51
|
Noncoding RNAs in Unexplained Recurrent Spontaneous Abortions and Their Diagnostic Potential. DISEASE MARKERS 2019; 2019:7090767. [PMID: 31885742 PMCID: PMC6914936 DOI: 10.1155/2019/7090767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Unexplained recurrent spontaneous abortion (URSA) is defined as the loss of two or more consecutive pregnancies before the 20th week of gestation with normal findings on routine screening tests. Our understanding of the cellular and molecular pathogenesis of URSA is still far from complete. Noncoding RNAs (ncRNAs) play a pivotal role in transcription and expression. The functions of ncRNAs may also improve understanding of URSA pathogenesis. Because of their stability in the circulatory system and at the maternal-fetal interface, it may be possible to use ncRNAs as biomarkers for certain disease states. Here, we provide a narrative review of the current state of knowledge about ncRNAs associated with URSA. The possibility of developing a diagnostic tool using ncRNAs is discussed. The underlying mechanisms of how ncRNAs may lead to the onset of URSA are explored in this review.
Collapse
|
52
|
Bahreini F, Ramezani S, Shahangian SS, Salehi Z, Mashayekhi F. miR-559 polymorphism rs58450758 is linked to breast cancer. Br J Biomed Sci 2019; 77:29-34. [DOI: 10.1080/09674845.2019.1683309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- F Bahreini
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - S Ramezani
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - SS Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Z Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - F Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
53
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Yousefi B, Safa A, Majidinia M, Rameshknia V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J Cell Physiol 2019; 235:5008-5029. [PMID: 31724738 DOI: 10.1002/jcp.29396] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most lethal malignancies in women in the world. Various factors are involved in the development and promotion of the malignancy; most of them involve changes in the expression of certain genes, such as microRNAs (miRNAs). MiRNAs can regulate signaling pathways negatively or positively, thereby affecting tumorigenesis and various aspects of cancer progression, particularly breast cancer. Besides, accumulating data demonstrated that miRNAs are a novel tool for prognosis and diagnosis of breast cancer patients. Herein, we will review the roles of these RNA molecules in several important signaling pathways, such as transforming growth factor, Wnt, Notch, nuclear factor-κ B, phosphoinositide-3-kinase/Akt, and extracellular-signal-regulated kinase/mitogen activated protein kinase signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Babol University Of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
54
|
Bottani M, Banfi G, Lombardi G. Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Common Solid Tumors: Focus on Lung, Breast, Prostate Cancers, and Osteosarcoma. J Clin Med 2019; 8:E1661. [PMID: 31614612 PMCID: PMC6833074 DOI: 10.3390/jcm8101661] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022] Open
Abstract
An early cancer diagnosis is essential to treat and manage patients, but it is difficult to achieve this goal due to the still too low specificity and sensitivity of classical methods (imaging, actual biomarkers), together with the high invasiveness of tissue biopsies. The discovery of novel, reliable, and easily collectable cancer markers is a topic of interest, with human biofluids, especially blood, as important sources of minimal invasive biomarkers such as circulating microRNAs (miRNAs), the most promising. MiRNAs are small non-coding RNAs and known epigenetic modulators of gene expression, with specific roles in cancer development/progression, which are next to be implemented in the clinical routine as biomarkers for early diagnosis and the efficient monitoring of tumor progression and treatment response. Unfortunately, several issues regarding their validation process are still to be resolved. In this review, updated findings specifically focused on the clinical relevance of circulating miRNAs as prognostic and diagnostic biomarkers for the most prevalent cancer types (breast, lung, and prostate cancers in adults, and osteosarcoma in children) are described. In addition, deep analysis of pre-analytical, analytical, and post-analytical issues still affecting the circulation of miRNAs' validation process and routine implementation is included.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Vita-Salute San Raffaele University, 20132 Milano, Italy.
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Dept. of Physiology and Pharmacology, Gdańsk University of Physical Education and Sport, Gdańsk, ul. Kazimierza Górskiego 1, 80-336 Pomorskie, Poland.
| |
Collapse
|
55
|
Yan C, Hu J, Yang Y, Hu H, Zhou D, Ma M, Xu N. Plasma extracellular vesicle‑packaged microRNAs as candidate diagnostic biomarkers for early‑stage breast cancer. Mol Med Rep 2019; 20:3991-4002. [PMID: 31545424 PMCID: PMC6797958 DOI: 10.3892/mmr.2019.10669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/12/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicle-packaged microRNAs (miRNAs) are a class of circulating miRNAs located in the plasma that are packaged into extracellular vesicles. The present study examined the expression profiles of extracellular vesicles and tissue miRNAs with the aim of investigating the miRNA signatures in early-stage breast cancer. The present study identified and compared the extracellular vesicle-packaged miRNA expression signature and tissue miRNA expression signature from healthy individuals (n=10) and patients with early-stage breast cancer (n=12). A total of five miRNAs, including miRNA-375, miRNA-24-2-5p, miRNA-548b-5p, miRNA-655-3P and miRNA-376b-5p, were synchronized in extracellular vesicles and tissues of the breast cancer group when compared with the healthy group. The highest area under the curve (AUC) for a single miRNA was achieved with miRNA-548b-5p [AUC=0.785; 95% confidence interval (CI)=0.585–0.984; P=0.022]. The highest overall AUC was achieved by the combination of miRNA-375, miRNA-655-3p, miRNA-548b-5p and miRNA-24-2-5p (AUC=0.808; 95% CI=0.629–0.986; P=0.013). The Kaplan-Meier curves and log test analysis results of these five miRNAs, especially those for miRNA-548b-5p, were partly consistent with the hypothesis. Two miRNAs (miRNA-548b-5p and miRNA-376b-5p) were positively associated with patient survival, while two miRNAs (miRNA-375 and miRNA-24-2-5p) were negatively associated with patient survival. The present study provided a set of plasma extracellular vesicle-packaged miRNA-based biomarkers for the diagnosis of early-stage breast cancer.
Collapse
Affiliation(s)
- Chen Yan
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Jintao Hu
- Department of Pathology, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Yipeng Yang
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Hong Hu
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Dongxian Zhou
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Min Ma
- College of Traditional Chinese Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Nan Xu
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
56
|
Ibrahim NH, Abdellateif MS, Kassem SHA, Abd El Salam MA, El Gammal MM. Diagnostic significance of miR-21, miR-141, miR-18a and miR-221 as novel biomarkers in prostate cancer among Egyptian patients. Andrologia 2019; 51:e13384. [PMID: 31483058 DOI: 10.1111/and.13384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PC) is considered as the fifth cause of cancer deaths worldwide. The exact etiopathogenesis is unclear; however, genetic predisposition, hormonal influencers, lifestyle and environmental factors act as major contributors. It has been found that several miRNAs may play a crucial role in cancer initiation and progression. Here, in this study, we evaluated the peripheral blood levels of miR-21, miR-141, miR-221 and miR-18a expression among 80 prostate cancer patients (50 localised and 30 metastatic) and 30 benign prostatic hyperplasia patients compared to 50 normal control subjects, using RT-PCR. Our results of analysis of miR-21, miR-141, miR-18a and miR-221 in the plasma of PC patients showed that miR-18a is a powerful discriminator of PC patients from healthy controls as it had the highest AUC (0.966; 95% CI, 0.937-1.000), while miR-221 provided better differentiation of metastatic from localised PC (sensitivity was 92.9% at 100% specificity), and when we combine miR-18a and miR-221 for differentiating patients with MPC, it will increase the sensitivity to 96.4% at a specificity of 100% (AUC, 0.997; 95% CI, 0.988-1.0) (p < .000). This current study recommends that analysis of these miRNAs might have clinical value in enhancing PSA testing.
Collapse
Affiliation(s)
- Noha H Ibrahim
- Department of Clinical and Chemical Pathology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | | | | | - Mosaad M El Gammal
- Medical Oncology Department, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| |
Collapse
|
57
|
Yang B, Zhang S, Fang X, Kong J. Double signal amplification strategy for ultrasensitive electrochemical biosensor based on nuclease and quantum dot-DNA nanocomposites in the detection of breast cancer 1 gene mutation. Biosens Bioelectron 2019; 142:111544. [PMID: 31376717 DOI: 10.1016/j.bios.2019.111544] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Rapid and efficient detection of microRNA (miRNA) of breast cancer 1 gene mutation (BRCA1) at their earliest stages is one of the crucial challenges in cancer diagnostics. In this study, a highly-sensitive electrochemical DNA biosensor was fabricated by double signal amplification (DSA) strategy for the detection of ultra-trace miRNA of BRCA1. In the presence of target miRNA of BRCA1, the well-matched RNA-DNA duplexes were specifically recognized by double-strand specific nuclease (DSN), and the DNA part of the duplexes were then cleaved and miRNAs were released to trigger another following cycle, which produced a primarily amplified signal by such a cyclic enzymatic signal amplification (CESA). Then triple-CdTe quantum dot labelled DNA nanocomposites (3-QD@DNA NC) was selectively hybridized with the cleaved DNA probe on the electrode and produced multiply amplified signals. The biosensor exhibited a high sensitivity for the detection of miRNA of BRCA1 in concentrations ranging from 5 aM to 5 fM, and its detection limit of 1.2 aM was obtained, which is two or three orders of magnitude lower than those by single signal amplification strategy such as CESA or QD-labeled DNA probes. The as-prepared biosensor was successfully used to detect the miRNA of BRCA1 in human serum samples with acceptable stability, good reproducibility, and good recovery. The proposed DNA biosensor based on double signal amplification strategy provided a feasible, rapid, and sensitive platform for early clinical diagnosis and practical applications.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, PR China
| | - Song Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, PR China.
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, PR China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
58
|
Chuma M, Toyoda H, Matsuzaki J, Saito Y, Kumada T, Tada T, Kaneoka Y, Maeda A, Yokoo H, Ogawa K, Kamiyama T, Taketomi A, Matsuno Y, Yazawa K, Takeda K, Kunisaki C, Ogushi K, Moriya S, Hara K, Nozaki A, Kondo M, Fukuda H, Numata K, Tanaka K, Maeda S, Sakamoto N. Circulating microRNA-1246 as a possible biomarker for early tumor recurrence of hepatocellular carcinoma. Hepatol Res 2019; 49:810-822. [PMID: 30920086 DOI: 10.1111/hepr.13338] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/08/2019] [Accepted: 03/16/2019] [Indexed: 02/05/2023]
Abstract
AIMS Early tumor recurrence (ETR) after hepatic resection is a crucial predictor of poor prognosis in patients with hepatocellular carcinoma (HCC). The aim of this study was to identify clinically significant serum microRNAs (miRNAs) involved in the ETR of HCC. METHODS We compared expression profiles of circulating miRNAs from serum samples between five HCC patients with ETR (recurrence within 12 months after hepatectomy) and five HCC patients without recurrence using microarray analysis of miRNA. The identified miRNA associated with ETR was further verified in 121 HCC patients, 73 liver disease patients, and 15 health controls by real-time quantitative reverse transcription-polymerase chain reaction (PCR). RESULTS Of the approximately 2000 miRNAs analyzed, we identified 15 miRNAs for which expression levels correlated significantly with ETR. Of these miRNAs, we further investigated expression of miRNA-1246 (miR-1246). Quantitative PCR confirmed that miR-1246 was upregulated in HCC with ETR, compared to the level in HCC without ETR (P < 0.001). Serum miR-1246 showed a receiver operating characteristic curve area of 0.762, with 77.4% specificity and 54.1% sensitivity in discriminating HCC patients with ETR from HCC patients without ETR. Altered expression of miR-1246 was associated with aggressive tumor characteristics, including tumor-node-metastasis classification (P = 0.0413), tumor differentiation (P = 0.0419), and portal vein invasion (P = 0.0394). Moreover, multivariate Cox regression analysis identified serum miR-1246 level as an independent risk factor for overall survival (hazard ratio, 2.784; 95% confidence interval, 1.528-5.071; P = 0.0008). CONCLUSION Circulating miR-1246 in serum has strong potential as a novel ETR and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Makoto Chuma
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan.,Departments of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Hidenori Toyoda
- Departments of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Takashi Kumada
- Departments of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Toshifumi Tada
- Departments of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yuji Kaneoka
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Japan
| | - Atsuyuki Maeda
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Japan
| | - Hideki Yokoo
- Department of Gastroenterological Surgery I, Hokkaido University Hospital, Sapporo, Japan
| | - Koji Ogawa
- Departments of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Keiichi Yazawa
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Kazuhisa Takeda
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Chikara Kunisaki
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Katsuaki Ogushi
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Satoshi Moriya
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Koji Hara
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Akito Nozaki
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Masaaki Kondo
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Fukuda
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Katsuaki Tanaka
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Naoya Sakamoto
- Departments of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
59
|
Clinical Translatability of "Identified" Circulating miRNAs for Diagnosing Breast Cancer: Overview and Update. Cancers (Basel) 2019; 11:cancers11070901. [PMID: 31252695 PMCID: PMC6678980 DOI: 10.3390/cancers11070901] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
The effective management of patients with breast cancer (BC) depends on the early diagnosis of the disease. Currently, BC diagnosis is based on diagnostic imaging and biopsy, while the use of non-invasive circulating biomarkers for diagnosis remains an unmet need. Among the plethora of proposed non-invasive biomarkers, circulating microRNAs (miRNAs) have been considered promising diagnostic molecules because they are very stable in biological fluids and easily detectable. Although the discovery of miRNAs has opened a new avenue for their clinical application, the clinical translatability of these molecules remains unclear. This review analyses the role of circulating miRNAs as BC diagnostic biomarkers and focuses on two essential requirements to evaluate their clinical validity: i) Specificity and ii) consistent expression between the blood and tissue. These two issues were analyzed in depth using the Human miRNA Disease Database (HMDD v3.0) and the free search engine PubMed. One hundred and sixty three BC-associated miRNAs were selected and analyzed for their specificity among all human pathologies that shared deregulation (291) and consistent expression in the bloodstream and the tissue. In addition, we provide an overview of the current clinical trials examining miRNAs in BC. In conclusion, we highlight pitfalls in the translatability of circulating miRNAs into clinical practice due to the lack of specificity and a consistent expression pattern between the tissue and blood.
Collapse
|
60
|
Why the Gold Standard Approach by Mammography Demands Extension by Multiomics? Application of Liquid Biopsy miRNA Profiles to Breast Cancer Disease Management. Int J Mol Sci 2019; 20:ijms20122878. [PMID: 31200461 PMCID: PMC6627787 DOI: 10.3390/ijms20122878] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
In the global context, the epidemic of breast cancer (BC) is evident for the early 21st century. Evidence shows that national mammography screening programs have sufficiently reduced BC related mortality. Therefore, the great utility of the mammography-based screening is not an issue. However, both false positive and false negative BC diagnosis, excessive biopsies, and irradiation linked to mammography application, as well as sub-optimal mammography-based screening, such as in the case of high-dense breast tissue in young females, altogether increase awareness among the experts regarding the limitations of mammography-based screening. Severe concerns regarding the mammography as the “golden standard” approach demanding complementary tools to cover the evident deficits led the authors to present innovative strategies, which would sufficiently improve the quality of the BC management and services to the patient. Contextually, this article provides insights into mammography deficits and current clinical data demonstrating the great potential of non-invasive diagnostic tools utilizing circulating miRNA profiles as an adjunct to conventional mammography for the population screening and personalization of BC management.
Collapse
|
61
|
Ramshani Z, Zhang C, Richards K, Chen L, Xu G, Stiles BL, Hill R, Senapati S, Go DB, Chang HC. Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device. Commun Biol 2019; 2:189. [PMID: 31123713 PMCID: PMC6527557 DOI: 10.1038/s42003-019-0435-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EV) containing microRNAs (miRNAs) have tremendous potential as biomarkers for the early detection of disease. Here, we present a simple and rapid PCR-free integrated microfluidics platform capable of absolute quantification (<10% uncertainty) of both free-floating miRNAs and EV-miRNAs in plasma with 1 pM detection sensitivity. The assay time is only 30 minutes as opposed to 13 h and requires only ~20 μL of sample as oppose to 1 mL for conventional RT-qPCR techniques. The platform integrates a surface acoustic wave (SAW) EV lysing microfluidic chip with a concentration and sensing microfluidic chip incorporating an electrokinetic membrane sensor that is based on non-equilibrium ionic currents. Unlike conventional RT-qPCR methods, this technology does not require EV extraction, RNA purification, reverse transcription, or amplification. This platform can be easily extended for other RNA and DNA targets of interest, thus providing a viable screening tool for early disease diagnosis, prognosis, and monitoring of therapeutic response.
Collapse
Affiliation(s)
- Zeinab Ramshani
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Chenguang Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Katherine Richards
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Lulu Chen
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90211 USA
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632 Guangdong China
| | - Bangyan L. Stiles
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90211 USA
| | - Reginald Hill
- Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Beverly Hills, CA 90211 USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - David B. Go
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
62
|
Ding Z, Ye P, Yang X, Cai H. LncRNA FBXL19-AS1 promotes breast cancer cells proliferation and invasion via acting as a molecular sponge to miR-718. Biosci Rep 2019; 39:BSR20182018. [PMID: 30886065 PMCID: PMC6443947 DOI: 10.1042/bsr20182018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/18/2019] [Accepted: 03/15/2019] [Indexed: 12/02/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been suggested to serve vital roles in tumor initiation and progression. However, the expression and underlying mechanisms of lncRNA FBXL19-AS1 in breast cancer (BC) remain unclear. In the present study, we found that FBXL19-AS1 expression was significantly up-regulated and correlated with advanced clinical features and poor overall survival of BC patients. Functionally, FBXL19-AS1 inhibition suppressed BC cells proliferation, invasion, and epithelial-mesenchymal transition (EMT) processes in vitro and reduced tumor growth in vivo In addition, we found that FBXL19-AS1 might function as a ceRNA to sponge miR-718, and miR-718 could rescue the effects of FBXL19-AS1 on BC cells progression. Therefore, these findings suggested that FBXL19-AS1 might serve as an oncogenic lncRNA and promoted BC progression by sponging miR-718, indicating FBXL19-AS1 could serve as a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Zhenmin Ding
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Pengcheng Ye
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaohu Yang
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hongmiao Cai
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
63
|
Anwar SL, Sari DNI, Kartika AI, Fitria MS, Tanjung DS, Rakhmina D, Wardana T, Astuti I, Haryana SM, Aryandono T. Upregulation of Circulating MiR-21 Expression as a Potential
Biomarker for Therapeutic Monitoring and Clinical Outcome
in Breast Cancer. Asian Pac J Cancer Prev 2019; 20:1223-1228. [PMID: 31030498 PMCID: PMC6948877 DOI: 10.31557/apjcp.2019.20.4.1223] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Aberrant patterns of microRNA expression have been highlighted as a potential clinical biomarker in breast cancer as the most frequent cancer among women that contributes nearly a quarter of total cancer incidence in 2018. Upregulation of microRNA-21 (miR-21) is associated with adverse clinical outcomes in breast cancer. However, the use of circulating free miR-21 as a non-invasive biomarker for diagnosis and therapeutic monitoring in breast cancer is not well established. We quantified the levels of circulating miR-21 expression and analyzed their correlation with clinicopathological variables and progression-free survival. Materials and Methods: This initial study included a cohort of 102 breast cancer patients of different subtypes and clinicat stages. We also included 15 unrelated healthy women. Venous blood from patients was collected at diagnosis and after treatment of surgery and chemotherapy. MiR-21 expression was quantified from total RNA fraction isolated from patient’s plasma. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to analyzed miR-21 expression. Results: Expression of circulating miR-21 was significantly elevated in breast cancer patients compared to healthy women (median miR-21 expression levels were 7.67±2.2 and 1.28±0.16, respectively; p<0.0001). Significant reduction of miR-21 expression was observed in breast cancer patients after completion of surgery and chemotherapy (median miR-21 expression levels were 7.67±2.2 at diagnosis and 2.16±1.28 after treatment, respectively; p<0.0001). MiR-21 expression was higher in breast cancer patients younger than 40-year-old but was not significantly different according to different histopathological grades and clinical stages at diagnosis. Patients with upregulation of circulating miR-21 were associated with poor progression-free survival (median survival 72 vs 86 weeks, respectively; log-rank (Mantel-Cox) test, p=0.049). Conclusion: MiR-21 expression was upregulated in breast cancer patients and might serve as a therapeutic monitoring marker.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Dwi Nur Indah Sari
- Graduate Program, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Health Sciences, Setia Budi University, Surakarta, Indonesia
| | - Aprilia Indra Kartika
- Graduate Program, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Medical Laboratory Technology, Health and Nursing Faculty, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Meutia Srikandi Fitria
- Graduate Program, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Medical Laboratory Technology, Health and Nursing Faculty, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Dewi Sahfitri Tanjung
- Graduate Program, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Current position: PT Etana Biotechnologies Indonesia, Jakarta, Indonesia
| | - Dinna Rakhmina
- Graduate Program, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Politeknik Kesehatan Kemenkes Banjarmasin, Banjarmasin, Indonesia
| | - Tirta Wardana
- Graduate Program, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Indwiani Astuti
- Graduate Program, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Departement of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia Mubarika Haryana
- Graduate Program, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Teguh Aryandono
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
64
|
Sasaki R, Kanda T, Yokosuka O, Kato N, Matsuoka S, Moriyama M. Exosomes and Hepatocellular Carcinoma: From Bench to Bedside. Int J Mol Sci 2019; 20:E1406. [PMID: 30897788 PMCID: PMC6471845 DOI: 10.3390/ijms20061406] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
As hepatocellular carcinoma (HCC) usually occurs in the background of cirrhosis, which is an end-stage form of liver diseases, treatment options for advanced HCC are limited, due to poor liver function. The exosome is a nanometer-sized membrane vesicle structure that originates from the endosome. Exosome-mediated transfer of proteins, DNAs and various forms of RNA, such as microRNA (miRNA), long noncoding RNA (lncRNA) and messenger RNA (mRNA), contributes to the development of HCC. Exosomes mediate communication between both HCC and non-HCC cells involved in tumor-associated cells, and several molecules are implicated in exosome biogenesis. Exosomes may be potential diagnostic biomarkers for early-stage HCC. Exosomal proteins, miRNAs and lncRNAs could provide new biomarker information for HCC. Exosomes are also potential targets for the treatment of HCC. Notably, further efforts are required in this field. We reviewed recent literature and demonstrated how useful exosomes are for diagnosing patients with HCC, treating patients with HCC and predicting the prognosis of HCC patients.
Collapse
Affiliation(s)
- Reina Sasaki
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Naoya Kato
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shunichi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
65
|
Arabkari V, Clancy E, Dwyer RM, Kerin MJ, Kalinina O, Holian E, Newell J, Smith TJ. Relative and Absolute Expression Analysis of MicroRNAs Associated with Luminal A Breast Cancer- A Comparison. Pathol Oncol Res 2019; 26:833-844. [PMID: 30840191 DOI: 10.1007/s12253-019-00627-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs, as small non-coding regulatory RNAs, play crucial roles in various aspects of breast cancer biology. They have prognostic and diagnostic value, which makes them very interesting molecules to investigate. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is the gold standard method to analyse miRNA expression in breast cancer patients. This study investigated two RT-qPCR methods (absolute and relative) to determine the expression of ten miRNAs in whole blood samples obtained from luminal A breast cancer patients compared to healthy controls. Whole blood samples were collected from 38 luminal A breast cancer patients and 20 healthy controls in Paxgene blood RNA tubes. Total RNA was extracted and analysed by relative and absolute RT-qPCR. For relative RT-qPCR, miR-16 was used as an endogenous control. For absolute RT-qPCR, standard curves were generated using synthetic miRNA oligonucleotides to determine the absolute copy number of each miRNA. Of the ten miRNAs that were analysed, the absolute RT-qPCR method identified six miRNAs (miR-16, miR-145, miR-155, miR-451a, miR-21 and miR-486) that were upregulated and one miRNA (miR-195) that was downregulated. ROC curve and AUC analysis of the data found that the combination of three miRNAs (miR-145, miR-195 and miR-486) had the best diagnostic value for luminal A breast cancer with an AUC of 0.875, with 76% sensitivity and 81% specificity. On the other hand, the relative RT-qPCR method identified two miRNAs (miR-155 and miR-486) that were upregulated and miR-195, which was downregulated. Using this approach, the combination of three miRNAs (miR-155, miR-195 and miR-486) was showed to have an AUC of 0.657 with 65% sensitivity and 69% specificity. We conclude that miR-16 is not a suitable normalizer for the relative expression profiling of miRNAs in luminal A breast cancer patients. Compared to relative quantification, absolute quantification assay is a better method to determine the expression level of circulating miRNAs in Luminal A breast cancer.
Collapse
Affiliation(s)
- Vahid Arabkari
- Molecular Diagnostics Research Group, School of Natural Sciences and National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Ireland.
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, NUI Galway, Galway, Ireland.
| | - Eoin Clancy
- Molecular Diagnostics Research Group, School of Natural Sciences and National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Ireland
| | - Róisín M Dwyer
- Discipline of Surgery, School of Medicine, Lambe Institute for Translational Research, NUI Galway, Galway, Ireland
| | - Michael J Kerin
- Discipline of Surgery, School of Medicine, Lambe Institute for Translational Research, NUI Galway, Galway, Ireland
| | - Olga Kalinina
- Clinical Research Facility and School of Mathematics, Statistics and Applied Mathematics, NUI Galway, Galway, Ireland
| | - Emma Holian
- Clinical Research Facility and School of Mathematics, Statistics and Applied Mathematics, NUI Galway, Galway, Ireland
| | - John Newell
- Clinical Research Facility and School of Mathematics, Statistics and Applied Mathematics, NUI Galway, Galway, Ireland
| | - Terry J Smith
- Molecular Diagnostics Research Group, School of Natural Sciences and National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Ireland.
| |
Collapse
|
66
|
Swellam M, Ramadan A, El-Hussieny EA, Bakr NM, Hassan NM, Sobeih ME, EzzElArab LR. Clinical significance of blood-based miRNAs as diagnostic and prognostic nucleic acid markers in breast cancer: Comparative to conventional tumor markers. J Cell Biochem 2019; 120:12321-12330. [PMID: 30825229 DOI: 10.1002/jcb.28496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
microRNAs (miRNAs) are implicated in carcinogenesis and their expression in biological fluids offer great potential as nucleic acid markers for cancer detection and progression. Authors investigated the expression level of miRNAs (miRNA-21, miRNA-126, and miRNA-155) to evaluate their role as diagnostic and prognostic markers for breast cancer compared with other commonly used protein-based markers (CEA and CA15-3). Serum samples from patients with breast cancer (n = 96), patients with benign breast lesion (n = 47), and healthy individuals (n = 39) were enrolled for detection of miRNA expression levels and protein-based tumor markers using fluorescent real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Correlation among investigated markers with clinicopathological factors and clinical outcomes were determined. Expression of miRNA-21 and miRNA-155 revealed significant increases in patients with breast cancer compared with both benign and control groups, the same result was reported for tumor markers; on the other hand, miRNA-126 was significantly decreased in breast cancer group as compared with the other two groups. miRNA frequencies were significantly related to clinical staging and histological grading as compared with tumor markers. Patients with breast cancer with increased miRNA-21 and miRNA-155 and decreased miRNA-126 expressions had significantly worse disease-free survival, while only miRNA-21 and miRNA-126 showed poor OS (P< 0.005). In conclusion, investigated miRNAs were superior over tumor markers for the early stage of breast cancer especially those with high-risk factor and their assessment in blood facilitates their role as a potential prognostic molecular marker.
Collapse
Affiliation(s)
- Menha Swellam
- Biochemistry Department Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt.,High Throughput Molecular and Genetic Laboratory, Center for Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Amal Ramadan
- Biochemistry Department Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt.,High Throughput Molecular and Genetic Laboratory, Center for Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Enas A El-Hussieny
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Noha M Bakr
- Biochemistry Department Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt.,High Throughput Molecular and Genetic Laboratory, Center for Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Emam Sobeih
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Lobna R EzzElArab
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
67
|
Integrating random walk and binary regression to identify novel miRNA-disease association. BMC Bioinformatics 2019; 20:59. [PMID: 30691413 PMCID: PMC6350368 DOI: 10.1186/s12859-019-2640-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background In the last few decades, cumulative experimental researches have witnessed and verified the important roles of microRNAs (miRNAs) in the development of human complex diseases. Benefitting from the rapid growth both in the availability of miRNA-related data and the development of various analysis methodologies, up until recently, some computational models have been developed to predict human disease related miRNAs, efficiently and quickly. Results In this work, we proposed a computational model of Random Walk and Binary Regression-based MiRNA-Disease Association prediction (RWBRMDA). RWBRMDA extracted features for each miRNA from random walk with restart on the integrated miRNA similarity network for binary logistic regression to predict potential miRNA-disease associations. RWBRMDA obtained AUC of 0.8076 in the leave-one-out cross validation. Additionally, we carried out three different patterns of case studies on four human complex diseases. Specifically, Esophageal cancer and Prostate cancer were conducted as one kind of case study based on known miRNA-disease associations in HMDD v2.0 database. Out of the top 50 predicted miRNAs, 94 and 90% were respectively confirmed by recent experimental reports. To simulate new disease without known related miRNAs, the information of known Breast cancer related miRNAs was removed. As a result, 98% of the top 50 predicted miRNAs for Breast cancer were confirmed. Lymphoma, the verified ratio of which was 88%, was used to assess the prediction robustness of RWBRMDA based on the association records in HMDD v1.0 database. Conclusions We anticipated that RWBRMDA could benefit the future experimental investigations about the relation between human disease and miRNAs by generating promising and testable top-ranked miRNAs, and significantly reducing the effort and cost of identification works. Electronic supplementary material The online version of this article (10.1186/s12859-019-2640-9) contains supplementary material, which is available to authorized users.
Collapse
|
68
|
Cai KT, Liu AG, Wang ZF, Jiang HW, Zeng JJ, He RQ, Ma J, Chen G, Zhong JC. Expression and potential molecular mechanisms of miR‑204‑5p in breast cancer, based on bioinformatics and a meta‑analysis of 2,306 cases. Mol Med Rep 2018; 19:1168-1184. [PMID: 30569120 PMCID: PMC6323248 DOI: 10.3892/mmr.2018.9764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. However, there is insufficient research that focuses on the expression and molecular mechanisms of microRNA (miR)‑204‑5p in BC. In the current study, data were downloaded from the Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO) and the University of California Santa Cruz (UCSC) Xena databases. They were then used to undertake a meta‑analysis that leveraged the standard mean difference (SMD) and summarized receiver operating characteristic (sROC) to evaluate the expression of the precursor miR‑204 and mature miR‑204‑5p in BC. Additionally, an intersection of predicted genes, differentially expressed genes (DEGs) from the TCGA database and the GEO database were plotted to acquire desirable putative genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein‑protein interaction (PPI) network analyses were performed to assess the potential pathways and hub genes of miR‑204‑5p in BC. A decreased trend in precursor miR‑204 expression was detected in 1,077 BC tissue samples in comparison to 104 para‑carcinoma tissue samples in the TCGA database. Further, the expression of mature miR‑204‑5p was markedly downregulated in 756 BC tissue samples in comparison to 76 para‑carcinoma tissue samples in the UCSC Xena database. The outcome of the SMD from meta‑analysis also indicated that the expression of miR‑204‑5p was markedly reduced in 2,306 BC tissue samples in comparison to 367 para‑carcinoma tissue samples. Additionally, the ROC and sROC values indicated that miR‑204‑5p had a great discriminatory capacity for BC. In GO analysis, 'cell development', 'cell surface activity', and 'receptor agonist activity' were the most enriched terms; in KEGG analysis, 'endocytosis' was significantly enriched. Rac GTPase activating protein 1 (RACGAP1) was considered the hub gene in the PPI network. In conclusion, miR‑204‑5p may serve a suppressor role in the oncogenesis and advancement of BC, and miR‑204‑5p may have crucial functions in BC by targeting RACGAP1.
Collapse
Affiliation(s)
- Kai-Teng Cai
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - An-Gui Liu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ze-Feng Wang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hang-Wei Jiang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
69
|
MicroRNA-132, miR-146a, and miR-155 as potential biomarkers of methotrexate response in patients with rheumatoid arthritis. Clin Rheumatol 2018; 38:877-884. [PMID: 30511295 DOI: 10.1007/s10067-018-4380-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) patients have high expression levels of hsa-miR-132-3p, hsa-miR-146a-5p, and hsa-miR-155-5p in peripheral blood. We studied if baseline blood levels of these microRNAs (miRNAs) could predict response to methotrexate (MTX). METHODS RA patients (the American College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) criteria) with active disease (disease-modifying anti-rheumatic drug (DMARD)-naïve and Disease Activity Score 28 (DAS28) > 3.2) were enrolled. They were treated with MTX by gradually increasing dose up to 25 mg/week. After 4 months, the DAS28 score was calculated and EULAR response was assessed. The hsa-miR-132-3p, hsa-miR-146a-5p, and hsa-miR-155-5p levels were measured by real-time qPCR in whole-blood RNA at baseline and 4 months after therapy, using hsa-let-7a-5p as housekeeping gene. Results are expressed as median (interquartile range). RESULTS The 94 enrolled patients (81 females) had a median age of 40 (17) years, disease duration of (24) months, and DAS28 4.61 (1.11). After 4 months of therapy, 73 were classified as responders and 21 as non-responders. Baseline levels of all three miRNAs were lower in responders than non-responders, hsa-miR-132-3p (- 8.03 (0.70) versus - 7.47 (0.85), P < 0.05), hsa-miR-146a-5p (- 5.11 (0.88) versus - 4.62 (0.90), P < 0.05), and hsa-miR-155-5p (- 7.59 (1.07) versus - 7 (0.72), P = 0.002). Receiver operating characteristic curve analysis showed that all three miRNAs were also good predictors of MTX response, showing the following values: hsa-miR-132-3p (area under curve (AUC) 0.756, P < 0.05), hsa-miR-146a-5p (AUC 0.760, P < 0.05), and hsa-miR-155-5p (AUC 0.728, P = 0.002). CONCLUSION hsa-miR-132-3p, hsa-miR-146a-5p, and hsa-miR-155-5p are potential biomarkers of responsiveness to MTX therapy.
Collapse
|
70
|
MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep 2018; 8:11584. [PMID: 30072748 PMCID: PMC6072710 DOI: 10.1038/s41598-018-29917-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/09/2018] [Indexed: 11/12/2022] Open
Abstract
Breast cancer is a heterogeneous disease with distinct molecular subtypes including the aggressive subtype triple-negative breast cancer (TNBC). We compared blood-borne miRNA signatures of early-stage basal-like (cytokeratin-CK5-positive) TNBC patients to age-matched controls. The miRNAs of TNBC patients were assessed prior to and following platinum-based neoadjuvant chemotherapy (NCT). After an exploratory genome-wide study on 21 cases and 21 controls using microarrays, the identified signatures were verified independently in two laboratories on the same and a new cohort by RT-qPCR. We differentiated the blood of TNBC patients before NCT from controls with 84% sensitivity. The most significant miRNA for this diagnostic classification was miR-126-5p (two tailed t-test p-value of 1.4 × 10−5). Validation confirmed the microarray results for all tested miRNAs. Comparing cancer patients prior to and post NCT highlighted 321 significant miRNAs (among them miR-34a, p-value of 1.2 × 10−23). Our results also suggest that changes in miRNA expression during NCT may have predictive potential to predict pathological complete response (pCR). In conclusion we report that miRNA expression measured from blood facilitates early and minimally-invasive diagnosis of basal-like TNBC. We also demonstrate that NCT has a significant influence on miRNA expression. Finally, we show that blood-borne miRNA profiles monitored over time have potential to predict pCR.
Collapse
|
71
|
Zubor P, Kubatka P, Dankova Z, Gondova A, Kajo K, Hatok J, Samec M, Jagelkova M, Krivus S, Holubekova V, Bujnak J, Laucekova Z, Zelinova K, Stastny I, Nachajova M, Danko J, Golubnitschaja O. miRNA in a multiomic context for diagnosis, treatment monitoring and personalized management of metastatic breast cancer. Future Oncol 2018; 14:1847-1867. [DOI: 10.2217/fon-2018-0061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metastatic breast cancer is characterized by aggressive spreading to distant organs. Despite huge multilevel research, there are still several important challenges that have to be clarified in the management of this disease. Therefore, recent investigations have implemented a modern, multiomic approach with the aim of identifying specific biomarkers for not only early detection but also to predict treatment responses and metastatic spread. Specific attention is paid to short miRNAs, which regulate gene expression at the post-transcriptional level. Aberrant miRNA expression could initiate cancer development, cell proliferation, invasion, migration, metastatic spread or drug resistance. An miRNA signature is, therefore, believed to be a promising biomarker and prediction tool that could be utilized in all phases of carcinogenesis. This article offers comprehensive information about miRNA profiles useful for diagnostic and treatment purposes that may sufficiently advance breast cancer management and improve individual outcomes in the near future.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Peter Kubatka
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Zuzana Dankova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Alexandra Gondova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Karol Kajo
- Department of Pathology, St Elizabeth Cancer Institute Hospital, Bratislava, Slovak Republic
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jozef Hatok
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Marek Samec
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Marianna Jagelkova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Stefan Krivus
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Veronika Holubekova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jan Bujnak
- Department of Obstetrics & Gynecology, Kukuras Michalovce Hospital, Michalovce, Slovak Republic
- Oncogynecology Unit, Penta Hospitals International, Svet Zdravia, Michalovce, Slovak Republic
| | - Zuzana Laucekova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Katarina Zelinova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Igor Stastny
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Marcela Nachajova
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Jan Danko
- Department of Obstetrics & Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovak Republic
| | - Olga Golubnitschaja
- Radiological Clinic, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- Breast Cancer Research Center, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- Center for Integrated Oncology, Cologne-Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| |
Collapse
|
72
|
Lagendijk M, Sadaatmand S, Koppert LB, Tilanus-Linthorst MMA, de Weerd V, Ramírez-Moreno R, Smid M, Sieuwerts AM, Martens JWM. MicroRNA expression in pre-treatment plasma of patients with benign breast diseases and breast cancer. Oncotarget 2018; 9:24335-24346. [PMID: 29849944 PMCID: PMC5966243 DOI: 10.18632/oncotarget.25262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRs) are small RNA molecules, influencing messenger RNA (mRNA) expression and translation, and are readily detectable in blood. Some have been reported as potential breast cancer biomarkers. This study aimed to identify and validate miRs indicative of breast cancer. Results Based on the discovery and literature, 18 potentially informative miRs were quantified in the validation cohort. Irrespective of patient and tumour characteristics, hsa-miR-652-5p was significantly upregulated in the malignant compared to benign patients (1.26 fold, P = 0.005) and therefore validated as potential biomarker. In the validation cohort literature-based hsa-let-7b levels were higher in malignant patients as well (1.53 fold, P = 0.011). Two miRs differentiated benign wildtype from benign BRCA1 mutation carriers and an additional 8 miRs differentiated metastastic (n = 8) from non-metastatic (n = 41) cases in the validation cohort. Methods Pre-treatment plasma samples were collected of patients with benign breast disease and breast cancer and divided over a discovery (n = 31) and validation (n = 84) cohort. From the discovery cohort miRs differentially expressed between benign and malignant cases were identified using a 2,000-miR microarray. Literature-based miRs differentiating benign from malignant disease were added. Using RT-qPCR, their expression was investigated in a validation cohort consisting of pre-treatment benign, malignant and metastatic samples. Additionally, benign and malignant cases were compared to benign and malignant cases of BRCA1-mutation carriers. Conclusions Plasma microRNA levels differed between patients with and without breast cancer, between benign disease from wildtype and BRCA1-mutation carriers and between breast cancer with and without metastases. Hsa-miR-652-5p was validated as a potential biomarker for breast cancer.
Collapse
Affiliation(s)
- Mirelle Lagendijk
- Department of Surgical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Sepideh Sadaatmand
- Department of Surgical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Linetta B Koppert
- Department of Surgical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | | | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Raquel Ramírez-Moreno
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands.,Cancer Genomics Centre Netherlands, Erasmus University MC, CN 3015, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands.,Cancer Genomics Centre Netherlands, Erasmus University MC, CN 3015, Rotterdam, The Netherlands
| |
Collapse
|
73
|
Xiong DD, Chen H, He RQ, Lan AH, Zhong JC, Chen G, Feng ZB, Wei KL. MicroRNA-671-3p inhibits the development of breast cancer: A study based on in vitro experiments, in-house quantitative polymerase chain reaction and bioinformatics analysis. Int J Oncol 2018; 52:1801-1814. [PMID: 29620195 PMCID: PMC5919715 DOI: 10.3892/ijo.2018.4339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are highly conserved small noncoding RNA molecules involved in gene regulation. An increasing number of studies have demonstrated that miRNAs act as oncogenes or antioncogenes in various types of cancer, including breast cancer (BC). However, the exact role of miR‑671‑3p in BC has not yet been reported. In the present study, in vitro experiments were implemented to explore the effects of miR‑671‑3p on the proliferation and apoptosis of BC cells, and reverse transcription‑quantitative polymerase chain reaction was conducted using in‑house clinical BC samples to address the expression level and clinical value of miR‑671‑3p in BC. Simultaneously, miR‑671‑3p target genes were collected, and subsequent bioinformatics analyses were executed to probe the potential signaling pathway through which miR‑671‑3p influenced the occurrence and progression of BC. According to the results, the expression level of miR‑671‑3p was lower in BC tissues compared with that in adjacent non‑tumorous tissues (P=0.048), and the area under the curve was 0.697 (95% confidence interval=0.538‑0.856), with a sensitivity and specificity of 0.818 and 0.579, respectively. Forced miR‑671‑3p expression in the BC cell line MDA‑MB‑231 evidently arrested cell proliferation and induced cell apoptosis. Furthermore, in silico enrichment analyses suggested that miR‑671‑3p may be involved in the initiation and progression of BC through the targeting of genes associated with the Wnt signaling pathway. In conclusion, the present study findings suggested that miR‑671‑3p may function as a tumor suppressor in BC by influencing the Wnt signaling cascade, which provides a prospective molecular target for the therapy of BC.
Collapse
Affiliation(s)
- Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hao Chen
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ai-Hua Lan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Kang-Lai Wei
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| |
Collapse
|
74
|
Huang L, Li F, Fu Q, Yang X, Deng S, Wei L. Role of miR-449a in the Activation and Metabolism of CD4 + T Cells. Transplant Proc 2018; 50:1519-1524. [PMID: 29880381 DOI: 10.1016/j.transproceed.2018.02.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute rejection is a significant challenge after organ transplantation. The CD4+ T-cell‒mediated immune response plays an important role in acute transplant rejection. It was also found that miR-449a microRNA regulates the alloimmune response in a model of heart transplantation in mice. Our goal was to determine the role of miR-449a in the regulation of CD4+ T cells. METHODS We examined miR-449a expression in peripheral blood mononuclear cells (PBMCs) and graft-infiltrating lymphocytes (GILs) between syngeneic transplant and allogeneic transplant groups on day 7 post‒heart transplantation. We also examined miR-449a expression in CD4+ T-cell activation and mixed-lymphocyte reactions (MLRs) in vitro. To evaluate the effect of miR-449a on CD4+ T-cell metabolism, we analyzed key metabolic parameters using XFp extracellular flux analyses. RESULTS Our in vivo heart transplant models showed that the expression of miR-449a in PBMCs and in GILs significantly increased in the allogeneic groups in comparison to the syngeneic groups (P < .01). Furthermore, in vitro analysis confirmed that the expression of miR-449a was significantly elevated in activated CD4+ T cells. Reduction of miR-449a expression in CD4+ T cells decreased the mitochondrial respiration in the same CD4+ T cells. CONCLUSION Our results reveal that miR-449a microRNA was elevated in allogeneic heart allografts. This correlated with an increased miR-449a expression in activated CD4+ T cells. Inhibition of miR-449a in activated CD4+ T cells coincided with reduced mitochondrial respiration, suggesting that miR-449a influences CD4+ T-cell activation during the alloimmune response by regulating metabolic status.
Collapse
Affiliation(s)
- L Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - F Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Q Fu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - X Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - S Deng
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Organ Transplantation Translational Medicine Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - L Wei
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Organ Transplantation Translational Medicine Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
75
|
Heydari N, Nikbakhsh N, Sadeghi F, Farnoush N, Khafri S, Bastami M, Parsian H. Overexpression of serum MicroRNA-140-3p in premenopausal women with newly diagnosed breast cancer. Gene 2018; 655:25-29. [PMID: 29474861 DOI: 10.1016/j.gene.2018.02.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/16/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
Abstract
AIMS The purpose of the present study was to evaluate microRNA-140-3p expression level in breast cancer patients in comparison to healthy controls. PATIENTS & METHODS Serum microRNA-140-3p level was quantified by realtime quantitative reverse transcription PCR in 40 women with breast cancer and 40 healthy subjects. RESULTS Serum microRNA-140-3p level in patients compared to healthy subjects was significantly up-regulated (P = 0.01). MicroRNA-140-3p had a good diagnostic accuracy for discrimination of the two groups (AUC = 0.667; sensitivity = 70%; specificity = 50%). Serum microRNA-140-3p level was overexpressed in premenopausal patients who were ≤48 years old. ROC curve showed a similar pattern again (AUC = 0.690; sensitivity = 73%; specificity = 50%). CONCLUSIONS microRNA-140-3p has the potential for detection of breast cancer, especially in premenopausal and in ≤48 years old women.
Collapse
Affiliation(s)
- Nadia Heydari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Novin Nikbakhsh
- Cancer Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Nazila Farnoush
- Department of Surgery, Babol University of Medical Sciences, Babol, Iran
| | - Soraya Khafri
- Department of Epidemiology, Babol University of Medical Sciences, Babol, Iran
| | - Milad Bastami
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
76
|
Hakimian F, Ghourchian H, Hashemi AS, Arastoo MR, Behnam Rad M. Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci Rep 2018; 8:2943. [PMID: 29440644 PMCID: PMC5811613 DOI: 10.1038/s41598-018-20229-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/11/2018] [Indexed: 01/10/2023] Open
Abstract
An ultrasensitive optical biosensor for microRNA-155 (miR-155) was developed to diagnose breast cancer at early stages. At first, the probe DNA covalently bind to the negatively charged gold nanoparticles (citrate-capped AuNPs). Then, the target miR-155 electrostatically adsorb onto the positively charged gold nanoparticles (polyethylenimine-capped AuNP) surface. Finally, by mixing citrate-capped AuNP/probe and polyethylenimine-capped AuNP/miR-155, hybridization occurs and the optical signal of the mixture give a measure to quantify the miR-155 content. The proposed biosensor is able to specify 3-base-pair mismatches and genomic DNA from target miR-155. The novelty of this biosensor is in its ability to trap the label-free target by its branched positively charged polyethylenimine. This method increases loading the target on the polyethylenimine-capped AuNPs' surface. So, proposed sensor enables miR-155 detection at very low concentrations with the detection limit of 100 aM and a wide linear range from 100 aM to 100 fM.
Collapse
Affiliation(s)
- Fatemeh Hakimian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Azam Sadat Hashemi
- Hematology, Oncology & Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Reza Arastoo
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mohammad Behnam Rad
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
77
|
Ning S, Gao Y, Wang P, Li X, Zhi H, Zhang Y, Liu Y, Zhang J, Guo M, Han D, Li X. Construction of a lncRNA-mediated feed-forward loop network reveals global topological features and prognostic motifs in human cancers. Oncotarget 2018; 7:45937-45947. [PMID: 27322142 PMCID: PMC5216772 DOI: 10.18632/oncotarget.10004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/29/2016] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), transcription factors and microRNAs can form lncRNA-mediated feed-forward loops (L-FFLs), which are functional network motifs that regulate a wide range of biological processes, such as development and carcinogenesis. However, L-FFL network motifs have not been systematically identified, and their roles in human cancers are largely unknown. In this study, we computationally integrated data from multiple sources to construct a global L-FFL network for six types of human cancer and characterized the topological features of the network. Our approach revealed several dysregulated L-FFL motifs common across different cancers or specific to particular cancers. We also found that L-FFL motifs can take part in other types of regulatory networks, such as mRNA-mediated FFLs and ceRNA networks, and form the more complex networks in human cancers. In addition, survival analyses further indicated that L-FFL motifs could potentially serve as prognostic biomarkers. Collectively, this study elucidated the roles of L-FFL motifs in human cancers, which could be beneficial for understanding cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiang Li
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yue Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jizhou Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Maoni Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
78
|
Metri R, Mohan A, Nsengimana J, Pozniak J, Molina-Paris C, Newton-Bishop J, Bishop D, Chandra N. Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach. Sci Rep 2017; 7:17314. [PMID: 29229936 PMCID: PMC5725601 DOI: 10.1038/s41598-017-17330-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/10/2017] [Indexed: 01/15/2023] Open
Abstract
Understanding the biological factors that are characteristic of metastasis in melanoma remains a key approach to improving treatment. In this study, we seek to identify a gene signature of metastatic melanoma. We configured a new network-based computational pipeline, combined with a machine learning method, to mine publicly available transcriptomic data from melanoma patient samples. Our method is unbiased and scans a genome-wide protein-protein interaction network using a novel formulation for network scoring. Using this, we identify the most influential, differentially expressed nodes in metastatic as compared to primary melanoma. We evaluated the shortlisted genes by a machine learning method to rank them by their discriminatory capacities. From this, we identified a panel of 6 genes, ALDH1A1, HSP90AB1, KIT, KRT16, SPRR3 and TMEM45B whose expression values discriminated metastatic from primary melanoma (87% classification accuracy). In an independent transcriptomic data set derived from 703 primary melanomas, we showed that all six genes were significant in predicting melanoma specific survival (MSS) in a univariate analysis, which was also consistent with AJCC staging. Further, 3 of these genes, HSP90AB1, SPRR3 and KRT16 remained significant predictors of MSS in a joint analysis (HR = 2.3, P = 0.03) although, HSP90AB1 (HR = 1.9, P = 2 × 10-4) alone remained predictive after adjusting for clinical predictors.
Collapse
Affiliation(s)
- Rahul Metri
- IISc Mathematics Initiative (IMI), Indian Institute of Science, Bangalore, Karnataka, India
| | - Abhilash Mohan
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Jérémie Nsengimana
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Joanna Pozniak
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Carmen Molina-Paris
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - David Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Nagasuma Chandra
- IISc Mathematics Initiative (IMI), Indian Institute of Science, Bangalore, Karnataka, India.
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
79
|
Farina NH, Ramsey JE, Cuke ME, Ahern TP, Shirley DJ, Stein JL, Stein GS, Lian JB, Wood ME. Development of a predictive miRNA signature for breast cancer risk among high-risk women. Oncotarget 2017; 8:112170-112183. [PMID: 29348816 PMCID: PMC5762501 DOI: 10.18632/oncotarget.22750] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Significant limitations exist in our ability to predict breast cancer risk at the individual level. Circulating microRNAs (C-miRNAs) have emerged as measurable biomarkers (liquid biopsies) for cancer detection. We evaluated the ability of C-miRNAs to identify women most likely to develop breast cancer by profiling miRNA from serum obtained long before diagnosis. 24 breast cancer cases and controls (matched for risk and age) were identified from women enrolled in the High-Risk Breast Program at the UVM Cancer Center. Isolated RNA from serum was profiled for over 2500 human miRNAs. The miRNA expression data were input into a stepwise linear regression model to discover a multivariable miRNA signature that predicts long-term risk of breast cancer. 25 candidate miRNAs were identified that individually classified cases and controls based on statistical methodologies. A refined 6-miRNA risk-signature was discovered following regression modeling that distinguishes cases and controls (AUC0.896, CI 0.804-0.988) in this cohort. A functional relationship between miRNAs that cluster together when cases are contrasted against controls was suggested and confirmed by pathway analyses. The discovered 6 miRNA risk-signature can discriminate high-risk women who ultimately develop breast cancer from those who remain cancer-free, improving current risk assessment models. Future studies will focus on functional analysis of the miRNAs in this signature and testing in larger cohorts. We propose that the combined signature is highly significant for predicting cancer risk, and worthy of further screening in larger, independent clinical cohorts.
Collapse
Affiliation(s)
- Nicholas H Farina
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jon E Ramsey
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Melissa E Cuke
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Division of Hematology and Oncology, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Thomas P Ahern
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Surgery, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - David J Shirley
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Microbiology and Molecular Genetics, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Janet L Stein
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Gary S Stein
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Division of Hematology and Oncology, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jane B Lian
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Biochemistry, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Marie E Wood
- University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA.,Division of Hematology and Oncology, The Robert Larner MD College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
80
|
Nakka M, Allen-Rhoades W, Li Y, Kelly AJ, Shen J, Taylor AM, Barkauskas DA, Yustein JT, Andrulis IL, Wunder JS, Gorlick R, Meltzer PS, Lau CC, Man TK. Biomarker significance of plasma and tumor miR-21, miR-221, and miR-106a in osteosarcoma. Oncotarget 2017; 8:96738-96752. [PMID: 29228567 PMCID: PMC5722519 DOI: 10.18632/oncotarget.18236] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/15/2017] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in children and young adults. Despite the use of surgery and multi-agent chemotherapy, osteosarcoma patients who have a poor response to chemotherapy or develop relapses have a dismal outcome. Identification of biomarkers for active disease may help to monitor tumor burden, detect early relapses, and predict prognosis in these patients. In this study, we examined whether circulating miRNAs can be used as biomarkers in osteosarcoma patients. We performed genome-wide miRNA profiling on a discovery cohort of osteosarcoma and control plasma samples. A total of 56 miRNAs were upregulated and 164 miRNAs were downregulated in osteosarcoma samples when compared to control plasma samples. miR-21, miR-221 and miR-106a were selected for further validation based on their known biological importance. We showed that all three circulating miRNAs were expressed significantly higher in osteosarcoma samples than normal samples in an independent cohort obtained from the Children's Oncology Group. Furthermore, we demonstrated that miR-21 was expressed significantly higher in osteosarcoma tumors compared with normal bone controls. More importantly, lower expressions of miR-21 and miR-221, but not miR-106a, significantly correlated with a poor outcome. In conclusion, our results indicate that miR-21, miR-221 and miR-106a were elevated in the circulation of osteosarcoma patients, whereas tumor expressions of miR-21 and miR-221 are prognostically significant. Further investigation of these miRNAs may lead to a better prognostic method and potential miRNA therapeutics for osteosarcoma.
Collapse
Affiliation(s)
- Manjula Nakka
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
| | - Wendy Allen-Rhoades
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiting Li
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
| | - Aaron J. Kelly
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jianhe Shen
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
| | - Aaron M. Taylor
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Donald A. Barkauskas
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children’s Oncology Group, Monrovia, CA, USA
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jay S. Wunder
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - Paul S. Meltzer
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ching C. Lau
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tsz-Kwong Man
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, and Baylor College of Medicine, Houston, TX, USA
- Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
81
|
Liu H, Li P, Chen L, Jian C, Li Z, Yu A. MicroRNAs as a novel class of diagnostic biomarkers for the detection of osteosarcoma: a meta-analysis. Onco Targets Ther 2017; 10:5229-5236. [PMID: 29138575 PMCID: PMC5677380 DOI: 10.2147/ott.s143974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been considered as promising diagnostic biomarkers for many diseases, especially for cancers. Numerous studies have reported the value of miRNAs in the diagnosis of osteosarcoma (OS), but the results vary greatly across different studies. Therefore, we conducted this meta-analysis to assess the prospective diagnostic value of miRNAs in diagnosing OS. All relevant articles from prior to July 28, 2017 were selected from PubMed, EMBASE, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure, and Wan-fang databases. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was performed to assess the quality of each article. A random-effects model was used to pool the sensitivity and specificity of the positive likelihood ratio (PLR), negative likelihood ratio (NLR) and, diagnostic odds ratio (DOR) together with the area under the curve (AUC) to evaluate diagnostic values. Seventeen studies comprising 2,214 OS patients and 1,534 healthy humans were included in our meta-analysis. The pooled estimations indicated that the miRNAs had a high accuracy for diagnosing OS, with a sensitivity of 0.82, specificity of 0.88, PLR of 10.96, NLR of 0.20, DOR of 54.55, and AUC of 0.93. Twenty-five miRNAs were differentially expressed in OS, including 17 upregulated and 8 downregulated. These miRNAs were correlated with survival time, tumor size, cell differentiation, tumor node metastasis staging, metastasis, tumor/cell invasion, pathological type, and response to radiotherapy and chemotherapy. Several different miRNAs are expressed in OS, and some of them might be potential biomarkers for the early diagnosis of OS.
Collapse
Affiliation(s)
- Hong Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Li
- Department of Surgery, Experimental Surgery and Regenerative Medicine, Ludwig-Maximilians University, München, Germany
| | - Liang Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Jian
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zonghuan Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
82
|
Müller M, Kuiperij HB, Versleijen AAM, Chiasserini D, Farotti L, Baschieri F, Parnetti L, Struyfs H, De Roeck N, Luyckx J, Engelborghs S, Claassen JA, Verbeek MM. Validation of microRNAs in Cerebrospinal Fluid as Biomarkers for Different Forms of Dementia in a Multicenter Study. J Alzheimers Dis 2017; 52:1321-33. [PMID: 27104900 DOI: 10.3233/jad-160038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) regulate translational inhibition of proteins, but are also detected in body fluids, including cerebrospinal fluid (CSF), where they may serve as disease-specific biomarkers. Previously, we showed differential expression of miR-146a, miR-29a, and miR-125b in the CSF of Alzheimer's disease (AD) patients versus controls. In this study, we aim to confirm these findings by using larger, independent sample cohorts of AD patients and controls from three different centers. Furthermore, we aim to identify confounding factors that possibly arise using such a multicenter approach. The study was extended by including patients diagnosed with mild cognitive impairment due to AD, frontotemporal dementia and dementia with Lewy bodies. Previous results of decreased miR-146a levels in AD patients compared to controls were confirmed in one center. When samples from all three centers were combined, several confounding factors were identified. After controlling for these factors, we did not identify differences in miRNA levels between the different groups. However, we provide suggestions to circumvent various pitfalls when measuring miRNAs in CSF to improve future studies.
Collapse
Affiliation(s)
- Mareike Müller
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Davide Chiasserini
- Department of Medicine, Laboratory of Clinical Neurochemistry, Section of Neurology, Centre for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Lucia Farotti
- Department of Medicine, Laboratory of Clinical Neurochemistry, Section of Neurology, Centre for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Francesca Baschieri
- Department of Medicine, Laboratory of Clinical Neurochemistry, Section of Neurology, Centre for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Department of Medicine, Laboratory of Clinical Neurochemistry, Section of Neurology, Centre for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Hanne Struyfs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Naomi De Roeck
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jill Luyckx
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Jurgen A Claassen
- Department of Geriatric Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
83
|
Pal JK, Ray SS, Pal SK. Fuzzy mutual information based grouping and new fitness function for PSO in selection of miRNAs in cancer. Comput Biol Med 2017; 89:540-548. [PMID: 28844466 DOI: 10.1016/j.compbiomed.2017.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/17/2017] [Accepted: 08/11/2017] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNA) are one of the important regulators of cell division and also responsible for cancer development. Among the discovered miRNAs, not all are important for cancer detection. In this regard a fuzzy mutual information (FMI) based grouping and miRNA selection method (FMIGS) is developed to identify the miRNAs responsible for a particular cancer. First, the miRNAs are ranked and divided into several groups. Then the most important group is selected among the generated groups. Both the steps viz., ranking of miRNAs and selection of the most relevant group of miRNAs, are performed using FMI. Here the number of groups is automatically determined by the grouping method. After the selection process, redundant miRNAs are removed from the selected set of miRNAs as per user's necessity. In a part of the investigation we proposed a FMI based particle swarm optimization (PSO) method for selecting relevant miRNAs, where FMI is used as a fitness function to determine the fitness of the particles. The effectiveness of FMIGS and FMI based PSO is tested on five data sets and their efficiency in selecting relevant miRNAs are demonstrated. The superior performance of FMIGS to some existing methods are established and the biological significance of the selected miRNAs is observed by the findings of the biological investigation and publicly available pathway analysis tools. The source code related to our investigation is available at http://www.jayanta.droppages.com/FMIGS.html.
Collapse
Affiliation(s)
- Jayanta Kumar Pal
- Center for Soft Computing Research, Indian Statistical Institute, Kolkata, India.
| | - Shubhra Sankar Ray
- Center for Soft Computing Research & Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India.
| | - Sankar K Pal
- Center for Soft Computing Research & Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India.
| |
Collapse
|
84
|
Li QS, Meng FY, Zhao YH, Jin CL, Tian J, Yi XJ. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res 2017; 6:464-471. [PMID: 28784704 PMCID: PMC5579316 DOI: 10.1302/2046-3758.68.bjr-2016-0208.r2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/23/2017] [Indexed: 12/18/2022] Open
Abstract
Objectives This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing. Methods Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p. Results Plasma miR-214-5p was highly expressed in patients with bone fracture compared with HCs after fracture (p < 0.05 or p < 0.01). Inhibition of miR-214-5p increased the viability of MC3T3-E1 cells and the expressions of COL1A1 and COL-X, but decreased the apoptotic rate and COL-II expression (p < 0.05 or p < 0.01). COL4A1 was a target of miR-214-5p, and was negatively regulated by miR-214-5p (p < 0.05 or p < 0.01). Overexpression of COL4A1 showed a similar impact on cell viability, apoptotic rate, and COL1A1, COL-II, and COL-X expressions inhibiting miR-214-5p (p < 0.01). Conclusion Inhibition of miR-214-5p promotes cell survival and extracellular matrix (ECM) formation of osteoblastic MC3T3-E1 cells by targeting COL4A1. Cite this article: Q. S. Li, F. Y. Meng, Y. H. Zhao, C. L. Jin, J. Tian, X. J. Yi. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res 2017;6:464–471. DOI: 10.1302/2046-3758.68.BJR-2016-0208.R2
Collapse
Affiliation(s)
- Q S Li
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - F Y Meng
- Department of Traumatology, Lanling People's Hospital, Linyi, China
| | - Y H Zhao
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - C L Jin
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - J Tian
- Operating Room, Linyi Cancer Hospital, Linyi, China
| | - X J Yi
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, No.233, Fenghuang Street, Linyi 276000, China
| |
Collapse
|
85
|
Patnaik SK, Kannisto ED, Mallick R, Vachani A, Yendamuri S. Whole blood microRNA expression may not be useful for screening non-small cell lung cancer. PLoS One 2017; 12:e0181926. [PMID: 28742859 PMCID: PMC5526508 DOI: 10.1371/journal.pone.0181926] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022] Open
Abstract
At least seven studies have suggested that microRNA levels in whole blood can be diagnostic for lung cancer. We conducted a large bi-institutional study to validate this. Qiagen® PAXgene™ Blood miRNA System was used to collect blood and extract RNA from it for 85 pathologic stage I-IV non-small cell lung cancer (NSCLC) cases and 76 clinically-relevant controls who had a benign pulmonary mass, or a high risk of developing lung cancer because of a history of cigarette smoking or age >60 years. Cases and controls were similar for age, gender, race, and blood hemoglobin and leukocyte but not platelet levels (0.23 and 0.26 million/μl, respectively; t test P = 0.01). Exiqon® MiRCURY™ microarrays were used to quantify microRNAs in RNA isolates. Quantification was also performed using Taqman™ microRNA reverse transcription (RT)-PCR assays for five microRNAs whose lung cancer-diagnostic potential had been suggested in seven published studies. Of the 1,941 human mature microRNAs detectable with the microarray platform, 598 (31%) were identified as expressed and reliably quantified among the study's subjects. However, none of the microRNAs was differentially expressed between cases and controls (P >0.05 at false discovery rate <5% in test using empirical Bayes-moderated t statistics). In classification analyses with leave-one-out internal cross-validation, cases and controls could be identified by microRNA expression with 47% and 50% accuracy with support vector machines and top-scoring pair methods, respectively. Cases and controls did not differ for RT-PCR-based measurements of any of the five microRNAs whose biomarker potential had been suggested by seven previous studies. Additionally, no difference for microRNA expression was noticed in microarray-based microRNA profiles of whole blood of 12 stage IA-IIIB NSCLC cases before and three-four weeks after tumor resection. These findings show that whole blood microRNA expression profiles lack diagnostic value for high-risk screening of NSCLC, though such value may exist for selective sub-groups of NSCLC and control populations.
Collapse
Affiliation(s)
- Santosh K. Patnaik
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Surgery, State University of New York, Buffalo, New York, United States of America
- * E-mail: (SY); (SP)
| | - Eric D. Kannisto
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Reema Mallick
- Department of Surgery, University of Minnesota, Minneapolis, United States of America
| | - Anil Vachani
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Surgery, State University of New York, Buffalo, New York, United States of America
- * E-mail: (SY); (SP)
| |
Collapse
|
86
|
Zhang G, Zhang W, Li B, Stringer-Reasor E, Chu C, Sun L, Bae S, Chen D, Wei S, Jiao K, Yang WH, Cui R, Liu R, Wang L. MicroRNA-200c and microRNA- 141 are regulated by a FOXP3-KAT2B axis and associated with tumor metastasis in breast cancer. Breast Cancer Res 2017. [PMID: 28637482 PMCID: PMC5480201 DOI: 10.1186/s13058-017-0858-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Members of the microRNA (miR)-200 family, which are involved in tumor metastasis, have potential as cancer biomarkers, but their regulatory mechanisms remain elusive. Methods We investigated FOXP3-inducible breast cancer cells, Foxp3 heterozygous Scurfy mutant (Foxp3sf/+) female mice, and patients with breast cancer for characterization of the formation and regulation of the miR-200 family in breast cancer cells and circulation. Participants (259), including patients with breast cancer or benign breast tumors, members of breast cancer families, and healthy controls, were assessed for tumor and circulating levels of the miR-200 family. Results First, we identified a FOXP3-KAT2B-miR-200c/141 axis in breast cancer cells. Second, aging Foxp3sf/+ female mice developed spontaneous breast cancers and lung metastases. Levels of miR-200c and miR-141 were lower in Foxp3sf/+ tumor cells than in normal breast epithelial cells, but plasma levels of miR-200c and miR-141 in the Foxp3sf/+ mice increased during tumor progression and metastasis. Third, in patients with breast cancer, the levels of miR-200c and 141 were lower in FOXP3low relative to those with FOXP3high breast cancer cells, especially in late-stage and metastatic cancer cells. The levels of miR-200c and miR-141 were higher in plasma from patients with metastatic breast cancer than in plasma from those with localized breast cancer, with benign breast tumors, with a family history of breast cancer, or from healthy controls. Finally, in Foxp3sf/+ mice, plasma miR-200c and miR-141 appeared to be released from tumor cells. Conclusions miR-200c and miR-141 are regulated by a FOXP3-KAT2B axis in breast cancer cells, and circulating levels of miR-200c and miR-141 are potential biomarkers for early detection of breast cancer metastases. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0858-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangxin Zhang
- Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Wei Zhang
- Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Bingjin Li
- Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Erica Stringer-Reasor
- Hematology/Oncology Section, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chengjing Chu
- Department of Applied Psychology, Humanities and Management Colleges, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Liyan Sun
- Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Sejong Bae
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Dongquan Chen
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kenneth Jiao
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University, Savannah, GA, 31404, USA
| | - Ranji Cui
- Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
87
|
Hao N, Zhang JX. Microfluidic Screening of Circulating Tumor Biomarkers toward Liquid Biopsy. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1320763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
88
|
Shen X, Ye Y, Qi J, Shi W, Wu X, Ni H, Cong H, Ju S. Identification of a novel microRNA, miR-4449, as a potential blood based marker in multiple myeloma. Clin Chem Lab Med 2017; 55:748-754. [PMID: 27155004 DOI: 10.1515/cclm-2015-1108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/04/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND miRNAs act in diverse biological processes including development, cell growth, apoptosis, and hematopoiesis, suggesting their role in cancer. METHODS We examined the miRNAs perturbed in CD138+ primary multiple myeloma (MM) cells, using microarray analysis and real-time quantitative PCR (RT-qPCR). Serum miR-4449 expression levels were detected from 71 primary MM patients and 46 healthy controls by RT-qPCR. RESULTS Our analysis revealed up-regulation of 54 and down-regulation of 28 miRNAs in MM subjects compared to healthy controls. miR-4449 has not been reported in MM. It was found that the relative expression of bone marrow miR-4449 in MM patients (2.14±1.42) was higher than that in healthy controls (0.815±0.165) (U=8, p=0.0093). The relative expression of serum miR-4449 in MM patients (2.11±2.10) was significantly higher than that in healthy controls (0.357±0.235) (U=374, p<0.0001) and was significantly correlated with β2M, λ light and κ light chain concentration (r=0.480, p=0.0003; r=0.560, p<0.0001; r=0.560, p<0.0001), but not correlated with the lactate dehydrogenase (LDH) concentration (r=0.247, p=0.0611). The area under the curve (AUC) of the receiver-operating characteristics (ROC) curve of serum miR-4449 was 0.885 (95% CI, 0.826-0.945), which is higher than for other markers. Combining miR-4449, λ light chain, and β2M together, the sensitivity was highest compared with λ light chain or β2M alone, or combined. CONCLUSIONS The expression levels of serum miR-4449 in MM patients were significantly higher than in healthy controls, suggesting that it may prove to be useful in the auxiliary diagnosis of MM.
Collapse
Affiliation(s)
- Xianjuan Shen
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Yan Ye
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Jing Qi
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Wei Shi
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Xinhua Wu
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Hongbing Ni
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Hui Cong
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, P.R
| | - Shaoqing Ju
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P.R
| |
Collapse
|
89
|
Bahrami A, Aledavood A, Anvari K, Hassanian SM, Maftouh M, Yaghobzade A, Salarzaee O, ShahidSales S, Avan A. The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs. J Cell Physiol 2017; 233:774-786. [DOI: 10.1002/jcp.25813] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Afsane Bahrami
- Molecular Medicine Group, Department of Modern Sciences and TechnologiesMashhad University of Medical SciencesMashhadIran
| | - Amir Aledavood
- Cancer Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Kazem Anvari
- Cancer Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Seyed Mahdi Hassanian
- Department of Medical Biotechnology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mina Maftouh
- Metabolic Syndrome Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
- Dr Akbarzadeh Pathobiology and Genetics LabMashhad University of Medical SciencesMashhadIran
| | - Ali Yaghobzade
- Student Research Committee, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Omid Salarzaee
- Student Research Committee, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Soodabeh ShahidSales
- Cancer Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amir Avan
- Metabolic Syndrome Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
90
|
Computational Analysis of Specific MicroRNA Biomarkers for Noninvasive Early Cancer Detection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4680650. [PMID: 28357401 PMCID: PMC5357545 DOI: 10.1155/2017/4680650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/13/2017] [Indexed: 01/18/2023]
Abstract
Cancer is a complex disease residing in various tissues of human body, accompanied with many abnormalities and mutations in genomes, transcriptome, and epigenome. Early detection plays a crucial role in extending survival time of all major cancer types. Recent advances in microarray and sequencing techniques have given more support to identifying effective biomarkers for early detection of cancer. MicroRNAs (miRNAs) are more and more frequently used as candidates for biomarkers in cancer related studies due to their regulation of target gene expression. In this paper, the comparative analysis is used to discover miRNA expression patterns in cancer versus normal samples on early stage of eight prevalent cancer types. Our work focuses on the specific miRNAs biomarkers identification and function analysis. Several identified miRNA biomarkers in this paper are matched well with those reported in existing researches, and most of them could serve as potential candidate indicators for clinical early diagnosis applications.
Collapse
|
91
|
Batth IS, Mitra A, Manier S, Ghobrial IM, Menter D, Kopetz S, Li S. Circulating tumor markers: harmonizing the yin and yang of CTCs and ctDNA for precision medicine. Ann Oncol 2017; 28:468-477. [PMID: 27998963 DOI: 10.1093/annonc/mdw619] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Current trajectory of clinical care is heading in the direction of personalized medicine. In an ideal scenario, clinicians can obtain extensive diagnostic and prognostic information via minimally-invasive assays. Information available in the peripheral blood has the potential to bring us closer to this goal. In this review we highlight the contributions of circulating tumor cells and circulating tumor DNA and RNA (ctDNA/ctRNA) towards cancer therapeutic field. We discuss clinical relevance, summarize available and upcoming technologies, and hypothesize how future care could be impacted by a combined study.
Collapse
Affiliation(s)
- I S Batth
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Mitra
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - I M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - D Menter
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Kopetz
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Li
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
92
|
Zhou B, Zhu H, Luo H, Gao S, Dai X, Li Y, Zuo X. MicroRNA-202-3p regulates scleroderma fibrosis by targeting matrix metalloproteinase 1. Biomed Pharmacother 2017; 87:412-418. [PMID: 28068631 DOI: 10.1016/j.biopha.2016.12.080] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
The leading cause of death in systemic sclerosis (SSc) is the uncontrolled fibrosis in multiple organs. The exact mechanism of fibrosis is not fully clear. Our previous studies using miRNA array analysis indicated that miR-202-3p was increased in SSc lesion skin tissues. Bioinformatics analysis suggested matrix metallopeptidase (MMP) 1 is the target gene of miR-202-3p. Here we confirmed that miR-202-3p was upregulated, and the mRNA and protein expression of MMP1 were significantly decreased in SSc skin tissues and primary fibroblast compared with normal skin. MMP1 expression was inversely correlated with the expression of miR-202-3p. Overexpression of miR-202-3p markedly increased collagen disposition in skin primary fibroblasts, while inhibitor of miR-202-3p decreased it. Furthermore, we demonstrated that MMP1 was a target of miR-202-3p detected by luciferase reporter assay, and played an essential role as a mediator of the biological effects of miR-202-3p in SSc fibrosis. Taken together, these findings suggest that miR-202-3p may function as a novel pro-fibrotic miRNA in SSc by inhibition the expression of MMP1.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Siming Gao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaodan Dai
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yisha Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
93
|
Chen X, Jiang ZC, Xie D, Huang DS, Zhao Q, Yan GY, You ZH. A novel computational model based on super-disease and miRNA for potential miRNA–disease association prediction. MOLECULAR BIOSYSTEMS 2017; 13:1202-1212. [DOI: 10.1039/c6mb00853d] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considering the various disadvantages of previous computational models, we proposed a novel computational model based on super-disease and miRNA for potential miRNA–disease association prediction (SDMMDA) to predict potential miRNA–disease associations by integrating known associations, disease semantic similarity, miRNA functional similarity, and Gaussian interaction profile kernel similarity for diseases and miRNAs.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering
- China University of Mining and Technology
- Xuzhou
- China
| | - Zhi-Chao Jiang
- School of Electronics and Information Engineering
- Tongji University
- Shanghai
- China
| | - Di Xie
- School of Mathematics
- Liaoning University
- Shenyang
- China
| | - De-Shuang Huang
- School of Electronics and Information Engineering
- Tongji University
- Shanghai
- China
| | - Qi Zhao
- School of Mathematics
- Liaoning University
- Shenyang
- China
- Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning Province
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Science
- ürümqi
- China
| |
Collapse
|
94
|
O'Brien KP, Ramphul E, Howard L, Gallagher WM, Malone C, Kerin MJ, Dwyer RM. Circulating MicroRNAs in Cancer. Methods Mol Biol 2017; 1509:123-139. [PMID: 27826923 DOI: 10.1007/978-1-4939-6524-3_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is believed that microRNAs have potential as circulating biomarkers of disease; however, successful clinical implementation remains a challenge. This chapter highlights broad variations in approaches to microRNA analysis where whole blood, serum and plasma have each been employed as viable sources. Further discrepancies in approaches are seen in endogenous controls and extraction methods utilized. This has resulted in contradictory publications, even when the same microRNA is targeted in the same disease setting.Analysis of blood samples highlighted the impact of both collection method and storage, on the microRNA profile. Analysis of a panel of microRNAs across whole blood, serum, and plasma originating from the same individual emphasized the impact of starting material on microRNA profile. This is a highly topical field of research with immense potential for translation into the clinical setting. Standardization of sample harvesting, processing and analysis will be key to this translation. Methods of sample harvesting, preservation, and analysis are outlined, with important mitigating factors highlighted.
Collapse
Affiliation(s)
- Killian P O'Brien
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Eimear Ramphul
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Linda Howard
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Carmel Malone
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Michael J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Róisín M Dwyer
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
95
|
Frères P, Wenric S, Boukerroucha M, Fasquelle C, Thiry J, Bovy N, Struman I, Geurts P, Collignon J, Schroeder H, Kridelka F, Lifrange E, Jossa V, Bours V, Josse C, Jerusalem G. Circulating microRNA-based screening tool for breast cancer. Oncotarget 2016; 7:5416-28. [PMID: 26734993 PMCID: PMC4868695 DOI: 10.18632/oncotarget.6786] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/05/2015] [Indexed: 12/20/2022] Open
Abstract
Circulating microRNAs (miRNAs) are increasingly recognized as powerful biomarkers in several pathologies, including breast cancer. Here, their plasmatic levels were measured to be used as an alternative screening procedure to mammography for breast cancer diagnosis. A plasma miRNA profile was determined by RT-qPCR in a cohort of 378 women. A diagnostic model was designed based on the expression of 8 miRNAs measured first in a profiling cohort composed of 41 primary breast cancers and 45 controls, and further validated in diverse cohorts composed of 108 primary breast cancers, 88 controls, 35 breast cancers in remission, 31 metastatic breast cancers and 30 gynecologic tumors. A receiver operating characteristic curve derived from the 8-miRNA random forest based diagnostic tool exhibited an area under the curve of 0.81. The accuracy of the diagnostic tool remained unchanged considering age and tumor stage. The miRNA signature correctly identified patients with metastatic breast cancer. The use of the classification model on cohorts of patients with breast cancers in remission and with gynecologic cancers yielded prediction distributions similar to that of the control group. Using a multivariate supervised learning method and a set of 8 circulating miRNAs, we designed an accurate, minimally invasive screening tool for breast cancer.
Collapse
Affiliation(s)
- Pierre Frères
- University Hospital (CHU), Department of Medical Oncology, Liège, Belgium.,University of Liège, GIGA-Research, Laboratory of Human Genetics, Liège, Belgium
| | - Stéphane Wenric
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liège, Belgium
| | - Meriem Boukerroucha
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liège, Belgium
| | - Corinne Fasquelle
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liège, Belgium
| | - Jérôme Thiry
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liège, Belgium
| | - Nicolas Bovy
- University of Liège, GIGA-Research, Laboratory of Molecular Angiogenesis, Liège, Belgium
| | - Ingrid Struman
- University of Liège, GIGA-Research, Laboratory of Molecular Angiogenesis, Liège, Belgium
| | - Pierre Geurts
- University of Liège, GIGA-Research, Department of EE and CS, Liège, Belgium
| | - Joëlle Collignon
- University Hospital (CHU), Department of Medical Oncology, Liège, Belgium
| | - Hélène Schroeder
- University Hospital (CHU), Department of Medical Oncology, Liège, Belgium
| | | | - Eric Lifrange
- University Hospital (CHU), Department of Senology, Liège, Belgium
| | - Véronique Jossa
- Clinique Saint-Vincent (CHC), Department of Pathology, Liège, Belgium
| | - Vincent Bours
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liège, Belgium
| | - Claire Josse
- University of Liège, GIGA-Research, Laboratory of Human Genetics, Liège, Belgium
| | - Guy Jerusalem
- University Hospital (CHU), Department of Medical Oncology, Liège, Belgium
| |
Collapse
|
96
|
Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther 2016; 172:34-49. [PMID: 27916656 DOI: 10.1016/j.pharmthera.2016.11.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer is a major health problem that affects one in eight women worldwide. As such, detecting breast cancer at an early stage anticipates better disease outcome and prolonged patient survival. Extensive research has shown that microRNA (miRNA) are dysregulated at all stages of breast cancer. miRNA are a class of small noncoding RNA molecules that can modulate gene expression and are easily accessible and quantifiable. This review highlights miRNA as diagnostic, prognostic and therapy predictive biomarkers for early breast cancer with an emphasis on the latter. It also examines the challenges that lie ahead in their use as biomarkers. Noteworthy, this review addresses miRNAs reported in patients with early breast cancer prior to chemotherapy, radiotherapy, surgical procedures or distant metastasis (unless indicated otherwise). In this context, miRNA that are mentioned in this review were significantly modulated using more than one statistical test and/or validated by at least two studies. A standardized protocol for miRNA assessment is proposed starting from sample collection to data analysis that ensures comparative analysis of data and reproducibility of results.
Collapse
Affiliation(s)
- Farah J Nassar
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
97
|
Niu J, Sun Y, Guo Q, Niu D, Liu B. Serum miR-95-3p is a diagnostic and prognostic marker for osteosarcoma. SPRINGERPLUS 2016; 5:1947. [PMID: 27917340 PMCID: PMC5102988 DOI: 10.1186/s40064-016-3640-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022]
Abstract
It has been demonstrated that microRNAs (miRNAs or miRs) can act as prognostic and diagnostic markers, and potential therapeutic targets. miR-95-3p has been reported to be downregulated in osteosarcoma tissues, but its potential as a serum biomarker has not been assessed in human osteosarcoma. The purpose of the present study was to examine the expression levels of miR-95-3p in serum of patients with osteosarcoma and to investigate the diagnostic and prognostic value of miR-95-3p. The serum levels of miR-95-3p in osteosarcoma patients were detected by a real-time quantitative reverse transcription-polymerase chain reaction assay. Associations between miR-95-3p expression and various clinicopathological characteristics were analyzed using Chi square test. Differences in patient survival were determined using the Kaplan–Meier method and a log-rank test. A Cox proportional hazards regression analysis was used for multivariate analyses of prognostic values. Compared to healthy controls, the expression levels of miR-95-3p in serum of osteosarcoma patients were significantly decreased (P < 0.0001). Low miR-95-3p expression had significant association with clinical stage (P < 0.001) and metastasis (P < 0.001). The Kaplan–Meier curve showed that patients with high miR-95-3p expression survived significantly longer than patients with low miR-95-3p expression (P = 0.017). Multivariate analysis demonstrated that miR-95-3p expression level (P = 0.014) was an independent prognostic biomarker for overall survival. Our findings suggested that down-expression of serum miR-95-3p might be associated with poor prognosis of osteosarcoma patients, suggesting that decreased expression of serum miR-95-3p may serve as a valuable diagnostic/prognostic marker for osteosarcoma patients.
Collapse
Affiliation(s)
- Junjie Niu
- Department of Radiology, Zhengzhou Orthopedics Hospital, Zhengzhou, China
| | - Yibao Sun
- Department of Minimally Invasive Spine Surgery, Zhengzhou Orthopedics Hospital, No. 58 Longhai Road, Zhengzhou, 450000 Henan People's Republic of China
| | - Qiaoge Guo
- Zhengzhou Key Laboratory of Bone and Joint Imaging, Zhengzhou, China
| | - Dongju Niu
- Department of Radiology, Zhengzhou Second Hospital, Zhengzhou, China
| | - Bo Liu
- Department of Function, Zhengzhou Orthopedics Hospital, Zhengzhou, China
| |
Collapse
|
98
|
Kou CH, Zhou T, Han XL, Zhuang HJ, Qian HX. Downregulation of mir-23b in plasma is associated with poor prognosis in patients with colorectal cancer. Oncol Lett 2016; 12:4838-4844. [PMID: 28101227 DOI: 10.3892/ol.2016.5265] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/12/2016] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that act as regulators of gene expression. Circulating blood miRNAs have potential as cancer biomarkers. The main objective of the present study was to assess the effect of miRNA-23b (miR-23b) expression in plasma on the diagnosis and prognosis of colorectal cancer (CRC). Reverse transcription-quantitative polymerase chain reaction (PCR) was used to measure miR-23b expression levels, and methylation-specific PCR was used to test the promoter methylation status. Subsequently, the expression level of miR-23b in plasma samples was compared between CRC patients and healthy control individuals. The miR-23b expression levels were significantly lower in CRC cells and primary CRC tissues than in nonmalignant colorectal tissues (P<0.001). It was also shown that miR-23b expression is downregulated by promoter methylation and can be restored by demethylation agent treatment. miR-23b was significantly decreased in plasma samples from CRC patients compared with the healthy control individuals (P<0.001). The value of the area under the receiver operating characteristic curve was 0.842 (sensitivity, 84.38%; specificity, 77.08%; 95% confidence interval, 0.763-0.922). Low plasma miR-23b expression was significantly associated with clinical stage, tumor depth, distant metastasis and tumor recurrence. CRC patients with low miR-23b expression in plasma exhibited a shorter recurrence-free survival time and poorer overall survival rate. The present results suggested that the downregulation of miR-23b in the plasma has the potential to be a diagnostic and prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Chang-Hua Kou
- Department of Oncological Surgery, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Tian Zhou
- Department of Gastroenterology, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Xi-Lin Han
- Department of Oncological Surgery, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Hui-Jie Zhuang
- Department of Oncological Surgery, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Hai-Xin Qian
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
99
|
Zhou JY, Xu B, Li L. A New Role for an Old Drug: Metformin Targets MicroRNAs in Treating Diabetes and Cancer. Drug Dev Res 2016; 76:263-9. [PMID: 26936407 DOI: 10.1002/ddr.21265] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a family of short, noncoding, 19-23 base pair RNA molecules. Due to their unique role in gene regulation in various tissues, miRNAs play important roles in regulating insulin secretion, metabolic disease, and cancer biology. Emerging evidence demonstrates that miRNAs could also be novel diagnostic markers for a variety of disease states. Additionally, miRNAs have been found to function either as oncogenes, or tumor suppressor genes in cerian cancers. An increasing number of studies have been conducted investigating new drugs targeting miRNAs as a potential anticancer therapy. Metformin is the most widely prescribed medication for treating Type 2 diabetes (T2D). Recent clinical data suggests that metformin impacts the miRNA profile in T2D subjects. Most excitingly, studies have found that metformin is protective against cancer. The anticancer activity of metformin is mediated through a direct regulation of miRNAs, which further modulates several downstream genes in metabolic or preoncogenic pathways. These miRNAs are, therefore, prospective therapeutic targets for treating diabetes and cancer which is the topic of this review. Further study on the regulation of miRNAs by metformin could result in novel therapeutic strategies for recurrent or drug-esistant cancer, and as part of combinatorial approaches with conventional anticancer therapies.
Collapse
Affiliation(s)
- Joseph Yi Zhou
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0G4
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lixin Li
- Department of Physician Assistant, College of Health Professions, Central Michigan University, Mount Pleasant, MI, 48859, USA
| |
Collapse
|
100
|
Singh R, Ramasubramanian B, Kanji S, Chakraborty AR, Haque SJ, Chakravarti A. Circulating microRNAs in cancer: Hope or hype? Cancer Lett 2016; 381:113-21. [PMID: 27471105 DOI: 10.1016/j.canlet.2016.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 12/20/2022]
Abstract
Circulating miRNAs are a novel class of stable, minimally invasive disease biomarkers that are considered to be valuable in diagnosis, prognosis and treatment response monitoring. Unlike intracellular miRNAs, circulating miRNAs are released from their producer cells and, based on their targeted functions, they may shuttle in and out of circulation. Their discovery has opened up new avenues for clinical realms and led to a quest for targeted biomarkers. Subsequently, as more cell-free miRNAs are being discovered, their expression is expected to provide precise information regarding disease progression and treatment outcomes, thereby fostering personalized therapeutic strategies. The significance of circulating miRNAs capitalizes on the fact that they are highly stable in body fluids and their expression levels can be detected by common techniques such as qPCR and microarray. However, discrepancies have started to emerge in terms of their reliability and their response under physiological and pathological conditions. Functional studies are still pending, which may determine whether circulating miRNAs play a role as a central component or just as an auxiliary tuner. Also, the distinct clinical signatures that they display have never been subjected to an extensive critical review and experimental validation. As a consequence, the applicability of circulating miRNAs remains a matter of deliberation, despite many intriguing perspectives about their competency. In this review, we highlight some ambiguous issues with the application of circulating miRNAs, which may warrant an immediate consideration. We propose that the circulating miRNA domain needs to be reevaluated to authenticate their specific role and to probe whether they actually carry any clinical weightage.
Collapse
Affiliation(s)
- Rajbir Singh
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Brinda Ramasubramanian
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Suman Kanji
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Arup R Chakraborty
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Saikh Jaharul Haque
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|