51
|
Nanoassembly routes stimulate conflicting antibody quantity and quality for transmission-blocking malaria vaccines. Sci Rep 2017. [PMID: 28630474 PMCID: PMC5476561 DOI: 10.1038/s41598-017-03798-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vaccine development efforts have recently focused on enabling strong immune responses to poorly immunogenic antigens, via display on multimerisation scaffolds or virus like particles (VLPs). Typically such studies demonstrate improved antibody titer comparing monomeric and nano-arrayed antigen. There are many such studies and scaffold technologies, but minimal side-by-side evaluation of platforms for both the amount and efficacy of antibodies induced. Here we present direct comparison of three leading platforms displaying the promising malaria transmission-blocking vaccine (TBV) target Pfs25. These platforms encompass the three important routes to antigen-scaffold linkage: genetic fusion, chemical cross-linking and plug-and-display SpyTag/SpyCatcher conjugation. We demonstrate that chemically-conjugated Qβ VLPs elicited the highest quantity of antibodies, while SpyCatcher-AP205-VLPs elicited the highest quality anti-Pfs25 antibodies for transmission blocking upon mosquito feeding. These quantative and qualitative features will guide future nanoassembly optimisation, as well as the development of the new generation of malaria vaccines targeting transmission.
Collapse
|
52
|
Chaturvedi N, Bharti PK, Tiwari A, Singh N. Strategies & recent development of transmission-blocking vaccines against Plasmodium falciparum. Indian J Med Res 2017; 143:696-711. [PMID: 27748294 PMCID: PMC5094109 DOI: 10.4103/0971-5916.191927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Transmission blocking malaria vaccines are aimed to block the development and maturity of sexual stages of parasite within mosquitoes. The vaccine candidate antigens (Pfs25, Pfs48/45, Pfs230) that have shown transmission blocking immunity in model systems are in different stages of development. These antigens are immunogenic with limited genetic diversity. Pfs25 is a leading candidate and currently in phase I clinical trial. Efforts are now focused on the cost-effective production of potent antigens using safe adjuvants and optimization of vaccine delivery system that are capable of inducing strong immune responses. This review addresses the potential usefulness, development strategies, challenges, clinical trials and current status of Plasmodium falciparum sexual stage malaria vaccine candidate antigens for the development of transmission-blocking vaccines.
Collapse
Affiliation(s)
- Neha Chaturvedi
- National Institute for Research in Tribal Health (ICMR), Jabalpur, School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal, India
| | - Praveen K Bharti
- National Institute for Research in Tribal Health (ICMR), Jabalpur, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal, India
| | - Neeru Singh
- National Institute for Research in Tribal Health (ICMR), Jabalpur, India
| |
Collapse
|
53
|
Singh SK, Thrane S, Janitzek CM, Nielsen MA, Theander TG, Theisen M, Salanti A, Sander AF. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display. Vaccine 2017; 35:3726-3732. [PMID: 28578824 DOI: 10.1016/j.vaccine.2017.05.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
Malaria is a devastating disease caused by Plasmodium parasites, resulting in almost 0.5 million deaths per year. The Pfs48/45 protein exposed on the P. falciparum sexual stages is one of the most advanced antigen candidates for a transmission-blocking (TB) vaccine in the clinical pipeline. However, it remains essential to identify an optimal vaccine formulation that can facilitate induction of a long-lasting TB anti-Pfs48/45 response. Here we report on the development and evaluation of two Pfs48/45-based virus-like particle (VLP) vaccines generated using the AP205 SpyTag/Catcher VLP system. Two different recombinant proteins (SpyCatcher-R0.6C and SpyCatcher-6C), comprising the Pfs48/45-6C region, were covalently attached to the surface of Spy-tagged Acinetobacter phage AP205 VLPs. Resulting Pfs48/45-VLP complexes appeared as non-aggregated particles of ∼30nm, each displaying an average of 216 (R0.6C) or 291 (6C) copies of the antigens. Both R0.6C and 6C VLP conjugates were strongly reactive with a monoclonal antibody (mAb45.1) targeting a conformational TB Pfs48/45 epitope, suggesting that the TB epitope is accessible for immune recognition on the particles. To select the most suitable vaccine formulation for downstream clinical studies the two VLP vaccines were tested in CD1 mice using different adjuvant formulations. The study demonstrates that VLP-display of R0.6C and 6C significantly increases antigen immunogenicity when using Montanide ISA 720 VG as extrinsic adjuvant.
Collapse
Affiliation(s)
- Susheel K Singh
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Denmark; Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Susan Thrane
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Christoph M Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Morten A Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Michael Theisen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Denmark; Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Denmark.
| |
Collapse
|
54
|
Brune KD, Buldun CM, Li Y, Taylor IJ, Brod F, Biswas S, Howarth M. Dual Plug-and-Display Synthetic Assembly Using Orthogonal Reactive Proteins for Twin Antigen Immunization. Bioconjug Chem 2017; 28:1544-1551. [PMID: 28437083 DOI: 10.1021/acs.bioconjchem.7b00174] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Engineering modular platforms to control biomolecular architecture can advance both the understanding and the manipulation of biological systems. Icosahedral particles uniformly displaying single antigens stimulate potent immune activation and have been successful in various licensed vaccines. However, it remains challenging to display multiple antigens on a single particle and to induce broader immunity protective across strains or even against distinct diseases. Here, we design a dually addressable synthetic nanoparticle by engineering the multimerizing coiled-coil IMX313 and two orthogonally reactive split proteins. SpyCatcher protein forms an isopeptide bond with SpyTag peptide through spontaneous amidation. SnoopCatcher forms an isopeptide bond with SnoopTag peptide through transamidation. SpyCatcher-IMX-SnoopCatcher provides a modular platform, whereby SpyTag-antigen and SnoopTag-antigen can be multimerized on opposite faces of the particle simply upon mixing. We demonstrate efficient derivatization of the platform with model proteins and complex pathogen-derived antigens. SpyCatcher-IMX-SnoopCatcher was expressed in Escherichia coli and was resilient to lyophilization or extreme temperatures. For the next generation of malaria vaccines, blocking the transmission of the parasite from human to mosquito is an important goal. SpyCatcher-IMX-SnoopCatcher multimerization of the leading transmission-blocking antigens Pfs25 and Pfs28 greatly enhanced the antibody response to both antigens in comparison to the monomeric proteins. This dual plug-and-display architecture should help to accelerate vaccine development for malaria and other diseases.
Collapse
Affiliation(s)
- Karl D Brune
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Can M Buldun
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Yuanyuan Li
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Iona J Taylor
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Florian Brod
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Sumi Biswas
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Mark Howarth
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
55
|
Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, Hall AC, Coffin MV, Shoji Y, Chichester JA, Bi H, Streatfield SJ. Purification and immunogenicity of hemagglutinin from highly pathogenic avian influenza virus H5N1 expressed in Nicotiana benthamiana. Hum Vaccin Immunother 2017; 13:306-313. [PMID: 27929750 PMCID: PMC5328219 DOI: 10.1080/21645515.2017.1264783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/18/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Disease Models, Animal
- Female
- Gene Expression
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification
- Immunoglobulin G/blood
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Nicotiana/genetics
- Nicotiana/metabolism
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Teen-Lee Pua
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Xiao Ying Chan
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
- Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | | | | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | | - Hong Bi
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | |
Collapse
|
56
|
Shahid N, Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2079-2099. [PMID: 27442628 PMCID: PMC5095797 DOI: 10.1111/pbi.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/10/2023]
Abstract
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.
Collapse
Affiliation(s)
- Naila Shahid
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
57
|
Ifeonu OO, Simon R, Tennant SM, Sheoran AS, Daly MC, Felix V, Kissinger JC, Widmer G, Levine MM, Tzipori S, Silva JC. Cryptosporidium hominis gene catalog: a resource for the selection of novel Cryptosporidium vaccine candidates. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw137. [PMID: 28095366 PMCID: PMC5070614 DOI: 10.1093/database/baw137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/19/2023]
Abstract
Human cryptosporidiosis, caused primarily by Cryptosporidium hominis and a subset of Cryptosporidium parvum, is a major cause of moderate-to-severe diarrhea in children under 5 years of age in developing countries and can lead to nutritional stunting and death. Cryptosporidiosis is particularly severe and potentially lethal in immunocompromised hosts. Biological and technical challenges have impeded traditional vaccinology approaches to identify novel targets for the development of vaccines against C. hominis, the predominant species associated with human disease. We deemed that the existence of genomic resources for multiple species in the genus, including a much-improved genome assembly and annotation for C. hominis, makes a reverse vaccinology approach feasible. To this end, we sought to generate a searchable online resource, termed C. hominis gene catalog, which registers all C. hominis genes and their properties relevant for the identification and prioritization of candidate vaccine antigens, including physical attributes, properties related to antigenic potential and expression data. Using bioinformatic approaches, we identified ∼400 C. hominis genes containing properties typical of surface-exposed antigens, such as predicted glycosylphosphatidylinositol (GPI)-anchor motifs, multiple transmembrane motifs and/or signal peptides targeting the encoded protein to the secretory pathway. This set can be narrowed further, e.g. by focusing on potential GPI-anchored proteins lacking homologs in the human genome, but with homologs in the other Cryptosporidium species for which genomic data are available, and with low amino acid polymorphism. Additional selection criteria related to recombinant expression and purification include minimizing predicted post-translation modifications and potential disulfide bonds. Forty proteins satisfying these criteria were selected from 3745 proteins in the updated C. hominis annotation. The immunogenic potential of a few of these is currently being tested. Database URL:http://cryptogc.igs.umaryland.edu
Collapse
Affiliation(s)
- Olukemi O Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA.,School of Systems Biology, George Mason University, 10900 University Boulevard, Manassas, VA 20110, USA
| | - Raphael Simon
- Center for Vaccine Development, Institute for Global Health, and Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Sharon M Tennant
- Center for Vaccine Development, Institute for Global Health, and Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Abhineet S Sheoran
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Maria C Daly
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA
| | - Victor Felix
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA
| | - Jessica C Kissinger
- Department of Genetics, Institute of Bioinformatics and Center for Topical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA and
| | - Giovanni Widmer
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Myron M Levine
- Center for Vaccine Development, Institute for Global Health, and Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA .,School of Systems Biology, George Mason University, 10900 University Boulevard, Manassas, VA 20110, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
58
|
Joung YH, Park SH, Moon KB, Jeon JH, Cho HS, Kim HS. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B. Int J Mol Sci 2016; 17:E1715. [PMID: 27754367 PMCID: PMC5085746 DOI: 10.3390/ijms17101715] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO)-recommended vaccines including hepatitis B (HepB). HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV), however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed.
Collapse
Affiliation(s)
- Young Hee Joung
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Se Hee Park
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Ki-Beom Moon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Jae-Heung Jeon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hye-Sun Cho
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hyun-Soon Kim
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| |
Collapse
|
59
|
Lee SM, Wu CK, Plieskatt J, McAdams DH, Miura K, Ockenhouse C, King CR. Assessment of Pfs25 expressed from multiple soluble expression platforms for use as transmission-blocking vaccine candidates. Malar J 2016; 15:405. [PMID: 27515826 PMCID: PMC4982271 DOI: 10.1186/s12936-016-1464-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transmission-blocking vaccines (TBVs) have become a focus of strategies to control and eventually eliminate malaria as they target the entry of sexual stage into the Anopheles stephensi mosquito thereby preventing transmission, an essential component of the parasite life cycle. Such vaccines are envisioned as complements to vaccines that target human infection, such as RTS,S as well as drug treatment, and vector control strategies. A number of conserved proteins, including Pfs25, have been identified as promising TBV targets in research or early stage development. Pfs25 is a 25 kDa protein of Plasmodium falciparum expressed on the surface of zygotes and ookinetes. Its complex tertiary structure, including numerous cysteines, has led to difficulties in the expression of a recombinant protein that is homogeneous, with proper conformation, and free of glycosylation, a phenomenon not found in native parasite machinery. METHODS While the expression and purification of Pfs25 in various systems, has been previously independently reported, here a parallel analysis of Pfs25 is presented to inform on the biochemical features of Pfs25 and their impact on functionality. Three scalable expression systems were used to express, purify, and evaluate Pfs25 both in vitro and in vivo, including the ability of each protein to produce functional antibodies through the standard membrane feeding assay. RESULTS Through numerous attempts, soluble, monomeric Pfs25 derived from Escherichia coli was not achieved, while Pichia pastoris presented Pfs25 as an inhomogeneous product with glycosylation. In comparison, baculovirus produced a pure, monomeric protein free of glycosylation. The glycosylation present for Pichia produced Pfs25, showed no notable decrease in the ability to elicit transmission reducing antibodies in functional evaluation, while a reduced and alkylated Pfs25 (derived from plant and used as a control) was found to have significantly decreased transmission reducing activity, emphasizing the importance of ensuring correct disulfide stabilized conformation during vaccine design and production. CONCLUSIONS In this study, the biochemical features of Pfs25, produced from different expression systems, are described along with their impact on the ability of the protein to elicit functional antibodies. Pfs25 expressed using baculovirus and Pichia showed promise as candidates for vaccine development.
Collapse
Affiliation(s)
- Shwu-Maan Lee
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA.
| | - Chia-Kuei Wu
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| | - Jordan Plieskatt
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| | - David H McAdams
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Chris Ockenhouse
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| | - C Richter King
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| |
Collapse
|
60
|
Blueprints for green biotech: development and application of standards for plant synthetic biology. Biochem Soc Trans 2016; 44:702-8. [DOI: 10.1042/bst20160044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 01/05/2023]
Abstract
Synthetic biology aims to apply engineering principles to the design and modification of biological systems and to the construction of biological parts and devices. The ability to programme cells by providing new instructions written in DNA is a foundational technology of the field. Large-scale de novo DNA synthesis has accelerated synthetic biology by offering custom-made molecules at ever decreasing costs. However, for large fragments and for experiments in which libraries of DNA sequences are assembled in different combinations, assembly in the laboratory is still desirable. Biological assembly standards allow DNA parts, even those from multiple laboratories and experiments, to be assembled together using the same reagents and protocols. The adoption of such standards for plant synthetic biology has been cohesive for the plant science community, facilitating the application of genome editing technologies to plant systems and streamlining progress in large-scale, multi-laboratory bioengineering projects.
Collapse
|
61
|
Singh ND, Kumar S, Daniell H. Expression of β-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1034-45. [PMID: 26360801 PMCID: PMC4767539 DOI: 10.1111/pbi.12476] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 05/13/2023]
Abstract
Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the aetiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β-glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript were confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography, time of flight mass spectrometer data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (per g DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to five-fold in BGL1 transgenic flowers. This study opens the possibility of increasing artemisinin content by manipulating trichomes' density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children.
Collapse
Affiliation(s)
- Nameirakpam Dolendro Singh
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shashi Kumar
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
62
|
Gonçalves D, Hunziker P. Transmission-blocking strategies: the roadmap from laboratory bench to the community. Malar J 2016; 15:95. [PMID: 26888537 PMCID: PMC4758146 DOI: 10.1186/s12936-016-1163-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
Malaria remains one of the most prevalent tropical and infectious diseases in the world, with an estimated more than 200 million clinical cases every year. In recent years, the mosquito stages of the parasite life cycle have received renewed attention with some progress being made in the development of transmission-blocking strategies. From gametocytes to late ookinetes, some attractive antigenic targets have been found and tested in order to develop a transmission blocking vaccine, and drugs are being currently screened for gametocytocidal activity, and also some new and less conventional approaches are drawing increased attention, such as genetically modified and fungus-infected mosquitoes that become refractory to Plasmodium infection. In this review some of those strategies focusing on the progress made so far will be summarized, but also, the challenges that come from the translation of early promising benchwork resulting in successful applications in the field. To do this, the available literature will be screened and all the pieces of the puzzle must be combined: from molecular biology to epidemiologic and clinical data.
Collapse
Affiliation(s)
- Daniel Gonçalves
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| | - Patrick Hunziker
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
63
|
Ortega-Berlanga B, Musiychuk K, Shoji Y, Chichester JA, Yusibov V, Patiño-Rodríguez O, Noyola DE, Alpuche-Solís ÁG. Engineering and expression of a RhoA peptide against respiratory syncytial virus infection in plants. PLANTA 2016; 243:451-8. [PMID: 26474991 DOI: 10.1007/s00425-015-2416-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION : A RhoA-derived peptide fused to carrier molecules from plants showed enhanced biological activity of in vitro assays against respiratory syncytial virus compared to the RhoA peptide alone or the synthetic RhoA peptide. A RhoA-derived peptide has been reported for over a decade as a potential inhibitor of respiratory syncytial virus (RSV) infection both in vitro and in vivo and is anticipated to be a promising alternative to monoclonal antibody-based therapy against RSV infection. However, there are several challenges to furthering development of this antiviral peptide, including improvement in the peptide’s bioavailability, development of an efficient delivery system and identification of a cost-effective production platform. In this study, we have engineered a RhoA peptide as a genetic fusion to two carrier molecules, either lichenase (LicKM) or the coat protein (CP) of Alfalfa mosaic virus. These constructs were introduced into Nicotiana benthamiana plants using a tobacco mosaic virus-based expression vector and targets purified. The results demonstrated that the RhoA peptide fusion proteins were efficiently expressed in N. benthamiana plants, and that two of the resulting fusion proteins, RhoA-LicKM and RhoA2-FL-d25CP, inhibited RSV growth in vitro by 50 and 80 %, respectively. These data indicate the feasibility of transient expression of this biologically active antiviral RhoA peptide in plants and the advantage of using a carrier molecule to enhance target expression and efficacy.
Collapse
|
64
|
Li Y, Leneghan DB, Miura K, Nikolaeva D, Brian IJ, Dicks MDJ, Fyfe AJ, Zakutansky SE, de Cassan S, Long CA, Draper SJ, Hill AVS, Hill F, Biswas S. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology. Sci Rep 2016; 6:18848. [PMID: 26743316 PMCID: PMC4705524 DOI: 10.1038/srep18848] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/27/2015] [Indexed: 01/16/2023] Open
Abstract
Transmission-blocking vaccines (TBV) target the sexual-stages of the malaria parasite in the mosquito midgut and are widely considered to be an essential tool for malaria elimination. High-titer functional antibodies are required against target antigens to achieve effective transmission-blocking activity. We have fused Pfs25, the leading malaria TBV candidate antigen to IMX313, a molecular adjuvant and expressed it both in ChAd63 and MVA viral vectors and as a secreted protein-nanoparticle. Pfs25-IMX313 expressed from viral vectors or as a protein-nanoparticle is significantly more immunogenic and gives significantly better transmission-reducing activity than monomeric Pfs25. In addition, we demonstrate that the Pfs25-IMX313 protein-nanoparticle leads to a qualitatively improved antibody response in comparison to soluble Pfs25, as well as to significantly higher germinal centre (GC) responses. These results demonstrate that antigen multimerization using IMX313 is a very promising strategy to enhance antibody responses against Pfs25, and that Pfs25-IMX313 is a highly promising TBV candidate vaccine.
Collapse
Affiliation(s)
- Yuanyuan Li
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious. Disease/National Institutes of Health, Rockville, Maryland, USA
| | - Daria Nikolaeva
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious. Disease/National Institutes of Health, Rockville, Maryland, USA
| | - Iona J Brian
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Alex J Fyfe
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious. Disease/National Institutes of Health, Rockville, Maryland, USA
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Sumi Biswas
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
65
|
Abstract
In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of malaria. Progress during the last few years has been significant, and a first generation malaria candidate vaccine, RTS,S/AS01, is under review by the European Medicines Agency (EMA) for its quality, safety and efficacy under article 58, which allows the EMA to give a scientific opinion about products intended exclusively for markets outside of the European Union. However, much work is in progress to optimize malaria vaccines in regard to magnitude and durability of protective efficacy and the financing and practicality of delivery. Thus, we are hopeful that anti-malaria vaccines will soon be important tools in the battle against malaria.
Collapse
|
66
|
Wu Y, Narum DL, Fleury S, Jennings G, Yadava A. Particle-based platforms for malaria vaccines. Vaccine 2015; 33:7518-24. [PMID: 26458803 DOI: 10.1016/j.vaccine.2015.09.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
Recombinant subunit vaccines in general are poor immunogens likely due to the small size of peptides and proteins, combined with the lack or reduced presentation of repetitive motifs and missing complementary signal(s) for optimal triggering of the immune response. Therefore, recombinant subunit vaccines require enhancement by vaccine delivery vehicles in order to attain adequate protective immunity. Particle-based delivery platforms, including particulate antigens and particulate adjuvants, are promising delivery vehicles for modifying the way in which immunogens are presented to both the innate and adaptive immune systems. These particle delivery platforms can also co-deliver non-specific immunostimodulators as additional adjuvants. This paper reviews efforts and advances of the Particle-based delivery platforms in development of vaccines against malaria, a disease that claims over 600,000 lives per year, most of them are children under 5 years of age in sub-Sahara Africa.
Collapse
Affiliation(s)
- Yimin Wu
- Laboratory Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, 5640 Fishers Lane, Rockville, MD, USA.
| | - David L Narum
- Laboratory Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, 5640 Fishers Lane, Rockville, MD, USA
| | - Sylvain Fleury
- Mymetics Corp., 4 Route de la Corniche, 1066 Epalinges, Switzerland
| | - Gary Jennings
- Cytos Biotechnology AG, Wagistrasse 25, 8952 Schlieren, Switzerland
| | - Anjali Yadava
- Malaria Vaccine Branch, U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| |
Collapse
|
67
|
Chan HT, Daniell H. Plant-made oral vaccines against human infectious diseases-Are we there yet? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1056-70. [PMID: 26387509 PMCID: PMC4769796 DOI: 10.1111/pbi.12471] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 05/13/2023]
Abstract
Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches.
Collapse
Affiliation(s)
| | - Henry Daniell
- Correspondence (Tel 215 746 2563; fax 215 898 3695; )
| |
Collapse
|
68
|
Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Vaccine 2015; 33 Suppl 4:D13-23. [PMID: 26324116 DOI: 10.1016/j.vaccine.2015.07.091] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 01/14/2023]
Abstract
In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of malaria. Progress during the last few years has been significant, and a first generation malaria candidate vaccine, RTS,S/AS01, is under review by the European Medicines Agency (EMA) for its quality, safety and efficacy under article 58, which allows the EMA to give a scientific opinion about products intended exclusively for markets outside of the European Union. However, much work is in progress to optimize malaria vaccines in regard to magnitude and durability of protective efficacy and the financing and practicality of delivery. Thus, we are hopeful that anti-malaria vaccines will soon be important tools in the battle against malaria.
Collapse
Affiliation(s)
| | | | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
69
|
Kumar R, Ray PC, Datta D, Bansal GP, Angov E, Kumar N. Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanoparticles. Vaccine 2015; 33:5064-71. [PMID: 26299750 DOI: 10.1016/j.vaccine.2015.08.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/01/2015] [Accepted: 08/08/2015] [Indexed: 11/16/2022]
Abstract
Malaria transmission-blocking vaccines (TBV) targeting sexual stages of the parasite represent an ideal intervention to reduce the burden of the disease and eventual elimination at the population level in endemic regions. Immune responses against sexual stage antigens impair the development of parasite inside the mosquitoes. Target antigens identified in Plasmodium falciparum include surface proteins Pfs230 and Pfs48/45 in male and female gametocytes and Pfs25 expressed in zygotes and ookinetes. The latter has undergone extensive evaluation in pre-clinical and phase I clinical trials and remains one of the leading target antigens for the development of TBV. Pfs25 has a complex tertiary structure characterized by four EGF-like repeat motifs formed by 11 disulfide bonds, and it has been rather difficult to obtain Pfs25 as a homogenous product in native conformation in any heterologous expression system. Recently, we have reported expression of codon-harmonized recombinant Pfs25 in Escherichia coli (CHrPfs25) and which elicited highly potent malaria transmission-blocking antibodies in mice. In the current study, we investigated CHrPfs25 along with gold nanoparticles of different shapes, size and physicochemical properties as adjuvants for induction of transmission blocking immunity. The results revealed that CHrPfs25 delivered with various gold nanoparticles elicited strong transmission blocking antibodies and suggested that gold nanoparticles based formulations can be developed as nanovaccines to enhance the immunogenicity of vaccine antigens.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Tropical Medicine and Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Paresh C Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MI 39217, United States
| | - Dibyadyuti Datta
- Department of Tropical Medicine and Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Geetha P Bansal
- Department of Tropical Medicine and Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Evelina Angov
- Walter Reed Army Institute for Research, Silver Spring, MD, United States
| | - Nirbhay Kumar
- Department of Tropical Medicine and Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, United States.
| |
Collapse
|
70
|
Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants. Vaccines (Basel) 2015; 3:620-37. [PMID: 26350598 PMCID: PMC4586470 DOI: 10.3390/vaccines3030620] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.
Collapse
|
71
|
Boes A, Spiegel H, Voepel N, Edgue G, Beiss V, Kapelski S, Fendel R, Scheuermayer M, Pradel G, Bolscher JM, Behet MC, Dechering KJ, Hermsen CC, Sauerwein RW, Schillberg S, Reimann A, Fischer R. Analysis of a Multi-component Multi-stage Malaria Vaccine Candidate--Tackling the Cocktail Challenge. PLoS One 2015; 10:e0131456. [PMID: 26147206 PMCID: PMC4492585 DOI: 10.1371/journal.pone.0131456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/02/2015] [Indexed: 11/30/2022] Open
Abstract
Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total) from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80%), blood (up to 90%) and sexual parasite stages (100%). Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17–25 μg/ml), the blood stage (40–60 μg/ml) and the sexual stage (1.75 μg/ml). While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy.
Collapse
Affiliation(s)
- Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- * E-mail:
| | - Nadja Voepel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Gueven Edgue
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Veronique Beiss
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| | | | - Gabriele Pradel
- RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| | | | - Marije C. Behet
- Radboud university medical center, Nijmegen, The Netherlands
| | | | | | - Robert W. Sauerwein
- TropIQ Health Sciences, Nijmegen, The Netherlands
- Radboud university medical center, Nijmegen, The Netherlands
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| |
Collapse
|
72
|
Beiss V, Spiegel H, Boes A, Kapelski S, Scheuermayer M, Edgue G, Sack M, Fendel R, Reimann A, Schillberg S, Pradel G, Fischer R. Heat-precipitation allows the efficient purification of a functional plant-derived malaria transmission-blocking vaccine candidate fusion protein. Biotechnol Bioeng 2015; 112:1297-305. [PMID: 25615702 DOI: 10.1002/bit.25548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/06/2015] [Accepted: 01/15/2015] [Indexed: 12/22/2022]
Abstract
Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 μg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail.
Collapse
Affiliation(s)
- Veronique Beiss
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Matthias Scheuermayer
- Research Center for Infectious Diseases, University of Wuerzburg, Josef Schneider Str. 2/Bau D15, 97080, Wuerzburg, Germany
| | - Gueven Edgue
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Markus Sack
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Gabriele Pradel
- Research Center for Infectious Diseases, University of Wuerzburg, Josef Schneider Str. 2/Bau D15, 97080, Wuerzburg, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| |
Collapse
|
73
|
Kumar R, Ledet G, Graves R, Datta D, Robinson S, Bansal GP, Mandal T, Kumar N. Potent Functional Immunogenicity of Plasmodium falciparum Transmission-Blocking Antigen (Pfs25) Delivered with Nanoemulsion and Porous Polymeric Nanoparticles. Pharm Res 2015; 32:3827-36. [PMID: 26113235 DOI: 10.1007/s11095-015-1743-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/16/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE To evaluate functional immunogenicity of CHrPfs25. a malaria transmission blocking vaccine antigen, using nanoemulsion and porous polymeric PLGA nanoparticles. METHODS CHrPfs25 was formulated with nanoemulsions (NE) and poly(D,L-lactide-co-glycolide) nanoparticles (PLGA-NP) and evaluated via IM route in mice. Transmission blocking efficacy of antibodies was evaluated by standard mosquito membrane feeding assay using purified IgG from immune sera. Physicochemical properties and stability of various formulations were evaluated by measuring poly-dispersity index, particle size and zeta potential. RESULTS Mice immunized with CHrPfs25 using alum via IP and IM routes induced comparable immune responses. The highest antibody response was obtained with CHrPfs25 formulated in 4% NE as compared to 8% NE and PLGA-NP. No further increases were observed by combining NE with MPL-A and chitosan. One hundred percent transmission blocking activity was demonstrated at 400 μg/ml of IgG for alum groups (both routes IP and IM), 4% NE and NE-MPL-A. Purified IgG from various adjuvant groups at lower doses (100 μg/mL) still exhibited >90% transmission blocking activity, while 52-81% blocking was seen at 50 μg/mL. CONCLUSION Results suggest that CHrPfs25 delivered in various adjuvants/nanoparticles elicited strong functional immunogenicity in pre-clinical studies in mice. We are now continuing these studies to develop effective vaccine formulations for further evaluation of immune correlates of relative immunogenicity of CHrPfs25 in various adjuvants and clinical trials.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Tropical Medicine and Vector-Borne Infectious Diseases Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Grace Ledet
- Center for Nanomedicine & Drug Delivery, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Richard Graves
- Center for Nanomedicine & Drug Delivery, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Dibyadyuti Datta
- Department of Tropical Medicine and Vector-Borne Infectious Diseases Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Shana Robinson
- Center for Nanomedicine & Drug Delivery, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Geetha P Bansal
- Department of Tropical Medicine and Vector-Borne Infectious Diseases Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Tarun Mandal
- Center for Nanomedicine & Drug Delivery, Xavier University of Louisiana, New Orleans, Louisiana, USA.
| | - Nirbhay Kumar
- Department of Tropical Medicine and Vector-Borne Infectious Diseases Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, 70112, USA.
| |
Collapse
|
74
|
Wu Y, Sinden RE, Churcher TS, Tsuboi T, Yusibov V. Development of malaria transmission-blocking vaccines: from concept to product. ADVANCES IN PARASITOLOGY 2015; 89:109-52. [PMID: 26003037 DOI: 10.1016/bs.apar.2015.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite decades of effort battling against malaria, the disease is still a major cause of morbidity and mortality. Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. In the 1950s, Huff et al. first demonstrated the induction of transmission-blocking immunity in chickens by repeated immunizations with Plasmodium gallinaceum-infected red blood cells. Since then, significant progress has been made in identification of parasite antigens responsible for transmission-blocking activity. Recombinant technologies accelerated evaluation of these antigens as vaccine candidates, and it is possible to induce effective transmission-blocking immunity in humans both by natural infection and now by immunization with recombinant vaccines. This chapter reviews the efforts to produce TBVs, summarizes the current status and advances and discusses the remaining challenges and approaches.
Collapse
Affiliation(s)
- Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | | | - Thomas S Churcher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Takafumi Tsuboi
- Division of Malaria Research, Ehime University, Matsuyama, Ehime, Japan
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
75
|
Pitoiset F, Vazquez T, Bellier B. Enveloped virus-like particle platforms: vaccines of the future? Expert Rev Vaccines 2015; 14:913-5. [PMID: 25968245 DOI: 10.1586/14760584.2015.1046440] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The techniques to produce effective vaccines have evolved, and the early vaccines (live, inactivated, subunit...) are no longer considered as the most appropriate for new vaccine development. We question here what will be the future vaccines, and argue that virus-like particle (VLP)-based vaccines are promising candidates. In addition to being effective vaccines against analogous viruses from which they are derived, VLPs can also be used to present foreign epitopes to the immune system. The achievement of this strategy can be illustrated by the recent development of malaria candidate vaccine. We point out recent VLP-based vaccine developments and discuss future perspectives.
Collapse
Affiliation(s)
- Fabien Pitoiset
- Department of Inflammation-Immunopathology-Biotherapy (I2B), Clinical Investigation Center for Biotherapies (CIC-BTi), Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | | | | |
Collapse
|
76
|
Patra KP, Li F, Carter D, Gregory JA, Baga S, Reed SG, Mayfield SP, Vinetz JM. Alga-produced malaria transmission-blocking vaccine candidate Pfs25 formulated with a human use-compatible potent adjuvant induces high-affinity antibodies that block Plasmodium falciparum infection of mosquitoes. Infect Immun 2015; 83:1799-808. [PMID: 25690099 PMCID: PMC4399074 DOI: 10.1128/iai.02980-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/08/2015] [Indexed: 01/21/2023] Open
Abstract
A vaccine to prevent the transmission of malaria parasites from infected humans to mosquitoes is an important component for the elimination of malaria in the 21st century, yet it remains neglected as a priority of malaria vaccine development. The lead candidate for Plasmodium falciparum transmission-blocking vaccine development, Pfs25, is a sexual stage surface protein that has been produced for vaccine testing in a variety of heterologous expression systems. Any realistic malaria vaccine will need to optimize proper folding balanced against cost of production, yield, and potentially reactogenic contaminants. Here Chlamydomonas reinhardtii microalga-produced recombinant Pfs25 protein was formulated with four different human-compatible adjuvants (alum, Toll-like receptor 4 [TLR-4] agonist glucopyranosal lipid A [GLA] plus alum, squalene-oil-in-water emulsion, and GLA plus squalene-oil-in-water emulsion) and compared for their ability to induce malaria transmission-blocking antibodies. Alga-produced recombinant Pfs25 plus GLA plus squalene-oil-in-water adjuvant induced the highest titer and avidity in IgG antibodies, measured using alga-produced recombinant Pfs25 as the enzyme-linked immunosorbent assay (ELISA) antigen. These antibodies specifically reacted with the surface of P. falciparum macrogametes and zygotes and effectively prevented parasites from developing within the mosquito vector in standard membrane feeding assays. Alga-produced Pfs25 in combination with a human-compatible adjuvant composed of a TLR-4 agonist in a squalene-oil-in-water emulsion is an attractive new vaccine candidate that merits head-to-head comparison with other modalities of vaccine production and administration.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Protozoan/blood
- Antibody Affinity
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/metabolism
- Culicidae/parasitology
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Immunoglobulin G/blood
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/isolation & purification
- Mice, Inbred BALB C
- Plasmodium falciparum/immunology
- Plasmodium falciparum/isolation & purification
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/isolation & purification
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/isolation & purification
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Kailash P Patra
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Fengwu Li
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - James A Gregory
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Sheyenne Baga
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Stephen P Mayfield
- Division of Biological Science and the San Diego Center for Algae Biotechnology, University of California San Diego, La Jolla, California, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
77
|
Li T, Eappen AG, Richman AM, Billingsley PF, Abebe Y, Li M, Padilla D, Rodriguez-Barraquer I, Sim BKL, Hoffman SL. Robust, reproducible, industrialized, standard membrane feeding assay for assessing the transmission blocking activity of vaccines and drugs against Plasmodium falciparum. Malar J 2015; 14:150. [PMID: 25890243 PMCID: PMC4491417 DOI: 10.1186/s12936-015-0665-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/24/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A vaccine that interrupts malaria transmission (VIMT) would be a valuable tool for malaria control and elimination. One VIMT approach is to identify sexual erythrocytic and mosquito stage antigens of the malaria parasite that induce immune responses targeted at disrupting parasite development in the mosquito. The standard Plasmodium falciparum membrane-feeding assay (SMFA) is used to assess transmission-blocking activity (TBA) of antibodies against candidate immunogens and of drugs targeting the mosquito stages. To develop its P. falciparum sporozoite (SPZ) products, Sanaria has industrialized the production of P. falciparum-infected Anopheles stephensi mosquitoes, incorporating quantitative analyses of oocyst and P. falciparum SPZ infections as part of the manufacturing process. METHODS These capabilities were exploited to develop a robust, reliable, consistent SMFA that was used to assess 188 serum samples from animals immunized with the candidate vaccine immunogen, Pfs25, targeting P. falciparum mosquito stages. Seventy-four independent SMFAs were performed. Infection intensity (number of oocysts/mosquito) and infection prevalence (percentage of mosquitoes infected with oocysts) were compared between mosquitoes fed cultured gametocytes plus normal human O(+) serum (negative control), anti-Pfs25 polyclonal antisera (MRA39 or MRA38, at a final dilution in the blood meal of 1:54 as positive control), and test sera from animals immunized with Pfs25 (at a final dilution in the blood meal of 1:9). RESULTS SMFA negative controls consistently yielded high infection intensity (mean = 46.1 oocysts/midgut, range of positives 3.7-135.6) and infection prevalence (mean = 94.2%, range 71.4-100.0) and in positive controls, infection intensity was reduced by 81.6% (anti-Pfs25 MRA39) and 97.0% (anti-Pfs25 MRA38), and infection prevalence was reduced by 12.9 and 63.5%, respectively. A range of TBAs was detected among the 188 test samples assayed in duplicate. Consistent administration of infectious gametocytes to mosquitoes within and between assays was achieved, and the TBA of anti-Pfs25 control antibodies was highly reproducible. CONCLUSIONS These results demonstrate a robust capacity to perform the SMFA in a medium-to-high throughput format, suitable for assessing large numbers of experimental samples of candidate antibodies or drugs.
Collapse
Affiliation(s)
- Tao Li
- Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Abraham G Eappen
- Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Adam M Richman
- Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | | | - Yonas Abebe
- Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Minglin Li
- Protein Potential LLC, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Debbie Padilla
- Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Isabel Rodriguez-Barraquer
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Suite E6003, Baltimore, MD, 21205, USA.
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA.
- Protein Potential LLC, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | | |
Collapse
|
78
|
Abstract
The development of a highly effective malaria vaccine remains a key goal to aid in the control and eventual eradication of this devastating parasitic disease. The field has made huge strides in recent years, with the first-generation vaccine RTS,S showing modest efficacy in a Phase III clinical trial. The updated 2030 Malaria Vaccine Technology Roadmap calls for a second generation vaccine to achieve 75% efficacy over two years for both Plasmodium falciparum and Plasmodium vivax, and for a vaccine that can prevent malaria transmission. Whole-parasite immunisation approaches and combinations of pre-erythrocytic subunit vaccines are now reporting high-level efficacy, whilst exciting new approaches to the development of blood-stage and transmission-blocking vaccine subunit components are entering clinical development. The development of a highly effective multi-component multi-stage subunit vaccine now appears to be a realistic ambition. This review will cover these recent developments in malaria vaccinology.
Collapse
|
79
|
Nikolaeva D, Draper SJ, Biswas S. Toward the development of effective transmission-blocking vaccines for malaria. Expert Rev Vaccines 2015; 14:653-80. [PMID: 25597923 DOI: 10.1586/14760584.2015.993383] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The continued global burden of malaria can in part be attributed to a complex lifecycle, with both human hosts and mosquito vectors serving as transmission reservoirs. In preclinical models of vaccine-induced immunity, antibodies to parasite sexual-stage antigens, ingested in the mosquito blood meal, can inhibit parasite survival in the insect midgut as judged by ex vivo functional studies such as the membrane feeding assay. In an era of renewed political momentum for malaria elimination and eradication campaigns, such observations have fueled support for the development and implementation of so-called transmission-blocking vaccines. While leading candidates are being evaluated using a variety of promising vaccine platforms, the field is also beginning to capitalize on global '-omics' data for the rational genome-based selection and unbiased characterization of parasite and mosquito proteins to expand the candidate list. This review covers the progress and prospects of these recent developments.
Collapse
Affiliation(s)
- Daria Nikolaeva
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | | | | |
Collapse
|
80
|
Spiegel H, Boes A, Voepel N, Beiss V, Edgue G, Rademacher T, Sack M, Schillberg S, Reimann A, Fischer R. Application of a Scalable Plant Transient Gene Expression Platform for Malaria Vaccine Development. FRONTIERS IN PLANT SCIENCE 2015; 6:1169. [PMID: 26779197 PMCID: PMC4688378 DOI: 10.3389/fpls.2015.01169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/07/2015] [Indexed: 05/23/2023]
Abstract
Despite decades of intensive research efforts there is currently no vaccine that provides sustained sterile immunity against malaria. In this context, a large number of targets from the different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates. None of these candidates has fulfilled expectations, and as long as we lack a single target that induces strain-transcending protective immune responses, combining key antigens from different life cycle stages seems to be the most promising route toward the development of efficacious malaria vaccines. After the identification of potential targets using approaches such as omics-based technology and reverse immunology, the rapid expression, purification, and characterization of these proteins, as well as the generation and analysis of fusion constructs combining different promising antigens or antigen domains before committing to expensive and time consuming clinical development, represents one of the bottlenecks in the vaccine development pipeline. The production of recombinant proteins by transient gene expression in plants is a robust and versatile alternative to cell-based microbial and eukaryotic production platforms. The transfection of plant tissues and/or whole plants using Agrobacterium tumefaciens offers a low technical entry barrier, low costs, and a high degree of flexibility embedded within a rapid and scalable workflow. Recombinant proteins can easily be targeted to different subcellular compartments according to their physicochemical requirements, including post-translational modifications, to ensure optimal yields of high quality product, and to support simple and economical downstream processing. Here, we demonstrate the use of a plant transient expression platform based on transfection with A. tumefaciens as essential component of a malaria vaccine development workflow involving screens for expression, solubility, and stability using fluorescent fusion proteins. Our results have been implemented for the evidence-based iterative design and expression of vaccine candidates combining suitable P. falciparum antigen domains. The antigens were also produced, purified, and characterized in further studies by taking advantage of the scalability of this platform.
Collapse
Affiliation(s)
- Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- *Correspondence: Alexander Boes
| | - Nadja Voepel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Veronique Beiss
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Gueven Edgue
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Markus Sack
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
81
|
Yusibov V, Kushnir N, Streatfield SJ. Advances and challenges in the development and production of effective plant-based influenza vaccines. Expert Rev Vaccines 2014; 14:519-35. [PMID: 25487788 DOI: 10.1586/14760584.2015.989988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Influenza infections continue to present a major threat to public health. Traditional modes of influenza vaccine manufacturing are failing to satisfy the global demand because of limited scalability and long production timelines. In contrast, subunit vaccines (SUVs) can be produced in heterologous expression systems in shorter times and at higher quantities. Plants are emerging as a promising platform for SUV production due to time efficiency, scalability, lack of harbored mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modifications. So far, several organizations have utilized plant-based transient expression systems to produce SUVs against influenza, including vaccines based on virus-like particles. Plant-produced influenza SUV candidates have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, the authors review ongoing efforts and challenges to producing influenza SUV candidates in plants and discuss the likelihood of bringing these products to the market.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA
| | | | | |
Collapse
|
82
|
Hernández M, Rosas G, Cervantes J, Fragoso G, Rosales-Mendoza S, Sciutto E. Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev Vaccines 2014; 13:1523-36. [PMID: 25158836 DOI: 10.1586/14760584.2014.953064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The progressive interest in transgenic plants as advantageous platforms for the production and oral delivery of vaccines has led to extensive research and improvements in this technology over recent years. In this paper, the authors examine the most significant advances in this area, including novel approaches for higher yields and better containment, and the continued evaluation of new vaccine prototypes against several infectious diseases. The use of plants to deliver vaccine candidates against viruses, bacteria, and eukaryotic parasites within the last 5 years is discussed, focusing on innovative expression strategies and the immunogenic potential of new vaccines. A brief section on the state of the art in mucosal immunity is also included.
Collapse
Affiliation(s)
- Marisela Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México, DF, México
| | | | | | | | | | | |
Collapse
|
83
|
Nunes JK, Woods C, Carter T, Raphael T, Morin MJ, Diallo D, Leboulleux D, Jain S, Loucq C, Kaslow DC, Birkett AJ. Development of a transmission-blocking malaria vaccine: progress, challenges, and the path forward. Vaccine 2014; 32:5531-9. [PMID: 25077422 DOI: 10.1016/j.vaccine.2014.07.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
New interventions are needed to reduce morbidity and mortality associated with malaria, as well as to accelerate elimination and eventual eradication. Interventions that can break the cycle of parasite transmission, and prevent its reintroduction, will be of particular importance in achieving the eradication goal. In this regard, vaccines that interrupt malaria transmission (VIMT) have been highlighted as an important intervention, including transmission-blocking vaccines that prevent human-to-mosquito transmission by targeting the sexual, sporogonic, or mosquito stages of the parasite (SSM-VIMT). While the significant potential of this vaccine approach has been appreciated for decades, the development and licensure pathways for vaccines that target transmission and the incidence of infection, as opposed to prevention of clinical malaria disease, remain ill-defined. This article describes the progress made in critical areas since 2010, highlights key challenges that remain, and outlines important next steps to maximize the potential for SSM-VIMTs to contribute to the broader malaria elimination and eradication objectives.
Collapse
Affiliation(s)
- Julia K Nunes
- PATH Malaria Vaccine Initiative, Washington, DC, USA
| | - Colleen Woods
- PATH Malaria Vaccine Initiative, Washington, DC, USA; PATH Malaria Vaccine Initiative, Seattle, WA, USA
| | | | | | | | | | | | - Sanjay Jain
- PATH Malaria Vaccine Initiative, Washington, DC, USA
| | | | - David C Kaslow
- PATH Malaria Vaccine Initiative, Washington, DC, USA; PATH, Seattle, WA, USA
| | | |
Collapse
|
84
|
Developing inexpensive malaria vaccines from plants and algae. Appl Microbiol Biotechnol 2014; 98:1983-90. [DOI: 10.1007/s00253-013-5477-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
|