51
|
Sarowar S, Alam ST, Makandar R, Lee H, Trick HN, Dong Y, Shah J. Targeting the pattern-triggered immunity pathway to enhance resistance to Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2019; 20:626-640. [PMID: 30597698 PMCID: PMC6637896 DOI: 10.1111/mpp.12781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fusarium head blight (FHB) is a disease of the floral tissues of wheat and barley for which highly resistant varieties are not available. Thus, there is a need to identify genes/mechanisms that can be targeted for the control of this devastating disease. Fusarium graminearum is the primary causal agent of FHB in North America. In addition, it also causes Fusarium seedling blight. Fusarium graminearum can also cause disease in the model plant Arabidopsis thaliana. The Arabidopsis-F. graminearum pathosystem has facilitated the identification of targets for the control of disease caused by this fungus. Here, we show that resistance against F. graminearum can be enhanced by flg22, a bacterial microbe-associated molecular pattern (MAMP). flg22-induced resistance in Arabidopsis requires its cognate pattern recognition receptor (PRR) FLS2, and is accompanied by the up-regulation of WRKY29. The expression of WRKY29, which is associated with pattern-triggered immunity (PTI), is also induced in response to F. graminearum infection. Furthermore, WRKY29 is required for basal resistance as well as flg22-induced resistance to F. graminearum. Moreover, constitutive expression of WRKY29 in Arabidopsis enhances disease resistance. The PTI pathway is also activated in response to F. graminearum infection of wheat. Furthermore, flg22 application and ectopic expression of WRKY29 enhance FHB resistance in wheat. Thus, we conclude that the PTI pathway provides a target for the control of FHB in wheat. We further show that the ectopic expression of WRKY29 in wheat results in shorter stature and early heading time, traits that are important to wheat breeding.
Collapse
Affiliation(s)
- Sujon Sarowar
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- Present address:
Botanical GeneticsBuffaloNYUSA
| | - Syeda T. Alam
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- BioDiscovery InstituteUniversity of North TexasDentonTX 76201USA
| | - Ragiba Makandar
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- Department of Plant SciencesUniversity of HyderabadGachibowliHyderabad 500046India
| | - Hyeonju Lee
- Department of Plant PathologyKansas State UniversityManhattanKS 66506USA
| | - Harold N. Trick
- Department of Plant PathologyKansas State UniversityManhattanKS 66506USA
| | - Yanhong Dong
- Department of Plant PathologyUniversity of MinnesotaSt. PaulMN 55108USA
| | - Jyoti Shah
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- BioDiscovery InstituteUniversity of North TexasDentonTX 76201USA
| |
Collapse
|
52
|
Kámán‐Tóth E, Dankó T, Gullner G, Bozsó Z, Palkovics L, Pogány M. Contribution of cell wall peroxidase- and NADPH oxidase-derived reactive oxygen species to Alternaria brassicicola-induced oxidative burst in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2019; 20:485-499. [PMID: 30426643 PMCID: PMC6637864 DOI: 10.1111/mpp.12769] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell wall peroxidases and plasma membrane-localized NADPH oxidases are considered to be the main sources of the apoplastic oxidative burst in plants attacked by microbial pathogens. In spite of this established doctrine, approaches attempting a comparative, side-by-side analysis of the functions of extracellular reactive oxygen species (ROS) generated by the two enzymatic sources are scarce. Previously, we have reported the role of Arabidopsis NADPH oxidase RBOHD (respiratory burst oxidase homologue D) in plants challenged with the necrotrophic fungus Alternaria brassicicola. Here, we present results on the activity of apoplastic class III peroxidases PRX33 (At3g49110) and PRX34 (At3g49120) investigated in the same Arabidopsis-Alternaria pathosystem. ROS generated by Arabidopsis peroxidases PRX33 and PRX34 increase the necrotic symptoms and colonization success of A. brassicicola. In addition, the knockdown of PRX33 and PRX34 transcript levels leads to a reduced number of host cells showing an extracellular burst of ROS after inoculation with A. brassicicola. Our results also reveal an age-dependent transcript distribution of ROS-producing peroxidase and NADPH oxidase enzymes, and some potential new components of the RBOHD, PRX33 and PRX34 signalling networks.
Collapse
Affiliation(s)
- Evelin Kámán‐Tóth
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Tamás Dankó
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Zoltán Bozsó
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - László Palkovics
- Szent István UniversityFaculty of Horticultural ScienceH‐1118Budapest, Villányi út 29‐43, Hungary
| | - Miklós Pogány
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| |
Collapse
|
53
|
Wan W, Zhang L, Pruitt R, Zaidem M, Brugman R, Ma X, Krol E, Perraki A, Kilian J, Grossmann G, Stahl M, Shan L, Zipfel C, van Kan JAL, Hedrich R, Weigel D, Gust AA, Nürnberger T. Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences. THE NEW PHYTOLOGIST 2019; 221:2080-2095. [PMID: 30252144 PMCID: PMC6367016 DOI: 10.1111/nph.15497] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/11/2018] [Indexed: 05/12/2023]
Abstract
Pattern recognition receptors (PRRs) sense microbial patterns and activate innate immunity against attempted microbial invasions. The leucine-rich repeat receptor kinases (LRR-RK) FLS2 and EFR, and the LRR receptor protein (LRR-RP) receptors RLP23 and RLP42, respectively, represent prototypical members of these two prominent and closely related PRR families. We conducted a survey of Arabidopsis thaliana immune signaling mediated by these receptors to address the question of commonalities and differences between LRR-RK and LRR-RP signaling. Quantitative differences in timing and amplitude were observed for several early immune responses, with RP-mediated responses typically being slower and more prolonged than those mediated by RKs. Activation of RLP23, but not FLS2, induced the production of camalexin. Transcriptomic analysis revealed that RLP23-regulated genes represent only a fraction of those genes differentially expressed upon FLS2 activation. Several positive and negative regulators of FLS2-signaling play similar roles in RLP23 signaling. Intriguingly, the cytoplasmic receptor kinase BIK1, a positive regulator of RK signaling, acts as a negative regulator of RP-type immune receptors in a manner dependent on BIK1 kinase activity. Our study unveiled unexpected differences in two closely related receptor systems and reports a new negative role of BIK1 in plant immunity.
Collapse
Affiliation(s)
- Wei‐Lin Wan
- Department of Plant BiochemistryCentre for Plant Molecular BiologyEberhard Karls University TübingenAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Lisha Zhang
- Department of Plant BiochemistryCentre for Plant Molecular BiologyEberhard Karls University TübingenAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Rory Pruitt
- Department of Plant BiochemistryCentre for Plant Molecular BiologyEberhard Karls University TübingenAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Maricris Zaidem
- Department of Molecular BiologyMax‐Planck‐Institute for Developmental BiologyMax‐Planck‐Str. 5D‐72076TübingenGermany
- Center for Genomics & Systems BiologyNew York University12 Waverly PlaceNew YorkNY10003USA
| | - Rik Brugman
- Centre for Organismal Studies & Excellence Cluster Cell NetworksHeidelberg UniversityIm Neuenheimer Feld 23069120HeidelbergGermany
| | - Xiyu Ma
- Institute for Plant Genomics & BiotechnologyTexas A&M UniversityCollege StationTX77843USA
| | - Elzbieta Krol
- Plant Physiology and BiophysicsJulius Maximilians University WürzburgJulius‐von‐Sachs‐Platz 297082WürzburgGermany
- Department of BiophysicsInstitute of BiologyMaria Curie‐Skłodowska UniversityAkademicka 1920‐033LublinPoland
| | - Artemis Perraki
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Joachim Kilian
- Analytics UnitCentre for Plant Molecular BiologyEberhard Karls University TübingenAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Guido Grossmann
- Centre for Organismal Studies & Excellence Cluster Cell NetworksHeidelberg UniversityIm Neuenheimer Feld 23069120HeidelbergGermany
| | - Mark Stahl
- Analytics UnitCentre for Plant Molecular BiologyEberhard Karls University TübingenAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Libo Shan
- Institute for Plant Genomics & BiotechnologyTexas A&M UniversityCollege StationTX77843USA
| | - Cyril Zipfel
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Jan A. L. van Kan
- Laboratory of PhytopathologyWageningen University6708 PBWageningenthe Netherlands
| | - Rainer Hedrich
- Plant Physiology and BiophysicsJulius Maximilians University WürzburgJulius‐von‐Sachs‐Platz 297082WürzburgGermany
| | - Detlef Weigel
- Department of Molecular BiologyMax‐Planck‐Institute for Developmental BiologyMax‐Planck‐Str. 5D‐72076TübingenGermany
| | - Andrea A. Gust
- Department of Plant BiochemistryCentre for Plant Molecular BiologyEberhard Karls University TübingenAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Thorsten Nürnberger
- Department of Plant BiochemistryCentre for Plant Molecular BiologyEberhard Karls University TübingenAuf der Morgenstelle 32D‐72076TübingenGermany
- Department of BiochemistryUniversity of JohannesburgAuckland ParkSouth Africa
| |
Collapse
|
54
|
Yang S, Dai Y, Chen Y, Yang J, Yang D, Liu Q, Jian H. A Novel G16B09-Like Effector From Heterodera avenae Suppresses Plant Defenses and Promotes Parasitism. FRONTIERS IN PLANT SCIENCE 2019; 10:66. [PMID: 30800135 PMCID: PMC6376208 DOI: 10.3389/fpls.2019.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
Plant parasitic nematodes secrete effectors into host plant tissues to facilitate parasitism. In this study, we identified a G16B09-like effector protein family from the transcriptome of Heterodera avenae, and then verified that most of the members could suppress programmed cell death triggered by BAX in Nicotiana benthamiana. Ha18764, the most homologous to G16B09, was further characterized for its function. Our experimental evidence suggested that Ha18764 was specifically expressed in the dorsal gland and was dramatically upregulated in the J4 stage of nematode development. A Magnaporthe oryzae secretion system in barley showed that the signal peptide of Ha18764 had secretion activity to deliver mCherry into plant cells. Arabidopsis thaliana overexpressing Ha18764 or Hs18764 was more susceptible to Heterodera schachtii. In contrast, BSMV-based host-induced gene silencing (HIGS) targeting Ha18764 attenuated H. avenae parasitism and its reproduction in wheat plants. Transient expression of Ha18764 suppressed PsojNIP, Avr3a/R3a, RBP-1/Gpa2, and MAPK kinases (MKK1 and NPK1Nt)-related cell death in Nicotiana benthamiana. Co-expression assays indicated that Ha18764 also suppressed cell death triggered by four H. avenae putative cell-death-inducing effectors. Moreover, Ha18764 was also shown strong PTI suppression such as reducing the expression of plant defense-related genes, the burst of reactive oxygen species, and the deposition of cell wall callose. Together, our results indicate that Ha18764 promotes parasitism, probably by suppressing plant PTI and ETI signaling in the parasitic stages of H. avenae.
Collapse
Affiliation(s)
| | | | | | | | | | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | | |
Collapse
|
55
|
Biotic Stress-Induced Priming and De-Priming of Transcriptional Memory in Arabidopsis and Apple. EPIGENOMES 2019; 3:epigenomes3010003. [PMID: 34991272 PMCID: PMC8594670 DOI: 10.3390/epigenomes3010003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022] Open
Abstract
Under natural growth conditions, plants experience various and repetitive biotic and abiotic stresses. Salicylic acid (SA) is a key phytohormone involved in the response to biotic challenges. Application of synthetic SA analogues can efficiently prime defense responses, and leads to improved pathogen resistance. Because SA analogues can result in long-term priming and memory, we identified genes for which expression was affected by the SA analogue and explored the role of DNA methylation in this memorization process. We show that treatments with an SA analogue can lead to long-term transcriptional memory of particular genes in Arabidopsis. We found that subsequent challenging of such plants with a bacterial elicitor reverted this transcriptional memory, bringing their expression back to the original pre-treatment level. We also made very similar observations in apple (Malus domestica), suggesting that this expression pattern is highly conserved in plants. Finally, we found a potential role for DNA methylation in the observed transcriptional memory behavior. We show that plants defective in DNA methylation pathways displayed a different memory behavior. Our work improves our understanding of the role of transcriptional memory in priming, and has important implication concerning the application of SA analogues in agricultural settings.
Collapse
|
56
|
Islam W, Naveed H, Zaynab M, Huang Z, Chen HYH. Plant defense against virus diseases; growth hormones in highlights. PLANT SIGNALING & BEHAVIOR 2019; 14:1596719. [PMID: 30957658 PMCID: PMC6546145 DOI: 10.1080/15592324.2019.1596719] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
Phytohormones are critical in various aspects of plant biology such as growth regulations and defense strategies against pathogens. Plant-virus interactions retard plant growth through rapid alterations in phytohormones and their signaling pathways. Recent research findings show evidence of how viruses impact upon modulation of various phytohormones affecting plant growth regulations. The opinion is getting stronger that virus-mediated phytohormone disruption and alteration weaken plant defense strategies through enhanced replication and systemic spread of viral particles. These hormones regulate plant-virus interactions in various ways that may involve antagonism and cross talk to modulate small RNA (sRNA) systems. The article aims to highlight the recent research findings elaborating the impact of viruses upon manipulation of phytohormones and virus biology.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
| | - Hassan Naveed
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Madiha Zaynab
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- Zhiqun Huang Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Han Y. H. Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- Faculty of Natural Resources Management, Lakehead University, Ontario, Canada
- CONTACT Han Y. H. Chen Faculty of Natural Resources Management, Lakehead University, Ontario Canada
| |
Collapse
|
57
|
Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C. The Crosstalks Between Jasmonic Acid and Other Plant Hormone Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1349. [PMID: 31681397 PMCID: PMC6813250 DOI: 10.3389/fpls.2019.01349] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/27/2019] [Indexed: 05/19/2023]
Abstract
Plant hormones play central roles in plant growth, developmental processes, and plant response to biotic and abiotic stresses. On the one hand, plant hormones may allocate limited resources to the most serious stresses; on the other hand, the crosstalks among multiple plant hormone signaling regulate the balance between plant growth and defense. Many studies have reported the mechanism of crosstalks between jasmonic acid (JA) and other plant hormones in plant growth and stress responses. Based on these studies, this paper mainly reviews the crosstalks between JA and other plant hormone signaling in regulating the balance between plant growth and defense response. The suppressor proteins JASMONATE ZIM DOMAIN PROTEIN (JAZ) and MYC2 as the key components in the crosstalks are also highlighted in the review. We conclude that JA interacts with other hormone signaling pathways [such as auxin, ethylene (ET), abscisic acid (ABA), salicylic acid (SA), brassinosteroids (BRs), and gibberellin (GA)] to regulate plant growth, abiotic stress tolerance, and defense resistance against hemibiotrophic pathogens such as Magnaporthe oryzae and Pseudomonas syringae. Notably, JA may act as a core signal in the phytohormone signaling network.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Jing Yang,
| | - Guihua Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Chunqin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Lin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Guangyu Han
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yaling Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Changmi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
58
|
Wang Y, Li Y, Rosas-Diaz T, Caceres-Moreno C, Lozano-Duran R, Macho AP. The IMMUNE-ASSOCIATED NUCLEOTIDE-BINDING 9 Protein Is a Regulator of Basal Immunity in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:65-75. [PMID: 29958083 DOI: 10.1094/mpmi-03-18-0062-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A robust regulation of plant immune responses requires a multitude of positive and negative regulators that act in concert. The immune-associated nucleotide-binding (IAN) gene family members are associated with immunity in different organisms, although no characterization of their function has been carried out to date in plants. In this work, we analyzed the expression patterns of IAN genes and found that IAN9 is repressed upon pathogen infection or treatment with immune elicitors. IAN9 encodes a plasma membrane-localized protein that genetically behaves as a negative regulator of immunity. A novel ian9 mutant generated by CRISPR/Cas9 shows increased resistance to Pseudomonas syringae, while transgenic plants overexpressing IAN9 show a slight increase in susceptibility. In vivo immunoprecipitation of IAN9-green fluorescent protein followed by mass spectrometry analysis revealed that IAN9 associates with a previously uncharacterized C3HC4-type RING-finger domain-containing protein that we named IAN9-associated protein 1 (IAP1), which also acts as a negative regulator of basal immunity. Interestingly, neither ian9 or iap1 mutant plants show any obvious developmental phenotype, suggesting that they display enhanced inducible immunity rather than constitutive immune responses. Because both IAN9 and IAP1 have orthologs in important crop species, they could be suitable targets to generate plants more resistant to diseases caused by bacterial pathogens without yield penalty.
Collapse
Affiliation(s)
- Yuanzheng Wang
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
- 2 University of Chinese Academy of Sciences, Beijing, China
| | - Yansha Li
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| | - Tabata Rosas-Diaz
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| | - Carlos Caceres-Moreno
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
- 2 University of Chinese Academy of Sciences, Beijing, China
| | - Rosa Lozano-Duran
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| | - Alberto P Macho
- 1 Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; and
| |
Collapse
|
59
|
Li P, Day B. Battlefield Cytoskeleton: Turning the Tide on Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:25-34. [PMID: 30355064 PMCID: PMC6326859 DOI: 10.1094/mpmi-07-18-0195-fi] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant immune system comprises a complex network of signaling processes, regulated not only by classically defined immune components (e.g., resistance genes) but also by a suite of developmental, environmental, abiotic, and biotic-associated factors. In total, it is the sum of these interactions-the connectivity to a seemingly endless array of environments-that ensures proper activation, and control, of a system that is responsible for cell surveillance and response to threats presented by invading pests and pathogens. Over the past decade, the field of plant pathology has witnessed the discovery of numerous points of convergence between immunity, growth, and development, as well as overlap with seemingly disparate processes such as those that underpin plant response to changes in the environment. Toward defining how immune signaling is regulated, recent studies have focused on dissecting the mechanisms that underpin receptor-ligand interactions, phospho-regulation of signaling cascades, and the modulation of host gene expression during infection. As one of the major regulators of these immune signaling cascades, the plant cytoskeleton is the stage from which immune-associated processes are mobilized and oriented and, in this role, it controls the movement of the organelles, proteins, and chemical signals that support plant defense signaling. In short, the cytoskeleton is the battlefield from which pathogens and plants volley virulence and resistance, transforming resistance to susceptibility. Herein, we discuss the role of the eukaryotic cytoskeleton as a platform for the function of the plant immune system.
Collapse
Affiliation(s)
- Pai Li
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University Plant Resilience Institute, East Lansing, MI 48824, USA
| |
Collapse
|
60
|
Singh R, Lee S, Ortega L, Ramu VS, Senthil-Kumar M, Blancaflor EB, Rojas CM, Mysore KS. Two Chloroplast-Localized Proteins: AtNHR2A and AtNHR2B, Contribute to Callose Deposition During Nonhost Disease Resistance in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1280-1290. [PMID: 29877165 DOI: 10.1094/mpmi-04-18-0094-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants are naturally resistant to most pathogens through a broad and durable defense response called nonhost disease resistance. Nonhost disease resistance is a complex process that includes preformed physical and chemical barriers and induced responses. In spite of its importance, many components of nonhost disease resistance remain to be identified and characterized. Using virus-induced gene silencing in Nicotiana benthamiana, we discovered a novel gene that we named NbNHR2 (N. benthamiana nonhost resistance 2). NbNHR2-silenced plants were susceptible to the nonadapted pathogen Pseudomonas syringae pv. tomato T1, which does not cause disease in wild-type or nonsilenced N. benthamiana plants. We found two orthologous genes in Arabidopsis thaliana: AtNHR2A and AtNHR2B. Similar to the results obtained in N. benthamiana, Atnhr2a and Atnhr2b mutants were susceptible to the nonadapted bacterial pathogen of A. thaliana, P. syringae pv. tabaci. We further found that these mutants were also defective in callose deposition. AtNHR2A and AtNHR2B fluorescent protein fusions transiently expressed in N. benthamiana localized predominantly to chloroplasts and a few unidentified dynamic puncta. RFP-AtNHR2A and AtNHR2B-GFP displayed overlapping signals in chloroplasts, indicating that the two proteins could interact, an idea supported by coimmunoprecipitation studies. We propose that AtNHR2A and AtNHR2B are new components of a chloroplast-signaling pathway that activates callose deposition to the cell wall in response to bacterial pathogens.
Collapse
Affiliation(s)
- Raksha Singh
- 1 Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Seonghee Lee
- 2 Noble Research Institute, LLC., Ardmore, OK 73401, U.S.A
| | - Laura Ortega
- 1 Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Vemanna S Ramu
- 2 Noble Research Institute, LLC., Ardmore, OK 73401, U.S.A
| | | | | | - Clemencia M Rojas
- 1 Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
- 2 Noble Research Institute, LLC., Ardmore, OK 73401, U.S.A
| | | |
Collapse
|
61
|
Sun C, Fu D, Jin L, Chen M, Zheng X, Yu T. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydr Polym 2018; 199:341-352. [DOI: 10.1016/j.carbpol.2018.07.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/05/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
62
|
Cowles KN, Groves RL, Barak JD. Leafhopper-Induced Activation of the Jasmonic Acid Response Benefits Salmonella enterica in a Flagellum-Dependent Manner. Front Microbiol 2018; 9:1987. [PMID: 30190716 PMCID: PMC6115507 DOI: 10.3389/fmicb.2018.01987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022] Open
Abstract
Enteric human pathogens such as Salmonella enterica are typically studied in the context of their animal hosts, but it has become apparent that these bacteria spend a significant portion of their life cycle on plants. S. enterica survives the numerous stresses common to a plant niche, including defense responses, water and nutrient limitation, and exposure to UV irradiation leading to an increased potential for human disease. In fact, S. enterica is estimated to cause over one million cases of foodborne illness each year in the United States with 20% of those cases resulting from consumption of contaminated produce. Although S. enterica successfully persists in the plant environment, phytobacterial infection by Pectobacterium carotovorum or Xanthomonas spp. increases S. enterica survival and infrequently leads to growth on infected plants. The co-association of phytophagous insects, such as the Aster leafhopper, Macrosteles quadrilineatus, results in S. enterica populations that persist at higher levels for longer periods of time when compared to plants treated with S. enterica alone. We hypothesized that leafhoppers increase S. enterica persistence by altering the plant defense response to the benefit of the bacteria. Leafhopper infestation activated the jasmonic acid (JA) defense response while S. enterica colonization triggered the salicylic acid (SA) response. In tomato plants co-treated with S. enterica and leafhoppers, both JA- and SA-inducible genes were activated, suggesting that the presence of leafhoppers may affect the crosstalk that occurs between the two immune response pathways. To rule out the possibility that leafhoppers provide additional benefits to S. enterica, plants were treated with a chemical JA analog to activate the immune response in the absence of leafhoppers. Although bacterial populations continue to decline over time, analog treatment significantly increased bacterial persistence on the leaf surface. Bacterial mutant analysis determined that the bacterial flagellum, whether functional or not, was required for increased S. enterica survival after analog treatment. By investigating the interaction between this human pathogen, a common phytophagous insect, and their plant host, we hope to elucidate the mechanisms promoting S. enterica survival on plants and provide information to be used in the development of new food safety intervention strategies.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Russell L Groves
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
63
|
Balmer A, Pastor V, Glauser G, Mauch-Mani B. Tricarboxylates Induce Defense Priming Against Bacteria in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1221. [PMID: 30177948 PMCID: PMC6110165 DOI: 10.3389/fpls.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
Exposure of plants to biotic stress results in an effective induction of numerous defense mechanisms that involve a vast redistribution within both primary and secondary metabolisms. For instance, an alteration of tricarboxylic acid (TCA) levels can accompany the increase of plant resistance stimulated by various synthetic and natural inducers. Moreover, components of the TCA flux may play a role during the set-up of plant defenses. In this study, we show that citrate and fumarate, two major components of the TCA cycle, are able to induce priming in Arabidopsis against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Both citrate and fumarate show no direct antimicrobial effect and therefore enhanced bacterial resistance found in planta is solely based on the induction of the plant defense system. During the priming phase, both TCA intermediates did not induce any changes in transcript abundances of a set of defense genes, and in phytohormones and camalexin levels. However, at early time points of bacterial challenge, citrate induced a stronger salicylic acid and camalexin accumulation followed later by a boost of the jasmonic acid pathway. On the other hand, adaptations of hormonal pathways in fumarate-treated plants were more complex. While jasmonic acid was not induced, mutants impaired in jasmonic acid perception failed to mount a proper priming response induced by fumarate. Our results suggest that changes in carboxylic acid abundances can enhance Arabidopsis defense through complex signaling pathways. This highlights a promising feature of TCAs as novel defense priming agents and calls for further exploration in other pathosystems and stress situations.
Collapse
Affiliation(s)
- Andrea Balmer
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Victoria Pastor
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume I, Castellon, Spain
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Brigitte Mauch-Mani
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
64
|
Wang S, Zheng Y, Gu C, He C, Yang M, Zhang X, Guo J, Zhao H, Niu D. Bacillus cereus AR156 Activates Defense Responses to Pseudomonas syringae pv. tomato in Arabidopsis thaliana Similarly to flg22. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:311-322. [PMID: 29090631 DOI: 10.1094/mpmi-10-17-0240-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacillus cereus AR156 (AR156) is a plant growth-promoting rhizobacterium capable of inducing systemic resistance to Pseudomonas syringae pv. tomato in Arabidopsis thaliana. Here, we show that, when applied to Arabidopsis leaves, AR156 acted similarly to flg22, a typical pathogen-associated molecular pattern (PAMP), in initiating PAMP-triggered immunity (PTI). AR156-elicited PTI responses included phosphorylation of MPK3 and MPK6, induction of the expression of defense-related genes PR1, FRK1, WRKY22, and WRKY29, production of reactive oxygen species, and callose deposition. Pretreatment with AR156 still significantly reduced P. syringae pv. tomato multiplication and disease severity in NahG transgenic plants and mutants sid2-2, jar1, etr1, ein2, npr1, and fls2. This suggests that AR156-induced PTI responses require neither salicylic acid, jasmonic acid, and ethylene signaling nor flagella receptor kinase FLS2, the receptor of flg22. On the other hand, AR156 and flg22 acted in concert to differentially regulate a number of AGO1-bound microRNAs that function to mediate PTI. A full-genome transcriptional profiling analysis indicated that AR156 and flg22 activated similar transcriptional programs, coregulating the expression of 117 genes; their concerted regulation of 16 genes was confirmed by real-time quantitative polymerase chain reaction analysis. These results suggest that AR156 activates basal defense responses to P. syringae pv. tomato in Arabidopsis, similarly to flg22.
Collapse
Affiliation(s)
- Shune Wang
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Ying Zheng
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Chun Gu
- 3 Jiangsu Provincial Anfeng Biogenic Pesticide Engineering Center Co., Ltd., Taicang 215400, China
| | - Chan He
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Mengying Yang
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Xin Zhang
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Jianhua Guo
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Hongwei Zhao
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Dongdong Niu
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| |
Collapse
|
65
|
Yang Y, Chen T, Ling X, Ma Z. Gbvdr6, a Gene Encoding a Receptor-Like Protein of Cotton ( Gossypium barbadense), Confers Resistance to Verticillium Wilt in Arabidopsis and Upland Cotton. FRONTIERS IN PLANT SCIENCE 2018; 8:2272. [PMID: 29387078 PMCID: PMC5776133 DOI: 10.3389/fpls.2017.02272] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/29/2017] [Indexed: 05/23/2023]
Abstract
Verticillium wilt is a soil-borne disease that can cause devastating losses in cotton production. Because there is no effective chemical means to combat the disease, the only effective way to control Verticillium wilt is through genetic improvement. Therefore, the identification of additional disease-resistance genes will benefit efforts toward the genetic improvement of cotton resistance to Verticillium wilt. Based on screening of a BAC library with a partial Ve homologous fragment and expression analysis, a V. dahliae-induced gene, Gbvdr6, was isolated and cloned from the Verticillium wilt-resistant cotton G. barbadense cultivar Hai7124. The gene was located in the gene cluster containing Gbve1 and Gbvdr5 and adjacent to the Verticillium wilt-resistance QTL hotspot. Gbvdr6 was induced by Verticillium dahliae Kleb and by the plant hormones salicylic acid (SA), methyl jasmonate (MeJA) and ethephon (ETH) but not by abscisic acid (ABA). Gbvdr6 was localized to the plasma membrane. Overexpression of Gbvdr6 in Arabidopsis and cotton enhanced resistance to V. dahliae. Moreover, the JA/ET signaling pathway-related genes PR3, PDF 1.2, ERF1 and the SA-related genes PR1 and PR2 were constitutively expressed in transgenic plants. Gbvdr6-overexpressing Arabidopsis was less sensitive than the wild-type plant to MeJA. Furthermore, the accumulation of reactive oxygen species and callose was triggered at early time points after V. dahliae infection. These results suggest that Gbvdr6 confers resistance to V. dahliae through regulation of the JA/ET and SA signaling pathways.
Collapse
Affiliation(s)
- Yuwen Yang
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhengqiang Ma
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
66
|
Primed primary metabolism in systemic leaves: a functional systems analysis. Sci Rep 2018; 8:216. [PMID: 29317679 PMCID: PMC5760635 DOI: 10.1038/s41598-017-18397-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022] Open
Abstract
Plants evolved mechanisms to counteract bacterial infection by preparing yet uninfected systemic tissues for an enhanced defense response, so-called systemic acquired resistance or priming responses. Primed leaves express a wide range of genes that enhance the defense response once an infection takes place. While hormone-driven defense signalling and defensive metabolites have been well studied, less focus has been set on the reorganization of primary metabolism in systemic leaves. Since primary metabolism plays an essential role during defense to provide energy and chemical building blocks, we investigated changes in primary metabolism at RNA and metabolite levels in systemic leaves of Arabidopsis thaliana plants that were locally infected with Pseudomonas syringae. Known defense genes were still activated 3–4 days after infection. Also primary metabolism was significantly altered. Nitrogen (N)-metabolism and content of amino acids and other N-containing metabolites were significantly reduced, whereas the organic acids fumarate and malate were strongly increased. We suggest that reduction of N-metabolites in systemic leaves primes defense against bacterial infection by reducing the nutritional value of systemic tissue. Increased organic acids serve as quickly available metabolic resources of energy and carbon-building blocks for the production of defense metabolites during subsequent secondary infections.
Collapse
|
67
|
Iizasa S, Iizasa E, Watanabe K, Nagano Y. Transcriptome analysis reveals key roles of AtLBR-2 in LPS-induced defense responses in plants. BMC Genomics 2017; 18:995. [PMID: 29284410 PMCID: PMC5747113 DOI: 10.1186/s12864-017-4372-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) from Gram-negative bacteria cause innate immune responses in animals and plants. The molecules involved in LPS signaling in animals are well studied, whereas those in plants are not yet as well documented. Recently, we identified Arabidopsis AtLBR-2, which binds to LPS from Pseudomonas aeruginosa (pLPS) directly and regulates pLPS-induced defense responses, such as pathogenesis-related 1 (PR1) expression and reactive oxygen species (ROS) production. In this study, we investigated the pLPS-induced transcriptomic changes in wild-type (WT) and the atlbr-2 mutant Arabidopsis plants using RNA-Seq technology. RESULTS RNA-Seq data analysis revealed that pLPS treatment significantly altered the expression of 2139 genes, with 605 up-regulated and 1534 down-regulated genes in WT. Gene ontology (GO) analysis on these genes showed that GO terms, "response to bacterium", "response to salicylic acid (SA) stimulus", and "response to abscisic acid (ABA) stimulus" were enriched amongst only in up-regulated genes, as compared to the genes that were down-regulated. Comparative analysis of differentially expressed genes between WT and the atlbr-2 mutant revealed that 65 genes were up-regulated in WT but not in the atlbr-2 after pLPS treatment. Furthermore, GO analysis on these 65 genes demonstrated their importance for the enrichment of several defense-related GO terms, including "response to bacterium", "response to SA stimulus", and "response to ABA stimulus". We also found reduced levels of pLPS-induced conjugated SA glucoside (SAG) accumulation in atlbr-2 mutants, and no differences were observed in the gene expression levels in SA-treated WT and the atlbr-2 mutants. CONCLUSION These 65 AtLBR-2-dependent up-regulated genes appear to be important for the enrichment of some defense-related GO terms. Moreover, AtLBR-2 might be a key molecule that is indispensable for the up-regulation of defense-related genes and for SA signaling pathway, which is involved in defense against pathogens containing LPS.
Collapse
Affiliation(s)
- Sayaka Iizasa
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan.,Department of Biological Resource Sciences, Graduate School of Agriculture, Saga University, Saga, Japan.,Department of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Ei'ichi Iizasa
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Keiichi Watanabe
- Department of Biological Resource Sciences, Graduate School of Agriculture, Saga University, Saga, Japan.,Department of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan. .,Department of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
68
|
Mishra B, Sun Y, Ahmed H, Liu X, Mukhtar MS. Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Sci Rep 2017; 7:7849. [PMID: 28798368 PMCID: PMC5552879 DOI: 10.1038/s41598-017-08073-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
The universal nature of networks’ structural and physical properties across diverse systems offers a better prospect to elucidate the interplay between a system and its environment. In the last decade, several large-scale transcriptome and interactome studies were conducted to understand the complex and dynamic nature of interactions between Arabidopsis and its bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. We took advantage of these publicly available datasets and performed “-omics”-based integrative, and network topology analyses to decipher the transcriptional and protein-protein interaction activities of effector targets. We demonstrated that effector targets exhibit shorter distance to differentially expressed genes (DEGs) and possess increased information centrality. Intriguingly, effector targets are differentially expressed in a sequential manner and make for 1% of the total DEGs at any time point of infection with virulent or defense-inducing DC3000 strains. We revealed that DC3000 significantly alters the expression levels of 71% effector targets and their downstream physical interacting proteins in Arabidopsis interactome. Our integrative “-omics”-–based analyses identified dynamic complexes associated with MTI and disease susceptibility. Finally, we discovered five novel plant defense players using a systems biology-fueled top-to-bottom approach and demonstrated immune-related functions for them, further validating the power and resolution of our network analyses.
Collapse
Affiliation(s)
- Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Yali Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Hadia Ahmed
- Department of Computer & Information Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Xiaoyu Liu
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA. .,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
69
|
Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1371-1385. [PMID: 28069779 PMCID: PMC6075518 DOI: 10.1093/jxb/erw478] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 05/18/2023]
Abstract
Plants synthesize jasmonates (JAs) in response to developmental cues or environmental stresses, in order to coordinate plant growth, development or defense against pathogens and herbivores. Perception of pathogen or herbivore attack promotes synthesis of jasmonoyl-L-isoleucine (JA-Ile), which binds to the COI1-JAZ receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming associated with plant defense. Interestingly, some virulent pathogens have evolved various strategies to manipulate JA signaling to facilitate their exploitation of plant hosts. In this review, we focus on recent advances in understanding the mechanism underlying the enigmatic switch between transcriptional repression and hormone-dependent transcriptional activation of JA signaling. We also discuss various strategies used by pathogens and insects to manipulate JA signaling and how interfering with this could be used as a novel means of disease control.
Collapse
Affiliation(s)
- Li Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Feng Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, MI 49503
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, 210095, Nanjing, Jiangsu Province, China
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
70
|
Chang X, Seo M, Takebayashi Y, Kamiya Y, Riemann M, Nick P. Jasmonates are induced by the PAMP flg22 but not the cell death-inducing elicitor Harpin in Vitis rupestris. PROTOPLASMA 2017; 254:271-283. [PMID: 26769707 DOI: 10.1007/s00709-016-0941-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/02/2016] [Indexed: 05/18/2023]
Abstract
Plants employ two layers of defence that differ with respect to cell death: pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). In our previous work, we have comparatively mapped the molecular events in a cell system derived from the wild American grape Vitis rupestris, where cell death-independent defence can be triggered by PAMP flg22, whereas the elicitor Harpin activates a cell death-related ETI-like response. Both defence responses overlapped with respect to early events, such as calcium influx, apoplastic alkalinisation, oxidative burst, mitogen-activated protein kinase (MAPK) signalling, activation of defence-related genes and accumulation of phytoalexins. However, timing and amplitude of early signals differed. In the current study, we address the role of jasmonates (JAs) as key signalling compounds in hypersensitive cell death. We find, in V. rupestris, that jasmonic acid and its bioactive conjugate jasmonoyl-isoleucine (JA-Ile) rapidly accumulate in response to flg22 but not in response to Harpin. However, Harpin can induce programmed cell death, whereas exogenous methyl jasmonate (MeJA) fails to do so, although both signals induce a similar response of defence genes. Also in a second cell line from V. vinifera cv. 'Pinot Noir', where Harpin cannot activate cell death and where flg22 fails to induce JA and JA-Ile, defence genes are activated in a similar manner. These findings indicate that the signal pathway culminating in cell death must act independently from the events culminating in the accumulation of toxic stilbenes.
Collapse
Affiliation(s)
- Xiaoli Chang
- Department of Plant Pathology, Agricultural College, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76131, Karlsruhe, Germany.
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76131, Karlsruhe, Germany
| |
Collapse
|
71
|
Ye X, Wang H, Chen P, Fu B, Zhang M, Li J, Zheng X, Tan B, Feng J. Combination of iTRAQ proteomics and RNA-seq transcriptomics reveals multiple levels of regulation in phytoplasma-infected Ziziphus jujuba Mill. HORTICULTURE RESEARCH 2017; 4:17080. [PMID: 29285398 PMCID: PMC5744194 DOI: 10.1038/hortres.2017.80] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 12/05/2017] [Indexed: 05/05/2023]
Abstract
Jujube witches' broom (JWB) is caused by infection with a phytoplasma. A multi-omics approach was taken during graft infection of jujube by JWB-infected scion through the analysis of the plant transcriptome, proteome and phytohormone levels. A high number of differentially expressed genes (DEGs) were identified 37 weeks after grafting (WAG), followed by observation of typical symptoms of JWB at 48 WAG. At 37 WAG, the majority of the upregulated DEGs and differentially expressed proteins (DEPs) were related to flavonoid biosynthesis, phenylalanine metabolism and phenylpropanoid biosynthesis. Two of the four upregulated proteins were similar to jasmonate-induced protein-like. Among the downregulated genes, the two most populated GO terms were plant-pathogen interaction and plant hormone signal transduction (mainly for tryptophan metabolism). Moreover, phytoplasma infection resulted in reduced auxin content and increased jasmonate content, indicating that auxin and jasmonic acid have important roles in regulating jujube responses during the first and second stages of phytoplasma infection. At 48 WAG, the two largest groups of upregulated genes were involved in phenylpropanoid biosynthesis and flavonoid biosynthesis. Both genes and proteins involved in carbon metabolism and carbon fixation in photosynthetic organisms were downregulated, indicating that photosynthesis was affected by the third stage of phytoplasma infection.
Collapse
Affiliation(s)
- Xia Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Huiyu Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Peng Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing Fu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengyang Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
- ()
| |
Collapse
|
72
|
Kroes A, Broekgaarden C, Castellanos Uribe M, May S, van Loon JJA, Dicke M. Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner. Oecologia 2016; 183:107-120. [PMID: 27771762 PMCID: PMC5239811 DOI: 10.1007/s00442-016-3758-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/16/2016] [Indexed: 01/09/2023]
Abstract
Plants are commonly attacked by multiple herbivorous species. Yet, little is known about transcriptional patterns underlying plant responses to multiple insect attackers feeding simultaneously. Here, we assessed transcriptomic responses of Arabidopsis thaliana plants to simultaneous feeding by Plutella xylostella caterpillars and Brevicoryne brassicae aphids in comparison to plants infested by P. xylostella caterpillars alone, using microarray analysis. We particularly investigated how aphid feeding interferes with the transcriptomic response to P. xylostella caterpillars and whether this interference is dependent on aphid density and time since aphid attack. Various JA-responsive genes were up-regulated in response to feeding by P. xylostella caterpillars. The additional presence of aphids, both at low and high densities, clearly affected the transcriptional plant response to caterpillars. Interestingly, some important modulators of plant defense signalling, including WRKY transcription factor genes and ABA-dependent genes, were differentially induced in response to simultaneous aphid feeding at low or high density compared with responses to P. xylostella caterpillars feeding alone. Furthermore, aphids affected the P. xylostella-induced transcriptomic response in a density-dependent manner, which caused an acceleration in plant response against dual insect attack at high aphid density compared to dual insect attack at low aphid density. In conclusion, our study provides evidence that aphids influence the caterpillar-induced transcriptional response of A. thaliana in a density-dependent manner. It highlights the importance of addressing insect density to understand how plant responses to single attackers interfere with responses to other attackers and thus underlines the importance of the dynamics of transcriptional plant responses to multiple herbivory.
Collapse
Affiliation(s)
- Anneke Kroes
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Colette Broekgaarden
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB, Utrecht, The Netherlands
| | - Marcos Castellanos Uribe
- Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Loughborough, LE12 5RD, UK
| | - Sean May
- Nottingham Arabidopsis Stock Centre, University of Nottingham, School of Biosciences, Loughborough, LE12 5RD, UK
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
73
|
Fabro G, Rizzi YS, Alvarez ME. Arabidopsis Proline Dehydrogenase Contributes to Flagellin-Mediated PAMP-Triggered Immunity by Affecting RBOHD. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:620-8. [PMID: 27269509 DOI: 10.1094/mpmi-01-16-0003-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants activate different defense systems to counteract the attack of microbial pathogens. Among them, the recognition of conserved microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) by pattern-recognition receptors stimulates MAMP- or PAMP-triggered immunity (PTI). In recent years, the elicitors, receptors, and signaling pathways leading to PTI have been extensively studied. However, the contribution of organelles to this program deserves further characterization. Here, we studied how processes altering the mitochondrial electron transport chain (mETC) influence PTI establishment. With particular emphasis, we evaluated the effect of proline dehydrogenase (ProDH), an enzyme that can load electrons into the mETC and regulate the cellular redox state. We found that mETC uncouplers (antimycin or rotenone) and manganese superoxide dismutase deficiency impair flg22-induced responses such as accumulation of reactive oxygen species (ROS) and bacterial growth limitation. ProDH mutants also reduce these defenses, decreasing callose deposition as well. Using ProDH inhibitors and ProDH inducers (exogenous Pro treatment), we showed that this enzyme modulates the generation of ROS by the plasma membrane respiratory burst NADPH oxidase homolog D. In this way, we contribute to the understanding of mitochondrial activities influencing early and late PTI responses and the coordination of the redox-associated mitochondrial enzyme ProDH with defense events initiated at the plasma membrane.
Collapse
Affiliation(s)
- Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Yanina Soledad Rizzi
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
74
|
|
75
|
Bundó M, Coca M. Enhancing blast disease resistance by overexpression of the calcium-dependent protein kinase OsCPK4 in rice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1357-67. [PMID: 26578239 DOI: 10.1111/pbi.12500] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/04/2015] [Accepted: 10/09/2015] [Indexed: 05/07/2023]
Abstract
Rice is the most important staple food for more than half of the human population, and blast disease is the most serious disease affecting global rice production. In this work, the isoform OsCPK4 of the rice calcium-dependent protein kinase family is reported as a regulator of rice immunity to blast fungal infection. It shows that overexpression of OsCPK4 gene in rice plants enhances resistance to blast disease by preventing fungal penetration. The constitutive accumulation of OsCPK4 protein prepares rice plants for a rapid and potentiated defence response, including the production of reactive oxygen species, callose deposition and defence gene expression. OsCPK4 overexpression leads also to constitutive increased content of the glycosylated salicylic acid hormone in leaves without compromising rice yield. Given that OsCPK4 overexpression was known to confer also salt and drought tolerance in rice, the results reported in this article demonstrate that OsCPK4 acts as a convergence component that positively modulates both biotic and abiotic signalling pathways. Altogether, our findings indicate that OsCPK4 is a potential molecular target to improve not only abiotic stress tolerance, but also blast disease resistance of rice crops.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Bellaterra, Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Bellaterra, Barcelona, Spain
| |
Collapse
|
76
|
Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway. Sci Rep 2016; 6:26144. [PMID: 27189192 PMCID: PMC4870575 DOI: 10.1038/srep26144] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/27/2016] [Indexed: 12/17/2022] Open
Abstract
Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway.
Collapse
|
77
|
Kloth KJ, Wiegers GL, Busscher-Lange J, van Haarst JC, Kruijer W, Bouwmeester HJ, Dicke M, Jongsma MA. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3383-96. [PMID: 27107291 PMCID: PMC4892728 DOI: 10.1093/jxb/erw159] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences.
Collapse
Affiliation(s)
- Karen J Kloth
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Gerrie L Wiegers
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Plant Research International, Business Unit Biointeractions & Plant Health, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Jacqueline Busscher-Lange
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Jan C van Haarst
- Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Maarten A Jongsma
- Plant Research International, Business Unit Bioscience, Wageningen University and Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
78
|
Liu Y, He C. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. PLANT CELL REPORTS 2016; 35:995-1007. [PMID: 26883222 DOI: 10.1007/s00299-016-1950-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China
| |
Collapse
|
79
|
Liu J, Zhang T, Jia J, Sun J. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew. PLANT PHYSIOLOGY 2016; 170:1799-816. [PMID: 26813794 PMCID: PMC4775135 DOI: 10.1104/pp.15.01784] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/26/2016] [Indexed: 05/08/2023]
Abstract
Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew.
Collapse
Affiliation(s)
- Jie Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianren Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
80
|
Ishiga Y, Ichinose Y. Pseudomonas syringae pv. tomato OxyR Is Required for Virulence in Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:119-31. [PMID: 26554736 DOI: 10.1094/mpmi-09-15-0204-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species (ROS) have been shown to have a crucial role in plant defense responses and signaling pathways. In addition, ROS also have direct toxicity against pathogens. However, the molecular mechanisms of plant ROS in the direct effects against pathogens is still unclear. To investigate the function of plant ROS in the interactions of plant and bacterial pathogens, we focused on oxyR, encoding an oxidative stress-regulated transcription factor in Pseudomonas syringae pv. tomato DC3000 (DC3000), and generated an ΔoxyR mutant. The DC3000 ΔoxyR mutant showed high sensitivity to oxidative stress in comparison with wild type and the complemented line. The host plants of DC3000, including tomato and Arabidopsis inoculated with the ΔoxyR mutant, clearly showed reduced disease symptoms as well as reduced bacterial populations. Expression profiles of DC3000 genes revealed that OxyR could regulate the expression of genes encoding ROS-detoxifying enzymes, including catalases (KatB and KatG), in response to ROS. We also demonstrated that the expression of katB could be regulated by OxyR during the infection of DC3000 in Arabidopsis. These results suggest that OxyR has an important role in the virulence of DC3000 by regulating the expression of genes related to oxidative stress.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- 1 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuki Ichinose
- 2 Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| |
Collapse
|
81
|
Jiang CH, Huang ZY, Xie P, Gu C, Li K, Wang DC, Yu YY, Fan ZH, Wang CJ, Wang YP, Guo YH, Guo JH. Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:157-74. [PMID: 26433201 DOI: 10.1093/jxb/erv445] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The activation of both the SA and JA/ETsignalling pathways may lead to more efficient general and broad resistance to Pst DC3000 by non-pathogenic rhizobacteria. However, the mechanisms that govern this simultaneous activation are unclear. Using Arabidopsis as a model system, two transcription factors, WRKY11 and WRKY70, were identified as important regulators involved in Induced Systemic Resistance (ISR) triggered by Bacillus cereus AR156. The results revealed that AR156 treatment significantly stimulated the transcription of WRKY70, but suppressed that of WRKY11 in Arabidopsis leaves. Furthermore, they were shown to be required for AR156 enhancing the activation of cellular defence responses and the transcription level of the plant defence response gene. Overexpression of the two transcription factors in Arabidopsis also showed that they were essential for AR156 to elicit ISR. AR156-triggered ISR was completely abolished in the double mutant of the two transcription factors, but still partially retained in the single mutants, indicating that the regulation of the two transcription factors depend on two different pathways. The target genes of the two transcription factors and epistasis analysis suggested that WRKY11 regulated AR156-triggered ISR through activating the JA signalling pathway, and WRKY70 regulated the ISR through activating the SA signalling pathway. In addition, both WRKY11 and WRKY70 modulated AR156-triggered ISR in a NPR1-dependent manner. In conclusion, WRKY11 and WRKY70 played an important role in regulating the signalling transduction pathways involved in AR156-triggered ISR. This study is the first to illustrate the mechanism by which a single rhizobacterium elicits ISR by simultaneously activating both the SA and JA/ET signalling pathways.
Collapse
Affiliation(s)
- Chun-Hao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Zi-Yang Huang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Ping Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Chun Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Ke Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Da-Chen Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Yi-Yang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Zhi-Hang Fan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| | - Chun-Juan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China Plant Protection Station of Guangxi Zhuang Autonomous Region, Nanning Guangxi 530022, People's Republic of China
| | - Yun-Peng Wang
- Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Ya-Hui Guo
- Agriculture Institute, Hebei University of Engineering, Handan 056021, People's Republic of China
| | - Jian-Hua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, People's Republic of China Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture; Nanjing 210095, People's Republic of China
| |
Collapse
|
82
|
Groen SC, Humphrey PT, Chevasco D, Ausubel FM, Pierce NE, Whiteman NK. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis. JOURNAL OF INSECT PHYSIOLOGY 2016. [PMID: 26205072 PMCID: PMC4721946 DOI: 10.1016/j.jinsphys.2015.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant-herbivore interactions have evolved in the presence of plant-colonizing microbes. These microbes can have important third-party effects on herbivore ecology, as exemplified by drosophilid flies that evolved from ancestors feeding on plant-associated microbes. Leaf-mining flies in the genus Scaptomyza, which is nested within the paraphyletic genus Drosophila, show strong associations with bacteria in the genus Pseudomonas, including Pseudomonas syringae. Adult females are capable of vectoring these bacteria between plants and larvae show a preference for feeding on P. syringae-infected leaves. Here we show that Scaptomyza flava larvae can also vector P. syringae to and from feeding sites, and that they not only feed more, but also develop faster on plants previously infected with P. syringae. Our genetic and physiological data show that P. syringae enhances S. flava feeding on infected plants at least in part by suppressing anti-herbivore defenses mediated by reactive oxygen species.
Collapse
Affiliation(s)
- Simon C Groen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Parris T Humphrey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States.
| | - Daniela Chevasco
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Frederick M Ausubel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, United States.
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Noah K Whiteman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
83
|
Ruan JX, Li JX, Fang X, Wang LJ, Hu WL, Chen XY, Yang CQ. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua. FRONTIERS IN PLANT SCIENCE 2016; 7:638. [PMID: 27242840 PMCID: PMC4861830 DOI: 10.3389/fpls.2016.00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/25/2016] [Indexed: 05/06/2023]
Abstract
Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg(2+) and Mn(2+) were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn(2+) for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography-mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant-environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant.
Collapse
Affiliation(s)
- Ju-Xin Ruan
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ShanghaiChina
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ShanghaiChina
| | - Xin Fang
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ShanghaiChina
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ShanghaiChina
| | - Wen-Li Hu
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ShanghaiChina
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ShanghaiChina
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, ShanghaiChina
| | - Chang-Qing Yang
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ShanghaiChina
- *Correspondence: Chang-Qing Yang,
| |
Collapse
|
84
|
Yi SY, Min SR, Kwon SY. NPR1 is Instrumental in Priming for the Enhanced flg22-induced MPK3 and MPK6 Activation. THE PLANT PATHOLOGY JOURNAL 2015; 31:192-4. [PMID: 26060439 PMCID: PMC4454001 DOI: 10.5423/ppj.nt.10.2014.0112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 05/04/2023]
Abstract
Pathogen-associated molecular patterns (PAMPs) activate mitogen-activated protein kinases (MAPKs), essential components of plant defense signaling. Salicylic acid (SA) is also central to plant resistance responses, but its specific role in regulation of MAPK activation is not completely defined. We have investigated the role of SA in PAMP-triggered MAPKs pathways in Arabidopsis SA-related mutants, specifically in the flg22-triggered activation of MPK3 and MPK6. cim6, sid2, and npr1 mutants exhibited wild-type-like flg22-triggered MAPKs activation, suggesting that impairment of SA signaling has no effect on the flg22-triggered MAPKs activation. Pretreatment with low concentrations of SA enhanced flg22-induced MPK3 and MPK6 activation in all seedlings except npr1, indicating that NPR1 is involved in SA-mediated priming that enhanced flg22-induced MAPKs activation.
Collapse
Affiliation(s)
- So Young Yi
- Co-corresponding authors. So Young Yi, Phone) +82-42-860-4433, FAX) +82-42-860-4608, E-mail) . Suk-Yoon Kwon, Phone) +82-42-860-4340, FAX) +82-42-860-4349, E-mail)
| | | | - Suk-Yoon Kwon
- Co-corresponding authors. So Young Yi, Phone) +82-42-860-4433, FAX) +82-42-860-4608, E-mail) . Suk-Yoon Kwon, Phone) +82-42-860-4340, FAX) +82-42-860-4349, E-mail)
| |
Collapse
|
85
|
Cecchini NM, Jung HW, Engle NL, Tschaplinski TJ, Greenberg JT. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:455-66. [PMID: 25372120 DOI: 10.1094/mpmi-06-14-0187-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively.
Collapse
Affiliation(s)
- Nicolás M Cecchini
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago 60637, U.S.A
| | | | | | | | | |
Collapse
|
86
|
Nicaise V. Crop immunity against viruses: outcomes and future challenges. FRONTIERS IN PLANT SCIENCE 2014; 5:660. [PMID: 25484888 PMCID: PMC4240047 DOI: 10.3389/fpls.2014.00660] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/04/2014] [Indexed: 05/02/2023]
Abstract
Viruses cause epidemics on all major cultures of agronomic importance, representing a serious threat to global food security. As strict intracellular pathogens, they cannot be controlled chemically and prophylactic measures consist mainly in the destruction of infected plants and excessive pesticide applications to limit the population of vector organisms. A powerful alternative frequently employed in agriculture relies on the use of crop genetic resistances, approach that depends on mechanisms governing plant-virus interactions. Hence, knowledge related to the molecular bases of viral infections and crop resistances is key to face viral attacks in fields. Over the past 80 years, great advances have been made on our understanding of plant immunity against viruses. Although most of the known natural resistance genes have long been dominant R genes (encoding NBS-LRR proteins), a vast number of crop recessive resistance genes were cloned in the last decade, emphasizing another evolutive strategy to block viruses. In addition, the discovery of RNA interference pathways highlighted a very efficient antiviral system targeting the infectious agent at the nucleic acid level. Insidiously, plant viruses evolve and often acquire the ability to overcome the resistances employed by breeders. The development of efficient and durable resistances able to withstand the extreme genetic plasticity of viruses therefore represents a major challenge for the coming years. This review aims at describing some of the most devastating diseases caused by viruses on crops and summarizes current knowledge about plant-virus interactions, focusing on resistance mechanisms that prevent or limit viral infection in plants. In addition, I will discuss the current outcomes of the actions employed to control viral diseases in fields and the future investigations that need to be undertaken to develop sustainable broad-spectrum crop resistances against viruses.
Collapse
Affiliation(s)
- Valérie Nicaise
- Fruit Biology and Pathology, Virology Laboratory, Institut National de la Recherche Agronomique, University of BordeauxUMR 1332, Villenave d’Ornon, France
| |
Collapse
|
87
|
Abstract
Salicylic acid (SA) has a central role in activating plant resistance to pathogens. SA levels increase in plant tissue following pathogen infection and exogenous SA enhances resistance to a broad range of pathogens. To study the relevance of the SA signaling in the flg22 response, we investigated the responses of SA-related mutants to flg22, a 22-amino acid peptide of the flagellin bacterial protein. We identified SA as an important component of the flg22-triggered oxidative burst, a very early event after flg22 detection, and gene induction, an early event. SA acted partially by enhancing accumulation of FLS2 mRNA. We also provide new evidence that NPR1 play a role in SA-induced priming event that enhances the flg22-triggered oxidative burst, which is correlated with enhancement of the flg22-induced callose deposition. Based on these observations, we conclude that SA signaling is required for early as well as late flg22 responses.
Collapse
Affiliation(s)
- So Young Yi
- Plant Systems Engineering Research Center; Korea Research Institute Bioscience and Biotechnology (KRIBB); Yuseong-gu, Daejeon; Republic of Korea
- Correspondence to: So Young Yi; ; Suk-Yoon Kwon;
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center; Korea Research Institute Bioscience and Biotechnology (KRIBB); Yuseong-gu, Daejeon; Republic of Korea
- Correspondence to: So Young Yi; ; Suk-Yoon Kwon;
| |
Collapse
|
88
|
Schenk ST, Schikora A. AHL-priming functions via oxylipin and salicylic acid. FRONTIERS IN PLANT SCIENCE 2014; 5:784. [PMID: 25642235 PMCID: PMC4294120 DOI: 10.3389/fpls.2014.00784] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/17/2014] [Indexed: 05/18/2023]
Abstract
Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant-microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection.
Collapse
Affiliation(s)
| | - Adam Schikora
- *Correspondence: Adam Schikora, Institute for Phytopathology, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany e-mail:
| |
Collapse
|