51
|
Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M, Yadav P, Rawat S, Grover A. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 2018; 212-213:29-37. [PMID: 29853166 DOI: 10.1016/j.micres.2018.04.008] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/17/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
Pathogenesis-related (PR) proteins and antimicrobial peptides (AMPs) are a group of diverse molecules that are induced by phytopathogens as well as defense related signaling molecules. They are the key components of plant innate immune system especially systemic acquired resistance (SAR), and are widely used as diagnostic molecular markers of defense signaling pathways. Although, PR proteins and peptides have been isolated much before but their biological function remains largely enigmatic despite the availability of new scientific tools. The earlier studies have demonstrated that PR genes provide enhanced resistance against both biotic and abiotic stresses, which make them one of the most promising candidates for developing multiple stress tolerant crop varieties. In this regard, plant genetic engineering technology is widely accepted as one of the most fascinating approach to develop the disease resistant transgenic crops using different antimicrobial genes like PR genes. Overexpression of PR genes (chitinase, glucanase, thaumatin, defensin and thionin) individually or in combination have greatly uplifted the level of defense response in plants against a wide range of pathogens. However, the detailed knowledge of signaling pathways that regulates the expression of these versatile proteins is critical for improving crop plants to multiple stresses, which is the future theme of plant stress biology. Hence, this review provides an overall overview on the PR proteins like their classification, role in multiple stresses (biotic and abiotic) as well as in various plant defense signaling cascades. We also highlight the success and snags of transgenic plants expressing PR proteins and peptides.
Collapse
Affiliation(s)
- Sajad Ali
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India; Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Azra N Kamili
- Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Ajaz Ali Bhat
- Govt Degree College Boys Baramulla, Jammu and Kashmir, India
| | - Zahoor Ahmad Mir
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | - Anshika Tyagi
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | | | - Prashant Yadav
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Sandhya Rawat
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Anita Grover
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India.
| |
Collapse
|
52
|
Qin Z, Yang D, You X, Liu Y, Hu S, Yan Q, Yang S, Jiang Z. The recognition mechanism of triple-helical β-1,3-glucan by a β-1,3-glucanase. Chem Commun (Camb) 2018; 53:9368-9371. [PMID: 28787048 DOI: 10.1039/c7cc03330c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
β-1,3-Glucan is one of the most abundant polysaccharides in fungi. Recognition of β-1,3-glucan occurs in both hydrolysis by glycoside hydrolases and immunological recognition. Our study provides a novel structural account of how glycoside hydrolase recognizes and hydrolyzes substrates in a triple-helical form and presents a general structural basis of β-1,3-glucan recognition.
Collapse
Affiliation(s)
- Zhen Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Ullah A, Hussain A, Shaban M, Khan AH, Alariqi M, Gul S, Jun Z, Lin S, Li J, Jin S, Munis MFH. Osmotin: A plant defense tool against biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:149-159. [PMID: 29245030 DOI: 10.1016/j.plaphy.2017.12.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/18/2023]
Abstract
Plants are prone to a number of pathogens and abiotic stresses that cause various disorders. However, plants possess a defense mechanism to cope with these stresses. The osmotin protein belongs to the PR-5 family of Pathogenesis-related (PR) proteins, which are produced in response to diseases caused by various biotic and abiotic stresses. Osmotin uses a signal transduction pathway to inhibit the activity of defensive cell wall barriers and increases its own cytotoxic efficiency. However, in response to cytotoxic effects, this pathway stimulates a mitogen-activated protein kinase (MAPK) cascade that triggers changes in the cell wall and enables osmotin's entrance into the plasma membrane. This mechanism involves cell wall binding and membrane perturbation, although the complete mechanism of osmotin activity has not been fully elucidated. Osmotin possesses an acidic cleft that is responsible for communication with its receptor in the plasma membrane of fungi. Osmotin is also involved in the initiation of apoptosis and programmed cell death, whereas its overexpression causes the accumulation of proline in transgenic plants. A higher concentration of osmotin can cause the lysis of hyphae tips. This review highlights the role of osmotin protein in the plant defense mechanism and its mode of action against numerous pathogens in wild and transgenic plants.
Collapse
Affiliation(s)
- Abid Ullah
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amjad Hussain
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muhammad Shaban
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Aamir Hamid Khan
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muna Alariqi
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Summia Gul
- Department of Biology, Institute of Microbiology, Heinrich Heine University Düsseldorf, Germany
| | - Zhang Jun
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sun Lin
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jianying Li
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shuangxia Jin
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Muhammad Farooq Hussain Munis
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; University of California, Department of Plant Pathology, 354 Hutchison Hall, One Shields Ave, Davis, CA 95616-8680, USA.
| |
Collapse
|
54
|
Aghazadeh R, Zamani M, Motallebi M, Moradyar M. Agrobacterium-Mediated Transformation of the Oryza sativa Thaumatin-Like Protein to Canola (R Line Hyola308) for Enhancing Resistance to Sclerotinia sclerotiorum. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:201-207. [PMID: 29845070 PMCID: PMC5811068 DOI: 10.15171/ijb.1585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/08/2016] [Accepted: 10/15/2016] [Indexed: 12/31/2022]
Abstract
Background: Canola is an agro-economically oilseed crop. Yield loss due to fungal disease of stem rot caused by Sclerotinia sclerotiorum is a serious problem in canola cultivation. Thaumatin-like proteins are large groups of the pathogenesis-related proteins which provide resistance to the fungal infection in response to invading pathogens and play a key role in plant defense system. Objectives: Transformation of the rice tlp into canola via Agrobacterium-mediated transformation and evaluation of the antifungal activity of the expressed TLP in the transgenic events on the S. sclerotiorum growth was subject to investigation. Materials and methods: The canola (R line Hyola308) was used for transformation experiment. The vector, pBITLPRA1, was used for the stable transformation. The PCR and southern blotting techniques were used to confirm transgene's presence in the transgenic canola events. Antifungal activity of transgenic plants was evaluated by the radial diffusion and spore germination assays. T2 transgenic plants were evaluated by the intact leaf inoculation method in greenhouse assay. Results: In this study, pBITLPRA1 construct containing tlp gene was introduced into canola and the transformed plants were verified by PCR. The glucanase activity of tlp gene in T0 generation was measured and transgenic plants with high activity were assessed by Southern blot analysis to confirm the copy number of the gene. Also, antifungal activity of the single copy T0 transgenic plants against Sclerotinia sclerotiorum was evaluated by radial diffusion and spore germination assays. In greenhouse assay, evaluation of T2 transgenic plants by the intact leaf inoculation method demonstrated that following the infection with S. sclerotiorum, there was a significant reduction in the lesion's diameter in transgenic lines compared to the non-transgenic ones. Conclusions: These results revealed that expression of TLP has an inhibitory effect against fungus compared to non-transgenic plants both in vitro and in vivo (i.e., greenhouse condition). These transgenic lines could be used as the additional sources of disease resistance for canola breeding program.
Collapse
Affiliation(s)
| | - Mohammadreza Zamani
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mostafa Motallebi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | |
Collapse
|
55
|
Han S, Liu H, Yan M, Qi F, Wang Y, Sun Z, Huang B, Dong W, Tang F, Zhang X, He G. Differential gene expression in leaf tissues between mutant and wild-type genotypes response to late leaf spot in peanut (Arachis hypogaea L.). PLoS One 2017; 12:e0183428. [PMID: 28841668 PMCID: PMC5571927 DOI: 10.1371/journal.pone.0183428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/03/2017] [Indexed: 11/18/2022] Open
Abstract
Late leaf spot (LLS) is a major foliar disease in peanut (A. hypogaea L.) worldwide, causing significant losses of potential yield in the absence of fungicide applications. Mutants are important materials to study the function of disease-related genes. In this study, the mutant line M14 was derived from cultivar Yuanza 9102 treated with EMS. Yuanza 9102 was selected from an interspecific cross of cultivar Baisha 1016 with A. diogoi, and is resistant to several fungal diseases. By contrast, the M14 was highly susceptible to late leaf spot. RNA-Seq analysis in the leaf tissues of the M14 and its wild type Yuanza 9102 under pathogen challenge showed 2219 differentially expressed genes including1317 up-regulated genes and 902 down-regulated genes. Of these genes, 1541, 1988, 1344, 643 and 533 unigenes were obtained and annotated by public protein databases of SwissPort, TrEMBL, gene ontology (GO), KEGG and clusters of orthologous groups (COG), respectively. Differentially expressed genes (DEGs) showed that expression of inducible pathogenesis-related (PR) proteins was significantly up-regulated; in the meantime DEGs related to photosynthesis were down-regulated in the susceptible M14 in comparison to the resistant WT. Moreover, the up-regulated WRKY transcription factors and down-regulated plant hormones related to plant growth were detected in the M14. The results suggest that down-regulated chloroplast genes, up-regulated WRKY transcription factors, and depressed plant hormones related to plant growth in the M14 might coordinately render the susceptibility though there was a significant high level of PRs. Those negative effectors might be triggered in the susceptible plant by fungal infection and resulted in reduction of photosynthesis and phytohormones and led to symptom formation.
Collapse
Affiliation(s)
- Suoyi Han
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Department of Agricultural and Environmental Sciences, College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, Alabama, United States of America
| | - Hua Liu
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Mei Yan
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Feiyan Qi
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yaqi Wang
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan, China
| | - Ziqi Sun
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan, China
| | - Bingyan Huang
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan, China
| | - Wenzhao Dong
- Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture, Zhengzhou, Henan, China
| | - Fengshou Tang
- Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture, Zhengzhou, Henan, China
| | - Xinyou Zhang
- Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture, Zhengzhou, Henan, China
| | - Guohao He
- Department of Agricultural and Environmental Sciences, College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, Alabama, United States of America
| |
Collapse
|
56
|
Yan X, Qiao H, Zhang X, Guo C, Wang M, Wang Y, Wang X. Analysis of the grape (Vitis vinifera L.) thaumatin-like protein (TLP) gene family and demonstration that TLP29 contributes to disease resistance. Sci Rep 2017; 7:4269. [PMID: 28655869 PMCID: PMC5487326 DOI: 10.1038/s41598-017-04105-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 05/16/2017] [Indexed: 12/25/2022] Open
Abstract
Thaumatin-like protein (TLP) is present as a large family in plants, and individual members play different roles in various responses to biotic and abiotic stresses. Here we studied the role of 33 putative grape (Vitis vinifera L.) TLP genes (VvTLP) in grape disease resistance. Heat maps analysis compared the expression profiles of 33 genes in disease resistant and susceptible grape species infected with anthracnose (Elsinoe ampelina), powdery mildew (Erysiphe necator) or Botrytis cinerea. Among these 33 genes, the expression level of TLP29 increased following the three pathogens inoculations, and its homolog from the disease resistant Chinese wild grape V. quinquangularis cv. 'Shang-24', was focused for functional studies. Over-expression of TLP29 from grape 'Shang-24' (VqTLP29) in Arabidopsis thaliana enhanced its resistance to powdery mildew and the bacterium Pseudomonas syringae pv. tomato DC3000, but decreased resistance to B. cinerea. Moreover, the stomatal closure immunity response to pathogen associated molecular patterns was strengthened in the transgenic lines. A comparison of the expression profiles of various resistance-related genes after infection with different pathogens indicated that VqTLP29 may be involved in the salicylic acid and jasmonic acid/ethylene signaling pathways.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hengbo Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuming Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengnan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
57
|
AbuQamar S, Moustafa K, Tran LS. Mechanisms and strategies of plant defense against Botrytis cinerea. Crit Rev Biotechnol 2017; 37:262-274. [PMID: 28056558 DOI: 10.1080/07388551.2016.1271767] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Biotic factors affect plant immune responses and plant resistance to pathogen infections. Despite the considerable progress made over the past two decades in manipulating genes, proteins and their levels from diverse sources, no complete genetic tolerance to environmental stresses has been developed so far in any crops. Plant defense response to pathogens, including Botrytis cinerea, is a complex biological process involving various changes at the biochemical, molecular (i.e. transcriptional) and physiological levels. Once a pathogen is detected, effective plant resistance activates signaling networks through the generation of small signaling molecules and the balance of hormonal signaling pathways to initiate defense mechanisms to the particular pathogen. Recently, studies using Arabidopsis thaliana and crop plants have shown that many genes are involved in plant responses to B. cinerea infection. In this article, we will review our current understanding of mechanisms regulating plant responses to B. cinerea with a particular interest on hormonal regulatory networks involving phytohormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA). We will also highlight some potential gene targets that are promising for improving crop resistance to B. cinerea through genetic engineering and breeding programs. Finally, the role of biological control as a complementary and alternative disease management will be overviewed.
Collapse
Affiliation(s)
- Synan AbuQamar
- a Department of Biology , United Arab Emirates University , Al-Ain , UAE
| | - Khaled Moustafa
- b Conservatoire National des Arts et Métiers , Paris , France
| | - Lam Son Tran
- c Plant Abiotic Stress Research Group & Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,d Signaling Pathway Research Unit , RIKEN Center for Sustainable Resource Science , Yokohama , Kanagawa , Japan
| |
Collapse
|
58
|
|
59
|
Santa Brigida AB, Rojas CA, Grativol C, de Armas EM, Entenza JOP, Thiebaut F, Lima MDF, Farrinelli L, Hemerly AS, Lifschitz S, Ferreira PCG. Sugarcane transcriptome analysis in response to infection caused by Acidovorax avenae subsp. avenae. PLoS One 2016; 11:e0166473. [PMID: 27936012 PMCID: PMC5147822 DOI: 10.1371/journal.pone.0166473] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Sugarcane is an important tropical crop mainly cultivated to produce ethanol and sugar. Crop productivity is negatively affected by Acidovorax avenae subsp avenae (Aaa), which causes the red stripe disease. Little is known about the molecular mechanisms triggered in response to the infection. We have investigated the molecular mechanism activated in sugarcane using a RNA-seq approach. We have produced a de novo transcriptome assembly (TR7) from sugarcane RNA-seq libraries submitted to drought and infection with Aaa. Together, these libraries present 247 million of raw reads and resulted in 168,767 reference transcripts. Mapping in TR7 of reads obtained from infected libraries, revealed 798 differentially expressed transcripts, of which 723 were annotated, corresponding to 467 genes. GO and KEGG enrichment analysis showed that several metabolic pathways, such as code for proteins response to stress, metabolism of carbohydrates, processes of transcription and translation of proteins, amino acid metabolism and biosynthesis of secondary metabolites were significantly regulated in sugarcane. Differential analysis revealed that genes in the biosynthetic pathways of ET and JA PRRs, oxidative burst genes, NBS-LRR genes, cell wall fortification genes, SAR induced genes and pathogenesis-related genes (PR) were upregulated. In addition, 20 genes were validated by RT-qPCR. Together, these data contribute to a better understanding of the molecular mechanisms triggered by the Aaa in sugarcane and opens the opportunity for the development of molecular markers associated with disease tolerance in breeding programs.
Collapse
Affiliation(s)
- Ailton B. Santa Brigida
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Cristian A. Rojas
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, Brasil
| | - Clícia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | - Elvismary M. de Armas
- Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Júlio O. P. Entenza
- Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Flávia Thiebaut
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo de F. Lima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | | | - Adriana S. Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sérgio Lifschitz
- Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Paulo C. G. Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
60
|
A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci Rep 2016; 6:25340. [PMID: 27150014 PMCID: PMC4858651 DOI: 10.1038/srep25340] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/13/2016] [Indexed: 11/12/2022] Open
Abstract
Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops.
Collapse
|
61
|
Chen N, Su M, Chi X, Zhang Z, Pan L, Chen M, Wang T, Wang M, Yang Z, Yu S. Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of peanut (Arachis hypogaea L.). Genes Genomics 2016. [DOI: 10.1007/s13258-016-0395-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
62
|
Cloning, characterization, and bacterial over-expression of an osmotin-like protein gene from Solanum nigrum L. with antifungal activity against three necrotrophic fungi. Mol Biotechnol 2015; 57:371-81. [PMID: 25572937 DOI: 10.1007/s12033-014-9831-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new osmotin-like protein gene from Solanum nigrum L. var indica (SindOLP) was cloned and overexpressed in Escherichia coli. The full-length intron-less gene is 744 bp, encoding a mature protein of 247 amino acids with a molecular mass of 26 kDa. The protein has an N-terminal cleavable signal sequence of 21 amino acids. There is the Thaumatin family signature pattern, with one each of amidation, N-myristoylation, casein kinase II phosphorylation, tyrosine kinase phosphorylation, and protein kinase C phosphorylation sites. Hydropathy plot showed that it has six transmembrane helices. It has antifungal activity and can permeabilize fungal hyphae and spores. SindOLP is most active at pH 8, 25 °C and its antifungal activity is retained after 75 °C for 30 min. SindOLP inhibits fungal spore germination. The protein however lacks glucanase activity. The potential for SindOLP in developing fungus-resistant, transgenic crops is discussed.
Collapse
|
63
|
Lorenzini M, Mainente F, Zapparoli G, Cecconi D, Simonato B. Post-harvest proteomics of grapes infected by Penicillium during withering to produce Amarone wine. Food Chem 2015; 199:639-47. [PMID: 26776019 DOI: 10.1016/j.foodchem.2015.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/18/2015] [Accepted: 12/08/2015] [Indexed: 11/19/2022]
Abstract
The study of withered grape infection by Penicillium, a potentially toxigenic fungus, is relevant to preserve grape quality during the post-harvest dehydration process. This report describes the first proteomic analysis of Amarone wine grapes, infected by two strains of Penicillium expansum (Pe1) and Penicillium crustosum (Pc4). Protein identification by MS analysis allowed a better understanding of physiological mechanisms underlying the pathogen attack. The Pe1 strain had a major impact on Vitis vinifera protein expression inducing pathogenesis-related proteins and other protein species involved in energy metabolism. A greater expression of new Penicillium proteins involved in energy metabolism and some protein species related to redox homeostasis has been observed on grapes infected by Pc4 strain. Moreover, the new induced proteins in infected grapes could represent potential markers in withered grapes, thus creating the chance to develop case-sensitive prevention strategies to inhibit fungal growth.
Collapse
Affiliation(s)
- Marilinda Lorenzini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Federica Mainente
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Giacomo Zapparoli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Barbara Simonato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
64
|
Rather IA, Awasthi P, Mahajan V, Bedi YS, Vishwakarma RA, Gandhi SG. Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum. Gene 2014; 558:143-51. [PMID: 25550044 DOI: 10.1016/j.gene.2014.12.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/28/2014] [Accepted: 12/25/2014] [Indexed: 10/24/2022]
Abstract
Pathogenesis-related (PR) proteins are involved in biotic and abiotic stress responses of plants and are grouped into 17 families (PR-1 to PR-17). PR-5 family includes proteins related to thaumatin and osmotin, with several members possessing antimicrobial properties. In this study, a PR-5 gene showing a high degree of homology with osmotin-like protein was isolated from sweet basil (Ocimum basilicum L.). A complete open reading frame consisting of 675 nucleotides, coding for a precursor protein, was obtained by PCR amplification. Based on sequence comparisons with tobacco osmotin and other osmotin-like proteins (OLPs), this protein was named ObOLP. The predicted mature protein is 225 amino acids in length and contains 16 cysteine residues that may potentially form eight disulfide bonds, a signature common to most PR-5 proteins. Among the various abiotic stress treatments tested, including high salt, mechanical wounding and exogenous phytohormone/elicitor treatments; methyl jasmonate (MeJA) and mechanical wounding significantly induced the expression of ObOLP gene. The coding sequence of ObOLP was cloned and expressed in a bacterial host resulting in a 25kDa recombinant-HIS tagged protein, displaying antifungal activity. The ObOLP protein sequence appears to contain an N-terminal signal peptide with signatures of secretory pathway. Further, our experimental data shows that ObOLP expression is regulated transcriptionally and in silico analysis suggests that it may be post-transcriptionally and post-translationally regulated through microRNAs and post-translational protein modifications, respectively. This study appears to be the first report of isolation and characterization of osmotin-like protein gene from O. basilicum.
Collapse
Affiliation(s)
- Irshad Ahmad Rather
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
| | - Praveen Awasthi
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
| | - Vidushi Mahajan
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India
| | - Yashbir S Bedi
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India
| | - Ram A Vishwakarma
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India
| | - Sumit G Gandhi
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India.
| |
Collapse
|
65
|
Ghosh Dasgupta M, George BS, Bhatia A, Sidhu OP. Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis-related genes during salicylic acid signaling. PLoS One 2014; 9:e94803. [PMID: 24739900 PMCID: PMC3989240 DOI: 10.1371/journal.pone.0094803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 12/20/2022] Open
Abstract
Withania somnifera (L.) Dunal is a valued medicinal plant with pharmaceutical applications. The present study was undertaken to analyze the salicylic acid induced leaf transcriptome of W. somnifera. A total of 45.6 million reads were generated and the de novo assembly yielded 73,523 transcript contig with average transcript contig length of 1620 bp. A total of 71,062 transcripts were annotated and 53,424 of them were assigned GO terms. Mapping of transcript contigs to biological pathways revealed presence of 182 pathways. Seventeen genes representing 12 pathogenesis-related (PR) families were mined from the transcriptome data and their pattern of expression post 17 and 36 hours of salicylic acid treatment was documented. The analysis revealed significant up-regulation of all families of PR genes by 36 hours post treatment except WsPR10. The relative fold expression of transcripts ranged from 1 fold to 6,532 fold. The two families of peroxidases including the lignin-forming anionic peroxidase (WsL-PRX) and suberization-associated anionic peroxidase (WsS-PRX) recorded maximum expression of 377 fold and 6532 fold respectively, while the expression of WsPR10 was down-regulated by 14 fold. Additionally, the most stable reference gene for normalization of qRT-PCR data was also identified. The effect of SA on the accumulation of major secondary metabolites of W. somnifera including withanoside V, withaferin A and withanolide A was also analyzed and an increase in content of all the three metabolites were detected. This is the first report on expression patterns of PR genes during salicylic acid signaling in W. somnifera.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
- * E-mail:
| | - Blessan Santhosh George
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Anil Bhatia
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Om Prakash Sidhu
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| |
Collapse
|