51
|
Christiaens O, Prentice K, Pertry I, Ghislain M, Bailey A, Niblett C, Gheysen G, Smagghe G. RNA interference: a promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus. Sci Rep 2016; 6:38836. [PMID: 27941836 PMCID: PMC5150260 DOI: 10.1038/srep38836] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
The African sweetpotato weevil Cylas brunneus is one of the most devastating pests affecting the production of sweetpotatoes, an important staple food in Sub-Saharan Africa. Current available control methods against this coleopteran pest are limited. In this study, we analyzed the potential of RNA interference as a novel crop protection strategy against this insect pest. First, the C. brunneus transcriptome was sequenced and RNAi functionality was confirmed by successfully silencing the laccase2 gene. Next, 24 potential target genes were chosen, based on their critical role in vital biological processes. A first screening via injection of gene-specific dsRNAs showed that the dsRNAs were highly toxic for C. brunneus. Injected doses of 200ng/mg body weight led to mortality rates of 90% or higher for 14 of the 24 tested genes after 14 days. The three best performing dsRNAs, targeting prosα2, rps13 and the homolog of Diabrotica virgifera snf7, were then used in further feeding trials to investigate RNAi by oral delivery. Different concentrations of dsRNAs mixed with artificial diet were tested and concentrations as low as 1 μg dsRNA/ mL diet led to significant mortality rates higher than 50%.These results proved that dsRNAs targeting essential genes show great potential to control C. brunneus.
Collapse
Affiliation(s)
- Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Katterinne Prentice
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
- International Potato Center (CIP), Genomics and Biotechnology Program, Nairobi 00603, Kenya
| | - Ine Pertry
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
- Institute of Plant Biotechnology Outreach, VIB, Technologiepark 3, B-9052 Ghent, Belgium
| | - Marc Ghislain
- International Potato Center (CIP), Genomics and Biotechnology Program, Nairobi 00603, Kenya
| | - Ana Bailey
- Venganza Inc., St. Augustine, FL 32080, USA
| | | | - Godelieve Gheysen
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
52
|
Crava CM, Brütting C, Baldwin IT. Transcriptome profiling reveals differential gene expression of detoxification enzymes in a hemimetabolous tobacco pest after feeding on jasmonate-silenced Nicotiana attenuata plants. BMC Genomics 2016; 17:1005. [PMID: 27931186 PMCID: PMC5146904 DOI: 10.1186/s12864-016-3348-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The evolutionary arms race between plants and insects has driven the co-evolution of sophisticated defense mechanisms used by plants to deter herbivores and equally sophisticated strategies that enable phytophagous insects to rapidly detoxify the plant's defense metabolites. In this study, we identify the genetic determinants that enable the mirid, Tupiocoris notatus, to feed on its well-defended host plant, Nicotiana attenuata, an outstanding model for plant-insect interaction studies. RESULTS We used an RNAseq approach to evaluate the global gene expression of T. notatus after feeding on a transgenic N. attenuata line which does not accumulate jasmonic acid (JA) after herbivory, and consequently accumulates very low levels of defense metabolites. Using Illumina sequencing, we generated a de novo assembled transcriptome which resulted in 63,062 contigs (putative transcript isoforms) contained in 42,610 isotigs (putative identified genes). Differential expression analysis based on RSEM-estimated transcript abundances identified 82 differentially expressed (DE) transcripts between T. notatus fed on wild-type and the defenseless plants. The same analysis conducted with Corset-estimated transcript abundances identified 59 DE clusters containing 85 transcripts. In both analyses, a larger number of DE transcripts were found down-regulated in mirids feeding on JA-silenced plants (around 70%). Among these down-regulated transcripts we identified seven transcripts possibly involved in the detoxification of N. attenuata defense metabolite, specifically, one glutathione-S-transferase (GST), one UDP-glucosyltransferase (UGT), five cytochrome P450 (P450s), and six serine proteases. Real-time quantitative PCR confirmed the down-regulation for six transcripts (encoding GST, UGT and four P450s) and revealed that their expression was only slightly decreased in mirids feeding on another N. attenuata transgenic line specifically silenced in the accumulation of diterpene glycosides, one of the many classes of JA-mediated defenses in N. attenuata. CONCLUSIONS The results provide a transcriptional overview of the changes in a specialist hemimetabolous insect associated with feeding on host plants depleted in chemical defenses. Overall, the analysis reveals that T. notatus responses to host plant defenses are narrow and engages P450 detoxification pathways. It further identifies candidate genes which can be tested in future experiments to understand their role in shaping the T. notatus-N. attenuata interaction.
Collapse
Affiliation(s)
- Cristina M. Crava
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
- Present Address: Department of Sustainable Ecosystems and Bio-resources, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Italy
| | - Christoph Brütting
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
| |
Collapse
|
53
|
Joga MR, Zotti MJ, Smagghe G, Christiaens O. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Front Physiol 2016; 7:553. [PMID: 27909411 PMCID: PMC5112363 DOI: 10.3389/fphys.2016.00553] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023] Open
Abstract
In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches toward insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of dsRNA through non-transformative methods. We discuss factors influencing the RNAi mechanism in insects and systemic properties of dsRNA. Finally, novel strategies to deliver dsRNA are discussed, including delivery by symbionts, plant viruses, trunk injections, root soaking, and transplastomic plants.
Collapse
Affiliation(s)
- Mallikarjuna R Joga
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| | - Moises J Zotti
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas Pelotas, Brazil
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| |
Collapse
|
54
|
Adamo SA, Kovalko I, Turnbull KF, Easy RH, Miles CI. The parasitic wasp Cotesia congregata uses multiple mechanisms to control host (Manduca sexta) behaviour. ACTA ACUST UNITED AC 2016; 219:3750-3758. [PMID: 27634401 DOI: 10.1242/jeb.145300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022]
Abstract
Some parasites alter the behaviour of their hosts. The larvae of the parasitic wasp Cotesia congregata develop within the body of the caterpillar Manduca sexta During the initial phase of wasp development, the host's behaviour remains unchanged. However, once the wasps begin to scrape their way out of the caterpillar, the caterpillar host stops feeding and moving spontaneously. We found that the caterpillar also temporarily lost sensation around the exit hole created by each emerging wasp. However, the caterpillars regained responsiveness to nociception in those areas within 1 day. The temporary reduction in skin sensitivity is probably important for wasp survival because it prevents the caterpillar from attacking the emerging wasp larvae with a defensive strike. We also found that expression of plasmatocyte spreading peptide (PSP) and spätzle genes increased in the fat body of the host during wasp emergence. This result supports the hypothesis that the exiting wasps induce a cytokine storm in their host. Injections of PSP suppressed feeding, suggesting that an augmented immune response may play a role in the suppression of host feeding. Injection of wasp larvae culture media into non-parasitized caterpillars reduced feeding, suggesting that substances secreted by the wasp larvae may help alter host behaviour.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Ilya Kovalko
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Kurtis F Turnbull
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Russell H Easy
- Department of Biology, Acadia University, Wolfville, NS, Canada B4P 2R6
| | - Carol I Miles
- Department of Biological Sciences, SUNY Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
55
|
Wu XM, Yang CQ, Mao YB, Wang LJ, Shangguan XX, Chen XY. Targeting insect mitochondrial complex I for plant protection. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1925-1935. [PMID: 26914579 PMCID: PMC5069633 DOI: 10.1111/pbi.12553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 05/29/2023]
Abstract
Plant engineered to express double-stranded RNA (dsRNA) can target the herbivorous insect gene for silencing. Although mounting evidence has emerged to support feasibility of this new pest control technology, field application is slow largely due to lack of potent targets. Here, we show that suppression of the gene encoding NDUFV2, a subunit of mitochondrial complex I that catalyses NADH dehydrogenation in respiratory chain, was highly lethal to insects. Feeding cotton bollworm (Helicoverpa armigera) larvae with transgenic cotton tissues expressing NDUFV2 dsRNA led to mortality up to 80% within 5 days, and almost no larvae survived after 7 days of feeding, due to the altered mitochondrial structure and activity. Transcriptome comparisons showed a drastic repression of dopa decarboxylase genes. Reciprocal assays with Asian corn borer (Ostrinia furnacalis), another lepidopteran species, revealed the sequence-specific effect of NDUFV2 suppression. Furthermore, the hemipteran lugus Apolygus lucorum was also liable to NDUFV2 repression. These data demonstrate that the mitochondrial complex I is a promising target with both sequence specificity and wide applicability for the development of new-generation insect-proof crops.
Collapse
Affiliation(s)
- Xiu-Ming Wu
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chang-Qing Yang
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xia Shangguan
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
56
|
Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, Rozas J, Schwartz LM, Smith W, Southgate A, Vilcinskas A, Vogt R, Wang P, Werren J, Yu XQ, Zhou JJ, Brown SJ, Scherer SE, Richards S, Blissard GW. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:118-147. [PMID: 27522922 PMCID: PMC5010457 DOI: 10.1016/j.ibmb.2016.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 05/19/2023]
Abstract
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Sanjay Chellapilla
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Nicolae Herndon
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - James Walters
- Department of Ecology and Evolutionary Biology, Univ. Kansas, Lawrence, KS, 66045, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA; The Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, MA, 02142, USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sascha Bucks
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Jayne M Christen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David F Clarke
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Spyridoula Garavelou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Karl H J Gordon
- CSIRO Health and Biosecurity, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ariana Hirsh
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christian Klinner
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christopher König
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Sandy L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rüdiger Lehman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhaofei Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanquan Liang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanna Lovelace
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04104, USA
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Fiona Ongeri
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ioannis Pyrousis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Amanda Redding
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Charles Roesel
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alejandro Sanchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Aditi Shukla
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Walther Traut
- Institut fuer Biologie, Universitaet Luebeck, D-23538, Luebeck, Germany
| | - Tom K Walsh
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Di Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenbi Wu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yuan-Qing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - René Feyereisen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Lars S Jermiin
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, USA
| | - Herman K Lehman
- Biology Department and Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Marce Lorenzen
- Dept. Entomology, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Hans Merzendorfer
- University of Siegen, School of Natural Sciences and Engineering, Institute of Biology - Molecular Biology, Adolf-Reichwein-Strasse. 2, AR-C3010, 57076 Siegen, Germany
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - David B Morton
- Department of Integrative Biosciences, School of Dentistry, BRB421, L595, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - John G Oakeshott
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Will Palmer
- Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Wendy Smith
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Agnes Southgate
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - John Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiao-Qiang Yu
- University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Susan J Brown
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
57
|
Pan H, Xu L, Noland JE, Li H, Siegfried BD, Zhou X. Assessment of Potential Risks of Dietary RNAi to a Soil Micro-arthropod, Sinella curviseta Brook (Collembola: Entomobryidae). FRONTIERS IN PLANT SCIENCE 2016; 7:1028. [PMID: 27471512 PMCID: PMC4945638 DOI: 10.3389/fpls.2016.01028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/30/2016] [Indexed: 05/08/2023]
Abstract
RNAi-based genetically engineered (GE) crops for the management of insect pests are likely to be commercialized by the end of this decade. Without a workable framework for conducting the ecological risk assessment (ERA) and a standardized ERA protocol, however, the utility of RNAi transgenic crops in pest management remains uncertain. The overall goal of this study is to assess the risks of RNAi-based GE crops on a non-target soil micro-arthropod, Sinella curviseta, which could be exposed to plant-protected dsRNAs deposited in crop residues. Based on the preliminary research, we hypothesized that insecticidal dsRNAs targeting at the western corn rootworm, Diabrotica virgifera virgifera, a billion-dollar insect pest, has no adverse impacts on S. curviseta, a soil decomposer. Following a tiered approach, we tested this risk hypothesis using a well-designed dietary RNAi toxicity assay. To create the worst-case scenario, the full-length cDNA of v-ATPase subunit A from S. curviseta were cloned and a 400 bp fragment representing the highest sequence similarity between target pest and non-target arthropods was selected as the template to synthesize insecticidal dsRNAs. Specifically, 10-days-old S. curviseta larvae were subjected to artificial diets containing v-ATPase A dsRNAs from both D. v. virgifera (dsDVV) and S. curviseta (dsSC), respectively, a dsRNA control, β-glucuronidase, from plant (dsGUS), and a vehicle control, H2O. The endpoint measurements included gene expression profiles, survival, and life history traits, such as developmental time, fecundity, hatching rate, and body length. Although, S. curviseta larvae developed significantly faster under the treatments of dsDVV and dsSC than the vehicle control, the combined results from both temporal RNAi effect study and dietary RNAi toxicity assay support the risk hypothesis, suggesting that the impacts of ingested arthropod-active dsRNAs on this representative soil decomposer are negligible.
Collapse
Affiliation(s)
- Huipeng Pan
- Department of Entomology, University of Kentucky, LexingtonKY, USA
| | - Linghua Xu
- Department of Entomology, University of Kentucky, LexingtonKY, USA
| | | | - Hu Li
- Department of Entomology, University of Kentucky, LexingtonKY, USA
| | - Blair D. Siegfried
- Department of Entomology and Nematology, University of Florida, GainesvilleFL, USA
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, LexingtonKY, USA
| |
Collapse
|
58
|
Zhao L, Yang M, Shen Q, Liu X, Shi Z, Wang S, Tang B. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Sci Rep 2016; 6:27841. [PMID: 27328657 PMCID: PMC4916506 DOI: 10.1038/srep27841] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/25/2016] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is an effective gene-silencing tool, and double stranded RNA (dsRNA) is considered a powerful strategy for gene function studies in insects. In the present study, we aimed to investigate the function of trehalase (TRE) genes (TRE 1-1, TRE 1-2, and TRE-2) isolated from the brown planthopper Nilaparvata lugens, a typical piercing-sucking insect in rice, and investigate their regulating roles in chitin synthesis by injecting larvae with dsRNA. The results showed that TRE1 and TRE2 had compensatory function, and the expression of each increased when the other was silenced. The total rate of insects with phenotypic deformities ranged from 19.83 to 24.36% after dsTRE injection, whereas the mortality rate ranged from 14.16 to 31.78%. The mRNA levels of genes involved in the chitin metabolism pathway in RNA-Seq and DGEP, namely hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and chitinase (Cht), decreased significantly at 72 h after single dsTREs injection, whereas two transcripts of chitin synthase (CHS) genes decreased at 72 h after dsTRE1-1 and dsTREs injection. These results demonstrated that TRE silencing could affect the regulation of chitin biosynthesis and degradation, causing moulting deformities. Therefore, expression inhibitors of TREs might be effective tools for the control of planthoppers in rice.
Collapse
Affiliation(s)
- Lina Zhao
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Mengmeng Yang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Qida Shen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Xiaojun Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Zuokun Shi
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| |
Collapse
|
59
|
Yu XD, Liu ZC, Huang SL, Chen ZQ, Sun YW, Duan PF, Ma YZ, Xia LQ. RNAi-mediated plant protection against aphids. PEST MANAGEMENT SCIENCE 2016; 72:1090-8. [PMID: 26888776 DOI: 10.1002/ps.4258] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 05/10/2023]
Abstract
Aphids (Aphididae) are major agricultural pests that cause significant yield losses of crop plants each year by inflicting damage both through the direct effects of feeding and by vectoring harmful plant viruses. Expression of double-stranded RNA (dsRNA) directed against suitable insect target genes in transgenic plants has been shown to give protection against pests through plant-mediated RNA interference (RNAi). Thus, as a potential alternative and effective strategy for insect pest management in agricultural practice, plant-mediated RNAi for aphid control has received close attention in recent years. In this review, the mechanism of RNAi in insects and the so far explored effective RNAi target genes in aphids, their potential applications in the development of transgenic plants for aphid control and the major challenges in this regard are reviewed, and the future prospects of using plant-mediated RNAi for aphid control are discussed. This review is intended to be a helpful insight into the generation of aphid-resistant plants through plant-mediated RNAi strategy. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiu-Dao Yu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zong-Cai Liu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, China
| | - Si-Liang Huang
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, China
| | - Zhi-Qin Chen
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, China
| | - Yong-Wei Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng-Fei Duan
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, China
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lan-Qin Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
60
|
Lim ZX, Robinson KE, Jain RG, Chandra GS, Asokan R, Asgari S, Mitter N. Diet-delivered RNAi in Helicoverpa armigera--Progresses and challenges. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:86-93. [PMID: 26549127 DOI: 10.1016/j.jinsphys.2015.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 05/03/2023]
Abstract
Helicoverpa armigera (the cotton bollworm) is a significant agricultural pest endemic to Afro-Eurasia and Oceania. Gene suppression via RNA interference (RNAi) presents a potential avenue for management of the pest, which is highly resistant to traditional insecticide sprays. This article reviews current understanding on the fate of ingested double-stranded RNA in H. armigera. Existing in vivo studies on diet-delivered RNAi and their effects are summarized and followed by a discussion on the factors and hurdles affecting the efficacy of diet-delivered RNAi in H. armigera.
Collapse
Affiliation(s)
- Zhi Xian Lim
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Karl E Robinson
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ritesh G Jain
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - G Sharath Chandra
- Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake Post, Bengaluru 560 089, India
| | - R Asokan
- Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake Post, Bengaluru 560 089, India
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
61
|
Adamo SA, Davies G, Easy R, Kovalko I, Turnbull KF. Reconfiguration of the immune system network during food limitation in the caterpillar Manduca sexta. ACTA ACUST UNITED AC 2016; 219:706-18. [PMID: 26747906 DOI: 10.1242/jeb.132936] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/17/2015] [Indexed: 11/20/2022]
Abstract
Dwindling resources might be expected to induce a gradual decline in immune function. However, food limitation has complex and seemingly paradoxical effects on the immune system. Examining these changes from an immune system network perspective may help illuminate the purpose of these fluctuations. We found that food limitation lowered long-term (i.e. lipid) and short-term (i.e. sugars) energy stores in the caterpillar Manduca sexta. Food limitation also: altered immune gene expression, changed the activity of key immune enzymes, depressed the concentration of a major antioxidant (glutathione), reduced resistance to oxidative stress, reduced resistance to bacteria (Gram-positive and -negative bacteria) but appeared to have less effect on resistance to a fungus. These results provide evidence that food limitation led to a restructuring of the immune system network. In severely food-limited caterpillars, some immune functions were enhanced. As resources dwindled within the caterpillar, the immune response shifted its emphasis away from inducible immune defenses (i.e. those responses that are activated during an immune challenge) and increased emphasis on constitutive defenses (i.e. immune components that are produced consistently). We also found changes suggesting that the activation threshold for some immune responses (e.g. phenoloxidase) was lowered. Changes in the configuration of the immune system network will lead to different immunological strengths and vulnerabilities for the organism.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Gillian Davies
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Russell Easy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Ilya Kovalko
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Kurtis F Turnbull
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
62
|
Abstract
For the purpose of this work, insect biotechnology, which is also known as yellow biotechnology, is the use of insects as well as insect-derived cells or molecules in medical (red biotechnology), agricultural (green biotechnology), and industrial (white) biotechnology. It is based on the application of biotechnological techniques on insects or their cells to develop products or services for human use. Such products are then applied in agriculture, medicine, and industrial biotechnology. Insect biotechnology has proven to be a useful resource in diverse industries, especially for the production of industrial enzymes including chitinases and cellulases, pharmaceuticals, microbial insecticides, insect genes, and many other substances. Insect cells (ICs), and particularly lepidopteran cells, constitute a competitive strategy to mammalian cells for the manufacturing of biotechnology products. Among the wide range of methods and expression hosts available for the production of biotech products, ICs are ideal for the production of complex proteins requiring extensive posttranslational modification. The progress so far made in insect biotechnology essentially derives from scientific breakthroughs in molecular biology, especially with the advances in techniques that allow genetic manipulation of organisms and cells. Insect biotechnology has grown tremendously in the last 30 years.
Collapse
Affiliation(s)
- Chandrasekar Raman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas USA
| | - Marian R. Goldsmith
- Biological Sciences Department Center for Biotech. and Life Sciences, University of Rhode Island, Kingston, Rhode Island USA
| | - Tolulope A. Agunbiade
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut USA
| |
Collapse
|
63
|
Yang C, Pan H, Noland JE, Zhang D, Zhang Z, Liu Y, Zhou X. Selection of reference genes for RT-qPCR analysis in a predatory biological control agent, Coleomegilla maculata (Coleoptera: Coccinellidae). Sci Rep 2015; 5:18201. [PMID: 26656102 PMCID: PMC4674751 DOI: 10.1038/srep18201] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/13/2015] [Indexed: 01/11/2023] Open
Abstract
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for quantifying gene expression across various biological processes, of which requires a set of suited reference genes to normalize the expression data. Coleomegilla maculata (Coleoptera: Coccinellidae), is one of the most extensively used biological control agents in the field to manage arthropod pest species. In this study, expression profiles of 16 housekeeping genes selected from C. maculata were cloned and investigated. The performance of these candidates as endogenous controls under specific experimental conditions was evaluated by dedicated algorithms, including geNorm, Normfinder, BestKeeper, and ΔCt method. In addition, RefFinder, a comprehensive platform integrating all the above-mentioned algorithms, ranked the overall stability of these candidate genes. As a result, various sets of suitable reference genes were recommended specifically for experiments involving different tissues, developmental stages, sex, and C. maculate larvae treated with dietary double stranded RNA. This study represents the critical first step to establish a standardized RT-qPCR protocol for the functional genomics research in a ladybeetle C. maculate. Furthermore, it lays the foundation for conducting ecological risk assessment of RNAi-based gene silencing biotechnologies on non-target organisms; in this case, a key predatory biological control agent.
Collapse
Affiliation(s)
- Chunxiao Yang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Hunan, China
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Huipeng Pan
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | | | - Deyong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Hunan, China
| | - Zhanhong Zhang
- Hunan Vegetable Institute, Hunan Academy of Agricultural Sciences, Hunan, China
| | - Yong Liu
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Hunan, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
64
|
Poreddy S, Mitra S, Schöttner M, Chandran J, Schneider B, Baldwin IT, Kumar P, Pandit SS. Detoxification of hostplant's chemical defence rather than its anti-predator co-option drives β-glucosidase-mediated lepidopteran counteradaptation. Nat Commun 2015; 6:8525. [PMID: 26443324 PMCID: PMC4633822 DOI: 10.1038/ncomms9525] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
The evolutionary plant-herbivore arms race sometimes gives rise to remarkably unique adaptation strategies. Here we report one such strategy in the lepidopteran herbivore Manduca sexta against its hostplant Nicotiana attenuata's major phytotoxins, 17-hydroxygeranyllinalool diterpene glycoside, lyciumoside IV and its malonylated forms. We show that alkalinity of larval regurgitant non-enzymatically demalonylates the malonylated forms to lyciumoside IV. Lyciumoside IV is then detoxified in the midgut by β-glucosidase 1-catalysed deglycosylation, which is unusual, as typically the deglycosylation of glycosylated phytochemicals by insects results in the opposite: toxin activation. Suppression of deglucosylation by silencing larval β-glucosidase 1 by plant-mediated RNAi causes moulting impairments and mortality. In the native habitat of N. attenuata, β-glucosidase 1 silencing also increases larval unpalatability to native predatory spiders, suggesting that the defensive co-option of lyciumoside IV may be ecologically advantageous. We infer that M. sexta detoxifies this allelochemical to avoid its deleterious effects, rather than co-opting it against predators.
Collapse
Affiliation(s)
- Spoorthi Poreddy
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sirsha Mitra
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Matthias Schöttner
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jima Chandran
- Department of Biosynthesis/NMR Research Group, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bernd Schneider
- Department of Biosynthesis/NMR Research Group, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Pavan Kumar
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sagar S. Pandit
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
65
|
Khan AM, Ashfaq M, Khan AA, Rasool A, Iqbal J, Mansoor S. Inoculation of Nicotiana tabacum with recombinant potato virus X induces RNA interference in the solenopsis mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Biotechnol Lett 2015; 37:2083-90. [PMID: 26087945 DOI: 10.1007/s10529-015-1880-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/02/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The chitin synthase 1 (CHS1) gene in Phenacoccus solenopsis (PsCHS1) was evaluated as a potential target of RNA interference (RNAi) by using Potato virus X (PVX) as a vector (recombinant PVX) for expressing RNAi triggering elements in Nicotiana tabacum L. RESULTS RT-PCR analysis confirmed the expression of PsCHS1 in N. tabacum inoculated with recombinant-PVX-PsCHS1 (treated). RT- and multiplex-PCR further showed a reduction in mRNA levels of the target gene in mealybugs feeding on treated plants. Mortality in parent adults and emerging nymphs (21 and 29%) exposed to the treated plants was significantly higher (P < 0.05) than those exposed to uninoculated (-ve control) or inoculated with non-recombinant PVX (PVX-control). The number of surviving adults and the combined number of adults and nymphs (47 and 60%) was significantly (P < 0.05) lower on the treated plants than the -ve (76%) or PVX (74%) control. The visual observations verified the physical deformities in mealybugs exposed to the treated plants. CONCLUSION chitin synthase 1 is a potential RNAi target in P. solenopsis and the recombinant PVX can be used as a tool to evaluate candidate RNAi triggering elements in plants.
Collapse
Affiliation(s)
- Arif Muhammad Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Ashfaq
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.
- Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Azhar Abbas Khan
- College of Agriculture, Bahauddin Zakariya University, Bahadur Campus Layyah, Multan, Pakistan
| | - Akhtar Rasool
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Javed Iqbal
- School of Life Sciences, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
66
|
Groten K, Pahari NT, Xu S, Miloradovic van Doorn M, Baldwin IT. Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis. PLoS One 2015; 10:e0136234. [PMID: 26291081 PMCID: PMC4546398 DOI: 10.1371/journal.pone.0136234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023] Open
Abstract
Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF) that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata) after infection with mycorrhizal fungi (Rhizophagus irregularis) by serial analysis of gene expression (SuperSAGE) combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35%) matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4%) matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p<0.05, >2-fold change) after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS) to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK). The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that large-scale gene expression studies across different species induce of a core set of genes of similar functions. However, additional factors seem to influence the overall pattern of gene expression, resulting in high variability among independent studies with different hosts. We conclude that VIGS is a powerful tool with which to investigate the function of genes involved in plant-AMF interactions but that inoculum strength can strongly influence the outcome of the interaction.
Collapse
Affiliation(s)
- Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Nabin T. Pahari
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Maja Miloradovic van Doorn
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| |
Collapse
|
67
|
Zotti MJ, Smagghe G. RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments. NEOTROPICAL ENTOMOLOGY 2015; 44:197-213. [PMID: 26013264 DOI: 10.1007/s137440150291-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/14/2015] [Indexed: 05/28/2023]
Abstract
The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.
Collapse
Affiliation(s)
- M J Zotti
- Dept of Crop Protection, Molecular Entomology, Federal Univ of Pelotas, Pelotas, RS, Brasil,
| | | |
Collapse
|
68
|
Zotti MJ, Smagghe G. RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments. NEOTROPICAL ENTOMOLOGY 2015; 44:197-213. [PMID: 26013264 DOI: 10.1007/s13744-015-0291-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/14/2015] [Indexed: 05/03/2023]
Abstract
The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.
Collapse
Affiliation(s)
- M J Zotti
- Dept of Crop Protection, Molecular Entomology, Federal Univ of Pelotas, Pelotas, RS, Brasil,
| | | |
Collapse
|
69
|
Kim YH, Soumaila Issa M, Cooper AMW, Zhu KY. RNA interference: Applications and advances in insect toxicology and insect pest management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 120:109-17. [PMID: 25987228 DOI: 10.1016/j.pestbp.2015.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 05/27/2023]
Abstract
Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management.
Collapse
Affiliation(s)
- Young Ho Kim
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| | | | - Anastasia M W Cooper
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA.
| |
Collapse
|
70
|
Jin S, Singh ND, Li L, Zhang X, Daniell H. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:435-46. [PMID: 25782349 PMCID: PMC4522700 DOI: 10.1111/pbi.12355] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/23/2014] [Accepted: 02/03/2015] [Indexed: 05/03/2023]
Abstract
In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells.
Collapse
Affiliation(s)
- Shuangxia Jin
- Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
71
|
Affiliation(s)
- Steve Whyard
- Department of Biological Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
72
|
Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 2015; 347:991-4. [DOI: 10.1126/science.1261680] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
73
|
Coleman AD, Wouters RHM, Mugford ST, Hogenhout SA. Persistence and transgenerational effect of plant-mediated RNAi in aphids. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:541-8. [PMID: 25403918 PMCID: PMC4286408 DOI: 10.1093/jxb/eru450] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant-mediated RNA interference (RNAi) has been successfully used as a tool to study gene function in aphids. The persistence and transgenerational effects of plant-mediated RNAi in the green peach aphid (GPA) Myzus persicae were investigated, with a focus on three genes with different functions in the aphid. Rack1 is a key component of various cellular processes inside aphids, while candidate effector genes MpC002 and MpPIntO2 (Mp2) modulate aphid-plant interactions. The gene sequences and functions did not affect RNAi-mediated down-regulation and persistence levels in the aphids. Maximal reduction of gene expression was ~70% and this was achieved at between 4 d and 8 d of exposure of the aphids to double-stranded RNA (dsRNA)-producing transgenic Arabidopsis thaliana. Moreover, gene expression levels returned to wild-type levels within ~6 d after removal of the aphids from the transgenic plants, indicating that a continuous supply of dsRNA is required to maintain the RNAi effect. Target genes were also down-regulated in nymphs born from mothers exposed to dsRNA-producing transgenic plants, and the RNAi effect lasted twice as long (12-14 d) in these nymphs. Investigations of the impact of RNAi over three generations of aphids revealed that aphids reared on dsMpC002 transgenic plants experienced a 60% decline in aphid reproduction levels compared with a 40% decline of aphids reared on dsRack1 and dsMpPIntO2 plants. In a field setting, a reduction of the aphid reproduction by 40-60% would dramatically decrease aphid population growth, contributing to a substantial reduction in agricultural losses.
Collapse
Affiliation(s)
- A D Coleman
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - R H M Wouters
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - S T Mugford
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - S A Hogenhout
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
74
|
Liu F, Wang XD, Zhao YY, Li YJ, Liu YC, Sun J. Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera. Int J Biol Sci 2015; 11:67-74. [PMID: 25552931 PMCID: PMC4278256 DOI: 10.7150/ijbs.10468] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/05/2014] [Indexed: 11/24/2022] Open
Abstract
Insect pests have caused noticeable economic losses in agriculture, and the heavy use of insecticide to control pests not only brings the threats of insecticide resistance but also causes the great pollution to foods and the environment. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been is currently developed for protection against insect pests. In this study, we used this technology to silence the arginine kinase (AK) gene of Helicoverpa armigera (HaAK), encoding a phosphotransferase that plays a critical role in cellular energy metabolism in invertebrate. Transgenic Arabidopsis plants producing HaAK dsRNA were generated by Agrobacterium-mediated transformation. The maximal mortality rate of 55% was reached when H. armigera first-instar larvae were fed with transgenic plant leaves for 3 days, which was dramatically higher than the 18% mortality recorded in the control group. Moreover, the ingestion of transgenic plants significantly retarded larval growth, and the transcript levels of HaAK were also knocked down by up to 52%. The feeding bioassays further indicated that the inhibition efficiency was correlated with the integrity and concentration of the produced HaAK dsRNA in transgenic plants. These results strongly show that the resistance to H. armigera was improved in transgenic Arabidopsis plants, suggesting that the RNAi targeting of AK has the potential for the control of insect pests.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| |
Collapse
|
75
|
Nandety RS, Kuo YW, Nouri S, Falk BW. Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered 2014; 6:8-19. [PMID: 25424593 PMCID: PMC4601220 DOI: 10.4161/21655979.2014.979701] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.
Collapse
Affiliation(s)
| | - Yen-Wen Kuo
- Department of Plant Pathology; University of California; Davis, CA USA
| | - Shahideh Nouri
- Department of Plant Pathology; University of California; Davis, CA USA
| | - Bryce W Falk
- Department of Plant Pathology; University of California; Davis, CA USA
| |
Collapse
|
76
|
Development of new potato virus X-based vectors for gene over-expression and gene silencing assay. Virus Res 2014; 191:62-9. [DOI: 10.1016/j.virusres.2014.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022]
|
77
|
Kochetov AV. The alien replicon: Artificial genetic constructs to direct the synthesis of transmissible self-replicating RNAs. Bioessays 2014; 36:1204-12. [DOI: 10.1002/bies.201400111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alex V. Kochetov
- Institute of Cytology & Genetics, SB RAS; Novosibirsk Russia
- Novosibirsk State University; Novosibirsk Russia
| |
Collapse
|
78
|
Kumar P, Rathi P, Schöttner M, Baldwin IT, Pandit S. Differences in nicotine metabolism of two Nicotiana attenuata herbivores render them differentially susceptible to a common native predator. PLoS One 2014; 9:e95982. [PMID: 24755743 PMCID: PMC3995989 DOI: 10.1371/journal.pone.0095982] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/31/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Nicotiana attenuata is attacked by larvae of both specialist (Manduca sexta) and generalist (Spodoptera exigua) lepidopteran herbivores in its native habitat. Nicotine is one of N. attenuata's important defenses. M. sexta is highly nicotine tolerant; whether cytochrome P450 (CYP)-mediated oxidative detoxification and/or rapid excretion is responsible for its exceptional tolerance remains unknown despite five decades of study. Recently, we demonstrated that M. sexta uses its nicotine-induced CYP6B46 to efflux midgut-nicotine into the hemolymph, facilitating nicotine exhalation that deters predatory wolf spiders (Camptocosa parallela). S. exigua's nicotine metabolism is uninvestigated. METHODOLOGY/PRINCIPAL FINDINGS We compared the ability of these two herbivores to metabolize, tolerate and co-opt ingested nicotine for defense against the wolf spider. In addition, we analyzed the spider's excretion to gain insights into its nicotine metabolism. Contrary to previous reports, we found that M. sexta larvae neither accumulate the common nicotine oxides (cotinine, cotinine N-oxide and nicotine N-oxide) nor excrete them faster than nicotine. In M. sexta larvae, ingestion of nicotine as well as its oxides increases the accumulation of CYP6B46 transcripts. In contrast, S. exigua accumulates nicotine oxides and exhales less (66%) nicotine than does M. sexta. Spiders prefer nicotine-fed S. exigua over M. sexta, a preference reversed by topical or headspace nicotine supplementation, but not ingested or topically-coated nicotine oxides, suggesting that externalized nicotine but not the nicotine detoxification products deter spider predation. The spiders also do not accumulate nicotine oxides. CONCLUSIONS Nicotine oxidation reduces S. exigua's headspace-nicotine and renders it more susceptible to predation by spiders than M. sexta, which exhales unmetabolized nicotine. These results are consistent with the hypothesis that generalist herbivores incur costs of detoxification, which include the ecological costs of greater predation risks, in addition to the previously demonstrated energetic, physiological and metabolic costs.
Collapse
Affiliation(s)
- Pavan Kumar
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Preeti Rathi
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Matthias Schöttner
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Sagar Pandit
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
79
|
Wynant N, Santos D, Verdonck R, Spit J, Van Wielendaele P, Vanden Broeck J. Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 46:1-8. [PMID: 24418314 DOI: 10.1016/j.ibmb.2013.12.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) has become a widely used reverse genetics tool in eukaryotes and holds great potential to contribute to the development of novel strategies for insect pest control. While previous studies clearly demonstrated that injection of dsRNA into the body cavity of the desert locust, Schistocerca gregaria, is highly effective to induce gene silencing effects, we observed that the RNAi response is much less sensitive to orally delivered dsRNA. In line with this, we report on the presence of a potent dsRNA degrading activity in the midgut juice. Four different dsRNase sequences that belong to the DNA/RNA Non-specific Nuclease superfamily were retrieved from a transcriptome database of the desert locust. Surprisingly, we have found that, in the publicly available eukaryote nucleotide sequence databases, the presence of this group of enzymes is restricted to insects and crustaceans. Nonetheless, phylogenetic analyses predict a common origin of these enzymes with the Endonuclease G (EndoG) Non-specific Nucleases that display a widespread taxonomic distribution. Moreover, in contrast to the Sg-endoG transcript, the four Sg-dsRNase transcripts appear to be specifically expressed in the gut. Finally, by means of RNAi, we provide evidence for an important contribution of dsRNase2 to the dsRNA degrading activity that is present in the gut lumen of S. gregaria.
Collapse
Affiliation(s)
- Niels Wynant
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jornt Spit
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| |
Collapse
|
80
|
Witwer KW, Hirschi KD. Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist. Bioessays 2014; 36:394-406. [PMID: 24436255 PMCID: PMC4109825 DOI: 10.1002/bies.201300150] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
If validated, diet-derived foreign microRNA absorption and function in consuming vertebrates would drastically alter our understanding of nutrition and ecology. RNA interference (RNAi) mechanisms of Caenorhabditis elegans are enhanced by uptake of environmental RNA and amplification and systemic distribution of RNAi effectors. Therapeutic exploitation of RNAi in treating human disease is difficult because these accessory processes are absent or diminished in most animals. A recent report challenged multiple paradigms, suggesting that ingested microRNAs (miRNAs) are transferred to blood, accumulate in tissues, and exert canonical regulation of endogenous transcripts. Independent replication of these findings has been elusive, and multiple disconfirmatory findings have been published. In the face of mounting negative results, any additional positive reports must provide the proverbial “extraordinary proof” to support such claims. In this article, we review the evidence for and against a significant role for dietary miRNAs in influencing gene expression, and make recommendations for future studies.
Collapse
Affiliation(s)
- Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
81
|
Aly R, Dubey NK, Yahyaa M, Abu-Nassar J, Ibdah M. Gene silencing of CCD7 and CCD8 in Phelipanche aegyptiaca by tobacco rattle virus system retarded the parasite development on the host. PLANT SIGNALING & BEHAVIOR 2014; 9:e29376. [PMID: 25763619 PMCID: PMC4203721 DOI: 10.4161/psb.29376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 05/11/2023]
Abstract
Strigolactones are phytohormones that stimulate seed germination of parasitic plants including Phelipanche aegyptiaca. Strigolactones are derived from carotenoids via a pathway involving the carotenoid cleavage dioxygenases CCD7 and CCD8. We report here identification of PaCCD7 and PaCCD8 orthologous genes from P. aegyptiaca. Expression analysis of PaCCD7 and PaCCD8 genes showed significant variation in their transcript levels in seeds and tubercles of P. aegyptiaca at different developmental stages. These two parasitic PaCCD7 and PaCCD8 genes were silenced in P. aegyptiaca using a trans-silencing approach in Nicotiana benthamiana. The transient knock-down of PaCCD7 and PaCCD8 inhibited tubercle development and the infestation process in host plants. Our results suggest an important role of the strigolactone associated genes (PaCCD7 and PaCCD8) in the parasite life cycle.
Collapse
Affiliation(s)
| | | | | | - Jackline Abu-Nassar
- NeweYaar Research Center; Agriculture Research Organization; Ramat Yishay, Israel
| | - Mwafaq Ibdah
- NeweYaar Research Center; Agriculture Research Organization; Ramat Yishay, Israel
| |
Collapse
|
82
|
Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46's role in a nicotine-mediated antipredator herbivore defense. Proc Natl Acad Sci U S A 2013; 111:1245-52. [PMID: 24379363 DOI: 10.1073/pnas.1314848111] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Manduca sexta (Ms) larvae are known to efficiently excrete ingested nicotine when feeding on their nicotine-producing native hostplant, Nicotiana attenuata. Here we describe how ingested nicotine is co-opted for larval defense by a unique mechanism. Plant-mediated RNAi was used to silence a midgut-expressed, nicotine-induced cytochrome P450 6B46 (CYP6B46) in larvae consuming transgenic N. attenuata plants producing MsCYP6B46 dsRNA. These and transgenic nicotine-deficient plants were planted into native habitats to study the phenotypes of larvae feeding on these plants and the behavior of their predators. The attack-behavior of a native wolf spider (Camptocosa parallela), a major nocturnal predator, provided the key to understanding MsCYP6B46's function: spiders clearly preferred CYP6B46-silenced larvae, just as they had preferred larvae fed nicotine-deficient plants. MsCYP6B46 redirects a small amount (0.65%) of ingested nicotine from the midgut into hemolymph, from which nicotine is exhaled through the spiracles as an antispider signal. CYP6B46-silenced larvae were more susceptible to spider-attack because they exhaled less nicotine because of lower hemolymph nicotine concentrations. CYP6B46-silenced larvae were impaired in distributing ingested nicotine from midgut to hemolymph, but not in the clearing of hemolymph nicotine or in the exhalation of nicotine from hemolymph. MsCYP6B46 could be a component of a previously hypothesized pump that converts nicotine to a short-lived, transportable, metabolite. Other predators, big-eyed bugs, and antlion larvae were insensitive to this defense. Thus, chemical defenses, too toxic to sequester, can be repurposed for defensive functions through respiration as a form of defensive halitosis, and predators can assist the functional elucidation of herbivore genes.
Collapse
|
83
|
Nandety RS, Kamita SG, Hammock BD, Falk BW. Sequencing and de novo assembly of the transcriptome of the glassy-winged sharpshooter (Homalodisca vitripennis). PLoS One 2013; 8:e81681. [PMID: 24339955 PMCID: PMC3858241 DOI: 10.1371/journal.pone.0081681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae), is a xylem-feeding leafhopper and important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. The functional complexity of the transcriptome of H. vitripennis has not been elucidated thus far. It is a necessary blueprint for an understanding of the development of H. vitripennis and for designing efficient biorational control strategies including those based on RNA interference. RESULTS Here we elucidate and explore the transcriptome of adult H. vitripennis using high-throughput paired end deep sequencing and de novo assembly. A total of 32,803,656 paired-end reads were obtained with an average transcript length of 624 nucleotides. We assembled 32.9 Mb of the transcriptome of H. vitripennis that spanned across 47,265 loci and 52,708 transcripts. Comparison of our non-redundant database showed that 45% of the deduced proteins of H. vitripennis exhibit identity (e-value ≤1(-5)) with known proteins. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript isoform. In order to gain insight into the molecular basis of key regulatory genes of H. vitripennis, we characterized predicted proteins involved in the metabolism of juvenile hormone, and biogenesis of small RNAs (Dicer and Piwi sequences) from the transcriptomic sequences. Analysis of transposable element sequences of H. vitripennis indicated that the genome is less expanded in comparison to many other insects with approximately 1% of the transcriptome carrying transposable elements. CONCLUSIONS Our data significantly enhance the molecular resources available for future study and control of this economically important hemipteran. This transcriptional information not only provides a more nuanced understanding of the underlying biological and physiological mechanisms that govern H. vitripennis, but may also lead to the identification of novel targets for biorationally designed control strategies.
Collapse
Affiliation(s)
- Raja Sekhar Nandety
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Shizuo G. Kamita
- Department of Entomology and UC Davis Comprehensive Cancer Research Center, University of California Davis, Davis, California, United States of America
| | - Bruce D. Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Research Center, University of California Davis, Davis, California, United States of America
| | - Bryce W. Falk
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
84
|
Scott JG, Michel K, Bartholomay L, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE. Towards the elements of successful insect RNAi. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1212-21. [PMID: 24041495 PMCID: PMC3870143 DOI: 10.1016/j.jinsphys.2013.08.014] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 05/09/2023]
Abstract
RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases.
Collapse
Affiliation(s)
- Jeffrey G. Scott
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Kristin Michel
- Department of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Blair D. Siegfried
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA
| | | | - Guy Smagghe
- Department of Crop Protection, Ghent University, B-9000 Ghent, Belgium
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Angela E. Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Author for correspondence: , Tel. 1-607-255-8539
| |
Collapse
|
85
|
Kalleda N, Naorem A, Manchikatla RV. Targeting fungal genes by diced siRNAs: a rapid tool to decipher gene function in Aspergillus nidulans. PLoS One 2013; 8:e75443. [PMID: 24130711 PMCID: PMC3794931 DOI: 10.1371/journal.pone.0075443] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/15/2013] [Indexed: 01/22/2023] Open
Abstract
Background Gene silencing triggered by chemically synthesized small interfering RNAs (siRNAs) has become a powerful tool for deciphering gene function in many eukaryotes. However, prediction and validation of a single siRNA duplex specific to a target gene is often ineffective. RNA interference (RNAi) with synthetic siRNA suffers from lower silencing efficacy, off-target effects and is cost-intensive, especially for functional genomic studies. With the explosion of fungal genomic information, there is an increasing need to analyze gene function in a rapid manner. Therefore, studies were performed in order to investigate the efficacy of gene silencing induced by RNase III-diced-siRNAs (d-siRNA) in model filamentous fungus, Aspergillus nidulans. Methodology/Principal Findings Stable expression of heterologous reporter gene in A. nidulans eases the examination of a new RNAi-induction route. Hence, we have optimized Agrobacterium tumefaciens-mediated transformation (AMT) of A. nidulans for stable expression of sGFP gene. This study demonstrates that the reporter GFP gene stably introduced into A. nidulans can be effectively silenced by treatment of GFP-d-siRNAs. We have shown the down-regulation of two endogenous genes, AnrasA and AnrasB of A. nidulans by d-siRNAs. We have also elucidated the function of an uncharacterized Ras homolog, rasB gene, which was found to be involved in hyphal growth and development. Further, silencing potency of d-siRNA was higher as compared to synthetic siRNA duplex, targeting AnrasA. Silencing was shown to be sequence-specific, since expression profiles of other closely related Ras family genes in d-siRNA treated AnrasA and AnrasB silenced lines exhibited no change in gene expression. Conclusions/Significance We have developed and applied a fast, specific and efficient gene silencing approach for elucidating gene function in A. nidulans using d-siRNAs. We have also optimized an efficient AMT in A. nidulans, which is useful for stable integration of transgenes.
Collapse
Affiliation(s)
| | - Aruna Naorem
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Rajam V. Manchikatla
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
86
|
Khan AM, Ashfaq M, Kiss Z, Khan AA, Mansoor S, Falk BW. Use of recombinant tobacco mosaic virus to achieve RNA interference in plants against the citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae). PLoS One 2013; 8:e73657. [PMID: 24040013 PMCID: PMC3767618 DOI: 10.1371/journal.pone.0073657] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/18/2013] [Indexed: 12/20/2022] Open
Abstract
The citrus mealybug, Planococcus citri, is an important plant pest with a very broad plant host range. P. citri is a phloem feeder and loss of plant vigor and stunting are characteristic symptoms induced on a range of host plants, but P. citri also reduces fruit quality and causes fruit drop leading to significant yield reductions. Better strategies for managing this pest are greatly needed. RNA interference (RNAi) is an emerging tool for functional genomics studies and is being investigated as a practical tool for highly targeted insect control. Here we investigated whether RNAi effects can be induced in P. citri and whether candidate mRNAs could be identified as possible targets for RNAi-based P. citri control. RNAi effects were induced in P. citri, as demonstrated by specific target reductions of P. citri actin, chitin synthase 1 and V-ATPase mRNAs after injection of the corresponding specific double-stranded RNA inducers. We also used recombinant Tobacco mosaic virus (TMV) to express these RNAi effectors in Nicotiana benthamiana plants. We found that P. citri showed lower fecundity and pronounced death of crawlers after feeding on recombinant TMV-infected plants. Taken together, our data show that actin, chitin synthase 1 and V-ATPase mRNAs are potential targets for RNAi against P. citri, and that recombinant TMV is an effective tool for evaluating candidate RNAi effectors in plants.
Collapse
Affiliation(s)
- Arif Muhammad Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Muhammad Ashfaq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Zsofia Kiss
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Azhar Abbas Khan
- Department of Entomology, University of Sargodha, Sargodha, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Bryce W. Falk
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
87
|
Wuriyanghan H, Falk BW. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV). PLoS One 2013; 8:e66050. [PMID: 23824081 PMCID: PMC3688868 DOI: 10.1371/journal.pone.0066050] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 05/06/2013] [Indexed: 12/22/2022] Open
Abstract
The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will provide a faster and more convenient method for screening of suitable RNAi target sequences in planta.
Collapse
Affiliation(s)
- Hada Wuriyanghan
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Life Science College, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Bryce W. Falk
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
88
|
Acharjee S, Sarmah BK. Biotechnologically generating 'super chickpea' for food and nutritional security. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:108-116. [PMID: 23602105 DOI: 10.1016/j.plantsci.2013.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 05/27/2023]
Abstract
Chickpea productivity is affected by various constraints that are biotic (Helicoverpa, Aphids, Callosobruchus, Bromus and Orobanche) and abiotic (drought and salinity). In addition, the grains of this legume are deficient in sulfur amino acids, methionine and cysteine. The possibilities for genetic improvement by marker-assisted breeding and selection approaches are limited in chickpeas due to their sexually incompatible gene pool. Transgenic chickpeas expressing either the cry1Ac/b or the cry2Aa gene and the bean α-amylase inhibitor gene are resistant to Helicoverpa and bruchids, respectively, but these chickpeas have yet to be commercialized. Unfortunately, attempts to generate transgenic chickpeas with increased tolerance to drought and salinity or with increased methionine content have been less successful. The commercialization of transgenic chickpeas containing a single transgene may not give adequate yield advantage, as chickpeas are affected by many production constraints in the field and in storage. Gene pyramiding by incorporating two or more genes may be useful because improving one trait at a time will be time-consuming, labor-intensive and costly. Use of modern multi-gene vectors that contain recognition sites for zinc finger nucleases (ZFNs) and homing endonucleases may simplify the incorporation of multiple genes into chickpeas. This approach necessitates a collaborative effort between individuals, public and private organizations to generate 'super chickpeas' that harbor multiple transgenic traits.
Collapse
Affiliation(s)
- Sumita Acharjee
- Department of Agricultural Biotechnology, Jorhat 785013, Assam, India
| | | |
Collapse
|
89
|
Xiong Y, Zeng H, Zhang Y, Xu D, Qiu D. Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Int J Biol Sci 2013; 9:370-81. [PMID: 23630449 PMCID: PMC3638292 DOI: 10.7150/ijbs.5929] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) caused by exogenous double-stranded RNA (dsRNA) has developed into a powerful technique in functional genomics, and to date it is widely used to down-regulate crucial physiology-related genes to control pest insects. A molt-regulating transcription factor gene, HaHR3, of cotton bollworm (Helicoverpa armigera) was selected as the target gene. Four different fragments covering the coding sequence (CDS) of HaHR3 were cloned into vector L4440 to express dsRNAs in Escherichia coli. The most effective silencing fragment was then cloned into a plant over-expression vector to express a hairpin RNA (hpRNA) in transgenic tobacco (Nicotiana tabacum). When H. armigera larvae were fed the E. coli or transgenic plants, the HaHR3 mRNA and protein levels dramatically decreased, resulting developmental deformity and larval lethality. The results demonstrate that both recombinant bacteria and transgenic plants could induce HaHR3 silence to disrupt H. armigera development, transgenic plant-mediated RNAi is emerging as a powerful approach for controlling insect pests.
Collapse
Affiliation(s)
| | - Hongmei Zeng
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture. Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | | | | | - Dewen Qiu
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture. Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| |
Collapse
|
90
|
VanDoorn A, de Vos M. Resistance to sap-sucking insects in modern-day agriculture. FRONTIERS IN PLANT SCIENCE 2013; 4:222. [PMID: 23818892 PMCID: PMC3694213 DOI: 10.3389/fpls.2013.00222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/08/2013] [Indexed: 05/18/2023]
Abstract
Plants and herbivores have co-evolved in their natural habitats for about 350 million years, but since the domestication of crops, plant resistance against insects has taken a different turn. With the onset of monoculture-driven modern agriculture, selective pressure on insects to overcome resistances has dramatically increased. Therefore plant breeders have resorted to high-tech tools to continuously create new insect-resistant crops. Efforts in the past 30 years have resulted in elucidation of mechanisms of many effective plant defenses against insect herbivores. Here, we critically appraise these efforts and - with a focus on sap-sucking insects - discuss how these findings have contributed to herbivore-resistant crops. Moreover, in this review we try to assess where future challenges and opportunities lay ahead. Of particular importance will be a mandatory reduction in systemic pesticide usage and thus a greater reliance on alternative methods, such as improved plant genetics for plant resistance to insect herbivores.
Collapse
Affiliation(s)
- Arjen VanDoorn
- Keygene NV, WageningenNetherlands
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Martin de Vos
- Keygene NV, WageningenNetherlands
- *Correspondence: Martin de Vos, Keygene NV, Agro Business Park 90, 6708 PW Wageningen, Netherlands e-mail:
| |
Collapse
|
91
|
Bragard C, Caciagli P, Lemaire O, Lopez-Moya JJ, MacFarlane S, Peters D, Susi P, Torrance L. Status and prospects of plant virus control through interference with vector transmission. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:177-201. [PMID: 23663003 DOI: 10.1146/annurev-phyto-082712-102346] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus-vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers, planthoppers, treehoppers, mites, nematodes, and zoosporic endoparasites. Strategies for control of vectors by host resistance, chemicals, and integrated pest management are reviewed. Many gaps in the knowledge of the transmission mechanisms and a lack of available host resistance to vectors are evident. Advances in genome sequencing and molecular technologies will help to address these problems and will allow innovative control methods through interference with vector transmission. Improved knowledge of factors affecting pest and disease spread in different ecosystems for predictive modeling is also needed. Innovative control measures are urgently required because of the increased risks from vector-borne infections that arise from environmental change.
Collapse
Affiliation(s)
- C Bragard
- Earth & Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One 2012; 7:e47534. [PMID: 23071820 PMCID: PMC3469495 DOI: 10.1371/journal.pone.0047534] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/12/2012] [Indexed: 01/17/2023] Open
Abstract
RNA interference (RNAi) has previously been shown to be effective in western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) larvae via oral delivery of synthetic double-stranded RNA (dsRNA) in an artificial diet bioassay, as well as by ingestion of transgenic corn plant tissues engineered to express dsRNA. Although the RNAi machinery components appear to be conserved in Coleopteran insects, the key steps in this process have not been reported for WCR. Here we characterized the sequence of events that result in mortality after ingestion of a dsRNA designed against WCR larvae. We selected the Snf7 ortholog (DvSnf7) as the target mRNA, which encodes an essential protein involved in intracellular trafficking. Our results showed that dsRNAs greater than or equal to approximately 60 base-pairs (bp) are required for biological activity in artificial diet bioassays. Additionally, 240 bp dsRNAs containing a single 21 bp match to the target sequence were also efficacious, whereas 21 bp short interfering (si) RNAs matching the target sequence were not. This result was further investigated in WCR midgut tissues: uptake of 240 bp dsRNA was evident in WCR midgut cells while a 21 bp siRNA was not, supporting the size-activity relationship established in diet bioassays. DvSnf7 suppression was observed in a time-dependent manner with suppression at the mRNA level preceding suppression at the protein level when a 240 bp dsRNA was fed to WCR larvae. DvSnf7 suppression was shown to spread to tissues beyond the midgut within 24 h after dsRNA ingestion. These events (dsRNA uptake, target mRNA and protein suppression, systemic spreading, growth inhibition and eventual mortality) comprise the overall mechanism of action by which DvSnf7 dsRNA affects WCR via oral delivery and provides insights as to how targeted dsRNAs in general are active against insects.
Collapse
|