51
|
Abrantes JLF, Tornatore TF, Pelizzaro-Rocha KJ, de Jesus MB, Cartaxo RT, Milani R, Ferreira-Halder CV. Crosstalk between kinases, phosphatases and miRNAs in cancer. Biochimie 2014; 107 Pt B:167-87. [PMID: 25230087 DOI: 10.1016/j.biochi.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Reversible phosphorylation of proteins, performed by kinases and phosphatases, is the major post translational protein modification in eukaryotic cells. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a vast array of diseases, including cancer. Cancer research has produced increasing evidence that kinase and phosphatase activity can be compromised by mutations and also by miRNA silencing, performed by small non-coding and endogenously produced RNA molecules that lead to translational repression. miRNAs are believed to target about one-third of human mRNAs while a single miRNA may target about 200 transcripts simultaneously. Regulation of the phosphorylation balance by miRNAs has been a topic of intense research over the last years, spanning topics going as far as cancer aggressiveness and chemotherapy resistance. By addressing recent studies that have shown miRNA expression patterns as phenotypic signatures of cancers and how miRNA influence cellular processes such as apoptosis, cell cycle control, angiogenesis, inflammation and DNA repair, we discuss how kinases, phosphatases and miRNAs cooperatively act in cancer biology.
Collapse
Affiliation(s)
- Júlia L F Abrantes
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Thaís F Tornatore
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | | | - Marcelo B de Jesus
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Rodrigo T Cartaxo
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Renato Milani
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | | |
Collapse
|
52
|
Blumenberg M. Differential transcriptional effects of EGFR inhibitors. PLoS One 2014; 9:e102466. [PMID: 25184905 PMCID: PMC4153546 DOI: 10.1371/journal.pone.0102466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023] Open
Abstract
EGF and its receptor EGFR serve as a paradigm for signaling in cell, molecular and tumor biology. EGFR inhibitors, drugs targeting the intracellular kinase activity and antibodies targeting the extracellular ligand binding, are used to treat breast, lung, colon and other cancers. Nominally affecting the same target, inhibitors have different effects, suggesting that use of inhibitor combinations may provide beneficial in cancer treatment. To explore the specific and the common transcriptional effects of EGFR inhibitors, we present metaanalysis of 20 individual studies comprising 346 microarrays. We identified specific gene subsets regulated by kinase inhibitors, those regulated using antibodies and by suppressing EGFR expression using miR-7. Unreported before, the inhibitors prominently induce lysosome components. All inhibitors rely on related sets of transcription factors and protein kinases, both for transcriptional induction and suppression. However, we find that Gefitinib suppresses apoptosis inhibitors, while inducing cell-cycle inhibitors; conversely, Erlotinib suppresses cell-cycle and cell migration genes, while inducing proapoptotic genes. EGFR-targeting antibodies specifically suppress cell motility, developmental and differentiation processes, while inducing the contractile apparatus. miR-7, distinctively, suppresses cell-cycle genes, while inducing transcription machinery. These metaanalysis results suggest that different inhibitors have overlapping but quite distinct effects in target cells. Judicial use of EGFR-targeting combinations, i.e., simultaneous use of antibodies and multiple kinase inhibitors, may provide more effective cancer treatments with fewer side-effects and avoid development of resistance. We expect, moreover, that specific drug combination treatments can be fine-tuned to achieve specific, personalized results.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- The R.O. Perelman Department of Dermatology, Department of Biochemistry and Molecular Pharmacology and the NYU Cancer Institute, NYU Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
53
|
Quan J, Morrison NA, Johnson NW, Gao J. MCP-1 as a Potential Target to Inhibit the Bone Invasion by Oral Squamous Cell Carcinoma. J Cell Biochem 2014; 115:1787-98. [DOI: 10.1002/jcb.24849] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 05/12/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Jingjing Quan
- Guanghua School of Stomatology; Hospital of Stomatology; Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology; Guangzhou Guangdong 510055 China
- School of Medical Science; Griffith University; QLD 4222 Australia
| | | | | | - Jin Gao
- School of Dentistry and Oral Health; Griffith University; QLD 4222 Australia
| |
Collapse
|
54
|
Sethi N, Wright A, Wood H, Rabbitts P. MicroRNAs and head and neck cancer: reviewing the first decade of research. Eur J Cancer 2014; 50:2619-35. [PMID: 25103455 DOI: 10.1016/j.ejca.2014.07.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 12/16/2022]
Abstract
MicroRNAs are a class of non-coding RNA which regulate gene expression. Their discovery in humans in 2000 has led to an explosion in research in this area in terms of their role as a biomarker, therapeutic target as well as trying to elucidate their function. This review aims to summarise the function of microRNAs as well as to examine how dysregulation at any step in their biogenesis or functional pathway can play a role in the development of cancer. We review which microRNAs are implicated as oncogenic or tumour suppressor in head and neck cancer as well as the data available on the use of microRNAs as diagnostic and prognostic marker. We also discuss routes for future research.
Collapse
Affiliation(s)
- Neeraj Sethi
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, West Yorkshire LS9 7TF, UK.
| | - Alexander Wright
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, West Yorkshire LS9 7TF, UK
| | - Henry Wood
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, West Yorkshire LS9 7TF, UK
| | - Pamela Rabbitts
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, West Yorkshire LS9 7TF, UK
| |
Collapse
|
55
|
microRNA-7: a tumor suppressor miRNA with therapeutic potential. Int J Biochem Cell Biol 2014; 54:312-7. [PMID: 24907395 DOI: 10.1016/j.biocel.2014.05.040] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022]
Abstract
microRNAs are a family of endogenous, short, non-coding RNAs that play critical roles in regulating gene expression for key cellular processes in normal and abnormal physiology. microRNA-7 is a 23 nucleotide miRNA whose expression is tightly regulated and restricted predominantly to the brain, spleen and pancreas. Reduced levels of miR-7 have been linked to the development of cancer and metastasis. As a tumor suppressor, miR-7 functions to co-ordinately downregulate a number of direct (e.g. the epidermal growth factor receptor) and indirect (e.g. phospho-Akt) growth promoting targets to decrease tumor growth in vitro and in vivo. In addition, miR-7 can increase the sensitivity of treatment-resistant cancer cells to therapeutics and inhibit metastasis. These data suggest that replacement of miR-7 ('miRNA replacement therapy') for specific human cancers could represent a new treatment approach. This article is part of a Directed Issue entitled: The Non-coding RNA Revolution.
Collapse
|
56
|
Joerger M, Baty F, Früh M, Droege C, Stahel RA, Betticher DC, von Moos R, Ochsenbein A, Pless M, Gautschi O, Rothschild S, Brauchli P, Klingbiel D, Zappa F, Brutsche M. Circulating microRNA profiling in patients with advanced non-squamous NSCLC receiving bevacizumab/erlotinib followed by platinum-based chemotherapy at progression (SAKK 19/05). Lung Cancer 2014; 85:306-13. [PMID: 24928469 DOI: 10.1016/j.lungcan.2014.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 04/23/2014] [Accepted: 04/26/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Molecular subclassification of non small-cell lung cancer (NSCLC) is essential to improve clinical outcome. This study assessed the prognostic and predictive value of circulating micro-RNA (miRNA) in patients with non-squamous NSCLC enrolled in the phase II SAKK (Swiss Group for Clinical Cancer Research) trial 19/05, receiving uniform treatment with first-line bevacizumab and erlotinib followed by platinum-based chemotherapy at progression. MATERIALS AND METHODS Fifty patients with baseline and 24 h blood samples were included from SAKK 19/05. The primary study endpoint was to identify prognostic (overall survival, OS) miRNA's. Patient samples were analyzed with Agilent human miRNA 8x60K microarrays, each glass slide formatted with eight high-definition 60K arrays. Each array contained 40 probes targeting each of the 1347 miRNA. Data preprocessing included quantile normalization using robust multi-array average (RMA) algorithm. Prognostic and predictive miRNA expression profiles were identified by Spearman's rank correlation test (percentage tumor shrinkage) or log-rank testing (for time-to-event endpoints). RESULTS Data preprocessing kept 49 patients and 424 miRNA for further analysis. Ten miRNA's were significantly associated with OS, with hsa-miR-29a being the strongest prognostic marker (HR=6.44, 95%-CI 2.39-17.33). Patients with high has-miR-29a expression had a significantly lower survival at 10 months compared to patients with a low expression (54% versus 83%). Six out of the 10 miRNA's (hsa-miRN-29a, hsa-miR-542-5p, hsa-miR-502-3p, hsa-miR-376a, hsa-miR-500a, hsa-miR-424) were insensitive to perturbations according to jackknife cross-validation on their HR for OS. The respective principal component analysis (PCA) defined a meta-miRNA signature including the same 6 miRNA's, resulting in a HR of 0.66 (95%-CI 0.53-0.82). CONCLUSION Cell-free circulating miRNA-profiling successfully identified a highly prognostic 6-gene signature in patients with advanced non-squamous NSCLC. Circulating miRNA profiling should further be validated in external cohorts for the selection and monitoring of systemic treatment in patients with advanced NSCLC.
Collapse
Affiliation(s)
- M Joerger
- Department of Medical Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland.
| | - F Baty
- Department of Pneumology, Cantonal Hospital, St. Gallen, Switzerland
| | - M Früh
- Department of Medical Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| | - C Droege
- Department of Medical Oncology, University Hospital Basel, Switzerland
| | - R A Stahel
- Department of Medical Oncology, University Hospital Zurich, Switzerland
| | - D C Betticher
- Department of Medical Oncology, Cantonal Hospital, Fribourg, Switzerland
| | - R von Moos
- Department of Medical Oncology, Cantonal Hospital, Chur, Switzerland
| | - A Ochsenbein
- Department of Medical Oncology, University Hospital, Bern, Switzerland
| | - M Pless
- Department of Medical Oncology, Cantonal Hospital, Winterthur, Switzerland
| | - O Gautschi
- Department of Medical Oncology, Cantonal Hospital, Luzern, Switzerland
| | - S Rothschild
- Department of Medical Oncology, Cantonal Hospital, Luzern, Switzerland
| | - P Brauchli
- SAKK Coordinating Center, Bern, Switzerland
| | | | - F Zappa
- Oncology Department, Clinica Luganese, Lugano, Switzerland
| | - M Brutsche
- Department of Pneumology, Cantonal Hospital, St. Gallen, Switzerland
| |
Collapse
|
57
|
MicroRNAs: master regulators of drug resistance, stemness, and metastasis. J Mol Med (Berl) 2014; 92:321-36. [PMID: 24509937 DOI: 10.1007/s00109-014-1129-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are 20-22 nucleotides long small non-coding RNAs that regulate gene expression post-transcriptionally. Last decade has witnessed emerging evidences of active roles of miRNAs in tumor development, progression, metastasis, and drug resistance. Many factors contribute to their dysregulation in cancer, such as chromosomal aberrations, differential methylation of their own or host genes' promoters and alterations in miRNA biogenesis pathways. miRNAs have been shown to act as tumor suppressors or oncogenes depending on the targets they regulate and the tissue where they are expressed. Because miRNAs can regulate dozens of genes simultaneously and they can function as tumor suppressors or oncogenes, they have been proposed as promising targets for cancer therapy. In this review, we focus on the role of miRNAs in driving drug resistance and metastasis which are associated with stem cell properties of cancer cells. Furthermore, we discuss systems biology approaches to combine experimental and computational methods to study effects of miRNAs on gene or protein networks regulating these processes. Finally, we describe methods to target oncogenic or replace tumor suppressor miRNAs and current delivery strategies to sensitize refractory cells and to prevent metastasis. A holistic understanding of miRNAs' functions in drug resistance and metastasis, which are major causes of cancer-related deaths, and the development of novel strategies to target them efficiently will pave the way towards better translation of miRNAs into clinics and management of cancer therapy.
Collapse
|
58
|
Sanchez N, Kelly P, Gallagher C, Lao NT, Clarke C, Clynes M, Barron N. CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. Biotechnol J 2013; 9:396-404. [DOI: 10.1002/biot.201300325] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/13/2013] [Accepted: 10/24/2013] [Indexed: 12/14/2022]
|
59
|
Sehgal A, Vaishnaw A, Fitzgerald K. Liver as a target for oligonucleotide therapeutics. J Hepatol 2013; 59:1354-9. [PMID: 23770039 DOI: 10.1016/j.jhep.2013.05.045] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 12/18/2022]
Abstract
Oligonucleotide-based therapeutics are an emerging class of drugs that hold the promise for silencing "un-druggable" targets,thus creating unique opportunities for innovative medicines. As opposed to gene therapy, oligonucleotides are considered to be more akin to small molecule therapeutics because they are small,completely synthetic in origin, do not integrate into the host genome,and have a defined duration of therapeutic activity after which effects recover to baseline. They offer a high degree of specificity at the genetic level, thereby reducing off-target effects.At the same time, they provide a strategy for targeting any gene in the genome, including transcripts that produce mutated proteins.Oligonucleotide-based therapeutics include short interfering RNA (siRNA), that degrade target mRNA through RISC mediated RNAi; anti-miRs, that target miRNAs; miRNA mimics, that regulate target mRNA; antisense oligonucleotides, that may be working through RNAseH mediated mRNA decay; mRNA upregulation,by targeting long non-coding RNAs; and oligonucleotides induced alternative splicing [1]. All these approaches require some minimal degree of homology at the nucleic acid sequence level for them to be functional. The different mechanisms of action and their relevant activity are outlined in Fig. 1. Besides homology,RNA secondary structure has also been exploited in the case of ribozymes and aptamers, which act by binding to nucleic acids or proteins, respectively. While there have been many reports of gene knockdown and gene modulation in cell lines and mice with all these methods, very few have advanced to clinical stages.The main obstacle to date has been the safe and effective intracellular delivery of these compounds in higher species, including humans. Indeed, their action requires direct interaction with DNA/RNA within the target cell so even when one solves the issues of tissue and cellular access, intracellular/intranuclear location represents yet another barrier to overcome. To date,hepatic delivery of oligonucleotides has been the area with greatest progress, and thus we have focused on liver-targeted therapeutics that have shown promise at the preclinical and/or clinical level.The liver is the largest internal organ in the body, playing a central role in metabolism, detoxification, synthesis, and secretion of major plasma proteins (carrier proteins, coagulation factors,complement components, hormones, and apolipoproteins),and iron homeostasis. It is therefore not surprising that a large number of disease targets reside in the liver where they are susceptible to modulation by oligonucleotide therapies.
Collapse
Affiliation(s)
- Alfica Sehgal
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA.
| | | | | |
Collapse
|
60
|
Gomez GG, Wykosky J, Zanca C, Furnari FB, Cavenee WK. Therapeutic resistance in cancer: microRNA regulation of EGFR signaling networks. Cancer Biol Med 2013; 10:192-205. [PMID: 24349829 PMCID: PMC3860350 DOI: 10.7497/j.issn.2095-3941.2013.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) such as the epidermal growth factor receptor (EGFR) regulate cellular homeostatic processes. EGFR activates downstream signaling cascades that promote tumor cell survival, proliferation and migration. Dysregulation of EGFR signaling as a consequence of overexpression, amplification and mutation of the EGFR gene occurs frequently in several types of cancers and many become dependent on EGFR signaling to maintain their malignant phenotypes. Consequently, concerted efforts have been mounted to develop therapeutic agents and strategies to effectively inhibit EGFR. However, limited therapeutic benefits to cancer patients have been derived from EGFR-targeted therapies. A well-documented obstacle to improved patient survival is the presence of EGFR-inhibitor resistant tumor cell variants within heterogeneous tumor cell masses. Here, we summarize the mechanisms by which tumors resist EGFR-targeted therapies and highlight the emerging role of microRNAs (miRs) as downstream effector molecules utilized by EGFR to promote tumor initiation, progression and that play a role in resistance to EGFR inhibitors. We also examine evidence supporting the utility of miRs as predictors of response to targeted therapies and novel therapeutic agents to circumvent EGFR-inhibitor resistance mechanisms.
Collapse
Affiliation(s)
- German G Gomez
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Jill Wykosky
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
61
|
Giles KM, Kalinowski FC, Candy PA, Epis MR, Zhang PM, Redfern AD, Stuart LM, Goodall GJ, Leedman PJ. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol Cancer Ther 2013; 12:2541-58. [PMID: 24026012 DOI: 10.1158/1535-7163.mct-13-0170] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Elevated expression and activity of the epidermal growth factor receptor (EGFR) is associated with development and progression of head and neck cancer (HNC) and a poor prognosis. Clinical trials with EGFR tyrosine kinase inhibitors (e.g., erlotinib) have been disappointing in HNC. To investigate the mechanisms mediating resistance to these agents, we developed an HNC cell line (HN5-ER) with acquired erlotinib resistance. In contrast to parental HN5 HNC cells, HN5-ER cells exhibited an epithelial-mesenchymal (EMT) phenotype with increased migratory potential, reduced E-cadherin and epithelial-associated microRNAs (miRNA), and elevated vimentin expression. Phosphorylated receptor tyrosine kinase profiling identified Axl activation in HN5-ER cells. Growth and migration of HN5-ER cells were blocked with a specific Axl inhibitor, R428, and R428 resensitized HN5-ER cells to erlotinib. Microarray analysis of HN5-ER cells confirmed the EMT phenotype associated with acquired erlotinib resistance, and identified activation of gene expression associated with cell migration and inflammation pathways. Moreover, increased expression and secretion of interleukin (IL)-6 and IL-8 in HN5-ER cells suggested a role for inflammatory cytokine signaling in EMT and erlotinib resistance. Expression of the tumor suppressor miR-34a was reduced in HN5-ER cells and increasing its expression abrogated Axl expression and reversed erlotinib resistance. Finally, analysis of 302 HNC patients revealed that high tumor Axl mRNA expression was associated with poorer survival (HR = 1.66, P = 0.007). In summary, our results identify Axl as a key mediator of acquired erlotinib resistance in HNC and suggest that therapeutic inhibition of Axl by small molecule drugs or specific miRNAs might overcome anti-EGFR therapy resistance.
Collapse
Affiliation(s)
- Keith M Giles
- Corresponding Author: Peter Leedman, Western Australian Institute for Medical Research, Level 6, MRF Building, Rear 50 Murray Street, Perth, WA 6000, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
miR-331-3p regulates expression of neuropilin-2 in glioblastoma. J Neurooncol 2013; 116:67-75. [PMID: 24142150 PMCID: PMC3889298 DOI: 10.1007/s11060-013-1271-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/09/2013] [Indexed: 01/06/2023]
Abstract
Aberrant expression of microRNAs (miRNAs), a class of small non-coding regulatory RNAs, has been implicated in the development and progression of high-grade gliomas. However, the precise mechanistic role of many miRNAs in this disease remains unclear. Here, we investigate the functional role of miR-331-3p in glioblastoma multiforme (GBM). We found that miR-331-3p expression in GBM cell lines is significantly lower than in normal brain, and that transient overexpression of miR-331-3p inhibits GBM cell line proliferation and clonogenic growth, suggesting a possible tumor suppressor role for miR-331-3p in this system. Bioinformatics analysis identified neuropilin-2 (NRP-2) as a putative target of miR-331-3p. Using transfection studies, we validated NRP-2 mRNA as a target of miR-331-3p in GBM cell lines, and show that NRP-2 expression is regulated by miR-331-3p. RNA interference (RNAi) to inhibit NRP-2 expression in vitro decreased the growth and clonogenic growth of GBM cell lines, providing further support for an oncogenic role for NRP-2 in high-grade gliomas. We also show that miR-331-3p inhibits GBM cell migration, an effect due in part to reduced NRP-2 expression. Finally, we identified a significant inverse correlation between miR-331-3p and NRP-2 expression in The Cancer Genome Atlas GBM cohort of 491 patients. Together, our results suggest that a loss of miR-331-3p expression contributes to GBM development and progression, at least in part via upregulating NRP-2 expression and increasing cell proliferation and clonogenic growth.
Collapse
|
63
|
Yu N, Huangyang P, Yang X, Han X, Yan R, Jia H, Shang Y, Sun L. microRNA-7 suppresses the invasive potential of breast cancer cells and sensitizes cells to DNA damages by targeting histone methyltransferase SET8. J Biol Chem 2013; 288:19633-42. [PMID: 23720754 DOI: 10.1074/jbc.m113.475657] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SET8 (SET domain containing 8) is a histone H4 lysine 20 (H4K20)-specific monomethyltransferase in higher eukaryotes that exerts diverse functions in transcription regulation, DNA repair, tumor metastasis, and genome integrity. The activity of SET8 is tightly controlled during cell cycle through post-translational modifications, including ubiquitination, phosphorylation, and sumoylation. However, how the expression of SET8 is regulated is not fully understood. Here, we report that microRNA-7 is a negative regulator of SET8. We demonstrated that microRNA-7 inhibits H4K20 monomethylation and suppresses epithelial-mesenchymal transition and the invasive potential of breast cancer cells. We showed that microRNA-7 promotes spontaneous DNA damages and sensitizes cells to induced DNA damages. Our experiments provide a molecular mechanism for the regulation of SET8 and extend the biological function of microRNA-7 to DNA damage response, supporting the pursuit of microRNA-7 as a potential target for breast cancer intervention.
Collapse
Affiliation(s)
- Na Yu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Giles KM, Brown RAM, Epis MR, Kalinowski FC, Leedman PJ. miRNA-7-5p inhibits melanoma cell migration and invasion. Biochem Biophys Res Commun 2012. [PMID: 23206698 DOI: 10.1016/j.bbrc.2012.11.086] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aberrant expression of microRNAs (miRNAs), a class of small non-coding regulatory RNAs, has been implicated in the development and progression of melanoma. However, the precise mechanistic role of many of these miRNAs remains unclear. We have investigated the functional role of miR-7-5p in melanoma, and demonstrate that miR-7-5p expression is reduced in metastatic melanoma-derived cell lines compared with primary melanoma cells, and that when ectopically expressed miR-7-5p significantly inhibits melanoma cell migration and invasion. Additionally, we report that insulin receptor substrate-2 (IRS-2) is a target of miR-7-5p in melanoma cells, and using RNA interference (RNAi) we provide evidence that IRS-2 activates protein kinase B (Akt), and promotes melanoma cell migration. Thus, miR-7-5p may represent a novel tumor suppressor miRNA in melanoma, acting at least in part via its inhibition of IRS-2 expression and oncogenic Akt signaling.
Collapse
Affiliation(s)
- Keith M Giles
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research and University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia
| | | | | | | | | |
Collapse
|