51
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
52
|
Beeler JA, Mourra D. To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity. Front Integr Neurosci 2018; 12:6. [PMID: 29487508 PMCID: PMC5816947 DOI: 10.3389/fnint.2018.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Five years ago, we introduced the thrift hypothesis of dopamine (DA), suggesting that the primary role of DA in adaptive behavior is regulating behavioral energy expenditure to match the prevailing economic conditions of the environment. Here we elaborate that hypothesis with several new ideas. First, we introduce the concept of affordability, suggesting that costs must necessarily be evaluated with respect to the availability of resources to the organism, which computes a value not only for the potential reward opportunity, but also the value of resources expended. Placing both costs and benefits within the context of the larger economy in which the animal is functioning requires consideration of the different timescales against which to compute resource availability, or average reward rate. Appropriate windows of computation for tracking resources requires corresponding neural substrates that operate on these different timescales. In discussing temporal patterns of DA signaling, we focus on a neglected form of DA plasticity and adaptation, changes in the physical substrate of the DA system itself, such as up- and down-regulation of receptors or release probability. We argue that changes in the DA substrate itself fundamentally alter its computational function, which we propose mediates adaptations to longer temporal horizons and economic conditions. In developing our hypothesis, we focus on DA D2 receptors (D2R), arguing that D2R implements a form of “cost control” in response to the environmental economy, serving as the “brain’s comptroller”. We propose that the balance between the direct and indirect pathway, regulated by relative expression of D1 and D2 DA receptors, implements affordability. Finally, as we review data, we discuss limitations in current approaches that impede fully investigating the proposed hypothesis and highlight alternative, more semi-naturalistic strategies more conducive to neuroeconomic investigations on the role of DA in adaptive behavior.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| | - Devry Mourra
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
53
|
Rogers J, Renoir T, Hannan AJ. Gene-environment interactions informing therapeutic approaches to cognitive and affective disorders. Neuropharmacology 2017; 145:37-48. [PMID: 29277490 DOI: 10.1016/j.neuropharm.2017.12.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
Gene-environment interactions drive experience-dependent changes in the brain that alter cognition, emotion and behaviour. Positive engagement with the environment, through novel experience and physical activity, can improve brain function, although the mechanisms mediating such experience-dependent plasticity remain to be fully elucidated. In this article, we discuss the therapeutic value of environmental stimuli, exercise and environmental enrichment (EE), for cognitive and affective disorders, with implications for the understanding and treatment of depression and anxiety disorders. We demonstrate that environmental manipulations are potential therapeutic strategies for improving outcomes in these psychiatric disorders, including beneficial impacts on cognition. We discuss how EE and exercise are therapeutic environmental interventions impacting both affective and cognitive function. Serotonergic (5-HTergic) signaling is strongly implicated in the manifestation of psychiatric disorders and regulates cognitive and emotional processing that can underpin them. Thus, we focus on evidence implicating the serotonergic system in mediating gene-environment interactions to EE and exercise. Finally, we discuss robust gene-environment interactions associated with EE and exercise interventions, and their impacts on specific brain areas, particularly the hippocampus. We focus on potential mediators of this experience-dependent plasticity, including adult neurogenesis and brain-derived neurotrophic factor (BDNF). Furthermore, we explore molecular and cellular mechanisms of experience-dependent plasticity that potentially underlie the restoration of affective and cognitive phenotypes, thus identifying novel therapeutic targets. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- Jake Rogers
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia.
| |
Collapse
|
54
|
Short- and Long-term Exposure to Low and High Dose Running Produce Differential Effects on Hippocampal Neurogenesis. Neuroscience 2017; 369:202-211. [PMID: 29175485 DOI: 10.1016/j.neuroscience.2017.11.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022]
Abstract
Continuous running wheel (RW) exercise increases adult hippocampal neurogenesis in the dentate gyrus (DG) of rodents. Evidence suggests that greater amounts of RW exercise does not always equate to more adult-generated neurons in hippocampus. It can also be argued that continuous access to a RW results in exercise levels not representative of human exercise patterns. This study tested if RW paradigms that more closely represent human exercise patterns (e.g. shorter bouts, alternating daily exercise) alter neurogenesis. Neurogenesis was measured by examining the survival and fate of bromodeoxyuridine (BrdU)-labeled proliferating cells in the DG of male Sprague-Dawley rats after acute (14 days) or chronic (30 days) RW access. Rats were assigned to experimental groups based on the number of hours that they had access to a RW over two days: 0 h, 4 h, 8 h, 24 h, and 48 h. After acute RW access, rats that had unlimited access to the RW on alternating days (24 h) had a stronger neurogenic response compared to those rats that ran modest distances (4 h, 8 h) or not at all (0 h). In contrast, following chronic RW access, rats that ran a moderate amount (4 h, 8 h) had significantly more surviving cells compared to 0 h, 24 h, and 48 h. Linear regression analysis established a negative relationship between running distance and surviving BrdU+ cells in the chronic RW access cohort (R2 = 0.40). These data demonstrate that in rats moderate amounts of RW exercise are superior to continuous daily RW exercise paradigms at promoting hippocampal neurogenesis in the long-term.
Collapse
|
55
|
Kozareva DA, O'Leary OF, Cryan JF, Nolan YM. Deletion of TLX and social isolation impairs exercise-induced neurogenesis in the adolescent hippocampus. Hippocampus 2017; 28:3-11. [DOI: 10.1002/hipo.22805] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Danka A. Kozareva
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| | - Olivia F. O'Leary
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| | - John F. Cryan
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| | - Yvonne M. Nolan
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| |
Collapse
|
56
|
Gremmelspacher T, Gerlach J, Hubbe A, Haas CA, Häussler U. Neurogenic Processes Are Induced by Very Short Periods of Voluntary Wheel-Running in Male Mice. Front Neurosci 2017; 11:385. [PMID: 28751854 PMCID: PMC5508020 DOI: 10.3389/fnins.2017.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/20/2017] [Indexed: 01/17/2023] Open
Abstract
Even in the adult mammalian brain progenitor cells proliferate and give rise to young neurons which integrate into the neuronal network. The dentate gyrus possesses such a neurogenic niche reactive to external stimuli like physical activity. In most studies mice or rats have been exposed to wheel running for periods of several weeks to activate neurogenesis while early neurogenic processes induced by very short running periods are less well understood. To address this issue, we allowed male C57Bl/6 mice free access to a running wheel for 2 or 7 days. We injected bromodeoxyuridine (BrdU) before the last running night, respectively, and quantified cell proliferation with immunocytochemistry for BrdU and Ki-67. Furthermore, we performed immunocytochemistry for doublecortin (DCX) and real-time RT-qPCR for NeuroD1 to characterize and quantify changes in neurogenesis on the protein and mRNA level. Real-time RT-qPCR for neurogenic niche factors (BDNF, FGF-2, BMP4, Noggin) was used to detect changes in the molecular composition of the neurogenic niche. Interestingly, we observed that cell proliferation was already affected after 2 days of running showing a transient decrease, which was followed by a rebound with increased proliferation after 7 days. Neurogenesis was stimulated after 2 days of running, reflected by elevated NeuroD1 mRNA levels, and it was significantly increased after 7 days as indicated by DCX immunostaining. On the level of niche factors we observed changes in expression in favor of neuronal differentiation (increased BDNF mRNA expression) and proliferation (decreased BMP4 mRNA expression) already after 2 days, although increased proliferation is reflected on the cellular level only later. In summary, our data show that 2 days of running are sufficient to activate neurogenic processes and we hypothesize that a strong pressure toward differentiation privileges neurogenesis while proliferation lags behind.
Collapse
Affiliation(s)
- Teresa Gremmelspacher
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of FreiburgFreiburg, Germany
| | - Johannes Gerlach
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of FreiburgFreiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of FreiburgFreiburg, Germany.,Faculty of Biology, University of FreiburgFreiburg, Germany
| | - Alix Hubbe
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of FreiburgFreiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of FreiburgFreiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of FreiburgFreiburg, Germany
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center-University of FreiburgFreiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of FreiburgFreiburg, Germany
| |
Collapse
|
57
|
Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla). PLoS One 2017; 12:e0179134. [PMID: 28591201 PMCID: PMC5462419 DOI: 10.1371/journal.pone.0179134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
Long distance migratory birds find their way by sensing and integrating information from a large number of cues in their environment. These cues are essential to navigate over thousands of kilometers and reach the same breeding, stopover, and wintering sites every year. The semipalmated sandpiper (Calidris pusilla) is a long-distance migrant that breeds in the arctic tundra of Canada and Alaska and winters on the northeast coast of South America. Its fall migration includes a 5,300-kilometer nonstop flight over the Atlantic Ocean. The avian hippocampus has been proposed to play a central role in the integration of multisensory spatial information for navigation. Hippocampal neurogenesis may contribute to hippocampal function and a variety of factors including cognitive activity, exercise, enrichment, diet and stress influence neurogenesis in the hippocampus. We quantified hippocampal neurogenesis and volume in adult migrating and wintering semipalmated sandpipers using stereological counts of doublecortin (DCX) immunolabeled immature neurons. We found that birds captured in the coastal region of Bragança, Brazil during the wintering period had more DCX positive neurons and larger volume in the hippocampus than individuals captured in the Bay of Fundy, Canada during fall migration. We also estimate the number of NeuN immunolabeled cells in migrating and wintering birds and found no significant differences between them. These findings suggest that, at this time window, neurogenesis just replaced neurons that might be lost during the transatlantic flight. Our findings also show that in active fall migrating birds, a lower level of adult hippocampal neurogenesis is associated with a smaller hippocampal formation. High levels of adult hippocampal neurogenesis and a larger hippocampal formation found in wintering birds may be late occurring effects of long distance migratory flight or the result of conditions the birds experienced while wintering.
Collapse
|
58
|
Roemers P, Mazzola PN, De Deyn PP, Bossers WJ, van Heuvelen MJG, van der Zee EA. Burrowing as a novel voluntary strength training method for mice: A comparison of various voluntary strength or resistance exercise methods. J Neurosci Methods 2017; 300:112-126. [PMID: 28587894 DOI: 10.1016/j.jneumeth.2017.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/01/2017] [Accepted: 05/30/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. NEW METHOD The current study tested functional and muscular effects of two novel voluntary strength training methods, burrowing (digging a substrate out of a tube) and unloaded tower climbing, in male C57Bl6 mice. To compare these two novel methods with existing exercise methods, resistance running and (non-resistance) running were included. Motor coordination, grip strength and muscle fatigue were measured at baseline, halfway through and near the end of a fourteen week exercise intervention. Endurance was measured by an incremental treadmill test after twelve weeks. RESULTS Both burrowing and resistance running improved forelimb grip strength as compared to controls. Running and resistance running increased endurance in the treadmill test and improved motor skills as measured by the balance beam test. Post-mortem tissue analyses revealed that running and resistance running induced Soleus muscle hypertrophy and reduced epididymal fat mass. Tower climbing elicited no functional or muscular changes. COMPARISON WITH EXISTING METHODS As a voluntary strength exercise method, burrowing avoids the confounding effects of stress and positive reinforcers elicited in forced strength exercise methods. Compared to voluntary resistance running, burrowing likely reduces the contribution of aerobic exercise components. CONCLUSIONS Burrowing qualifies as a suitable voluntary strength training method in mice. Furthermore, resistance running shares features of strength training and endurance (aerobic) exercise and should be considered a multi-modal aerobic-strength exercise method in mice.
Collapse
Affiliation(s)
- P Roemers
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands.
| | - P N Mazzola
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - P P De Deyn
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W J Bossers
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M J G van Heuvelen
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
59
|
Sex-dependent effects of maternal corticosterone and SSRI treatment on hippocampal neurogenesis across development. Biol Sex Differ 2017; 8:20. [PMID: 28580124 PMCID: PMC5454586 DOI: 10.1186/s13293-017-0142-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/25/2017] [Indexed: 01/06/2023] Open
Abstract
Background Postpartum depression affects approximately 15% of mothers and represents a form of early life adversity for developing offspring. Postpartum depression can be treated with prescription antidepressants like fluoxetine (FLX). However, FLX can remain active in breast milk, raising concerns about the consequences of neonatal FLX exposure. The hippocampus is highly sensitive to developmental stress, and males and females respond differently to stress at many endpoints, including hippocampal plasticity. However, it is unclear how developmental exposure to FLX alters the trajectory of hippocampal development. The goal of this study was to examine the long-term effects of maternal postpartum corticosterone (CORT, a model of postpartum depression) and concurrent FLX on hippocampal neurogenesis in male and female offspring. Methods Female Sprague-Dawley rat dams were treated daily with either CORT or oil and FLX or saline from postpartum days 2–23. Offspring were perfused on postnatal day 31 (pre-adolescent), postnatal day 42 (adolescent), and postnatal day 69 (adult). Tissue was processed for doublecortin (DCX), an endogenous marker of immature neurons, in the dorsal and ventral hippocampus. Results Maternal postpartum CORT reduced density of DCX-expressing cells in the dorsal hippocampus of pre-adolescent males and increased it in adolescent males, suggesting that postpartum CORT exposure disrupted the typical progression of the density of DCX-expressing cells. Further, among offspring of oil-treated dams, pre-adolescent males had greater density of DCX-expressing cells than pre-adolescent females, and maternal postpartum CORT prevented this sex difference. In pre-adolescent females, maternal postpartum FLX decreased the density of DCX-expressing cells in the dorsal hippocampus compared to saline. As expected, maternal CORT reduced the density of DCX-expressing cells in adult female, but not male, offspring. The combination of maternal postpartum CORT/FLX diminished density of DCX-expressing cells in dorsal hippocampus regardless of sex or age. Conclusions These findings reveal how modeling treatment of postpartum depression with FLX alters hippocampal neurogenesis in developing offspring differently depending on sex, predominantly in the dorsal dentate gyrus and earlier in life.
Collapse
|
60
|
Brown SM, Peters R, Lawrence AB. Up-regulation of IGF-1 in the frontal cortex of piglets exposed to an environmentally enriched arena. Physiol Behav 2017; 173:285-292. [PMID: 28238777 PMCID: PMC5358774 DOI: 10.1016/j.physbeh.2017.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/09/2023]
Abstract
Environmental enrichment (EE) is widely used in the life sciences to study effects of environment on the brain. In pigs, despite lack of EE being a key welfare issue there is little understanding of brain effects of EE in pigs. This project aimed to study the effects of exposure to an EE arena on piglet behaviours and on brain gene expression levels with a focus on IGF-1 and related genes. Eight litters of large white×landrace×Hampshire piglets were farrowed and raised in a free farrowing system (PigSAFE). At 42days of age, 6pigletsperlitter were given access to an enriched arena with plentiful peat, straw and space, (in groups of 4 made up of stable pairs) for 15min per day on 5 consecutive days to allow them to habituate to the apparatus. Piglet behaviours were recorded in the arena for 15min periods on 3 consecutive days. On the final day only one pair of test piglets per litter was given access to the arena. Brain tissue was collected within 45min of the test from piglets exposed to the arena on the day and their non-exposed littermate controls. RNA was extracted from the frontal cortex and QRT-PCR for selected genes run on a Stratgene MX3005P. In both the home pen and the EE arena litters spent the largest proportion of time engaging in foraging behaviour which was significantly increased in the enriched arena (t7=5.35, df=6, p=0.001). There were decreases in non-running play (t7=4.82, p=0.002) and inactivity (t7=4.6, p=0.002) in the arena. A significant fold change increase (FC=1.07, t=4.42, p=0.002) was observed in IGF-1 gene expression in the frontal cortex of piglets exposed to the enriched arena compared to those not exposed on the day of culling. No change in expression was observed in CSF1, the IGF-1 receptor gene nor in any of the binding proteins tested (IGFBP1-6). There was a weak tendency for increased expression of the neurotrophic factor BDNF1 (fold change: 1.03; t7=1.54, p=0.1). We believe this work is the first to explore effects of EE on pig brain physiology and development, and also points to a potential role for IGF-1 in brain effects of EE.
Collapse
Affiliation(s)
- Sarah M. Brown
- University of Edinburgh, Roslin Institute, Penicuik EH25 9RG, United Kingdom,Corresponding author.
| | - Rebecca Peters
- SRUC, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | | |
Collapse
|
61
|
Active Dentate Granule Cells Encode Experience to Promote the Addition of Adult-Born Hippocampal Neurons. J Neurosci 2017; 37:4661-4678. [PMID: 28373391 DOI: 10.1523/jneurosci.3417-16.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 01/09/2023] Open
Abstract
The continuous addition of new dentate granule cells (DGCs), which is regulated exquisitely by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to affect the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca2+ imaging to track the real-time activity of individual DGCs in freely behaving mice. For the first time, we found that active DGCs responded to a novel experience by increasing their Ca2+ event frequency preferentially. This elevated activity, which we found to be associated with object exploration, returned to baseline by 1 h in the same environment, but could be dishabituated via introduction to a novel environment. To transition seamlessly between environments, we next established a freely controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences increased the number of newborn neurons accumulatively compared with a single experience. Finally, optogenetic silencing of existing DGCs during novel environmental exploration perturbed experience-induced neuronal addition. Our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active DGCs.SIGNIFICANCE STATEMENT Adult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca2+ imaging of dentate granule neurons with a novel, unrestrained virtual reality system for rodents, we discovered that a new experience increased firing of active dentate granule neurons rapidly and robustly. Exploration in multiple novel virtual environments, compared with a single environment, promoted dentate activation and enhanced the addition of new hippocampal neurons accumulatively. Finally, silencing this activation optogenetically during novel experiences perturbed experience-induced neuronal addition.
Collapse
|
62
|
Paternal environmental enrichment transgenerationally alters affective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology 2017; 77:225-235. [PMID: 28104556 DOI: 10.1016/j.psyneuen.2016.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 02/05/2023]
Abstract
Recent studies have demonstrated that paternal stress in rodents can result in modification of offspring behavior. Environmental enrichment, which enhances cognitive stimulation and physical activity, modifies various behaviors and reduces stress responses in adult rodents. We investigated the transgenerational influence of paternal environmental enrichment on offspring behavior and physiological stress response. Adult C57BL/6J male mice (F0) were exposed to either environmental enrichment or standard housing for four weeks and then pair-mated with naïve females. The F2 generation was generated using F1 male offspring. Male and female F1 and F2 offspring were tested for anxiety using the elevated-plus maze and large open field at 8 weeks of age. Depression-related behavior was assessed using the forced-swim test. Hypothalamic-pituitary-adrenal (HPA) axis function was determined by quantification of serum corticosterone and adrenocorticotropic hormone (ACTH) levels at baseline and after forced-swim stress. Paternal environmental enrichment was associated with increased body weights of male F1 and F2 offspring. There was no significant effect on F1 offspring anxiety and depression-related behaviors. There were no changes in anxiety-related behaviors in the F2 offspring, however these mice displayed a reduced latency to immobility in the forced-swim test. Furthermore, F2 females had significantly higher serum corticosterone levels post-stress, but not ACTH. These results show that paternal environmental enrichment exerts a sex-specific transgenerational impact on the behavioral and physiological response to stress. Our findings have implications for the modelling of psychiatric disorders in rodents.
Collapse
|
63
|
Modest Amounts of Voluntary Exercise Reduce Pain- and Stress-Related Outcomes in a Rat Model of Persistent Hind Limb Inflammation. THE JOURNAL OF PAIN 2017; 18:687-701. [PMID: 28185925 DOI: 10.1016/j.jpain.2017.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 11/23/2022]
Abstract
Aerobic exercise improves outcomes in a variety of chronic health conditions, yet the support for exercise-induced effects on chronic pain in humans is mixed. Although many rodent studies have examined the effects of exercise on persistent hypersensitivity, the most used forced exercise paradigms that are known to be highly stressful. Because stress can also produce analgesic effects, we studied how voluntary exercise, known to reduce stress in healthy subjects, alters hypersensitivity, stress, and swelling in a rat model of persistent hind paw inflammation. Our data indicate that voluntary exercise rapidly and effectively reduces hypersensitivity as well as stress-related outcomes without altering swelling. Moreover, the level of exercise is unrelated to the analgesic and stress-reducing effects, suggesting that even modest amounts of exercise may impart significant benefit in persistent inflammatory pain states. PERSPECTIVE Modest levels of voluntary exercise reduce pain- and stress-related outcomes in a rat model of persistent inflammatory pain, independently of the amount of exercise. As such, consistent, self-regulated activity levels may be more relevant to health improvement in persistent pain states than standardized exercise goals.
Collapse
|
64
|
Sex-dependent changes in neuronal morphology and psychosocial behaviors after pediatric brain injury. Behav Brain Res 2016; 319:48-62. [PMID: 27829127 DOI: 10.1016/j.bbr.2016.10.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
Chronic social behavior problems after pediatric traumatic brain injury (TBI) significantly contribute to poor quality of life for survivors. Using a well-characterized mouse model of early childhood TBI, we have previously demonstrated that young brain-injured mice develop social deficits by adulthood. As biological sex may influence both normal and aberrant social development, we here evaluated potential sex differences in post-TBI psychosocial deficits by comparing the behavior of male and female mice at adulthood (8 weeks post-injury). Secondly, we hypothesized that pediatric TBI would influence neuronal morphology identified by Golgi-Cox staining in the hippocampus and prefrontal cortex, regions involved in social cognition and behavior, before the onset of social problems (3 weeks post-injury). Morphological analysis of pyramidal neurons in the ipsilateral prefrontal cortex and granule cells of the hippocampal dentate gyrus revealed a reduction in dendritic complexity after pediatric TBI. This was most apparent in TBI males, whereas neurons from females were less affected. At adulthood, consistent with previous studies, TBI males showed deficits in sociability and social recognition. TBI females also showed a reduction in sociability, but intact social recognition and increased sociosexual avoidance. Together, these findings indicate that sex is a determinant of regional neuroplasticity and social outcomes after pediatric TBI. Reduced neuronal complexity in the prefrontal cortex and hippocampus, several weeks after injury in male mice, appears to precede the subsequent emergence of social deficits. Sex-specific alterations in the social brain network are thus implicated as an underlying mechanism of social dysfunction after pediatric TBI.
Collapse
|
65
|
Schoenfeld TJ, McCausland HC, Sonti AN, Cameron HA. Anxiolytic Actions of Exercise in Absence of New Neurons. Hippocampus 2016; 26:1373-1378. [PMID: 27571506 DOI: 10.1002/hipo.22649] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 11/07/2022]
Abstract
Physical exercise reduces anxiety-like behavior in adult mice. The specific mechanisms that mediate this anxiolytic effect are unclear, but adult neurogenesis in the dentate gyrus has been implicated because it is robustly increased by running and has been linked to anxiodepressive-like behavior. We therefore tested the effects of long-term wheel running on anxiety-like behavior in GFAP-TK (TK) mice, a transgenic strain with complete ablation of adult neurogenesis. Five weeks of running reduced anxiety-like behavior equally in both TK mice and wild type (WT) control mice on two tests, elevated plus-maze and novelty-suppressed feeding. WT and TK mice also had similar patterns of c-fos expression in the hippocampus following anxiety testing. Following testing on the elevated plus-maze, running reduced c-fos expression in the dorsal dentate gyrus and CA3 in both WT and TK mice. Following testing on novelty-suppressed feeding, running reduced c-fos expression throughout the dentate gyrus and CA3 in both WT and TK mice. Interestingly, following testing on a less anxiogenic version of novelty-suppressed feeding, running reduced c-fos expression only in the dorsal dentate gyrus in both WT and TK mice, supporting earlier suggestions that the dorsal hippocampus is less involved in emotional behavior than the ventral region. These results suggest that although running increases adult neurogenesis, new neurons are not involved in the decreased anxiety-like behavior or hippocampal activation produced by running. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy J Schoenfeld
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
| | - Hayley C McCausland
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Anup N Sonti
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Heather A Cameron
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
66
|
Overall RW, Walker TL, Fischer TJ, Brandt MD, Kempermann G. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity. Front Neurosci 2016; 10:362. [PMID: 27536215 PMCID: PMC4971098 DOI: 10.3389/fnins.2016.00362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field.
Collapse
Affiliation(s)
- Rupert W Overall
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Tara L Walker
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Tim J Fischer
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden Dresden, Germany
| | - Gerd Kempermann
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| |
Collapse
|
67
|
Ueno M, Okamura T, Mishina M, Ishizaka Y. Modulation of long interspersed nuclear element-1 in the mouse hippocampus during maturation. Mob Genet Elements 2016; 6:e1211980. [PMID: 27583186 DOI: 10.1080/2159256x.2016.1211980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Retrotransposition of long interspersed nuclear element-1 (L1-RTP) is proposed to contribute to central nervous system (CNS) plasticity by inducing mosaicism of neuronal cells. Clinical studies have identified increased L1 copy numbers in the brains of patients with psychiatric disorders. These observations implicate that L1-RTP is important for neurogenesis and that its deregulation represents a risk factor for mental disorders. However, no supportive evidence is available for understanding the importance of L1-RTP in CNS function. FINDINGS To explore the physiological role of L1-RTP in CNS, we examined the L1 copy number during maturation. Interestingly, the L1 copy number increased after birth in the mouse hippocampus, but not the frontal lobe, with maximal copy numbers found in 8-week-old mice. This age-dependent L1 increase was abolished by administration of a reverse-transcriptase inhibitor, stavudine (d4T), which showed no toxic effects. Notably, the age-dependent L1 increase was attenuated by post-weaning social isolation (SI) stress, a well-known intervention for inducing psychiatric disorders in mice, or deletion of the NR2A gene that encodes a subunit of the glutamate receptor. Moreover, the negative effects of SI stress on L1-RTP were partially restored by environmental enrichment with voluntary running, but not by fluoxetine, a commonly used anti-psychiatric drug. Finally, behavioral experiments revealed that learning memory was defective in d4T-treated mice, which was similarly observed in mice raised under SI stress. CONCLUSION We detected the modulation of L1-RTP in the hippocampus during maturation of the CNS. In a recent study, we demonstrated that stimulants such as methamphetamine and cocaine were active in the induction of L1-RTP in neuronal cells, and previous studies have shown that NR2A-deficient mice are susceptible to mental abnormality. Herein, our data support the notion that the age-dependent modulation of L1-RTP is involved in genome differentiation in the hippocampus, and that modulation defects are linked to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Mikako Ueno
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine , Shinjuku-ku, Tokyo Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan; Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University , Kusatsu, Shiga, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine , Shinjuku-ku, Tokyo Japan
| |
Collapse
|
68
|
Schulkin J. Evolutionary Basis of Human Running and Its Impact on Neural Function. Front Syst Neurosci 2016; 10:59. [PMID: 27462208 PMCID: PMC4939291 DOI: 10.3389/fnsys.2016.00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022] Open
Abstract
Running is not unique to humans, but it is seemingly a basic human capacity. This article addresses the evolutionary origins of humans running long distances, the basic physical capability of running, and the neurogenesis of aerobic fitness. This article more specifically speaks to the conditions that set the stage for the act of running, and then looks at brain expression, and longer-term consequences of running within a context of specific morphological features and diverse information molecules that participate in our capacity for running and sport. While causal factors are not known, we do know that physiological factors are involved in running and underlie neural function. Multiple themes about running are discussed in this article, including neurogenesis, neural plasticity, and memory enhancement. Aerobic exercise increases anterior hippocampus size. This expansion is linked to the improvement of memory, which reflects the improvement of learning as a function of running activity in animal studies. Higher fitness is associated with greater expansion, not only of the hippocampus, but of several other brain regions.
Collapse
Affiliation(s)
- Jay Schulkin
- Department of Neuroscience, Georgetown UniversityWashington, DC, USA
| |
Collapse
|
69
|
Livingston-Thomas J, Nelson P, Karthikeyan S, Antonescu S, Jeffers MS, Marzolini S, Corbett D. Exercise and Environmental Enrichment as Enablers of Task-Specific Neuroplasticity and Stroke Recovery. Neurotherapeutics 2016; 13:395-402. [PMID: 26868018 PMCID: PMC4824016 DOI: 10.1007/s13311-016-0423-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Improved stroke care has resulted in greater survival, but >50% of patients have chronic disabilities and 33% are institutionalized. While stroke rehabilitation is helpful, recovery is limited and the most significant gains occur in the first 2-3 months. Stroke triggers an early wave of gene and protein changes, many of which are potentially beneficial for recovery. It is likely that these molecular changes are what subserve spontaneous recovery. Two interventions, aerobic exercise and environmental enrichment, have pleiotropic actions that influence many of the same molecular changes associated with stroke injury and subsequent spontaneous recovery. Enrichment paradigms have been used for decades in adult and neonatal animal models of brain injury and are now being adapted for use in the clinic. Aerobic exercise enhances motor recovery and helps reduce depression after stroke. While exercise attenuates many of the signs associated with normal aging (e.g., hippocampal atrophy), its ability to reverse cognitive impairments subsequent to stroke is less evident. It may be that stroke, like other diseases such as cancer, needs to use multimodal treatments that augment complimentary neurorestorative processes.
Collapse
Affiliation(s)
- Jessica Livingston-Thomas
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Paul Nelson
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sudhir Karthikeyan
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sabina Antonescu
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew Strider Jeffers
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Susan Marzolini
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Dale Corbett
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
70
|
Holmes MM. Social regulation of adult neurogenesis: A comparative approach. Front Neuroendocrinol 2016; 41:59-70. [PMID: 26877107 DOI: 10.1016/j.yfrne.2016.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/25/2023]
Abstract
The social environment sculpts the mammalian brain throughout life. Adult neurogenesis, the birth of new neurons in the mature brain, can be up- or down-regulated by various social manipulations. These include social isolation, social conflict, social status, socio-sexual interactions, and parent/offspring interactions. However, socially-mediated changes in neuron production are often species-, sex-, and/or region-specific. In order to reconcile the variability of social effects on neurogenesis, we need to consider species-specific social adaptations and other contextual variables (e.g. age, social status, reproductive status, etc.) that shift the valence of social stimuli. Using a comparative approach to understand how adult-generated neurons in turn influence social behaviors will shed light on how adult neurogenesis contributes to survival and reproduction in diverse species.
Collapse
Affiliation(s)
- Melissa M Holmes
- Department of Psychology, University of Toronto, Canada; Department of Cell & Systems Biology, University of Toronto, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Canada.
| |
Collapse
|
71
|
Dissociating the therapeutic effects of environmental enrichment and exercise in a mouse model of anxiety with cognitive impairment. Transl Psychiatry 2016; 6:e794. [PMID: 27115125 PMCID: PMC4872410 DOI: 10.1038/tp.2016.52] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 01/22/2023] Open
Abstract
Clinical evidence indicates that serotonin-1A receptor (5-HT1AR) gene polymorphisms are associated with anxiety disorders and deficits in cognition. In animal models, exercise (Ex) and environmental enrichment (EE) can change emotionality-related behaviours, as well as enhance some aspects of cognition and hippocampal neurogenesis. We investigated the effects of Ex and EE (which does not include running wheels) on cognition and anxiety-like behaviours in wild-type (WT) and 5-HT1AR knock-out (KO) mice. Using an algorithm-based classification of search strategies in the Morris water maze, we report for we believe the first time that Ex increased the odds for mice to select more hippocampal-dependent strategies. In the retention probe test, Ex (but not EE) corrected long-term spatial memory deficits displayed by KO mice. In agreement with these findings, only Ex increased hippocampal cell survival and BDNF protein levels. However, only EE (but not Ex) modified anxiety-like behaviours, demonstrating dissociation between improvements in cognition and innate anxiety. EE enhanced hippocampal cell proliferation in WT mice only, suggesting a crucial role for intact serotonergic signalling in mediating this effect. Together, these results demonstrate differential effects of Ex vs EE in a mouse model of anxiety with cognitive impairment. Overall, the 5-HT1AR does not seem to be critical for those behavioural effects to occur. These findings will have implications for our understanding of how Ex and EE enhance experience-dependent plasticity, as well as their differential impacts on anxiety and cognition.
Collapse
|
72
|
Obesity Reduces Cognitive and Motor Functions across the Lifespan. Neural Plast 2016; 2016:2473081. [PMID: 26881095 PMCID: PMC4737453 DOI: 10.1155/2016/2473081] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.
Collapse
|
73
|
Vega-Rivera NM, Ortiz-López L, Gómez-Sánchez A, Oikawa-Sala J, Estrada-Camarena EM, Ramírez-Rodríguez GB. The neurogenic effects of an enriched environment and its protection against the behavioral consequences of chronic mild stress persistent after enrichment cessation in six-month-old female Balb/C mice. Behav Brain Res 2015; 301:72-83. [PMID: 26721469 DOI: 10.1016/j.bbr.2015.12.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
Because stress may underlie the presence of depressive episodes, strategies to produce protection against or to reverse the effects of stress on neuroplasticity and behavior are relevant. Preclinical studies showed that exposure to stimuli, such as physical activity and environmental enrichment (ENR), produce beneficial effects against stress causing antidepressant-like effects in rodents. Additionally, ENR induces positive effects on neuroplasticity, neurochemistry and behavior at any age of rodents tested. Here, we analyzed whether ENR exposure prevents the development of depressive-like behavior produced by unpredictable, chronic mild stress (CMS) exposure as well as changes in hippocampal neurogenesis in a six-month-old female Balb/C mice, strain that shows low baseline levels of hippocampal neurogenesis. Mice were assigned to one of four groups: (1) normal housing-normal housing (NH-NH), (2) NH-CMS, (3) ENR-NH, or (4) ENR-CMS. The animals were exposed over 46 days to ENR or NH and subsequently to NH or CMS for 4 weeks. ENR induces long-term effects protecting against CMS induction of anhedonia and hopelessness behaviors. Independent of housing conditions, ENR increased the number of proliferative cells (Ki67), and CMS decreased the number of proliferative cells. ENR increased the newborn cells (BrdU) and mature phenotypes of neurons; these effects were not changed by CMS exposure. Similarly, the number of doublecortin-positive cells was not affected by CMS in ENR mice, which showed more cells with complex dendrite arborizations. Our study suggests that ENR induces protection against the effects of CMS on behavior and neuroplasticity in six-month-old Balb/C mice.
Collapse
Affiliation(s)
- Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Ariadna Gómez-Sánchez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Julian Oikawa-Sala
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Erika Monserrat Estrada-Camarena
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico.
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico.
| |
Collapse
|
74
|
Bechard AR, Cacodcar N, King MA, Lewis MH. How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model. Behav Brain Res 2015; 299:122-31. [PMID: 26620495 DOI: 10.1016/j.bbr.2015.11.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
Abstract
Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g., autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors.
Collapse
Affiliation(s)
- Allison R Bechard
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Nadia Cacodcar
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Michael A King
- Department of Pharmacology, University of Florida, Gainesville, FL, USA
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
75
|
Joppé SE, Hamilton LK, Cochard LM, Levros LC, Aumont A, Barnabé-Heider F, Fernandes KJL. Bone morphogenetic protein dominantly suppresses epidermal growth factor-induced proliferative expansion of adult forebrain neural precursors. Front Neurosci 2015; 9:407. [PMID: 26576147 PMCID: PMC4625077 DOI: 10.3389/fnins.2015.00407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 01/17/2023] Open
Abstract
A single asymmetric division by an adult neural stem cell (NSC) ultimately generates dozens of differentiated progeny, a feat made possible by the proliferative expansion of transit-amplifying progenitor cells (TAPs). Although NSC activation and TAP expansion is determined by pro- and anti-proliferative signals found within the niche, remarkably little is known about how these cells integrate simultaneous conflicting signals. We investigated this question focusing on the subventricular zone (SVZ) niche of the adult murine forebrain. Using primary cultures of SVZ cells, we demonstrate that Epidermal Growth Factor (EGF) and Bone Morphogenetic Protein (BMP)-2 are particularly powerful pro- and anti-proliferative factors for SVZ-derived neural precursors. Dose-response experiments showed that when simultaneously exposed to both signals, BMP dominantly suppressed EGF-induced proliferation; moreover, this dominance extended to all parameters of neural precursor behavior tested, including inhibition of proliferation, modulation of cell cycle, promotion of differentiation, and increase of cell death. BMP's anti-proliferative effect did not involve inhibition of mTORC1 or ERK signaling, key mediators of EGF-induced proliferation, and had distinct stage-specific consequences, promoting TAP differentiation but NSC quiescence. In line with these in vitro data, in vivo experiments showed that exogenous BMP limits EGF-induced proliferation of TAPs while inhibition of BMP-SMAD signaling promotes activation of quiescent NSCs. These findings clarify the stage-specific effects of BMPs on SVZ neural precursors, and support a hierarchical model in which the anti-proliferative effects of BMP dominate over EGF proliferation signaling to constitutively drive TAP differentiation and NSC quiescence.
Collapse
Affiliation(s)
- Sandra E Joppé
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| | - Laura K Hamilton
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| | - Loic M Cochard
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| | - Louis-Charles Levros
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| | - Anne Aumont
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| | | | - Karl J L Fernandes
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| |
Collapse
|
76
|
Somkuwar SS, Staples MC, Fannon MJ, Ghofranian A, Mandyam CD. Evaluating Exercise as a Therapeutic Intervention for Methamphetamine Addiction-Like Behavior. Brain Plast 2015; 1:63-81. [PMID: 29765835 PMCID: PMC5928557 DOI: 10.3233/bpl-150007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The need for effective treatments for addiction and dependence to the illicit stimulant methamphetamine in primary care settings is increasing, yet no effective medications have been FDA approved to reduce dependence [1]. This is partially attributed to the complex and dynamic neurobiology underlying the various stages of addiction [2]. Therapeutic strategies to treat methamphetamine addiction, particularly the relapse stage of addiction, could revolutionize methamphetamine addiction treatment. In this context, preclinical studies demonstrate that voluntary exercise (sustained physical activity) could be used as an intervention to reduce methamphetamine addiction. Therefore, it appears that methamphetamine disrupts normal functioning in the brain and this disruption is prevented or reduced by engaging in exercise. This review discusses animal models of methamphetamine addiction and sustained physical activity and the interactions between exercise and methamphetamine behaviors. The review highlights how methamphetamine and exercise affect neuronal plasticity and neurotoxicity in the adult mammalian striatum, hippocampus, and prefrontal cortex, and presents the emerging mechanisms of exercise in attenuating intake and in preventing relapse to methamphetamine seeking in preclinical models of methamphetamine addiction.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Miranda C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - McKenzie J Fannon
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Atoosa Ghofranian
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
77
|
Bolijn S, Lucassen PJ. How the Body Talks to the Brain; Peripheral Mediators of Physical Activity-Induced Proliferation in the Adult Hippocampus. Brain Plast 2015; 1:5-27. [PMID: 29765833 PMCID: PMC5939189 DOI: 10.3233/bpl-150020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the hippocampal dentate gyrus, stem cells maintain the capacity to produce new neurons into adulthood. These adult-generated neurons become fully functional and are incorporated into the existing hippocampal circuit. The process of adult neurogenesis contributes to hippocampal functioning and is influenced by various environmental, hormonal and disease-related factors. One of the most potent stimuli of neurogenesis is physical activity (PA). While the bodily and peripheral changes of PA are well known, e.g. in relation to diet or cardiovascular conditions, little is known about which of these also exert central effects on the brain. Here, we discuss PA-induced changes in peripheral mediators that can modify hippocampal proliferation, and address changes with age, sex or PA duration/intensity. Of the many peripheral factors known to be triggered by PA, serotonin, FGF-2, IGF-1, VEGF, β-endorphin and adiponectin are best known for their stimulatory effects on hippocampal proliferation. Interestingly, while age negatively affects hippocampal proliferation per se, also the PA-induced response to most of these peripheral mediators is reduced and particularly the response to IGF-1 and NPY strongly declines with age. Sex differences per se have generally little effects on PA-induced neurogenesis. Compared to short term exercise, long term PA may negatively affect proliferation, due to a parallel decline in FGF-2 and the β-endorphin receptor, and an activation of the stress system particularly during conditions of prolonged exercise but this depends on other variables as well and remains a matter of discussion. Taken together, of many possible mediators, serotonin, FGF-2, IGF-1, VEGF, β-endorphin and adiponectin are the ones that most strongly contribute to the central effects of PA on the hippocampus. For a subgroup of these factors, brain sensitivity and responsivity is reduced with age.
Collapse
Affiliation(s)
- Simone Bolijn
- Centre for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Centre for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
78
|
Mueller K, Möller HE, Horstmann A, Busse F, Lepsien J, Blüher M, Stumvoll M, Villringer A, Pleger B. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity. Front Hum Neurosci 2015; 9:372. [PMID: 26190989 PMCID: PMC4486867 DOI: 10.3389/fnhum.2015.00372] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022] Open
Abstract
Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing.
Collapse
Affiliation(s)
- Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Annette Horstmann
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Integrated Research and Treatment Center (IFB) Adiposity Diseases Leipzig, Germany
| | - Franziska Busse
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Jöran Lepsien
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Matthias Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases Leipzig, Germany ; Department of Internal Medicine Clinic for Endocrinology and Nephrology, University Hospital Leipzig Leipzig, Germany
| | - Michael Stumvoll
- Department of Internal Medicine Clinic for Endocrinology and Nephrology, University Hospital Leipzig Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Integrated Research and Treatment Center (IFB) Adiposity Diseases Leipzig, Germany ; Clinic for Cognitive Neurology, University Hospital Leipzig Leipzig, Germany
| | - Burkhard Pleger
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic for Cognitive Neurology, University Hospital Leipzig Leipzig, Germany
| |
Collapse
|
79
|
Integrin-linked Kinase is Essential for Environmental Enrichment Enhanced Hippocampal Neurogenesis and Memory. Sci Rep 2015; 5:11456. [PMID: 26095336 PMCID: PMC4476098 DOI: 10.1038/srep11456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/27/2015] [Indexed: 01/28/2023] Open
Abstract
Environment enrichment (EE) has a variety of effects on brain structure and function. Brain-derived neurotrophic factor (BDNF) is essential for EE-induced hippocampal neurogenesis and memory enhancement. However, the intracellular pathway downstream of BDNF to modulate EE effects is poorly understood. Here we show that integrin-linked kinase (ILK) levels are elevated upon EE stimuli in a BDNF-dependent manner. Using ILK-shRNA (siILK) lentivirus, we demonstrate that knockdown of ILK impairs EE-promoted hippocampal neurogenesis and memory by increasing glycogen synthase kinase-3β (GSK3β) activity. Finally, overexpressing ILK in the hippocampus could rescue the neurogenesis and memory deficits in BDNF(+/-) mice. These results indicate that ILK is indispensable for BDNF-mediated hippocampal neurogenesis and memory enhancement upon EE stimuli via regulating GSK3β activity. This is a new insight of the precise mechanism in EE-enhanced memory processes and ILK is a potentially important therapeutic target that merits further study.
Collapse
|
80
|
Inoue K, Okamoto M, Shibato J, Lee MC, Matsui T, Rakwal R, Soya H. Long-Term Mild, rather than Intense, Exercise Enhances Adult Hippocampal Neurogenesis and Greatly Changes the Transcriptomic Profile of the Hippocampus. PLoS One 2015; 10:e0128720. [PMID: 26061528 PMCID: PMC4464753 DOI: 10.1371/journal.pone.0128720] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
Our six-week treadmill running training (forced exercise) model has revealed that mild exercise (ME) with an intensity below the lactate threshold (LT) is sufficient to enhance spatial memory, while intense exercise (IE) above the LT negates such benefits. To help understand the unrevealed neuronal and signaling/molecular mechanisms of the intensity-dependent cognitive change, in this rat model, we here investigated plasma corticosterone concentration as a marker of stress, adult hippocampal neurogenesis (AHN) as a potential contributor to this ME-induced spatial memory, and comprehensively delineated the hippocampal transcriptomic profile using a whole-genome DNA microarray analysis approach through comparison with IE. Results showed that only IE had the higher corticosterone concentration than control, and that the less intense exercise (ME) is better suited to improve AHN, especially in regards to the survival and maturation of newborn neurons. DNA microarray analysis using a 4 × 44 K Agilent chip revealed that ME regulated more genes than did IE (ME: 604 genes, IE: 415 genes), and only 41 genes were modified with both exercise intensities. The identified molecular components did not comprise well-known factors related to exercise-induced AHN, such as brain-derived neurotrophic factor. Rather, network analysis of the data using Ingenuity Pathway Analysis algorithms revealed that the ME-influenced genes were principally related to lipid metabolism, protein synthesis and inflammatory response, which are recognized as associated with AHN. In contrast, IE-influenced genes linked to excessive inflammatory immune response, which is a negative regulator of hippocampal neuroadaptation, were identified. Collectively, these results in a treadmill running model demonstrate that long-term ME, but not of IE, with minimizing running stress, has beneficial effects on increasing AHN, and provides an ME-specific gene inventory containing some potential regulators of this positive regulation. This evidence might serve in further elucidating the mechanism behind ME-induced cognitive gain.
Collapse
Affiliation(s)
- Koshiro Inoue
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- School of Rehabilitation Science, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, 061–0293, Japan
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
| | - Junko Shibato
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- Department of Anatomy, Showa University School of Medicine, Shinagawa, Hatanodai, Tokyo, 142–8555, Japan
| | - Min Chul Lee
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takashi Matsui
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Randeep Rakwal
- Department of Anatomy, Showa University School of Medicine, Shinagawa, Hatanodai, Tokyo, 142–8555, Japan
- Organization for Educational Initiatives, University of Tsukuba, Tsukuba, 305–8577, Ibaraki, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry & Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305–8574, Japan
| |
Collapse
|
81
|
Abstract
Here we summarize topics covered in an SFN symposium that considered how and why exercise and energy intake affect neuroplasticity and, conversely, how the brain regulates peripheral energy metabolism. This article is not a comprehensive review of the subject, but rather a view of how the authors' findings fit into a broader context. Emerging findings elucidate cellular and molecular mechanisms by which exercise and energy intake modify the plasticity of neural circuits in ways that affect brain health. By enhancing neurogenesis, synaptic plasticity and neuronal stress robustness, exercise and intermittent energy restriction/fasting may optimize brain function and forestall metabolic and neurodegenerative diseases. Moreover, brain-centered glucoregulatory and immunomodulating systems that mediate peripheral health benefits of intermittent energetic challenges have recently been described. A better understanding of adaptive neural response pathways activated by energetic challenges will enable the development and optimization of interventions to reduce the burden of disease in our communities.
Collapse
|
82
|
Abstract
Pharmaceuticals and medical devices hold the promise of enhancing brain function, not only of those suffering from neurodevelopmental, neuropsychiatric or neurodegenerative illnesses, but also of healthy individuals. However, a number of lifestyle interventions are proven cognitive enhancers, improving attention, problem solving, reasoning, learning and memory or even mood. Several of these interventions, such as physical exercise, cognitive, mental and social stimulation, may be described as environmental enrichments of varying types. Use of these non-pharmacological cognitive enhancers circumvents some of the ethical considerations associated with pharmaceutical or technological cognitive enhancement, being low in cost, available to the general population and presenting low risk to health and well-being. In this chapter, there will be particular focus on the effects of exercise and enrichment on learning and memory and the evidence supporting their efficacy in humans and in animal models will be described.
Collapse
Affiliation(s)
- Áine M Kelly
- Department of Physiology, School of Medicine, Level 2, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland,
| |
Collapse
|
83
|
Halperin JM, Berwid OG, O'Neill S. Healthy body, healthy mind?: the effectiveness of physical activity to treat ADHD in children. Child Adolesc Psychiatr Clin N Am 2014; 23:899-936. [PMID: 25220093 DOI: 10.1016/j.chc.2014.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Data from animal studies provide convincing evidence that physical exercise enhances brain development and neurobehavioral functioning in areas believed to be impaired in children with attention-deficit/hyperactivity disorder (ADHD). To a lesser but still compelling extent, results from studies in typically developing children and adults indicate beneficial effects of exercise on many of the neurocognitive functions that have been shown to be impaired in children with ADHD. Together, these data provide a strong rationale for why a program of structured physical exercise might serve as an effective intervention for children with ADHD.
Collapse
Affiliation(s)
- Jeffrey M Halperin
- Psychology Department, Queens College, The City University of New York (CUNY), 65-30 Kissena Boulevard, Flushing, NY 11367, USA.
| | - Olga G Berwid
- York College, The City University of New York (CUNY), 94-20 Guy R. Brewer Boulevard, Jamaica, NY 11451, USA
| | - Sarah O'Neill
- Psychology Department, The City College, The City University of New York (CUNY), 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
84
|
O'Reilly KC, Kao HY, Lee H, Fenton AA. Converging on a core cognitive deficit: the impact of various neurodevelopmental insults on cognitive control. Front Neurosci 2014; 8:153. [PMID: 24966811 PMCID: PMC4052340 DOI: 10.3389/fnins.2014.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/24/2014] [Indexed: 01/18/2023] Open
Abstract
Despite substantial effort and immense need, the treatment options for major neuropsychiatric illnesses like schizophrenia are limited and largely ineffective at improving the most debilitating cognitive symptoms that are central to mental illness. These symptoms include cognitive control deficits, the inability to selectively use information that is currently relevant and ignore what is currently irrelevant. Contemporary attempts to accelerate progress are in part founded on an effort to reconceptualize neuropsychiatric illness as a disorder of neural development. This neuro-developmental framework emphasizes abnormal neural circuits on the one hand, and on the other, it suggests there are therapeutic opportunities to exploit the developmental processes of excitatory neuron pruning, inhibitory neuron proliferation, elaboration of myelination, and other circuit refinements that extend through adolescence and into early adulthood. We have crafted a preclinical research program aimed at cognition failures that may be relevant to mental illness. By working with a variety of neurodevelopmental rodent models, we strive to identify a common pathophysiology that underlies cognitive control failure as well as a common strategy for improving cognition in the face of neural circuit abnormalities. Here we review our work to characterize cognitive control deficits in rats with a neonatal ventral hippocampus lesion and rats that were exposed to Methylazoxymethanol acetate (MAM) in utero. We review our findings as they pertain to early developmental processes, including neurogenesis, as well as the power of cognitive experience to refine neural circuit function within the mature and maturing brain's cognitive circuitry.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Graduate Program in Neural and Behavioral Science, Downstate Medical Center, State University of New York Brooklyn, NY, USA
| | - Hsin-Yi Kao
- Graduate Program in Neural and Behavioral Science, Downstate Medical Center, State University of New York Brooklyn, NY, USA
| | - Heekyung Lee
- Graduate Program in Neural and Behavioral Science, Downstate Medical Center, State University of New York Brooklyn, NY, USA
| | - André A Fenton
- Neurobiology of Cognition Laboratory, Center for Neural Science, New York University New York, NY, USA ; The Robert F. Furchgott Center in Neural and Behavioral Science, Downstate Medical Center, State University of New York Brooklyn, NY, USA
| |
Collapse
|
85
|
Latchney SE, Rivera PD, Mao XW, Ferguson VL, Bateman TA, Stodieck LS, Nelson GA, Eisch AJ. The effect of spaceflight on mouse olfactory bulb volume, neurogenesis, and cell death indicates the protective effect of novel environment. J Appl Physiol (1985) 2014; 116:1593-604. [PMID: 24744382 DOI: 10.1152/japplphysiol.01174.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Space missions necessitate physiological and psychological adaptations to environmental factors not present on Earth, some of which present significant risks for the central nervous system (CNS) of crewmembers. One CNS region of interest is the adult olfactory bulb (OB), as OB structure and function are sensitive to environmental- and experience-induced regulation. It is currently unknown how the OB is altered by spaceflight. In this study, we evaluated OB volume and neurogenesis in mice shortly after a 13-day flight on Space Shuttle Atlantis [Space Transport System (STS)-135] relative to two groups of control mice maintained on Earth. Mice housed on Earth in animal enclosure modules that mimicked the conditions onboard STS-135 (AEM-Ground mice) had greater OB volume relative to mice maintained in standard housing on Earth (Vivarium mice), particularly in the granule (GCL) and glomerular (GL) cell layers. AEM-Ground mice also had more OB neuroblasts and fewer apoptotic cells relative to Vivarium mice. However, the AEM-induced increase in OB volume and neurogenesis was not seen in STS-135 mice (AEM-Flight mice), suggesting that spaceflight may have negated the positive effects of the AEM. In fact, when OB volume of AEM-Flight mice was considered, there was a greater density of apoptotic cells relative to AEM-Ground mice. Our findings suggest that factors present during spaceflight have opposing effects on OB size and neurogenesis, and provide insight into potential strategies to preserve OB structure and function during future space missions.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Phillip D Rivera
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiao W Mao
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University and Medical Center, Loma Linda, California
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado; and
| | - Ted A Bateman
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Louis S Stodieck
- BioServe Space Technologies, Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, Colorado
| | - Gregory A Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University and Medical Center, Loma Linda, California
| | - Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|