Neuroscience, University of St Andrews, St Andrews, UK KY16 9JP
| | - Claire Webb
- Department of Psychology and Neuroscience, University of St Andrews, St Andrews, UK KY16 9JP
| |
Collapse
|
57
|
Egan BM, Scharf A, Pohl F, Kornfeld K. Control of aging by the renin–angiotensin system: a review of C. elegans, Drosophila, and mammals. Front Pharmacol 2022; 13:938650. [PMID: 36188619 PMCID: PMC9518657 DOI: 10.3389/fphar.2022.938650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
The free-living, non-parasitic nematode Caenorhabditis elegans is a premier model organism for the study of aging and longevity due to its short lifespan, powerful genetic tools, and conservation of fundamental mechanisms with mammals. Approximately 70 percent of human genes have homologs in C. elegans, including many that encode proteins in pathways that influence aging. Numerous genetic pathways have been identified in C. elegans that affect lifespan, including the dietary restriction pathway, the insulin/insulin-like growth factor (IGF) signaling pathway, and the disruption of components of the mitochondrial electron transport chain. C. elegans is also a powerful system for performing drug screens, and many lifespan-extending compounds have been reported; notably, several FDA-approved medications extend the lifespan in C. elegans, raising the possibility that they can also extend the lifespan in humans. The renin–angiotensin system (RAS) in mammals is an endocrine system that regulates blood pressure and a paracrine system that acts in a wide range of tissues to control physiological processes; it is a popular target for drugs that reduce blood pressure, including angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs). Emerging evidence indicates that this system influences aging. In C. elegans, decreasing the activity of the ACE homolog acn-1 or treatment with the ACE-inhibitor Captopril significantly extends the lifespan. In Drosophila, treatment with ACE inhibitors extends the lifespan. In rodents, manipulating the RAS with genetic or pharmacological interventions can extend the lifespan. In humans, polymorphisms in the ACE gene are associated with extreme longevity. These results suggest the RAS plays a conserved role in controlling longevity. Here, we review studies of the RAS and aging, emphasizing the potential of C. elegans as a model for understanding the mechanism of lifespan control.
Collapse
Affiliation(s)
- Brian M. Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrea Scharf
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States
| | - Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Kerry Kornfeld,
| |
Collapse
|
58
|
Rumley JD, Preston EA, Cook D, Peng FL, Zacharias AL, Wu L, Jileaeva I, Murray JI. pop-1/TCF, ref-2/ZIC and T-box factors regulate the development of anterior cells in the C. elegans embryo. Dev Biol 2022; 489:34-46. [PMID: 35660370 PMCID: PMC9378603 DOI: 10.1016/j.ydbio.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Patterning of the anterior-posterior axis is fundamental to animal development. The Wnt pathway plays a major role in this process by activating the expression of posterior genes in animals from worms to humans. This observation raises the question of whether the Wnt pathway or other regulators control the expression of the many anterior-expressed genes. We found that the expression of five anterior-specific genes in Caenorhabditis elegans embryos depends on the Wnt pathway effectors pop-1/TCF and sys-1/β-catenin. We focused further on one of these anterior genes, ref-2/ZIC, a conserved transcription factor expressed in multiple anterior lineages. Live imaging of ref-2 mutant embryos identified defects in cell division timing and position in anterior lineages. Cis-regulatory dissection identified three ref-2 transcriptional enhancers, one of which is necessary and sufficient for anterior-specific expression. This enhancer is activated by the T-box transcription factors TBX-37 and TBX-38, and surprisingly, concatemerized TBX-37/38 binding sites are sufficient to drive anterior-biased expression alone, despite the broad expression of TBX-37 and TBX-38. Taken together, our results highlight the diverse mechanisms used to regulate anterior expression patterns in the embryo.
Collapse
Affiliation(s)
- Jonathan D Rumley
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elicia A Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dylan Cook
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Felicia L Peng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amanda L Zacharias
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lucy Wu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ilona Jileaeva
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
59
|
Cheng KC, Burdine RD, Dickinson ME, Ekker SC, Lin AY, Lloyd KCK, Lutz CM, MacRae CA, Morrison JH, O'Connor DH, Postlethwait JH, Rogers CD, Sanchez S, Simpson JH, Talbot WS, Wallace DC, Weimer JM, Bellen HJ. Promoting validation and cross-phylogenetic integration in model organism research. Dis Model Mech 2022; 15:dmm049600. [PMID: 36125045 PMCID: PMC9531892 DOI: 10.1242/dmm.049600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.
Collapse
Affiliation(s)
- Keith C. Cheng
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, Park, PA 16802, USA
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77007, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77007, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55906, USA
| | - Alex Y. Lin
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - K. C. Kent Lloyd
- Mouse Biology Program, School of Medicinel, University of California Davis, Davis, CA 95618, USA
- Department of Surgery, School of Medicine, University of California Davis, Davis, CA 95618, USA
| | - Cathleen M. Lutz
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609, USA
| | - Calum A. MacRae
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 360 Longwood Avenue, Boston, MA 02215, USA
| | - John H. Morrison
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
- Department of Neurology, University of California Davis, Davis, CA 95616, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University ofWisconsin-Madison, Madison, WI 53711, USA
| | | | - Crystal D. Rogers
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Julie H. Simpson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93117, USA
| | - William S. Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Douglas C. Wallace
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Neurological Research Institute (TCH), Baylor College of Medicine, Houston, TX 77007, USA
| |
Collapse
|
60
|
Steinbach MK, Leipert J, Blurton C, Leippe M, Tholey A. Digital Microfluidics Supported Microproteomics for Quantitative Proteome Analysis of Single Caenorhabditis elegans Nematodes. J Proteome Res 2022; 21:1986-1996. [PMID: 35771142 DOI: 10.1021/acs.jproteome.2c00274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Miniaturization of sample preparation, including omissible manual sample handling steps, is key for reproducible nanoproteomics, as material is often restricted to only hundreds of cells or single model organisms. Here, we demonstrate a highly sensitive digital microfluidics (DMF)-based sample preparation workflow making use of single-pot solid-phase enhanced sample preparation (SP3) in combination with high-field asymmetric-waveform ion mobility spectrometry (FAIMS), and fast and sensitive ion trap detection on an Orbitrap tribrid MS system. Compared to a manual in-tube SP3-supported sample preparation, the numbers of identified peptides and proteins were markedly increased, while lower standard deviations between replicates were observed. We repeatedly identified up to 5000 proteins from single nematodes. Moreover, label-free quantification of protein changes in single Caenorhabditis elegans treated with a heat stimulus yielded 45 differentially abundant proteins when compared to the untreated control, highlighting the potential of this technology for low-input proteomics studies. LC-MS data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD033143.
Collapse
Affiliation(s)
- Max K Steinbach
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Jan Leipert
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Christine Blurton
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
61
|
Kang N, Luan Y, Jiang Y, Cheng W, Liu Y, Su Z, Liu Y, Tan P. Neuroprotective Effects of Oligosaccharides in Rehmanniae Radix on Transgenic Caenorhabditis elegans Models for Alzheimer’s Disease. Front Pharmacol 2022; 13:878631. [PMID: 35784741 PMCID: PMC9247152 DOI: 10.3389/fphar.2022.878631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Rehmanniae Radix (RR, the dried tuberous roots of Rehmannia glutinosa (Gaertn.) DC.) is an important traditional Chinese medicine distributed in Henan, Hebei, Inner Mongolia, and Northeast in China. RR is frequently used to treat diabetes mellitus, cardiovascular disease, osteoporosis and aging-related diseases in a class of prescriptions. The oligosaccharides and catalpol in RR have been confirmed to have neuroprotective effects. However, there are few studies on the anti-Alzheimer’s disease (AD) effect of oligosaccharides in Rehmanniae Radix (ORR). The chemical components and pharmacological effects of dried Rehmannia Radix (DRR) and prepared Rehmannia Radix (PRR) are different because of the different processing methods. ORR has neuroprotective potential, such as improving learning and memory in rats. Therefore, this study aimed to prove the importance of oligosaccharides in DRR (ODRR) and PRR (OPRR) for AD based on the Caenorhabditis elegans (C. elegans) model and the different roles of ODRR and OPRR in the treatment of AD. In this study, we used paralysis assays, lifespan and stress resistance assays, bacterial growth curve, developmental and behavioral parameters, and ability of learning and memory to explore the effects of ODRR and OPRR on anti-AD and anti-aging. Furthermore, the accumulation of reactive oxygen species (ROS); deposition of Aβ; and expression of amy-1, sir-2.1, daf-16, sod-3, skn-1, and hsp-16.2 were analyzed to confirm the efficacy of ODRR and OPRR. OPRR was more effective than ODRR in delaying the paralysis, improving learning ability, and prolonging the lifespan of C. elegans. Further mechanism studies showed that the accumulation of ROS, aggregation, and toxicity of Aβ were reduced, suggesting that ORR alleviated Aβ-induced toxicity, in part, through antioxidant activity and Aβ aggregation inhibiting. The expression of amy-1 was downregulated, and sir-2.1, daf-16, sod-3, and hsp-16.2 were upregulated. Thus, ORR could have a possible therapeutic effect on AD by modulating the expression of amy-1, sir-2.1, daf-16, sod-3, and hsp-16.2. Furthermore, ORR promoted the nuclear localization of daf-16 and further increased the expression of sod-3 and hsp-16.2, which significantly contributed to inhibiting the Aβ toxicity and enhancing oxidative stress resistance. In summary, the study provided a new idea for the development of ORR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Tan
- *Correspondence: Yonggang Liu, ; Peng Tan,
| |
Collapse
|
62
|
Hughes S, van de Klashorst D, Veltri CA, Grundmann O. Acute, Sublethal, and Developmental Toxicity of Kratom ( Mitragyna speciosa Korth.) Leaf Preparations on Caenorhabditis elegans as an Invertebrate Model for Human Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6294. [PMID: 35627831 PMCID: PMC9140534 DOI: 10.3390/ijerph19106294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Kratom (Mitragyna speciosa Korth.) is a tree native to Southeast Asia with stimulant and opioid-like effects which has seen increased use in Europe and North America in recent years. Its safety and pharmacological effects remain under investigation, especially in regard to developmental and generational toxicity. In the current study, we investigated commercial kratom preparations using the nematode Caenorhabditis elegans as a translational model for toxicity and pharmacological effects. The pure alkaloids mitragynine and 7-hydroxymitragynine as well as aqueous, ethanolic, and methanolic extracts of three commercial kratom products were evaluated using a battery of developmental, genotoxic, and opioid-related experiments. As determined previously, the mitragynine and 7-hydroxymitragynine content in kratom samples was higher in the alcoholic extracts than the aqueous extracts. Above the human consumption range equivalent of 15-70 µg/mL, kratom dose-dependently reduced brood size and health of parent worms and their progeny. 7-hydroxymitragynine, but not mitragynine, presented with toxic and developmental effects at very high concentrations, while the positive control, morphine, displayed toxic effects at 0.5 mM. Kratom and its alkaloids did not affect pumping rate or interpump interval in the same way as morphine, suggesting that kratom is unlikely to act primarily via the opioid-signalling pathway. Only at very high doses did kratom cause developmental and genotoxic effects in nematodes, indicating its relative safety.
Collapse
Affiliation(s)
- Samantha Hughes
- A-LIFE Amsterdam Institute for Life and Environment, Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | | | - Charles A. Veltri
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA;
| | - Oliver Grundmann
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
63
|
Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111166. [PMID: 35176489 DOI: 10.1016/j.cbpa.2022.111166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.
Collapse
|
64
|
Hughes S, van Dop M, Kolsters N, van de Klashorst D, Pogosova A, Rijs AM. Using a Caenorhabditis elegans Parkinson's Disease Model to Assess Disease Progression and Therapy Efficiency. Pharmaceuticals (Basel) 2022; 15:512. [PMID: 35631338 PMCID: PMC9143865 DOI: 10.3390/ph15050512] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Despite Parkinson's Disease (PD) being the second most common neurodegenerative disease, treatment options are limited. Consequently, there is an urgent need to identify and screen new therapeutic compounds that slow or reverse the pathology of PD. Unfortunately, few new therapeutics are being produced, partly due to the low throughput and/or poor predictability of the currently used model organisms and in vivo screening methods. Our objective was to develop a simple and affordable platform for drug screening utilizing the nematode Caenorhabditis elegans. The effect of Levodopa, the "Gold standard" of PD treatment, was explored in nematodes expressing the disease-causing α-synuclein protein. We focused on two key hallmarks of PD: plaque formation and mobility. Exposure to Levodopa ameliorated the mobility defect in C. elegans, similar to people living with PD who take the drug. Further, long-term Levodopa exposure was not detrimental to lifespan. This C. elegans-based method was used to screen a selection of small-molecule drugs for an impact on α-synuclein aggregation and mobility, identifying several promising compounds worthy of further investigation, most notably Ambroxol. The simple methodology means it can be adopted in many labs to pre-screen candidate compounds for a positive impact on disease progression.
Collapse
Affiliation(s)
- Samantha Hughes
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
- A-LIFE Amsterdam Institute for Life and Environment, Section Environmental Health and Toxicology, Vrije Univeristeit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Maritza van Dop
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - Nikki Kolsters
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - David van de Klashorst
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - Anastasia Pogosova
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - Anouk M. Rijs
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Univeristeit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
65
|
Li W, Gao L, Huang W, Ma Y, Muhammad I, Hanif A, Ding Z, Guo X. Antioxidant properties of lactic acid bacteria isolated from traditional fermented yak milk and their probiotic effects on the oxidative senescence of Caenorhabditis elegans. Food Funct 2022; 13:3690-3703. [PMID: 35262535 DOI: 10.1039/d1fo03538j] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The objectives of the current study were to screen antioxidant lactic acid bacteria (LAB) strains isolated from traditionally fermented Tibetan yak milk, and to evaluate their probiotic effects on the oxidative senescence of Caenorhabditis elegans (C. elegans). A total of 10 LAB isolates were assessed for their antioxidant activity by in vitro assays, and three strains with high activity were selected for an investigation of their probiotic functions in C. elegans. The results indicated that Lactobacillus plantarum As21 showed high anti-oxidant capacity and had a high survival rate (64%) in a simulated gastrointestinal tract. The lifespan of C. elegans treated with As21 was increased by 34.5% compared to the control group. Strain As21 also showed improved motility and enhanced resistance to heat stress and H2O2 stimulation in C. elegans. Moreover, treatment with As21 reduced the production of age-related reactive oxygen species (ROS) and malondialdehyde (MDA) damage and promoted the production of the antioxidants superoxide dismutase (SOD), catalase (CAT) and glutathione GSH. These results suggest that Lactobacillus plantarum strain As21 could be a potential probiotic strain for retarding ageing and could be used in functional foods.
Collapse
Affiliation(s)
- Wenyuan Li
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Li'e Gao
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wenkang Huang
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Ma
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ishaq Muhammad
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Anum Hanif
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Ding
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
66
|
Imamura T, Isozumi N, Higashimura Y, Koga H, Segawa T, Desaka N, Takagi H, Matsumoto K, Ohki S, Mori M. Red-Beet Betalain Pigments Inhibit Amyloid-β Aggregation and Toxicity in Amyloid-β Expressing Caenorhabditis elegans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:90-97. [PMID: 35088214 DOI: 10.1007/s11130-022-00951-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Betalain pigments are mainly produced by plants belonging to the order of Caryophyllales. Betalains exhibit strong antioxidant activity and responds to environmental stimuli and stress in plants. Recent reports of antioxidant, anti-inflammatory and anti-cancer properties of betalain pigments have piqued interest in understanding their biological functions. We investigated the effects of betalain pigments (betanin and isobetanin) derived from red-beet on amyloid-β (Aβ) aggregation, which causes Alzheimer's disease. Non-specific inhibition of Aβ aggregation against Aβ40 and Aβ42 by red-beet betalain pigments, in vitro was demonstrated using the thioflavin t fluorescence assay, circular dichroism spectroscopy analysis, transmission electron microscopy and nuclear magnetic resonance (NMR) analysis. Furthermore, we examined the ability of red-beet betalain pigments to interfere with Aβ toxicity by using the transgenic Caenorhabditis elegans model, which expresses the human Aβ42 protein intracellularly within the body wall muscle. It responds to Aβ-toxicity with paralysis and treatment with 50 μM red-beet betalain pigments significantly delayed the paralysis of C. elegans. These results suggest that betalain pigments reduce Aβ-induced toxicity.
Collapse
Affiliation(s)
- Tomohiro Imamura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308-1 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Noriyoshi Isozumi
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, 308-1 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Hironori Koga
- Department of Bioproduction Science, Ishikawa Prefectural University, 308-1 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Tenta Segawa
- Department of Bioproduction Science, Ishikawa Prefectural University, 308-1 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Natsumi Desaka
- Department of Food Science, Ishikawa Prefectural University, 308-1 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Hiroki Takagi
- Department of Bioproduction Science, Ishikawa Prefectural University, 308-1 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Kenji Matsumoto
- Department of Food Science, Ishikawa Prefectural University, 308-1 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308-1 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
67
|
Nematode-Applied Technology for Human Tumor Microenvironment Research and Development. Curr Issues Mol Biol 2022; 44:988-997. [PMID: 35723350 PMCID: PMC8929040 DOI: 10.3390/cimb44020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Nematodes, such as Caenorhabditis elegans, have been instrumental to the study of cancer. Recently, their significance as powerful cancer biodiagnostic tools has emerged, but also for mechanism analysis and drug discovery. It is expected that nematode-applied technology will facilitate research and development on the human tumor microenvironment. In the history of cancer research, which has been spurred by numerous discoveries since the last century, nematodes have been important model organisms for the discovery of cancer microenvironment. First, microRNAs (miRNAs), which are noncoding small RNAs that exert various functions to control cell differentiation, were first discovered in C. elegans and have been actively incorporated into cancer research, especially in the study of cancer genome defects. Second, the excellent sense of smell of nematodes has been applied to the diagnosis of diseases, especially refractory tumors, such as human pancreatic cancer, by sensing complex volatile compounds derived from heterogeneous cancer microenvironment, which are difficult to analyze using ordinary analytical methods. Third, a nematode model system can help evaluate invadosomes, the phenomenon of cell invasion by direct observation, which has provided a new direction for cancer research by contributing to the elucidation of complex cell–cell communications. In this cutting-edge review, we highlight milestones in cancer research history and, from a unique viewpoint, focus on recent information on the contributions of nematodes in cancer research towards precision medicine in humans.
Collapse
|
68
|
Maitra U, Stephen C, Ciesla LM. Drug discovery from natural products - Old problems and novel solutions for the treatment of neurodegenerative diseases. J Pharm Biomed Anal 2022; 210:114553. [PMID: 34968995 PMCID: PMC8792363 DOI: 10.1016/j.jpba.2021.114553] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. In fact, many currently approved drugs originated from compounds that were first identified in nature. Chemical diversity of natural compounds cannot be matched by man-made libraries of chemically synthesized molecules. Many natural compounds interact with and modulate regulatory protein targets and can be considered evolutionarily-optimized drug-like molecules. Despite this, many pharmaceutical companies have reduced or eliminated their natural product discovery programs in the last two decades. Screening natural products for pharmacologically active compounds is a challenging task that requires high resource commitment. Novel approaches at the early stage of the drug discovery pipeline are needed to allow for rapid screening and identification of the most promising molecules. Here, we review the possible evolutionary roots for drug-like characteristics of numerous natural compounds. Since many of these compounds target evolutionarily conserved cellular signaling pathways, we propose novel, early-stage drug discovery approaches to identify drug candidates that can be used for the potential prevention and treatment of neurodegenerative diseases. Invertebrate in vivo animal models of neurodegenerative diseases and innovative tools used within these models are proposed here as a screening funnel to identify new drug candidates and to shuttle these hits into further stages of the drug discovery pipeline.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Cayman Stephen
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
69
|
Saul J, Hirose T, Horvitz HR. The transcriptional corepressor CTBP-1 acts with the SOX family transcription factor EGL-13 to maintain AIA interneuron cell identity in Caenorhabditis elegans. eLife 2022; 11:74557. [PMID: 35119366 PMCID: PMC8816384 DOI: 10.7554/elife.74557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cell identity is characterized by a distinct combination of gene expression, cell morphology, and cellular function established as progenitor cells divide and differentiate. Following establishment, cell identities can be unstable and require active and continuous maintenance throughout the remaining life of a cell. Mechanisms underlying the maintenance of cell identities are incompletely understood. Here, we show that the gene ctbp-1, which encodes the transcriptional corepressor C-terminal binding protein-1 (CTBP-1), is essential for the maintenance of the identities of the two AIA interneurons in the nematode Caenorhabditis elegans. ctbp-1 is not required for the establishment of the AIA cell fate but rather functions cell-autonomously and can act in later larval stage and adult worms to maintain proper AIA gene expression, morphology and function. From a screen for suppressors of the ctbp-1 mutant phenotype, we identified the gene egl-13, which encodes a SOX family transcription factor. We found that egl-13 regulates AIA function and aspects of AIA gene expression, but not AIA morphology. We conclude that the CTBP-1 protein maintains AIA cell identity in part by utilizing EGL-13 to repress transcriptional activity in the AIAs. More generally, we propose that transcriptional corepressors like CTBP-1 might be critical factors in the maintenance of cell identities, harnessing the DNA-binding specificity of transcription factors like EGL-13 to selectively regulate gene expression in a cell-specific manner.
Collapse
Affiliation(s)
- Josh Saul
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - Takashi Hirose
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| | - H Robert Horvitz
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, United States
| |
Collapse
|
70
|
Hori S, Mitani S. The transcription factor unc-130/FOXD3/4 contributes to the biphasic calcium response required to optimize avoidance behavior. Sci Rep 2022; 12:1907. [PMID: 35115609 PMCID: PMC8814005 DOI: 10.1038/s41598-022-05942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
Abstract
The central neural network optimizes avoidance behavior depending on the nociceptive stimulation intensity and is essential for survival. How the property of hub neurons that enables the selection of behaviors is genetically defined is not well understood. We show that the transcription factor unc-130, a human FOXD3/4 ortholog, is required to optimize avoidance behavior depending on stimulus strength in Caenorhabditis elegans. unc-130 is necessary for both ON responses (calcium decreases) and OFF responses (calcium increases) in AIBs, central neurons of avoidance optimization. Ablation of predicted upstream inhibitory neurons reduces the frequency of turn behavior, suggesting that optimization needs both calcium responses. At the molecular level, unc-130 upregulates the expression of at least three genes: nca-2, a homolog of the vertebrate cation leak channel NALCN; glr-1, an AMPA-type glutamate receptor; and eat-4, a hypothetical L-glutamate transmembrane transporter in the central neurons of optimization. unc-130 shows more limited regulation in optimizing behavior than an atonal homolog lin-32, and unc-130 and lin-32 appear to act in parallel molecular pathways. Our findings suggest that unc-130 is required for the establishment of some AIB identities to optimize avoidance behavior.
Collapse
Affiliation(s)
- Sayaka Hori
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan.
| |
Collapse
|
71
|
Balamurugan K, Medishetti R, Kotha J, Behera P, Chandra K, Mavuduru VA, Joshi MB, Samineni R, Katika MR, Ball WB, Thondamal M, Challa A, Chatti K, Parsa KV. PHLPP1 promotes neutral lipid accumulation through AMPK/ChREBP-dependent lipid uptake and fatty acid synthesis pathways. iScience 2022; 25:103766. [PMID: 35141506 PMCID: PMC8810408 DOI: 10.1016/j.isci.2022.103766] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/25/2021] [Accepted: 01/11/2022] [Indexed: 01/26/2023] Open
|
72
|
Gea-González A, Hernández-García S, Henarejos-Escudero P, Martínez-Rodríguez P, García-Carmona F, Gandía-Herrero F. Polyphenols from traditional Chinese medicine and Mediterranean diet are effective against Aβ toxicity in vitro and in vivo in Caenorhabditis elegans. Food Funct 2022; 13:1206-1217. [PMID: 35018947 DOI: 10.1039/d1fo02147h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potential of naturally occurring polyphenols as nutraceuticals to prevent and/or treat Alzheimer's disease is studied. Five structurally related flavones and four tyrosols were tested in vitro in human amyloid-β peptide aggregation assays. The most promising compounds were two flavones, scutellarein and baicalein, and two tyrosols hydroxytyrosol and hydroxytyrosol acetate. These compounds caused a dose-dependent reduction of Aβ-peptide aggregation up to 90% for the flavones and 100% for the tyrosols, at concentrations of 83.3 μM and 33.3 mM, respectively. The IC50 value obtained for scutellarein was 22.5 μM, and was slightly higher for baicalein, 25.9 μM, while for hydroxytyrosol and hydroxytyrosol acetate they were 0.57 mM and 0.62 mM. Given these results, the compounds were selected to conduct in vivo assays with the Caenorhabditis elegans animal model of Alzheimer's disease. The amyloid anti-aggregation ability of these polyphenols was demonstrated in in vivo aggregation assays in which 1 mM hydroxytyrosol reduced the amyloid plaques in the mutant strain CL2331 by 43%. The neuroprotective effect was evaluated in chemotaxis experiments carried out with transgenic strain CL2355 that expresses the human amyloid-β peptide in the neurons. The chemotaxis index was improved by 240% when the neuron-impaired animals were treated with 1 mM hydroxytyrosol. The results indicate that the four molecules would be viable candidates to develop nutraceuticals that interfere in amyloid-β peptide aggregation and, consequently, prevent and/or treat Alzheimer's disease.
Collapse
Affiliation(s)
- Adriana Gea-González
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Pedro Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
73
|
Haeussler S, Conradt B. Methods to Study the Mitochondrial Unfolded Protein Response (UPR mt) in Caenorhabditis elegans. Methods Mol Biol 2022; 2378:249-259. [PMID: 34985705 DOI: 10.1007/978-1-0716-1732-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nematode Caenorhabditis elegans is a powerful model to study cellular stress responses. Due to its transparency and ease of genetic manipulation, C. elegans is especially suitable for fluorescence microscopy. As a result, studies of C. elegans using different fluorescent reporters have led to the discovery of key players of cellular stress response pathways, including the mitochondrial unfolded protein response (UPRmt). UPRmt is a protective retrograde signaling pathway that ensures mitochondrial homeostasis. The nuclear genes hsp-6 and hsp-60 encode mitochondrial chaperones and are highly expressed upon UPRmt induction. The transcriptional reporters of these genes, hsp-6::gfp and hsp-60::gfp, have been instrumental for monitoring this pathway in live animals. Additional tools for studying UPRmt include fusion proteins of ATFS-1 and DVE-1, ATFS-1::GFP and DVE-1::GFP, key players of the UPRmt pathway. In this protocol, we discuss advantages and limitations of currently available methods and reporters, and we provide detailed instructions on how to image and quantify reporter expression.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Barbara Conradt
- Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
74
|
Yu S, Zheng C, Chu JSC. Identification of Essential Genes in Caenorhabditis elegans with Lethal Mutations Maintained by Genetic Balancers. Methods Mol Biol 2022; 2377:345-362. [PMID: 34709626 DOI: 10.1007/978-1-0716-1720-5_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic balancer systems, which allow effective capture and maintenance of lethal mutations stably, play an important role in identifying essential genes. Whole-genome sequencing (WGS) followed by bioinformatics analysis, combined with genetic mapping data analysis, allows for an efficient and economical means of identifying genomic mutations in essential genes. Using this approach, we successfully identified 104 essential genes on ChrI, ChrIII, and ChrV in C. elegans. In this report, we described a protocol that sequences the genome of prebalanced Caenorhabditis elegans (C. elegans) strains to carry lethal mutations and identifies candidate causal mutations and candidate essential genes using a robust bioinformatics procedure.
Collapse
Affiliation(s)
- Shicheng Yu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Bioland Laboratory, Guangzhou, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Chaoran Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | | |
Collapse
|
75
|
Ma X, Li J, Zhang Y, Hacariz O, Xia J, Simpson BK, Wang Z. Oxidative stress suppression in C. elegans by peptides from dogfish skin via regulation of transcription factors DAF-16 and HSF-1. Food Funct 2021; 13:716-724. [PMID: 34935822 DOI: 10.1039/d1fo02271g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional peptides were obtained via enzymatic hydrolysis of smooth dogfish (Mustelus canis) skin. The enzyme-assisted process was optimized to achieve high yield of smooth dogfish skin peptides (SDSP). Fractions of SDSP (MW < 2 kDa, 2-5 kDa, 5-10 kDa and >10 kDa) showed in vitro antioxidant activities. The peptides <2 kDa (SDSP<2 kDa) significantly improved motility, reduced ROS and H2O2 levels of Caenorhabditis elegans, and increased its resistance to oxidative stress compared to the other peptide fractions. In vivo function of SDSP<2 kDa could be explained by their capacity to increase the expression of stress-response genes. The enhanced resistance to oxidative stress mediated by SDSP<2 kDa was dependent on DAF-16 and HSF-1. The amino acid residues and sequences of SDSP<2 kDa were characterized and revealed a higher content of hydrophobic versus polar amino acid contents. This study (especially the in vivo investigation) explored new potent antioxidant peptides derived from dogfish skin.
Collapse
Affiliation(s)
- Xiaoli Ma
- College of Life Science, Shanxi University, Taiyuan 030006, PR China. .,Department of Food Science and Agricultural Chemistry, McGill University, Québec, H9X 3V9, Canada.
| | - Jiao Li
- College of Life Science, Shanxi University, Taiyuan 030006, PR China.
| | - Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, H9X 3V9, Canada. .,IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Orcun Hacariz
- Institute of Parasitology, McGill University, Québec, H9X 3V9, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Québec, H9X 3V9, Canada
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, H9X 3V9, Canada.
| | - Zhuanhua Wang
- College of Life Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
76
|
Lautens MJ, Tan JH, Serrat X, Del Borrello S, Schertzberg MR, Fraser AG. Identification of enzymes that have helminth-specific active sites and are required for Rhodoquinone-dependent metabolism as targets for new anthelmintics. PLoS Negl Trop Dis 2021; 15:e0009991. [PMID: 34843467 PMCID: PMC8659336 DOI: 10.1371/journal.pntd.0009991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/09/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Soil transmitted helminths (STHs) are major human pathogens that infect over a billion people. Resistance to current anthelmintics is rising and new drugs are needed. Here we combine multiple approaches to find druggable targets in the anaerobic metabolic pathways STHs need to survive in their mammalian host. These require rhodoquinone (RQ), an electron carrier used by STHs and not their hosts. We identified 25 genes predicted to act in RQ-dependent metabolism including sensing hypoxia and RQ synthesis and found 9 are required. Since all 9 have mammalian orthologues, we used comparative genomics and structural modeling to identify those with active sites that differ between host and parasite. Together, we found 4 genes that are required for RQ-dependent metabolism and have different active sites. Finding these high confidence targets can open up in silico screens to identify species selective inhibitors of these enzymes as new anthelmintics.
Collapse
Affiliation(s)
- Margot J. Lautens
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - June H. Tan
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Xènia Serrat
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Andrew G. Fraser
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
77
|
Fernández EM, Cutraro YB, Adams J, Monteleone MC, Hughes KJ, Frasch AC, Vidal-Gadea AG, Brocco MA. Neuronal membrane glycoprotein (nmgp-1) gene deficiency affects chemosensation-related behaviors, dauer exit and egg-laying in Caenorhabditis elegans. J Neurochem 2021; 160:234-255. [PMID: 34816431 DOI: 10.1111/jnc.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022]
Abstract
The nervous system monitors the environment to maintain homeostasis, which can be affected by stressful conditions. Using mammalian models of chronic stress, we previously observed altered brain levels of GPM6A, a protein involved in neuronal morphology. However, GPM6A's role in systemic stress responses remains unresolved. The nematode Caenorhabditis elegans expresses a GPM6A ortholog, the neuronal membrane glycoprotein 1 (NMGP-1). Because of the shared features between nematode and mammalian nervous systems and the vast genetic tools available in C. elegans, we used the worm to elucidate the role of GPM6A in the stress response. We first identified nmgp-1 expression in different amphid and phasmid neurons. To understand the nmgp-1 role, we characterized the behavior of nmgp-1(RNAi) animals and two nmgp-1 mutant alleles. Compared to control animals, mutant and RNAi-treated worms exhibited increased recovery time from the stress-resistant dauer stage, altered SDS chemosensation and reduced egg-laying rate resulting in egg retention (bag-of-worms phenotype). Silencing of nmgp-1 expression induced morphological abnormalities in the ASJ sensory neurons, partly responsible for dauer exit. These results indicate that nmgp-1 is required for neuronal morphology and for behaviors associated with chemosensation. Finally, we propose nmgp-1 mutants as a tool to screen drugs for human nervous system pathologies.
Collapse
Affiliation(s)
- Eliana M Fernández
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | - Yamila B Cutraro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | - Jessica Adams
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Melisa C Monteleone
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | - Kiley J Hughes
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | | | - Marcela A Brocco
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| |
Collapse
|
78
|
Abbatemarco S, Bondaz A, Schwager F, Wang J, Hammell CM, Gotta M. PQN-59 and GTBP-1 contribute to stress granule formation but are not essential for their assembly in C. elegans embryos. J Cell Sci 2021; 134:273437. [PMID: 34661238 PMCID: PMC8645233 DOI: 10.1242/jcs.258834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/09/2021] [Indexed: 11/04/2022] Open
Abstract
When exposed to stressful conditions, eukaryotic cells respond by inducing the formation of cytoplasmic ribonucleoprotein complexes called stress granules. Here, we use C. elegans to study two proteins that are important for stress granule assembly in human cells – PQN-59, the human UBAP2L ortholog, and GTBP-1, the human G3BP1 and G3BP2 ortholog. Both proteins assemble into stress granules in the embryo and in the germline when C. elegans is exposed to stressful conditions. Neither of the two proteins is essential for the assembly of stress-induced granules, as shown by the single and combined depletions by RNAi, and neither pqn-59 nor gtbp-1 mutant embryos show higher sensitivity to stress than control embryos. We find that pqn-59 mutants display reduced progeny and a high percentage of embryonic lethality, phenotypes that are not dependent on stress exposure and that are not shared with gtbp-1 mutants. Our data indicate that, in contrast to human cells, PQN-59 and GTBP-1 are not required for stress granule formation but that PQN-59 is important for C. elegans development. Summary: In contrast to human cells, where the UBAP2L and G3BP1 and G3BP2 proteins are crucial nucleators of stress granules, the C. elegans orthologs are not essential for this process in worms.
Collapse
Affiliation(s)
- Simona Abbatemarco
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Alexandra Bondaz
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Francoise Schwager
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Jing Wang
- Cold Spring Harbor Laboratory, New York, NY 11724, USA
| | | | - Monica Gotta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
79
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
80
|
Carlston C, Weinmann R, Stec N, Abbatemarco S, Schwager F, Wang J, Ouyang H, Ewald CY, Gotta M, Hammell CM. PQN-59 antagonizes microRNA-mediated repression during post-embryonic temporal patterning and modulates translation and stress granule formation in C. elegans. PLoS Genet 2021; 17:e1009599. [PMID: 34807903 PMCID: PMC8648105 DOI: 10.1371/journal.pgen.1009599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/06/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are potent regulators of gene expression that function in a variety of developmental and physiological processes by dampening the expression of their target genes at a post-transcriptional level. In many gene regulatory networks (GRNs), miRNAs function in a switch-like manner whereby their expression and activity elicit a transition from one stable pattern of gene expression to a distinct, equally stable pattern required to define a nascent cell fate. While the importance of miRNAs that function in this capacity are clear, we have less of an understanding of the cellular factors and mechanisms that ensure the robustness of this form of regulatory bistability. In a screen to identify suppressors of temporal patterning phenotypes that result from ineffective miRNA-mediated target repression, we identified pqn-59, an ortholog of human UBAP2L, as a novel factor that antagonizes the activities of multiple heterochronic miRNAs. Specifically, we find that depletion of pqn-59 can restore normal development in animals with reduced lin-4 and let-7-family miRNA activity. Importantly, inactivation of pqn-59 is not sufficient to bypass the requirement of these regulatory RNAs within the heterochronic GRN. The pqn-59 gene encodes an abundant, cytoplasmically-localized, unstructured protein that harbors three essential "prion-like" domains. These domains exhibit LLPS properties in vitro and normally function to limit PQN-59 diffusion in the cytoplasm in vivo. Like human UBAP2L, PQN-59's localization becomes highly dynamic during stress conditions where it re-distributes to cytoplasmic stress granules and is important for their formation. Proteomic analysis of PQN-59 complexes from embryonic extracts indicates that PQN-59 and human UBAP2L interact with orthologous cellular components involved in RNA metabolism and promoting protein translation and that PQN-59 additionally interacts with proteins involved in transcription and intracellular transport. Finally, we demonstrate that pqn-59 depletion reduces protein translation and also results in the stabilization of several mature miRNAs (including those involved in temporal patterning). These data suggest that PQN-59 may ensure the bistability of some GRNs that require miRNA functions by promoting miRNA turnover and, like UBAP2L, enhancing protein translation.
Collapse
Affiliation(s)
- Colleen Carlston
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Robin Weinmann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Natalia Stec
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Simona Abbatemarco
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francoise Schwager
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jing Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Huiwu Ouyang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Monica Gotta
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
81
|
Metaxas A. Imbalances in Copper or Zinc Concentrations Trigger Further Trace Metal Dyshomeostasis in Amyloid-Beta Producing Caenorhabditis elegans. Front Neurosci 2021; 15:755475. [PMID: 34707479 PMCID: PMC8542683 DOI: 10.3389/fnins.2021.755475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's Disease (AD), a progressive neurodegenerative disease characterized by the buildup of amyloid-beta (Aβ) plaques, is believed to be a disease of trace metal dyshomeostasis. Amyloid-beta is known to bind with high affinity to trace metals copper and zinc. This binding is believed to cause a conformational change in Aβ, transforming Aβ into a configuration more amenable to forming aggregations. Currently, the impact of Aβ-trace metal binding on trace metal homeostasis and the role of trace metals copper and zinc as deleterious or beneficial in AD remain elusive. Given that Alzheimer's Disease is the sixth leading cause of adult death in the U.S., elucidating the molecular interactions that characterize Alzheimer's Disease pathogenesis will allow for better treatment options. To that end, the model organism C. elegans is used in this study. C. elegans, a transparent nematode whose connectome has been fully established, is an amenable model to study AD phenomena using a multi-layered, interconnected approach. Aβ-producing and non-Aβ-producing C. elegans were individually supplemented with copper and zinc. On day 6 and day 9 after synchronization, the percent of worms paralyzed, concentration of copper, and concentration of zinc were measured in both groups of worms. This study demonstrates that dyshomeostasis of trace metals copper or zinc triggers further trace metal dyshomeostasis in Aβ-producing worms, while dyshomeostasis of copper or zinc triggers a return to equilibrium in non-Aβ-producing worms. This supports the characterization of Alzheimer's Disease as a disease of trace metal dyshomeostasis.
Collapse
Affiliation(s)
- Ada Metaxas
- Princeton High School, Princeton, NJ, United States
| |
Collapse
|
82
|
Bizat N, Parrales V, Laoues S, Normant S, Levavasseur E, Roussel J, Privat N, Gougerot A, Ravassard P, Beaudry P, Brandel JP, Laplanche JL, Haïk S. An in vivo Caenorhabditis elegans model for therapeutic research in human prion diseases. Brain 2021; 144:2745-2758. [PMID: 34687213 DOI: 10.1093/brain/awab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 11/12/2022] Open
Abstract
Human prion diseases are fatal neurodegenerative disorders that include sporadic, infectious and genetic forms. Inherited Creutzfeldt-Jakob disease due to the E200K mutation of the prion protein-coding gene is the most common form of genetic prion disease. The phenotype resembles that of sporadic Creutzfeldt-Jakob disease at both the clinical and pathological levels, with a median disease duration of 4 months. To date, there is no available treatment for delaying the occurrence or slowing the progression of human prion diseases. Existing in vivo models do not allow high-throughput approaches that may facilitate the discovery of compounds targeting pathological assemblies of human prion protein or their effects on neuronal survival. Here, we generated a genetic model in the nematode Caenorhabditis elegans, which is devoid of any homologue of the prion protein, by expressing human prion protein with the E200K mutation in the mechanosensitive neuronal system. Expression of E200K prion protein induced a specific behavioural pattern and neurodegeneration of green fluorescent protein-expressing mechanosensitive neurons, in addition to the formation of intraneuronal inclusions associated with the accumulation of a protease-resistant form of the prion protein. We demonstrated that this experimental system is a powerful tool for investigating the efficacy of anti-prion compounds on both prion-induced neurodegeneration and prion protein misfolding, as well as in the context of human prion protein. Within a library of 320 compounds that have been approved for human use and cross the blood-brain barrier, we identified five molecules that were active against the aggregation of the E200K prion protein and the neurodegeneration it induced in transgenic animals. This model breaks a technological limitation in prion therapeutic research and provides a key tool to study the deleterious effects of misfolded prion protein in a well-described neuronal system.
Collapse
Affiliation(s)
- Nicolas Bizat
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France.,Faculté de Pharmacie de Paris, Paris University, Paris F-75006, France
| | - Valeria Parrales
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Sofian Laoues
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Sébastien Normant
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Etienne Levavasseur
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Julian Roussel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Nicolas Privat
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Alexianne Gougerot
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Philippe Ravassard
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Patrice Beaudry
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Jean-Philippe Brandel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France.,AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris F-75013, France
| | - Jean-Louis Laplanche
- Faculté de Pharmacie de Paris, Paris University, Paris F-75006, France.,Inserm, UMR-S 1144, Paris F-75006, France
| | - Stéphane Haïk
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France.,AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris F-75013, France
| |
Collapse
|
83
|
Thomas MJ, Cassidy ER, Robinson DS, Walstrom KM. Kinetic characterization and thermostability of C. elegans cytoplasmic and mitochondrial malate dehydrogenases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1870:140722. [PMID: 34619358 DOI: 10.1016/j.bbapap.2021.140722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Malate dehydrogenase (MDH) catalyzes the conversion of NAD+ and malate to NADH and oxaloacetate in the citric acid cycle. Eukaryotes have one MDH isozyme that is imported into the mitochondria and one in the cytoplasm. We overexpressed and purified Caenorhabditis elegans cytoplasmic MDH-1 and mitochondrial MDH-2 in E. coli. Our goal was to compare the kinetic and structural properties of these enzymes because C. elegans can survive adverse environmental conditions, such as lack of food and elevated temperatures. In steady-state enzyme kinetics assays, we measured KM values for oxaloacetate of 54 and 52 μM and KM values for NADH of 61 and 107 μM for MDH-1 and MDH-2, respectively. We partially purified endogenous MDH-1 and MDH-2 from a mixed population of worms and separated them using anion exchange chromatography. Both endogenous enzymes had a KM for oxaloacetate similar to that of the corresponding recombinant enzyme. Recombinant MDH-1 and MDH-2 had maximum activity at 40 °C and 35 °C, respectively. In a thermotolerance assay, MDH-1 was much more thermostable than MDH-2. Protein homology modeling predicted that MDH-1 had more intersubunit salt-bridges than mammalian MDH1 enzymes, and these ionic interactions may contribute to its thermostability. In contrast, the MDH-2 homology model predicted fewer intersubunit ionic interactions compared to mammalian MDH2 enzymes. These results suggest that the increased stability of MDH-1 may facilitate its ability to remain active in adverse environmental conditions. In contrast, MDH-2 may use other strategies, such as protein binding partners, to function under similar conditions.
Collapse
Affiliation(s)
- Matthew J Thomas
- Department of Natural Sciences, State College of Florida, Bradenton, FL 34207, USA
| | - Emma R Cassidy
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA
| | - Devin S Robinson
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA
| | | |
Collapse
|
84
|
Cook SJ, Vidal B, Hobert O. The bHLH-PAS gene hlh-34 is expressed in the AVH, not AVJ interneurons. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000467. [PMID: 34604715 PMCID: PMC8479555 DOI: 10.17912/micropub.biology.000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Single neuron-specific drivers are important tools for visualizing neuron anatomy, manipulating neuron activity and gene rescue experiments. We report here that genomic regions upstream of the C. elegans bHLH-PAS gene hlh-34 can be used to drive gene expression exclusively in the AVH interneuron pair and not, as previously reported, the AVJ interneuron pair.
Collapse
Affiliation(s)
- Steven J. Cook
- Columbia University, Department of Biological Sciences, HHMI, New York, NY
| | - Berta Vidal
- Columbia University, Department of Biological Sciences, HHMI, New York, NY
| | - Oliver Hobert
- Columbia University, Department of Biological Sciences, HHMI, New York, NY,
Correspondence to: Oliver Hobert ()
| |
Collapse
|
85
|
Singh R, Smit RB, Wang X, Wang C, Racher H, Hansen D. Reduction of Derlin activity suppresses Notch-dependent tumours in the C. elegans germ line. PLoS Genet 2021; 17:e1009687. [PMID: 34555015 PMCID: PMC8491880 DOI: 10.1371/journal.pgen.1009687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
Regulating the balance between self-renewal (proliferation) and differentiation is key to the long-term functioning of all stem cell pools. In the Caenorhabditis elegans germline, the primary signal controlling this balance is the conserved Notch signaling pathway. Gain-of-function mutations in the GLP-1/Notch receptor cause increased stem cell self-renewal, resulting in a tumour of proliferating germline stem cells. Notch gain-of-function mutations activate the receptor, even in the presence of little or no ligand, and have been associated with many human diseases, including cancers. We demonstrate that reduction in CUP-2 and DER-2 function, which are Derlin family proteins that function in endoplasmic reticulum-associated degradation (ERAD), suppresses the C. elegans germline over-proliferation phenotype associated with glp-1(gain-of-function) mutations. We further demonstrate that their reduction does not suppress other mutations that cause over-proliferation, suggesting that over-proliferation suppression due to loss of Derlin activity is specific to glp-1/Notch (gain-of-function) mutations. Reduction of CUP-2 Derlin activity reduces the expression of a read-out of GLP-1/Notch signaling, suggesting that the suppression of over-proliferation in Derlin loss-of-function mutants is due to a reduction in the activity of the mutated GLP-1/Notch(GF) receptor. Over-proliferation suppression in cup-2 mutants is only seen when the Unfolded Protein Response (UPR) is functioning properly, suggesting that the suppression, and reduction in GLP-1/Notch signaling levels, observed in Derlin mutants may be the result of activation of the UPR. Chemically inducing ER stress also suppress glp-1(gf) over-proliferation but not other mutations that cause over-proliferation. Therefore, ER stress and activation of the UPR may help correct for increased GLP-1/Notch signaling levels, and associated over-proliferation, in the C. elegans germline. Notch signaling is a highly conserved signaling pathway that is utilized in many cell fate decisions in many organisms. In the C. elegans germline, Notch signaling is the primary signal that regulates the balance between stem cell proliferation and differentiation. Notch gain-of-function mutations cause the receptor to be active, even when a signal that is normally needed to activate the receptor is absent. In the germline of C. elegans, gain-of-function mutations in GLP-1, a Notch receptor, results in over-proliferation of the stem cells and tumour formation. Here we demonstrate that a reduction or loss of Derlin activity, which is a conserved family of proteins involved in endoplasmic reticulum-associated degradation (ERAD), suppresses over-proliferation due to GLP-1/Notch gain-of-function mutations. Furthermore, we demonstrate that a surveillance mechanism utilized in cells to monitor and react to proteins that are not folded properly (Unfolded Protein Response-UPR) must be functioning well in order for the loss of Derlin activity to supress over-proliferation caused by glp-1/Notch gain-of-function mutations. This suggests that activation of the UPR may be the mechanism at work for suppressing this type of over-proliferation, when Derlin activity is reduced. Therefore, decreasing Derlin activity may be a means of reducing the impact of phenotypes and diseases due to certain Notch gain-of-function mutations.
Collapse
Affiliation(s)
- Ramya Singh
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Ryan B. Smit
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Hilary Racher
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
86
|
Lourenço AB, Artal-Sanz M. The Mitochondrial Prohibitin (PHB) Complex in C. elegans Metabolism and Ageing Regulation. Metabolites 2021; 11:metabo11090636. [PMID: 34564452 PMCID: PMC8472356 DOI: 10.3390/metabo11090636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
The mitochondrial prohibitin (PHB) complex, composed of PHB-1 and PHB-2, is an evolutionarily conserved context-dependent modulator of longevity. This extremely intriguing phenotype has been linked to alterations in mitochondrial function and lipid metabolism. The true biochemical function of the mitochondrial PHB complex remains elusive, but it has been shown to affect membrane lipid composition. Recent work, using large-scale biochemical approaches, has highlighted a broad effect of PHB on the C. elegans metabolic network. Collectively, the biochemical data support the notion that PHB modulates, at least partially, worm longevity through the moderation of fat utilisation and energy production via the mitochondrial respiratory chain. Herein, we review, in a systematic manner, recent biochemical insights into the impact of PHB on the C. elegans metabolome.
Collapse
Affiliation(s)
- Artur B. Lourenço
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km 1, 41013 Seville, Spain
- Correspondence: (A.B.L.); (M.A.-S.)
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km 1, 41013 Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
- Correspondence: (A.B.L.); (M.A.-S.)
| |
Collapse
|
87
|
Sanchez AD, Branon TC, Cote LE, Papagiannakis A, Liang X, Pickett MA, Shen K, Jacobs-Wagner C, Ting AY, Feldman JL. Proximity labeling reveals non-centrosomal microtubule-organizing center components required for microtubule growth and localization. Curr Biol 2021; 31:3586-3600.e11. [PMID: 34242576 PMCID: PMC8478408 DOI: 10.1016/j.cub.2021.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/13/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Microtubules are polarized intracellular polymers that play key roles in the cell, including in transport, polarity, and cell division. Across eukaryotic cell types, microtubules adopt diverse intracellular organization to accommodate these distinct functions coordinated by specific cellular sites called microtubule-organizing centers (MTOCs). Over 50 years of research on MTOC biology has focused mainly on the centrosome; however, most differentiated cells employ non-centrosomal MTOCs (ncMTOCs) to organize their microtubules into diverse arrays, which are critical to cell function. To identify essential ncMTOC components, we developed the biotin ligase-based, proximity-labeling approach TurboID for use in C. elegans. We identified proteins proximal to the microtubule minus end protein PTRN-1/Patronin at the apical ncMTOC of intestinal epithelial cells, focusing on two conserved proteins: spectraplakin protein VAB-10B/MACF1 and WDR-62, a protein we identify as homologous to vertebrate primary microcephaly disease protein WDR62. VAB-10B and WDR-62 do not associate with the centrosome and instead specifically regulate non-centrosomal microtubules and the apical targeting of microtubule minus-end proteins. Depletion of VAB-10B resulted in microtubule mislocalization and delayed localization of a microtubule nucleation complex ɣ-tubulin ring complex (γ-TuRC), while loss of WDR-62 decreased the number of dynamic microtubules and abolished γ-TuRC localization. This regulation occurs downstream of cell polarity and in conjunction with actin. As this is the first report for non-centrosomal roles of WDR62 family proteins, we expand the basic cell biological roles of this important disease protein. Our studies identify essential ncMTOC components and suggest a division of labor where microtubule growth and localization are distinctly regulated.
Collapse
Affiliation(s)
- Ariana D Sanchez
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Tess C Branon
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Departments of Genetics and Chemistry, Stanford University, Stanford, CA, USA
| | - Lauren E Cote
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | | | - Xing Liang
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Melissa A Pickett
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Kang Shen
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA; Department of Biology and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Departments of Genetics and Chemistry, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.
| |
Collapse
|
88
|
Steele LM, Kotsch TJ, Legge CA, Smith DJ. Establishing C. elegans as a Model for Studying the Bioeffects of Therapeutic Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2346-2359. [PMID: 34006439 DOI: 10.1016/j.ultrasmedbio.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Ultrasound is widely used in diagnostic and therapeutic medical procedures and it is becoming an important tool in biomedical research. During exposure, as an ultrasound beam interacts with the tissues in its path, changes known as "bioeffects" can result. Animal studies have suggested that these changes can alter survival, movement, reproduction, development and learning in various species. Additional studies in animals could provide valuable information about the mechanisms of therapeutic ultrasound and may contribute to the development of additional exciting laboratory techniques. Therefore, we developed methods for exposing C. elegans nematode worms to ultrasound and observed that they exhibited exposure-dependent reductions in movement, fecundity and survival. These effects were prevented by polyvinyl alcohol, which suggested that cavitation was the main mechanism of damage. This work provides a foundation for capitalizing on the advantages of C. elegans as a model to thoroughly characterize ultrasound's bioeffects at the cellular and molecular levels.
Collapse
Affiliation(s)
- Louise M Steele
- Department of Biological Sciences, Kent State University at Salem, Salem, OH, USA.
| | - Troy J Kotsch
- Department of Biological Sciences, Kent State University at Salem, Salem, OH, USA
| | - Catherine A Legge
- Radiologic & Imaging Sciences Program, Kent State University at Salem, Salem, OH, USA
| | - Delores J Smith
- College of Nursing, Kent State University at Salem, Salem, OH, USA
| |
Collapse
|
89
|
Lourenço AB, Rodríguez-Palero MJ, Doherty MK, Cabrerizo Granados D, Hernando-Rodríguez B, Salas JJ, Venegas-Calerón M, Whitfield PD, Artal-Sanz M. The Mitochondrial PHB Complex Determines Lipid Composition and Interacts With the Endoplasmic Reticulum to Regulate Ageing. Front Physiol 2021; 12:696275. [PMID: 34276415 PMCID: PMC8281979 DOI: 10.3389/fphys.2021.696275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic disorders are frequently associated with physiological changes that occur during ageing. The mitochondrial prohibitin complex (PHB) is an evolutionary conserved context-dependent modulator of longevity, which has been linked to alterations in lipid metabolism but which biochemical function remains elusive. In this work we aimed at elucidating the molecular mechanism by which depletion of mitochondrial PHB shortens the lifespan of wild type animals while it extends that of insulin signaling receptor (daf-2) mutants. A liquid chromatography coupled with mass spectrometry approach was used to characterize the worm lipidome of wild type and insulin deficient animals upon PHB depletion. Toward a mechanistic interpretation of the insights coming from this analysis, we used a combination of biochemical, microscopic, and lifespan analyses. We show that PHB depletion perturbed glycerophospholipids and glycerolipids pools differently in short- versus long-lived animals. Interestingly, PHB depletion in otherwise wild type animals induced the endoplasmic reticulum (ER) unfolded protein response (UPR), which was mitigated in daf-2 mutants. Moreover, depletion of DNJ-21, which functionally interacts with PHB in mitochondria, mimicked the effect of PHB deficiency on the UPRER and on the lifespan of wild type and insulin signaling deficient mutants. Our work shows that PHB differentially modulates lipid metabolism depending on the worm’s metabolic status and provides evidences for a new link between PHB and ER homeostasis in ageing regulation.
Collapse
Affiliation(s)
- Artur B Lourenço
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - María Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Mary K Doherty
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, United Kingdom
| | - David Cabrerizo Granados
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Blanca Hernando-Rodríguez
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Seville, Spain
| | | | - Phillip D Whitfield
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, United Kingdom
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
90
|
Rawsthorne H, Calahorro F, Holden-Dye L, O’ Connor V, Dillon J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One 2021; 16:e0243121. [PMID: 34043629 PMCID: PMC8158995 DOI: 10.1371/journal.pone.0243121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a triad of behavioural impairments and includes disruption in social behaviour. ASD has a clear genetic underpinning and hundreds of genes are implicated in its aetiology. However, how single penetrant genes disrupt activity of neural circuits which lead to affected behaviours is only beginning to be understood and less is known about how low penetrant genes interact to disrupt emergent behaviours. Investigations are well served by experimental approaches that allow tractable investigation of the underpinning genetic basis of circuits that control behaviours that operate in the biological domains that are neuro-atypical in autism. The model organism C. elegans provides an experimental platform to investigate the effect of genetic mutations on behavioural outputs including those that impact social biology. Here we use progeny-derived social cues that modulate C. elegans food leaving to assay genetic determinants of social behaviour. We used the SAFRI Gene database to identify C. elegans orthologues of human ASD associated genes. We identified a number of mutants that displayed selective deficits in response to progeny. The genetic determinants of this complex social behaviour highlight the important contribution of synaptopathy and implicates genes within cell signalling, epigenetics and phospholipid metabolism functional domains. The approach overlaps with a growing number of studies that investigate potential molecular determinants of autism in C. elegans. However, our use of a complex, sensory integrative, emergent behaviour provides routes to enrich new or underexplored biology with the identification of novel candidate genes with a definable role in social behaviour.
Collapse
Affiliation(s)
- Helena Rawsthorne
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Fernando Calahorro
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Vincent O’ Connor
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - James Dillon
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
91
|
Lavorato M, Mathew ND, Shah N, Nakamaru-Ogiso E, Falk MJ. Comparative Analysis of Experimental Methods to Quantify Animal Activity in Caenorhabditis elegans Models of Mitochondrial Disease. J Vis Exp 2021:10.3791/62244. [PMID: 33871460 PMCID: PMC8572545 DOI: 10.3791/62244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Caenorhabditis elegans is widely recognized for its central utility as a translational animal model to efficiently interrogate mechanisms and therapies of diverse human diseases. Worms are particularly well-suited for high-throughput genetic and drug screens to gain deeper insight into therapeutic targets and therapies by exploiting their fast development cycle, large brood size, short lifespan, microscopic transparency, low maintenance costs, robust suite of genomic tools, mutant repositories, and experimental methodologies to interrogate both in vivo and ex vivo physiology. Worm locomotor activity represents a particularly relevant phenotype that is frequently impaired in mitochondrial disease, which is highly heterogeneous in causes and manifestations but collectively shares an impaired capacity to produce cellular energy. While a suite of different methodologies may be used to interrogate worm behavior, these vary greatly in experimental costs, complexity, and utility for genomic or drug high-throughput screens. Here, the relative throughput, advantages, and limitations of 16 different activity analysis methodologies were compared that quantify nematode locomotion, thrashing, pharyngeal pumping, and/or chemotaxis in single worms or worm populations of C. elegans at different stages, ages, and experimental durations. Detailed protocols were demonstrated for two semi-automated methods to quantify nematode locomotor activity that represent novel applications of available software tools, namely, ZebraLab (a medium-throughput approach) and WormScan (a high-throughput approach). Data from applying these methods demonstrated similar degrees of reduced animal activity occurred at the L4 larval stage, and progressed in day 1 adults, in mitochondrial complex I disease (gas-1(fc21)) mutant worms relative to wild-type (N2 Bristol) C. elegans. This data validates the utility for these novel applications of using the ZebraLab or WormScan software tools to quantify worm locomotor activity efficiently and objectively, with variable capacity to support high-throughput drug screening on worm behavior in preclinical animal models of mitochondrial disease.
Collapse
Affiliation(s)
- Manuela Lavorato
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Neal D Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Nina Shah
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine;
| |
Collapse
|
92
|
Haeussler S, Yeroslaviz A, Rolland SG, Luehr S, Lambie EJ, Conradt B. Genome-wide RNAi screen for regulators of UPRmt in Caenorhabditis elegans mutants with defects in mitochondrial fusion. G3-GENES GENOMES GENETICS 2021; 11:6204483. [PMID: 33784383 PMCID: PMC8495942 DOI: 10.1093/g3journal/jkab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and the response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets 'non-mitochondrial enhancers' and 'mitochondrial suppressors' suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Planegg-Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Sebastian Luehr
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Eric J Lambie
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
| |
Collapse
|
93
|
Hefel A, Honda M, Cronin N, Harrell K, Patel P, Spies M, Smolikove S. RPA complexes in Caenorhabditis elegans meiosis; unique roles in replication, meiotic recombination and apoptosis. Nucleic Acids Res 2021; 49:2005-2026. [PMID: 33476370 PMCID: PMC7913698 DOI: 10.1093/nar/gkaa1293] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Replication Protein A (RPA) is a critical complex that acts in replication and promotes homologous recombination by allowing recombinase recruitment to processed DSB ends. Most organisms possess three RPA subunits (RPA1, RPA2, RPA3) that form a trimeric complex critical for viability. The Caenorhabditis elegans genome encodes RPA-1, RPA-2 and an RPA-2 paralog RPA-4. In our analysis, we determined that RPA-2 is critical for germline replication and normal repair of meiotic DSBs. Interestingly, RPA-1 but not RPA-2 is essential for somatic replication, in contrast to other organisms that require both subunits. Six different hetero- and homodimeric complexes containing permutations of RPA-1, RPA-2 and RPA-4 can be detected in whole animal extracts. Our in vivo studies indicate that RPA-1/4 dimer is less abundant in the nucleus and its formation is inhibited by RPA-2. While RPA-4 does not participate in replication or recombination, we find that RPA-4 inhibits RAD-51 filament formation and promotes apoptosis of a subset of damaged nuclei. Altogether these findings point to sub-functionalization and antagonistic roles of RPA complexes in C. elegans.
Collapse
Affiliation(s)
- Adam Hefel
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Masayoshi Honda
- Department of Biochemistry, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Nicholas Cronin
- Department of Biochemistry, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kailey Harrell
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Pooja Patel
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Maria Spies
- Department of Biochemistry, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
94
|
Koch SC, Nelson A, Hartenstein V. Structural aspects of the aging invertebrate brain. Cell Tissue Res 2021; 383:931-947. [PMID: 33409654 PMCID: PMC7965346 DOI: 10.1007/s00441-020-03314-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
Abstract
Aging is characterized by a decline in neuronal function in all animal species investigated so far. Functional changes are accompanied by and may be in part caused by, structurally visible degenerative changes in neurons. In the mammalian brain, normal aging shows abnormalities in dendrites and axons, as well as ultrastructural changes in synapses, rather than global neuron loss. The analysis of the structural features of aging neurons, as well as their causal link to molecular mechanisms on the one hand, and the functional decline on the other hand is crucial in order to understand the aging process in the brain. Invertebrate model organisms like Drosophila and C. elegans offer the opportunity to apply a forward genetic approach to the analysis of aging. In the present review, we aim to summarize findings concerning abnormalities in morphology and ultrastructure in invertebrate brains during normal aging and compare them to what is known for the mammalian brain. It becomes clear that despite of their considerably shorter life span, invertebrates display several age-related changes very similar to the mammalian condition, including the retraction of dendritic and axonal branches at specific locations, changes in synaptic density and increased accumulation of presynaptic protein complexes. We anticipate that continued research efforts in invertebrate systems will significantly contribute to reveal (and possibly manipulate) the molecular/cellular pathways leading to neuronal aging in the mammalian brain.
Collapse
Affiliation(s)
- Sandra C Koch
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Annie Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, California, USA.
| |
Collapse
|
95
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
96
|
Park L, Luth ES, Jones K, Hofer J, Nguyen I, Watters KE, Juo P. The Snail transcription factor CES-1 regulates glutamatergic behavior in C. elegans. PLoS One 2021; 16:e0245587. [PMID: 33529210 PMCID: PMC7853468 DOI: 10.1371/journal.pone.0245587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Regulation of AMPA-type glutamate receptor (AMPAR) expression and function alters synaptic strength and is a major mechanism underlying synaptic plasticity. Although transcription is required for some forms of synaptic plasticity, the transcription factors that regulate AMPA receptor expression and signaling are incompletely understood. Here, we identify the Snail family transcription factor ces-1 in an RNAi screen for conserved transcription factors that regulate glutamatergic behavior in C. elegans. ces-1 was originally discovered as a selective cell death regulator of neuro-secretory motor neuron (NSM) and I2 interneuron sister cells in C. elegans, and has almost exclusively been studied in the NSM cell lineage. We found that ces-1 loss-of-function mutants have defects in two glutamatergic behaviors dependent on the C. elegans AMPA receptor GLR-1, the mechanosensory nose-touch response and spontaneous locomotion reversals. In contrast, ces-1 gain-of-function mutants exhibit increased spontaneous reversals, and these are dependent on glr-1 consistent with these genes acting in the same pathway. ces-1 mutants have wild type cholinergic neuromuscular junction function, suggesting that they do not have a general defect in synaptic transmission or muscle function. The effect of ces-1 mutation on glutamatergic behaviors is not due to ectopic cell death of ASH sensory neurons or GLR-1-expressing neurons that mediate one or both of these behaviors, nor due to an indirect effect on NSM sister cell deaths. Rescue experiments suggest that ces-1 may act, in part, in GLR-1-expressing neurons to regulate glutamatergic behaviors. Interestingly, ces-1 mutants suppress the increased reversal frequencies stimulated by a constitutively-active form of GLR-1. However, expression of glr-1 mRNA or GFP-tagged GLR-1 was not decreased in ces-1 mutants suggesting that ces-1 likely promotes GLR-1 function. This study identifies a novel role for ces-1 in regulating glutamatergic behavior that appears to be independent of its canonical role in regulating cell death in the NSM cell lineage.
Collapse
Affiliation(s)
- Lidia Park
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Cell, Developmental and Molecular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Eric S. Luth
- Department of Biology, Simmons University, Boston, Massachusetts, United States of America
| | - Kelsey Jones
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Julia Hofer
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Irene Nguyen
- Department of Biology, Simmons University, Boston, Massachusetts, United States of America
| | - Katherine E. Watters
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
97
|
Deng G, Li L, Ouyang Y. Modeling paraquat-induced lung fibrosis in C. elegans reveals KRIT1 as a key regulator of collagen gene transcription. Aging (Albany NY) 2021; 13:4452-4467. [PMID: 33495402 PMCID: PMC7906160 DOI: 10.18632/aging.202406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/18/2020] [Indexed: 02/01/2023]
Abstract
Paraquat poisoning causes lung fibrosis, which often results in long-term pulmonary dysfunction. Lung fibrosis has been attributed to collagens accumulation, but the underlying regulatory pathway remains unclear. Here we use the genetically tractable C. elegans as a model to study collagen gene transcription in response to paraquat. We find that paraquat robustly up-regulates collagen gene transcription, which is dependent on KRI-1, a poorly studied protein homologous to human KRIT1/CCM1. KRI-1 knockdown prevents paraquat from activating the oxidative stress response transcription factor SKN-1/Nrf2, resulting in reduced collagen transcription and increased paraquat sensitivity. Using human lung fibroblasts (MRC-5), we confirm that both KRIT1 and Nrf2 are required for collagen transcription in response to paraquat. Nrf2 hyper-activation by KEAP1 knockdown bypasses KRIT1 to up-regulate collagen transcription. Our findings on the regulation of collagen gene transcription by paraquat could suggest potential strategies to treat pulmonary fibrosis caused by paraquat poisoning.
Collapse
Affiliation(s)
- Gongping Deng
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Le Li
- Hunan Yuantai Biotechnology Co., Ltd, Changsha 410000, Hunan, China
| | - Yanhong Ouyang
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| |
Collapse
|
98
|
Kuwahara T. The Functional Assessment of LRRK2 in Caenorhabditis elegans Mechanosensory Neurons. Methods Mol Biol 2021; 2322:175-184. [PMID: 34043203 DOI: 10.1007/978-1-0716-1495-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a powerful model organism to systematically analyze the functions of genes of interest in vivo. Especially, C. elegans nervous system is suitable for morphological and functional analyses of neuronal genes due to its optical transparency of the body and the well-established anatomy including neural connections. The C. elegans ortholog of Parkinson's disease-associated gene LRRK2, named lrk-1, has been shown to play a role in the regulation of axonal morphology in a subset of neurons. Here I describe the detailed methodologies for the assessment of LRK-1/LRRK2 function as well as the analysis of genetic interaction involving lrk-1/LRRK2 by performing live imaging of C. elegans mechanosenrory neurons.
Collapse
Affiliation(s)
- Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
99
|
Liu Q, Chen C, Li M, Ke J, Huang Y, Bian Y, Guo S, Wu Y, Han Y, Liu M. Neurodevelopmental Toxicity of Polystyrene Nanoplastics in Caenorhabditis elegans and the Regulating Effect of Presenilin. ACS OMEGA 2020; 5:33170-33177. [PMID: 33403278 PMCID: PMC7774258 DOI: 10.1021/acsomega.0c04830] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
Abstract
As one of the most widely used materials, plastic polymer fragments can abrasively degrade into microplastic (MP) and smaller nanoplastic (NP) particles. The present study aimed to investigate the influence of particle size on neurodevelopmental toxicity induced by polystyrene nanoplastics (PS-NPs) in Caenorhabditis elegans and to explore the underlying potential mechanism. C. elegans were exposed to different concentrations of PS-NPs with various sizes (25, 50, and 100 nm) for 72 h. Our results showed that all of these PS-NPs could dose-dependently induce an increase in reactive oxygen species production and mitochondrial damage in C. elegans, resulting in inhibition of body length, head thrashes, body bending, and dopamine (DA) contents. A weaker neurotoxicity was found in 25 nm PS-NPs compared to 50 and 100 nm PS-NPs, which might be due to preferential cellular distribution and greater polymerization capability of the smaller particles. In addition, all these PS-NPs could induce lipofuscin accumulation and apoptosis independent of particle size, suggesting that oxidative damage and mitochondrial dysfunction may not be the only way responsible for NP-induced neurotoxic effects. Furthermore, the mutant test targeting two presenilin genes (sel-12 and hop-1) showed that sel-12 and hop-1 were involved in regulation of PS-NP-induced neurodevelopmental toxicity and mitochondrial damage. In conclusion, PS-NPs could induce neurodevelopmental toxicity dependent on particle sizes mediated by mitochondrial damage and DA reduction. Enhanced expression of presenilin plays a role in PS-NP-induced oxidative stress and neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Qianyun Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chunxiang Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengting Li
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia Ke
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yichen Huang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuefeng Bian
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shufen Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
100
|
Guerrero-Rubio MA, Hernández-García S, Escribano J, Jiménez-Atiénzar M, Cabanes J, García-Carmona F, Gandía-Herrero F. Betalain health-promoting effects after ingestion in Caenorhabditis elegans are mediated by DAF-16/FOXO and SKN-1/Nrf2 transcription factors. Food Chem 2020; 330:127228. [DOI: 10.1016/j.foodchem.2020.127228] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 01/03/2023]
|