51
|
Yang W, Zhao X, Tao Y, Wu Y, He F, Tang L. Proteomic analysis reveals a protective role of specific macrophage subsets in liver repair. Sci Rep 2019; 9:2953. [PMID: 30814596 PMCID: PMC6393665 DOI: 10.1038/s41598-019-39007-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages are a heterogeneous population of immune cells that play central roles in a broad range of biological processes, including the resolution of inflammation. Although diverse macrophage subpopulations have been identified, the characterization and functional specialization of certain macrophage subsets in inflamed tissues remain unclear. Here we uncovered a key role of specific macrophage subsets in tissue repair using proteomics, bioinformatics and functional analysis. We isolated two hepatic monocyte-derived macrophage subpopulations: Ly6ChiCX3CR1lo macrophages and Ly6CloCX3CR1hi macrophages during distinct phases of acute liver injury and employed label-free proteomics approach to profile the proteome of these cells. We found that the endocytosis- and apoptotic cell clearance-related proteins were specifically enriched in Ly6CloCX3CR1hi macrophages at the resolution phase. Intriguingly, 12/15-lipoxygenase (Alox15), the most strongly up-regulated protein in Ly6CloCX3CR1hi macrophages, was identified as a specific marker for these macrophages. In co-culture systems, Ly6CloCX3CR1hi macrophages specifically induced hepatocyte proliferation. Furthermore, selective depletion of this population in CD11b-diphtheria toxin receptor mice significantly delayed liver repair. Overall, our studies shed light on the functional specialization of distinct macrophage subsets from different phases in the resolution of inflammation.
Collapse
Affiliation(s)
- Wenting Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Xinyuan Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Yuandong Tao
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Yan Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China.
| | - Li Tang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, P. R. China. .,Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui Province, 230032, P. R. China.
| |
Collapse
|
52
|
Flood HM, Bolte C, Dasgupta N, Sharma A, Zhang Y, Gandhi CR, Kalin TV, Kalinichenko VV. The Forkhead box F1 transcription factor inhibits collagen deposition and accumulation of myofibroblasts during liver fibrosis. Biol Open 2019; 8:bio039800. [PMID: 30670377 PMCID: PMC6398469 DOI: 10.1242/bio.039800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatic fibrosis is the common end stage to a variety of chronic liver injuries and is characterized by an excessive deposition of extracellular matrix (ECM), which disrupts the liver architecture and impairs liver function. The fibrous lesions are produced by myofibroblasts, which differentiate from hepatic stellate cells (HSC). The myofibroblast's transcriptional networks remain poorly characterized. Previous studies have shown that the Forkhead box F1 (FOXF1) transcription factor is expressed in HSCs and stimulates their activation during acute liver injury; however, the role of FOXF1 in the progression of hepatic fibrosis is unknown. In the present study, we generated αSMACreER;Foxf1fl/fl mice to conditionally inactivate Foxf1 in myofibroblasts during carbon tetrachloride-mediated liver fibrosis. Foxf1 deletion increased collagen depositions and disrupted liver architecture. Timp2 expression was significantly increased in Foxf1-deficient mice while MMP9 activity was reduced. RNA sequencing of purified liver myofibroblasts demonstrated that FOXF1 inhibits expression of pro-fibrotic genes, Col1α2, Col5α2, and Mmp2 in fibrotic livers and binds to active repressors located in promotors and introns of these genes. Overexpression of FOXF1 inhibits Col1a2, Col5a2, and MMP2 in primary murine HSCs in vitro Altogether, FOXF1 prevents aberrant ECM depositions during hepatic fibrosis by repressing pro-fibrotic gene transcription in myofibroblasts and HSCs.
Collapse
Affiliation(s)
- Hannah M Flood
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Craig Bolte
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Nupur Dasgupta
- Division of Human Genetics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Akanksha Sharma
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Yufang Zhang
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Chandrashekhar R Gandhi
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Tanya V Kalin
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Vladimir V Kalinichenko
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| |
Collapse
|
53
|
Tasnim F, Xing J, Huang X, Mo S, Wei X, Tan MH, Yu H. Generation of mature kupffer cells from human induced pluripotent stem cells. Biomaterials 2019; 192:377-391. [DOI: 10.1016/j.biomaterials.2018.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/24/2022]
|
54
|
Reyes JL, Lopes F, Leung G, Jayme TS, Matisz CE, Shute A, Burkhard R, Carneiro M, Workentine ML, Wang A, Petri B, Beck PL, Geuking MB, McKay DM. Macrophages treated with antigen from the tapeworm Hymenolepis diminuta condition CD25 + T cells to suppress colitis. FASEB J 2019; 33:5676-5689. [PMID: 30668930 DOI: 10.1096/fj.201802160r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Macrophages play central roles in immunity as early effectors and modulating adaptive immune reponses; we implicated macrophages in the anticolitic effect of infection with the tapeworm Hymenolepis diminuta. Here, gene arrays revealed that H. diminuta antigen (HdAg) evoked a program in murine macrophages distinct from that elicited by IL-4. Further, HdAg suppressed LPS-evoked release of TNF-α and IL-1β from macrophages via autocrine IL-10 signaling. In assessing the ability of macrophages treated in vitro with an extract of H. diminuta [M(HdAg)] to affect disease, intravenous, but not peritoneal, injection of M(HdAg) protected wild-type but not RAG1-/- mice from dinitrobenzene sulphonic acid (DNBS)-induced colitis. Administration of splenic CD4+ T cells from in vitro cocultures with M(HdAg), but not those cocultured with M(IL-4) cells, inhibited DNBS-induced colitis; fractionation of the T-cell population indicated that the CD4+CD25+ T cells from cocultures with M(HdAg) drove the suppression of DNBS-induced colitis. Use of IL-4-/- or IL-10-/- CD4+ T cells revealed that neither cytokine alone from the donor cells was essential for the anticolitic effect. These data illustrate that HdAg evokes a unique regulatory program in macrophages, identifies HdAg-evoked IL-10 suppression of macrophage activation, and reveals the ability of HdAg-treated macrophages to educate ( i.e., condition) and mobilize CD4+CD25+ T cells, which could be deployed to treat colonic inflammation.-Reyes, J. L., Lopes, F., Leung, G., Jayme, T. S., Matisz, C. E., Shute, A., Burkhard, R., Carneiro, M., Workentine, M. L., Wang, A., Petri, B., Beck, P. L., Geuking, M. B., McKay, D. M., Macrophages treated with antigen from the tapeworm Hymenolepis diminuta condition CD25+ T cells to suppress colitis.
Collapse
Affiliation(s)
- José L Reyes
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada.,Laboratorio de Inmunología Experimental y Regulación de la Inflamación Hepato-Intestinal, Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla de Baz, México
| | - Fernando Lopes
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Gabriella Leung
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Timothy S Jayme
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Chelsea E Matisz
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Adam Shute
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Regula Burkhard
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada.,Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Matheus Carneiro
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | - Arthur Wang
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Björn Petri
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Mouse Phenomics Resource Laboratory, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul L Beck
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Markus B Geuking
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada.,Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Department of Physiology and Pharmacology, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| |
Collapse
|
55
|
Exploring Crimean-Congo Hemorrhagic Fever Virus-Induced Hepatic Injury Using Antibody-Mediated Type I Interferon Blockade in Mice. J Virol 2018; 92:JVI.01083-18. [PMID: 30111561 DOI: 10.1128/jvi.01083-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/07/2018] [Indexed: 01/22/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe hepatic injury in humans. However, the mechanism(s) causing this damage is poorly characterized. CCHFV produces an acute disease, including liver damage, in mice lacking type I interferon (IFN-I) signaling due to either STAT-1 gene deletion or disruption of the IFN-I receptor 1 gene. Here, we explored CCHFV-induced liver pathogenesis in mice using an antibody to disrupt IFN-I signaling. When IFN-I blockade was induced within 24 h postexposure to CCHFV, mice developed severe disease with greater than 95% mortality by 6 days postexposure. In addition, we observed increased proinflammatory cytokines, chemoattractants, and liver enzymes in these mice. Extensive liver damage was evident by 4 days postexposure and was characterized by hepatocyte necrosis and the loss of CLEC4F-positive Kupffer cells. Similar experiments in CCHFV-exposed NOD-SCID-γ (NSG), Rag2-deficient, and perforin-deficient mice also demonstrated liver injury, suggesting that cytotoxic immune cells are dispensable for hepatic damage. Some apoptotic liver cells contained viral RNA, while other apoptotic liver cells were negative, suggesting that cell death occurred by both intrinsic and extrinsic mechanisms. Protein and transcriptional analysis of livers revealed that activation of tumor necrosis factor superfamily members occurred by day 4 postexposure, implicating these molecules as factors in liver cell death. These data provide insights into CCHFV-induced hepatic injury and demonstrate the utility of antibody-mediated IFN-I blockade in the study of CCHFV pathogenesis in mice.IMPORTANCE CCHFV is an important human pathogen that is both endemic and emerging throughout Asia, Africa, and Europe. A common feature of acute disease is liver injury ranging from mild to fulminant hepatic failure. The processes through which CCHFV induces severe liver injury are unclear, mostly due to the limitations of existing small-animal systems. The only small-animal model in which CCHFV consistently produces severe liver damage is mice lacking IFN-I signaling. In this study, we used antibody-mediated blockade of IFN-I signaling in mice to study CCHFV liver pathogenesis in various transgenic mouse systems. We found that liver injury did not depend on cytotoxic immune cells and observed extensive activation of death receptor signaling pathways in the liver during acute disease. Furthermore, acute CCHFV infection resulted in a nearly complete loss of Kupffer cells. Our model system provides insight into both the molecular and the cellular features of CCHFV hepatic injury.
Collapse
|
56
|
Goodus MT, Sauerbeck AD, Popovich PG, Bruno RS, McTigue DM. Dietary Green Tea Extract Prior to Spinal Cord Injury Prevents Hepatic Iron Overload but Does Not Improve Chronic Hepatic and Spinal Cord Pathology in Rats. J Neurotrauma 2018; 35:2872-2882. [PMID: 30084733 DOI: 10.1089/neu.2018.5771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) disrupts autonomic regulation of visceral organs. As a result, a leading cause of mortality in the SCI population is metabolic dysfunction, and an organ central to metabolic control is the liver. Our recent work showed that rodent SCI promotes Kupffer cell (hepatic macrophage) activation, pro-inflammatory cytokine expression, and liver steatosis. These are symptoms of nonalcoholic steatohepatitis (NASH), the hepatic manifestation of metabolic syndrome, and these pre-clinical data replicate aspects of post-SCI human metabolic dysfunction. Because metabolic profile is highly dependent on lifestyle, including diet, it is likely that lifestyle choices prior to injury influence metabolic and hepatic outcomes after SCI. Therefore, in this study we tested if a diet rich in green tea extract (GTE), a known hepatoprotective agent, that began 3 weeks before SCI and was maintained after injury, reduced indices of liver pathology or metabolic dysfunction. GTE treatment significantly reduced post-SCI hepatic iron accumulation and blunted circulating glucose elevation compared with control-diet rats. However, GTE pre-treatment did not prevent Kupffer cell activation, hepatic lipid accumulation, increased serum alanine transaminase, or circulating non-esterified fatty acids, which were all significantly increased 6 weeks post-injury. Spinal cord pathology also was unchanged by GTE. Thus, dietary GTE prior to and after SCI had only a minor hepatoprotective effect. In general, for optimal health of SCI individuals, it will be important for future studies to evaluate how other lifestyle choices made before or after SCI positively or negatively impact systemic and intraspinal outcomes and the overall metabolic health of SCI individuals.
Collapse
Affiliation(s)
- Matthew T Goodus
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,3 Belford Center for Spinal Cord Injury, Wexner Medical Center, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Andrew D Sauerbeck
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Phillip G Popovich
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,3 Belford Center for Spinal Cord Injury, Wexner Medical Center, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Richard S Bruno
- 4 Human Nutrition Program, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Dana M McTigue
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,3 Belford Center for Spinal Cord Injury, Wexner Medical Center, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
57
|
Lynch RW, Hawley CA, Pellicoro A, Bain CC, Iredale JP, Jenkins SJ. An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias. J Leukoc Biol 2018; 104:579-586. [PMID: 29607532 PMCID: PMC6175317 DOI: 10.1002/jlb.1ta0517-169r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
Multicolor flow cytometry and cell sorting are powerful immunologic tools for the study of hepatic mϕ, yet there is no consensus on the optimal method to prepare liver homogenates for these analyses. Using a combination of mϕ and endothelial cell reporter mice, flow cytometry, and confocal imaging, we have shown that conventional flow-cytometric strategies for identification of Kupffer cells (KCs) leads to inclusion of a significant proportion of CD31hi endothelial cells. These cells were present regardless of the method used to prepare cells for flow cytometry and represented endothelium tightly adhered to remnants of KC membrane. Antibodies to endothelial markers, such as CD31, were vital for their exclusion. This result brings into focus recently published microarray datasets that identify high expression of endothelial cell-associated genes by KCs compared with other tissue-resident mϕ. Our studies also revealed significant and specific loss of KCs among leukocytes with commonly used isolation methods that led to enrichment of proliferating and monocyte-derived mϕ. Hence, we present an optimal method to generate high yields of liver myeloid cells without bias for cell type or contamination with endothelial cells.
Collapse
Affiliation(s)
- Ruairi W. Lynch
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - Catherine A. Hawley
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - Antonella Pellicoro
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - Calum C. Bain
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - John P. Iredale
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| | - Stephen J. Jenkins
- MRC Centre for Inflammation ResearchUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
58
|
Keirsse J, Van Damme H, Geeraerts X, Beschin A, Raes G, Van Ginderachter JA. The role of hepatic macrophages in liver metastasis. Cell Immunol 2018; 330:202-215. [PMID: 29661474 DOI: 10.1016/j.cellimm.2018.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The liver is a major target organ for metastasis of both gastrointestinal and extra-gastrointestinal cancers. Due to its frequently inoperable nature, liver metastasis represents a leading cause of cancer-associated death worldwide. In the past years, the pivotal role of the immune system in this process is being increasingly recognised. In particular, the role of the hepatic macrophages, both recruited monocyte-derived macrophages (Mo-Mfs) and tissue-resident Kupffer cells (KCs), has been shown to be more versatile than initially imagined. However, the lack of tools to easily distinguish between these two macrophage populations has hampered the assignment of particular functionalities to specific hepatic macrophage subsets. In this Review, we highlight the most remarkable findings regarding the origin and functions of hepatic macrophage populations, and we provide a detailed description of their distinct roles in the different phases of the liver metastatic process.
Collapse
Affiliation(s)
- Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Helena Van Damme
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Xenia Geeraerts
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
59
|
van der Tuin SJL, Li Z, Berbée JFP, Verkouter I, Ringnalda LE, Neele AE, van Klinken JB, Rensen SS, Fu J, de Winther MPJ, Groen AK, Rensen PCN, Willems van Dijk K, Wang Y. Lipopolysaccharide Lowers Cholesteryl Ester Transfer Protein by Activating F4/80 +Clec4f +Vsig4 +Ly6C - Kupffer Cell Subsets. J Am Heart Assoc 2018. [PMID: 29525783 PMCID: PMC5907564 DOI: 10.1161/jaha.117.008105] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lipopolysaccharide (LPS) decreases hepatic CETP (cholesteryl ester transfer protein) expression albeit that the underlying mechanism is disputed. We recently showed that plasma CETP is mainly derived from Kupffer cells (KCs). In this study, we investigated the role of KC subsets in the mechanism by which LPS reduces CETP expression. METHODS AND RESULTS In CETP-transgenic mice, LPS markedly decreased hepatic CETP expression and plasma CETP concentration without affecting hepatic macrophage number. This was paralleled by decreased expression of the resting KC markers C-type lectin domain family 4, member f (Clec4f) and V-set and immunoglobulin domain containing 4 (Vsig4), while expression of the infiltrating monocyte marker lymphocyte antigen 6 complex locus C (Ly6C) was increased. Simultaneously, the ratio of plasma high-density lipoprotein-cholesterol over non-high-density lipoprotein-cholesterol transiently increased. After ablation hepatic macrophages via injection with liposomal clodronate, the reappearance of hepatic gene and protein expression of CETP coincided with Clec4f and Vsig4, but not Ly6C. Double-immunofluorescence staining showed that CETP co-localized with Clec4f+ KCs and not Ly6C+ monocytes. In humans, microarray gene-expression analysis of liver biopsies revealed that hepatic expression and plasma level of CETP both correlated with hepatic VSIG4 expression. LPS administration decreased the plasma CETP concentration in humans. In vitro experiments showed that LPS reduced liver X receptor-mediated CETP expression. CONCLUSIONS Hepatic expression of CETP is exclusively confined to the resting KC subset (ie, F4/80+Clec4f+Vsig4+Ly6C-). LPS activated resting KCs, leading to reduction of Clec4f and Vsig4 expression and reduction of hepatic CETP expression, consequently decreasing plasma CETP and raising high-density lipoprotein (HDL)-cholesterol. This sequence of events is consistent with the anti-inflammatory role of HDL in the response to LPS and may be relevant as a defense mechanism against bacterial infections.
Collapse
Affiliation(s)
- Sam J L van der Tuin
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhuang Li
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F P Berbée
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge Verkouter
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda E Ringnalda
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Annette E Neele
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan B van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander S Rensen
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jingyuan Fu
- Department of Pediatrics, University of Groningen, The Netherlands.,Department of Genetics, University Medical Center Groningen University of Groningen, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany
| | - Albert K Groen
- Amsterdam Diabetes Center, Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands.,Department of Pediatrics, University of Groningen, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yanan Wang
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pediatrics, University of Groningen, The Netherlands
| |
Collapse
|
60
|
Nakagaki BN, Vieira AT, Rezende RM, David BA, Menezes GB. Tissue macrophages as mediators of a healthy relationship with gut commensal microbiota. Cell Immunol 2018; 330:16-26. [PMID: 29422270 DOI: 10.1016/j.cellimm.2018.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
Mammals and microorganisms have evolved a complex and tightly controlled mutual relationship. This interaction grants protection and energy source for the microorganisms, and on the other hand, provides several immunologic, metabolic and physiological advantages for the host. The gastrointestinal tract (GI) harbors the largest bacteria diversity within the body and complex mechanisms control microbiota community under homeostasis. However, once disrupted, microbiota imbalance can lead to overt growth of resident and invasive populations, with potential risk for lethal diseases. In these cases, bacteria might also escape from the intestines and reach different organs through the blood and lymphatic circulation. To control these unwanted conditions, all body tissues are populated with resident macrophages that have the ability to capture and eliminate pathogens, avoiding their dissemination. Here we discuss the different routes for bacterial translocation from the intestinal tract, and how macrophages act in the removal of these microorganisms to prevent systemic infections and restore the homeostasis.
Collapse
Affiliation(s)
- Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Angélica Thomaz Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruna Araujo David
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary. Calgary, Alberta, Canada.
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
61
|
Parker Gaddis K, Megonigal J, Clay J, Wolfe C. Genome-wide association study for ketosis in US Jerseys using producer-recorded data. J Dairy Sci 2018; 101:413-424. [DOI: 10.3168/jds.2017-13383] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/16/2017] [Indexed: 12/20/2022]
|
62
|
Freitas-Lopes MA, Mafra K, David BA, Carvalho-Gontijo R, Menezes GB. Differential Location and Distribution of Hepatic Immune Cells. Cells 2017; 6:cells6040048. [PMID: 29215603 PMCID: PMC5755505 DOI: 10.3390/cells6040048] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
The liver is one of the main organs in the body, performing several metabolic and immunological functions that are indispensable to the organism. The liver is strategically positioned in the abdominal cavity between the intestine and the systemic circulation. Due to its location, the liver is continually exposed to nutritional insults, microbiota products from the intestinal tract, and to toxic substances. Hepatocytes are the major functional constituents of the hepatic lobes, and perform most of the liver’s secretory and synthesizing functions, although another important cell population sustains the vitality of the organ: the hepatic immune cells. Liver immune cells play a fundamental role in host immune responses and exquisite mechanisms are necessary to govern the density and the location of the different hepatic leukocytes. Here we discuss the location of these pivotal cells within the different liver compartments, and how their frequency and tissular location can dictate the fate of liver immune responses.
Collapse
Affiliation(s)
- Maria Alice Freitas-Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Bruna A David
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary. Calgary, AB T2N 1N4, Canada.
| | - Raquel Carvalho-Gontijo
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Gustavo B Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
63
|
Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells. Proc Natl Acad Sci U S A 2017; 114:8360-8365. [PMID: 28716912 DOI: 10.1073/pnas.1707662114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1-/- ). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1-/- mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1-/- platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell-Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1-/- platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1-/- platelets by the Kupffer cell through its C-type lectin receptor CLEC4F. These findings provide insights into an essential role for core 1 O-glycosylation of platelets in their clearance in the liver.
Collapse
|
64
|
Abstract
Macrophages are present in all vertebrate tissues, from mid-gestation throughout life, constituting a widely dispersed organ system. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes in defence against microbes and in clearance of dead and senescent cells, but also through trophic, regulatory and repair functions. In this review, we describe macrophage phenotypic heterogeneity in different tissue environments, drawing particular attention to organ-specific functions.
Collapse
Affiliation(s)
- Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan. .,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
65
|
Beattie L, Sawtell A, Mann J, Frame TCM, Teal B, de Labastida Rivera F, Brown N, Walwyn-Brown K, Moore JWJ, MacDonald S, Lim EK, Dalton JE, Engwerda CR, MacDonald KP, Kaye PM. Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. J Hepatol 2016; 65:758-768. [PMID: 27262757 PMCID: PMC5028381 DOI: 10.1016/j.jhep.2016.05.037] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Kupffer cells (KCs), the resident tissue macrophages of the liver, play a crucial role in the clearance of pathogens and other particulate materials that reach the systemic circulation. Recent studies have identified KCs as a yolk sac-derived resident macrophage population that is replenished independently of monocytes in the steady state. Although it is now established that following local tissue injury, bone marrow derived monocytes may infiltrate the tissue and differentiate into macrophages, the extent to which newly differentiated macrophages functionally resemble the KCs they have replaced has not been extensively studied. METHODS We studied the two populations of KCs using intravital microscopy, morphometric analysis and gene expression profiling. An ion homeostasis gene signature, including genes associated with scavenger receptor function and extracellular matrix deposition, allowed discrimination between these two KC sub-types. RESULTS Bone marrow derived "KCs" accumulating as a result of genotoxic injury, resemble but are not identical to their yolk sac counterparts. Reflecting the differential expression of scavenger receptors, yolk sac-derived KCs were more effective at accumulating acetylated low density lipoprotein, whereas surprisingly, they were poorer than bone marrow-derived KCs when assessed for uptake of a range of bacterial pathogens. The two KC populations were almost indistinguishable in regard to i) response to lipopolysaccharide challenge, ii) phagocytosis of effete red blood cells and iii) their ability to contain infection and direct granuloma formation against Leishmania donovani, a KC-tropic intracellular parasite. CONCLUSIONS Bone marrow-derived KCs differentiate locally to resemble yolk sac-derived KC in most but not all respects, with implications for models of infectious diseases, liver injury and bone marrow transplantation. In addition, the gene signature we describe adds to the tools available for distinguishing KC subpopulations based on their ontology. LAY SUMMARY Liver macrophages play a major role in the control of infections in the liver and in the pathology associated with chronic liver diseases. It was recently shown that liver macrophages can have two different origins, however, the extent to which these populations are functionally distinct remains to be fully addressed. Our study demonstrates that whilst liver macrophages share many features in common, regardless of their origin, some subtle differences in function exist. DATA REPOSITORY Gene expression data are available from the European Bioinformatics Institute ArrayExpress data repository (accession number E-MTAB-4954).
Collapse
Affiliation(s)
- Lynette Beattie
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK; QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia
| | - Amy Sawtell
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Jason Mann
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Teija C M Frame
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia
| | - Bianca Teal
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia
| | | | - Najmeeyah Brown
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Katherine Walwyn-Brown
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - John W J Moore
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Sandy MacDonald
- Biosciences Technology Facility, Dept. of Biology, University of York, York YO10 5DD, UK
| | - Eng-Kiat Lim
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Jane E Dalton
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Christian R Engwerda
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia
| | - Kelli P MacDonald
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia
| | - Paul M Kaye
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
66
|
Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, Lippens S, Abels C, Schoonooghe S, Raes G, Devoogdt N, Lambrecht BN, Beschin A, Guilliams M. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 2016; 7:10321. [PMID: 26813785 PMCID: PMC4737801 DOI: 10.1038/ncomms10321] [Citation(s) in RCA: 581] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
Self-renewing tissue-resident macrophages are thought to be exclusively derived from embryonic progenitors. However, whether circulating monocytes can also give rise to such macrophages has not been formally investigated. Here we use a new model of diphtheria toxin-mediated depletion of liver-resident Kupffer cells to generate niche availability and show that circulating monocytes engraft in the liver, gradually adopt the transcriptional profile of their depleted counterparts and become long-lived self-renewing cells. Underlining the physiological relevance of our findings, circulating monocytes also contribute to the expanding pool of macrophages in the liver shortly after birth, when macrophage niches become available during normal organ growth. Thus, like embryonic precursors, monocytes can and do give rise to self-renewing tissue-resident macrophages if the niche is available to them.
Collapse
Affiliation(s)
- Charlotte L. Scott
- Unit of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent 9000, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium
| | - Fang Zheng
- Myeloid Cell Immunology, VIB, Brussels 1050, Belgium
- Cellular and Molecular Immunology Research Group, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Patrick De Baetselier
- Myeloid Cell Immunology, VIB, Brussels 1050, Belgium
- Cellular and Molecular Immunology Research Group, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Liesbet Martens
- Unit of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent 9000, Belgium
- Department of Internal Medicine, Ghent University, Ghent 9000, Belgium
| | - Yvan Saeys
- Unit of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent 9000, Belgium
- Department of Internal Medicine, Ghent University, Ghent 9000, Belgium
| | - Sofie De Prijck
- Unit of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent 9000, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium
| | - Saskia Lippens
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium
- VIB Bio Imaging Core, Ghent 9000, Belgium
- Microscopy Core Facility, VIB, Inflammation Research Center, Ghent 9000, Belgium
| | - Chloé Abels
- Myeloid Cell Immunology, VIB, Brussels 1050, Belgium
- Cellular and Molecular Immunology Research Group, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Steve Schoonooghe
- Myeloid Cell Immunology, VIB, Brussels 1050, Belgium
- Cellular and Molecular Immunology Research Group, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Geert Raes
- Myeloid Cell Immunology, VIB, Brussels 1050, Belgium
- Cellular and Molecular Immunology Research Group, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Nick Devoogdt
- Cellular and Molecular Immunology Research Group, Vrije Universiteit Brussel, Brussels 1050, Belgium
- In Vivo Cellular and Molecular Imaging Research Group, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Bart N. Lambrecht
- Unit of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent 9000, Belgium
- Department of Internal Medicine, Ghent University, Ghent 9000, Belgium
| | - Alain Beschin
- Myeloid Cell Immunology, VIB, Brussels 1050, Belgium
- Cellular and Molecular Immunology Research Group, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Martin Guilliams
- Unit of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent 9000, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
67
|
Merlin S, Bhargava KK, Ranaldo G, Zanolini D, Palestro CJ, Santambrogio L, Prat M, Follenzi A, Gupta S. Kupffer Cell Transplantation in Mice for Elucidating Monocyte/Macrophage Biology and for Potential in Cell or Gene Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:539-51. [PMID: 26773351 DOI: 10.1016/j.ajpath.2015.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Kupffer cells (KC) play major roles in immunity and tissue injury or repair. Because recapitulation of KC biology and function within liver will allow superior insights into their functional repertoire, we studied the efficacy of the cell transplantation approach for this purpose. Mouse KC were isolated from donor livers, characterized, and transplanted into syngeneic recipients. To promote cell engraftment through impairments in native KC, recipients were preconditioned with gadolinium chloride. The targeting, fate, and functionality of transplanted cells were evaluated. The findings indicated that transplanted KC engrafted and survived in recipient livers throughout the study period of 3 months. Transplanted KC expressed macrophage functions, including phagocytosis and cytokine expression, with or without genetic modifications using lentiviral vectors. This permitted studies of whether transplanted KC could affect outcomes in the context of acetaminophen hepatotoxicity or hepatic ischemia-reperfusion injury. Transplanted KC exerted beneficial effects in these injury settings. The benefits resulted from cytoprotective factors including vascular endothelial growth factor. In conclusion, transplanted adult KC were successfully targeted and engrafted in the liver with retention of innate immune and tissue repair functions over the long term. This will provide excellent opportunities to address critical aspects in the biogenesis, fate, and function of KC within their native liver microenvironment and to develop the cell and gene therapy potential of KC transplantation.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Kuldeep K Bhargava
- Division of Nuclear Medicine and Molecular Imaging, North Shore - Long Island Jewish Health System, New Hyde Park, New York
| | - Gabriella Ranaldo
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Diego Zanolini
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christopher J Palestro
- Division of Nuclear Medicine and Molecular Imaging, North Shore - Long Island Jewish Health System, New Hyde Park, New York
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York.
| | - Sanjeev Gupta
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Marion Bessin Liver Research Center, Cancer Research Center, Diabetes Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
68
|
Melino M, Gadd VL, Alexander KA, Beattie L, Lineburg KE, Martinez M, Teal B, Le Texier L, Irvine KM, Miller GC, Boyle GM, Hill GR, Clouston AD, Powell EE, MacDonald KPA. Spatiotemporal Characterization of the Cellular and Molecular Contributors to Liver Fibrosis in a Murine Hepatotoxic-Injury Model. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:524-38. [PMID: 26762581 DOI: 10.1016/j.ajpath.2015.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/17/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
The interplay between the inflammatory infiltrate and tissue resident cell populations invokes fibrogenesis. However, the temporal and mechanistic contributions of these cells to fibrosis are obscure. To address this issue, liver inflammation, ductular reaction (DR), and fibrosis were induced in C57BL/6 mice by thioacetamide administration for up to 12 weeks. Thioacetamide treatment induced two phases of liver fibrosis. A rapid pericentral inflammatory infiltrate enriched in F4/80(+) monocytes co-localized with SMA(+) myofibroblasts resulted in early collagen deposition, marking the start of an initial fibrotic phase (1 to 6 weeks). An expansion of bone marrow-derived macrophages preceded a second phase, characterized by accelerated progression of fibrosis (>6 weeks) after DR migration from the portal tracts to the centrilobular site of injury, in association with an increase in DR/macrophage interactions. Although chemokine (C-C motif) ligand 2 (CCL2) mRNA was induced rapidly in response to thioacetamide, CCL2 deficiency only partially abrogated fibrosis. In contrast, colony-stimulating factor 1 receptor blockade diminished C-C chemokine receptor type 2 [CCR2(neg) (Ly6C(lo))] monocytes, attenuated the DR, and significantly reduced fibrosis, illustrating the critical role of colony-stimulating factor 1-dependent monocyte/macrophage differentiation and linking the two phases of injury. In response to liver injury, colony-stimulating factor 1 drives early monocyte-mediated myofibroblast activation and collagen deposition, subsequent macrophage differentiation, and their association with the advancing DR, the formation of fibrotic septa, and the progression of liver fibrosis to cirrhosis.
Collapse
Affiliation(s)
- Michelle Melino
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Victoria L Gadd
- Centre for Liver Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Kylie A Alexander
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lynette Beattie
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katie E Lineburg
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle Martinez
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bianca Teal
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Laetitia Le Texier
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Centre for Liver Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Glen M Boyle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Geoffrey R Hill
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew D Clouston
- Centre for Liver Disease Research, The University of Queensland, Brisbane, Queensland, Australia; Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Elizabeth E Powell
- Envoi Specialist Pathologists, Brisbane, Queensland, Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Kelli P A MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
69
|
Wang G, Baines KJ, Fu JJ, Wood LG, Simpson JL, McDonald VM, Cowan DC, Taylor DR, Cowan JO, Gibson PG. Sputum mast cell subtypes relate to eosinophilia and corticosteroid response in asthma. Eur Respir J 2015; 47:1123-33. [PMID: 26699720 DOI: 10.1183/13993003.01098-2015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/31/2015] [Indexed: 02/05/2023]
Abstract
Mast cells are a resident inflammatory cell of the airways, involved in both the innate and adaptive immune response. The relationship between mast cells and inflammatory phenotypes and treatment response of asthma is not clear.Clinical characteristics of subjects with stable asthma (n=55), inflammatory cell counts and gene expression microarrays in induced sputum were analysed. Sputum mast cell subtypes were determined by molecular phenotyping based on expression of mast cell biomarkers (tryptase (TPSAB1), chymase (CMA1) and carboxypeptidase A3 (CPA3)). Effects of mast cell subtypes on steroid response were observed in a prospective cohort study (n=50).MCT(n=18) and MCT/CPA3(mRNA expression of TPSAB1 and CPA3; n=29) subtypes were identified, as well as a group without mast cell gene expression (n=8). The MCT/CPA3 subtype had elevated exhaled nitric oxide fraction, sputum eosinophils, bronchial sensitivity and reactivity, and poorer asthma control. This was accompanied by upregulation of 13 genes. Multivariable logistic regression identified CPA3(OR 1.21, p=0.004) rather than TPSAB1(OR 0.92, p=0.502) as a determinant of eosinophilic asthma. The MCT/CPA3 subtype had a better clinical response and reduced signature gene expression with corticosteroid treatment.Sputum mast cell subtypes of asthma can be defined by a molecular phenotyping approach. The MCT/CPA3 subtype demonstrated increased bronchial sensitivity and reactivity, and signature gene expression, which was associated with airway eosinophilia and greater corticosteroid responsiveness.
Collapse
Affiliation(s)
- Gang Wang
- Pneumology Group, Dept of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China Center for Asthma and Respiratory Diseases, Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Katherine J Baines
- Center for Asthma and Respiratory Diseases, Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Juan Juan Fu
- Pneumology Group, Dept of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Lisa G Wood
- Center for Asthma and Respiratory Diseases, Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Jodie L Simpson
- Center for Asthma and Respiratory Diseases, Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Vanessa M McDonald
- Center for Asthma and Respiratory Diseases, Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Douglas C Cowan
- The Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - D Robin Taylor
- The Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jan O Cowan
- The Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Peter G Gibson
- Pneumology Group, Dept of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China Center for Asthma and Respiratory Diseases, Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| |
Collapse
|
70
|
Zhang C, Lu Y, Zhou H, Lu H, Qian X, Liu X, Wang X, Ding Z, Zhang F, Lu L. Acquiring Kupffer cells in mice using a MACS-based method. Transplant Proc 2015; 47:553-7. [PMID: 25769606 DOI: 10.1016/j.transproceed.2015.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This study sought to establish a new method to isolate Kupffer cells (KCs) by magnetic activated cell sorting (MACS). METHODS Nonparenchymal cells were acquired from C57BL/6 mice livers by a perfusion system in vivo and then stained with F4/80(+) fluorescein isothiocyanate and CD11c(-) phycoerythrin antibodies. After incubating with immunomagnetic beads, F4/80(+)CD11c(-) KCs were obtained by MACS selection. The purity was evaluated by flow cytometry, and the morphological features and vitality were analyzed in in vitro cultures. RESULTS Compared with traditional methods, acquiring KCs by MACS was characterized by economy, efficiency, and high purity. The F4/80(+)CD11c(-) KCs cultured in vitro also showed the typical adherent shape and excellent phagocytic ability. CONCLUSIONS With the 2-step method using immunomagnetic beads, we provide a new method by which KCs can be obtained from mouse liver with high purity and distinct phenotype of F4/80(+) CD.
Collapse
Affiliation(s)
- C Zhang
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Y Lu
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - H Zhou
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - H Lu
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - X Qian
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - X Liu
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - X Wang
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Z Ding
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - F Zhang
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - L Lu
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
71
|
Huang YL, Pai FS, Tsou YT, Mon HC, Hsu TL, Wu CY, Chou TY, Yang WB, Chen CH, Wong CH, Hsieh SL. Human CLEC18 Gene Cluster Contains C-type Lectins with Differential Glycan-binding Specificity. J Biol Chem 2015; 290:21252-63. [PMID: 26170455 DOI: 10.1074/jbc.m115.649814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 11/06/2022] Open
Abstract
The human C-type lectin 18 (clec18) gene cluster, which contains three clec18a, clec18b, and clec18c loci, is located in human chromosome 16q22. Although the amino acid sequences of CLEC18A, CLEC18B, and CLEC18C are almost identical, several amino acid residues located in the C-type lectin-like domain (CTLD) and the sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) domain, also known as the cysteine-rich secretory proteins/antigen 5/pathogenesis-related 1 proteins (CAP) domain, are distinct from each other. Genotyping by real-time PCR and sequencing further shows the presence of multiple alleles in clec18a/b/c loci. Flow cytometry analysis demonstrates that CLEC18 (CLEC18A, -B, and -C) are expressed abundantly in human peripheral blood cells. Moreover, CLEC18 expression is further up-regulated when monocytes differentiate into macrophages and dendritic cells. Immunofluorescence staining reveals that CLEC18 are localized in the endoplasmic reticulum, Golgi apparatus, and endosome. Interestingly, CLEC18 are also detectable in human sera and culture supernatants from primary cells and 293T cells overexpressing CLEC18. Moreover, CLEC18 bind polysaccharide in Ca(2+)-independent manner, and amino acid residues Ser/Arg(339) and Asp/Asn(421) in CTLD domain contribute to their differential binding abilities to polysaccharides isolated from Ganoderma lucidum (GLPS-F3). The Ser(339) (CLEC18A) → Arg(339) (CLEC18A-1) mutation completely abolishes CLEC18A-1 binding to GLPS-F3, and a sugar competition assay shows that CLEC18 preferentially binds to fucoidan, β-glucans, and galactans. Because proteins with the SCP/TAPS/CAP domain are able to bind sterol and acidic glycolipid, and are involved in sterol transport and β-amyloid aggregation, it would be interesting to investigate whether CLEC18 modulates host immunity via binding to glycolipids, and are also involved in glycolipid transportation and protein aggregation in the future.
Collapse
Affiliation(s)
- Ya-Lang Huang
- From the Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Feng-Shuo Pai
- the Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei
| | - Yun-Ting Tsou
- From the Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Hsien-Chen Mon
- National Yang-Ming University School of Medicine, Taipei
| | - Tsui-Ling Hsu
- the Genomics Research Center, Academia Sinica, Taipei
| | - Chung-Yi Wu
- the Genomics Research Center, Academia Sinica, Taipei
| | - Teh-Ying Chou
- the Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei
| | - Wen-Bin Yang
- the Genomics Research Center, Academia Sinica, Taipei
| | | | - Chi-Huey Wong
- the Genomics Research Center, Academia Sinica, Taipei
| | - Shie-Liang Hsieh
- From the Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, the Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, the Genomics Research Center, Academia Sinica, Taipei, the Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, and the Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
72
|
Tencerova M, Aouadi M, Vangala P, Nicoloro SM, Yawe JC, Cohen JL, Shen Y, Garcia-Menendez L, Pedersen DJ, Gallagher-Dorval K, Perugini RA, Gupta OT, Czech MP. Activated Kupffer cells inhibit insulin sensitivity in obese mice. FASEB J 2015; 29:2959-69. [PMID: 25805830 DOI: 10.1096/fj.15-270496] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
Obesity promotes insulin resistance associated with liver inflammation, elevated glucose production, and type 2 diabetes. Although insulin resistance is attenuated in genetic mouse models that suppress systemic inflammation, it is not clear whether local resident macrophages in liver, denoted Kupffer cells (KCs), directly contribute to this syndrome. We addressed this question by selectively silencing the expression of the master regulator of inflammation, NF-κB, in KCs in obese mice. We used glucan-encapsulated small interfering RNA particles (GeRPs) that selectively silence gene expression in macrophages in vivo. Following intravenous injections, GeRPs containing siRNA against p65 of the NF-κB complex caused loss of NF-κB p65 expression in KCs without disrupting NF-κB in hepatocytes or macrophages in other tissues. Silencing of NF-κB expression in KCs in obese mice decreased cytokine secretion and improved insulin sensitivity and glucose tolerance without affecting hepatic lipid accumulation. Importantly, GeRPs had no detectable toxic effect. Thus, KCs are key contributors to hepatic insulin resistance in obesity and a potential therapeutic target for metabolic disease.
Collapse
Affiliation(s)
- Michaela Tencerova
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Myriam Aouadi
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Pranitha Vangala
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sarah M Nicoloro
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Joseph C Yawe
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jessica L Cohen
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yuefei Shen
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lorena Garcia-Menendez
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David J Pedersen
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karen Gallagher-Dorval
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Richard A Perugini
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Olga T Gupta
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael P Czech
- *Program in Molecular Medicine, Department of Surgery, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
73
|
Neeland MR, Elhay MJ, Powell DR, Rossello FJ, Meeusen ENT, de Veer MJ. Transcriptional profile in afferent lymph cells following vaccination with liposomes incorporating CpG. Immunology 2015; 144:518-529. [PMID: 25308816 DOI: 10.1111/imm.12401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/14/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022] Open
Abstract
Vaccine formulations incorporating innate immune stimulants are highly immunogenic; however, the biological signals that originate in the peripheral tissues at the site of injection and are transmitted to the local lymph node to induce immunity remain unclear. By directly cannulating the ovine afferent lymphatic vessels, we have previously shown that it takes 72 hr for mature antigen-loaded dendritic cells and monocytes to appear within afferent lymph following injection of a liposomal formulation containing the Toll-like receptor ligand CpG. In this present study, we characterize the global transcriptional signatures at this time-point in ovine afferent lymph cells as they migrate from the injection site into the lymphatics following vaccination with a liposome antigen formulation incorporating CpG. We show that at 72 hr post vaccination, liposomes alone induce no changes in gene expression and inflammatory profiles within afferent lymph; however, the incorporation of CpG drives interferon, antiviral and cytotoxic gene programmes. This study also measures the expression of key genes within individual cell types in afferent lymph. Antiviral gene signatures are most prominent in lymphocytes, which may play a significant and unexpected role in sustaining the immune response to vaccination at the site of injection. These findings provide a comprehensive analysis of the in vivo immunological pathways that connect the injection site with the local draining lymph node following vaccination.
Collapse
Affiliation(s)
- Melanie R Neeland
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, Vic., Australia
| | - Martin J Elhay
- Zoetis Research and Manufacturing Australia P/L, Parkville, Vic., Australia
| | - David R Powell
- Victorian Bioinformatics Consortium, Monash University, Clayton, Vic., Australia.,Victorian Life Sciences Computation Initiative, Life Sciences Computation Centre, Carlton, Vic., Australia
| | - Fernando J Rossello
- Victorian Bioinformatics Consortium, Monash University, Clayton, Vic., Australia.,Victorian Life Sciences Computation Initiative, Life Sciences Computation Centre, Carlton, Vic., Australia
| | - Els N T Meeusen
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia
| | - Michael J de Veer
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
74
|
Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2015; 159:1312-26. [PMID: 25480296 DOI: 10.1016/j.cell.2014.11.018] [Citation(s) in RCA: 1571] [Impact Index Per Article: 157.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 02/09/2023]
Abstract
Macrophages are critical for innate immune defense and also control organ homeostasis in a tissue-specific manner. They provide a fitting model to study the impact of ontogeny and microenvironment on chromatin state and whether chromatin modifications contribute to macrophage identity. Here, we profile the dynamics of four histone modifications across seven tissue-resident macrophage populations. We identify 12,743 macrophage-specific enhancers and establish that tissue-resident macrophages have distinct enhancer landscapes beyond what can be explained by developmental origin. Combining our enhancer catalog with gene expression profiles and open chromatin regions, we show that a combination of tissue- and lineage-specific transcription factors form the regulatory networks controlling chromatin specification in tissue-resident macrophages. The environment is capable of shaping the chromatin landscape of transplanted bone marrow precursors, and even differentiated macrophages can be reprogrammed when transferred into a new microenvironment. These results provide a comprehensive view of macrophage regulatory landscape and highlight the importance of the microenvironment, along with pioneer factors in orchestrating identity and plasticity.
Collapse
Affiliation(s)
- Yonit Lavin
- Department of Oncological Sciences, Immunology Institute and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deborah Winter
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miriam Merad
- Department of Oncological Sciences, Immunology Institute and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
75
|
Jagya N, Varma SPK, Thakral D, Joshi P, Durgapal H, Panda SK. RNA-seq based transcriptome analysis of hepatitis E virus (HEV) and hepatitis B virus (HBV) replicon transfected Huh-7 cells. PLoS One 2014; 9:e87835. [PMID: 24505321 PMCID: PMC3914852 DOI: 10.1371/journal.pone.0087835] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022] Open
Abstract
Pathogenesis of hepatitis B virus (HBV) and hepatitis E virus (HEV) infection is as varied as they appear similar; while HBV causes an acute and/or chronic liver disease and hepatocellular carcinoma, HEV mostly causes an acute self-limiting disease. In both infections, host responses are crucial in disease establishment and/or virus clearance. In the wake of worsening prognosis described during HEV super-infection over chronic HBV hepatitis, we investigated the host responses by studying alterations in gene expression in liver cells (Huh-7 cell line) by transfection with HEV replicon only (HEV-only), HBV replicon only (HBV-only) and both HBV and HEV replicons (HBV+HEV). Virus replication was validated by strand-specific real-time RT-PCR for HEV and HBsAg ELISA of the culture supernatants for HBV. Indirect immunofluorescence for the respective viral proteins confirmed infection. Transcription profiling was carried out by RNA Sequencing (RNA-Seq) analysis of the poly-A enriched RNA from the transfected cells. Averages of 600 million bases within 5.6 million reads were sequenced in each sample and ∼15,800 genes were mapped with at least one or more reads. A total of 461 genes in HBV+HEV, 408 in HBV-only and 306 in HEV-only groups were differentially expressed as compared to mock transfection control by two folds (p<0.05) or more. Majority of the significant genes with altered expression clustered into immune-associated, signal transduction, and metabolic process categories. Differential gene expression of functionally important genes in these categories was also validated by real-time RT-PCR based relative gene-expression analysis. To our knowledge, this is the first report of in vitro replicon transfected RNA-Seq based transcriptome analysis to understand the host responses against HEV and HBV.
Collapse
Affiliation(s)
- Neetu Jagya
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Satya Pavan Kumar Varma
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Deepshi Thakral
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Prashant Joshi
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Hemlata Durgapal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Subrat Kumar Panda
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- * E-mail:
| |
Collapse
|
76
|
Hsu TL, Lin G, Koizumi A, Brehm K, Hada N, Chuang PK, Wong CH, Hsieh SL, Díaz A. The surface carbohydrates of the Echinococcus granulosus larva interact selectively with the rodent Kupffer cell receptor. Mol Biochem Parasitol 2013; 192:55-9. [PMID: 24361107 DOI: 10.1016/j.molbiopara.2013.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 02/05/2023]
Abstract
The larvae of the cestodes belonging to the genus Echinococcus dwell primarily in mammalian liver. They are protected by the laminated layer (LL), an acellular mucin-based structure. The glycans decorating these mucins constitute the overwhelming majority of molecules exposed by these larvae to their hosts. However, their decoding by host innate immunity has not been studied. Out of 36 mammalian innate receptors with carbohydrate-binding domains, expressed as Fc fusions, only the mouse Kupffer cell receptor (KCR; CLEC4F) bound significantly to the Echinococcus granulosus LL mucins. The receptor also bound the Echinococcus multilocularis LL. Out of several synthetic glycans representing Echinococcus LL structures, the KCR bound strongly in particular to those ending in Galα1-4Galβ1-3 or Galα1-4Galβ1-4GlcNAc, both characteristic LL carbohydrate motifs. LL carbohydrates may be optimized to interact with the KCR, expressed only in liver macrophages, cells known to contribute to the tolerogenic antigen presentation that is characteristic of this organ.
Collapse
Affiliation(s)
- Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Gerardo Lin
- Cátedra de Inmunología, Departamento de Biociencias, Facultad de Química, e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Instituto de Higiene, Av. A. Navarro 3051, Montevideo CP 11600, Uruguay
| | - Akihiko Koizumi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Josef-Schneider-Straße 2/E1, 97080 Würzburg, Germany
| | - Noriyasu Hada
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Po-Kai Chuang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Institute of Microbiology & Immunology, Institute of Clinical Medicine & Infection, and Immunity Center, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112, Taiwan
| | - Alvaro Díaz
- Cátedra de Inmunología, Departamento de Biociencias, Facultad de Química, e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Instituto de Higiene, Av. A. Navarro 3051, Montevideo CP 11600, Uruguay.
| |
Collapse
|
77
|
Li PZ, Li JZ, Li M, Gong JP, He K. An efficient method to isolate and culture mouse Kupffer cells. Immunol Lett 2013; 158:52-6. [PMID: 24333337 DOI: 10.1016/j.imlet.2013.12.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 01/22/2023]
Abstract
Kupffer cells (KCs) play an essential role in the physiological and pathological functions of the liver. Although the isolation methods of KCs have been well-described, most of them are sophisticated and time-consuming. In addition, these methods are mainly used for isolating the KCs of the human and rat. In this study, a three-step procedure was applied to isolate KCs in sufficient number and purity from mouse liver, including the techniques of enzymatic tissue treatment, gradient centrifugation, and selective adherence. F4/80 immunofluorescence and flow cytometry were used for cell identification. The combination method resulted in a satisfactorily high yield of 5-6×10(6) KCs per liver, over 92.0% positive for F4/80 and 98.5% viable cells. After 24h of culturing, the KCs showed typical macrophage morphologic features such as irregular shape, transparent cytoplasm and kidney-like nucleus. The phagocytic assay showed that the isolated cells exhibited strong phagocytosis activity. The KCs we isolated were functionally intact and exhibited a concentration dependent TNF-α production induced by LPS. The method we described is an effective method to isolate mouse KCs in high purity and yield, which consuming fewer collagenase and time without altering the functional capacity of the KCs.
Collapse
Affiliation(s)
- Pei-zhi Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jin-zheng Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Min Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jian-ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Kun He
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|