51
|
Fowler DW, Copier J, Dalgleish AG, Bodman-Smith MD. Zoledronic acid causes γδ T cells to target monocytes and down-modulate inflammatory homing. Immunology 2015; 143:539-49. [PMID: 24912747 DOI: 10.1111/imm.12331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 12/30/2022] Open
Abstract
Zoledronic acid (ZA) is a potential immunotherapy for cancer because it can induce potent γδ T-cell-mediated anti-tumour responses. Clinical trials are testing the efficacy of intravenous ZA in cancer patients; however, the effects of systemic ZA on the activation and migration of peripheral γδ T cells remain poorly understood. We found that γδ T cells within ZA-treated peripheral blood mononuclear cells were degranulating, as shown by up-regulated expression of CD107a/b. Degranulation was monocyte dependent because CD107a/b expression was markedly reduced in the absence of CD14(+) cells. Consistent with monocyte-induced degranulation, we observed γδ T-cell-dependent induction of monocyte apoptosis, as shown by phosphatidylserine expression on monocytes and decreased percentages of monocytes in culture. Despite the prevailing paradigm that ZA promotes tumour homing in γδ T cells, we observed down-modulation of their tumour homing capacity, as shown by decreased expression of the inflammatory chemokine receptors CCR5 and CXCR3, and reduced migration towards the inflammatory chemokine CCL5. Taken together our data suggest that ZA causes γδ T cells to target monocytes and down-modulate the migratory programme required for inflammatory homing. This study provides novel insight into how γδ T cells interact with monocytes and the possible implications of systemic use of ZA in cancer.
Collapse
Affiliation(s)
- Daniel W Fowler
- Infection and Immunity Research Institute, St George's University of London, Tooting, London, UK
| | | | | | | |
Collapse
|
52
|
Petrasca A, Doherty DG. Human Vδ2(+) γδ T Cells Differentially Induce Maturation, Cytokine Production, and Alloreactive T Cell Stimulation by Dendritic Cells and B Cells. Front Immunol 2014; 5:650. [PMID: 25566261 PMCID: PMC4271703 DOI: 10.3389/fimmu.2014.00650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
Human γδ T cells expressing the Vγ9Vδ2 T cell receptor can induce maturation of dendritic cells (DC) into antigen-presenting cells (APC) and B cells into antibody-secreting plasma cells. Since B cells are capable of presenting antigens to T cells, we investigated if Vγ9Vδ2 T cells can influence antigen-presentation by these cells. We report that Vγ9Vδ2 T cells induced expression of CD86, HLA-DR, and CD40 by B cells and stimulated the release of IL-4, IL-6, TNF-α, and IgG, IgA, and IgM. Vγ9Vδ2 T cells also augmented the ability of B cells to stimulate proliferation but not IFN-γ or IL-4 release by alloreactive T cells. In contrast, Vγ9Vδ2 T cells induced expression of CD86 and HLA-DR and the release of IFN-γ, IL-6, and TNF-α by DC and these DC stimulated proliferation and IFN-γ production by conventional T cells. Furthermore, CD86, TNF-α, IFN-γ, and cell contact were found to be important in DC activation by Vγ9Vδ2 T cells but not in the activation of B cells. These data suggest that Vγ9Vδ2 T cells can induce maturation of B cells and DC into APC, but while they prime DC to stimulate T helper 1 (TH1) responses, they drive maturation of B cells into APC that can stimulate different T cell responses. Thus, Vγ9Vδ2 T cells can control different arms of the immune system through selective activation of B cells and DC in vitro, which may have important applications in immunotherapy and for vaccine adjuvants.
Collapse
Affiliation(s)
- Andreea Petrasca
- Division of Immunology, School of Medicine, Trinity College Dublin, University of Dublin , Dublin , Ireland
| | - Derek G Doherty
- Division of Immunology, School of Medicine, Trinity College Dublin, University of Dublin , Dublin , Ireland
| |
Collapse
|
53
|
Davies SJ. Peritoneal Solute Transport and Inflammation. Am J Kidney Dis 2014; 64:978-86. [DOI: 10.1053/j.ajkd.2014.06.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/19/2014] [Indexed: 11/11/2022]
|
54
|
Scheper W, Sebestyen Z, Kuball J. Cancer Immunotherapy Using γδT Cells: Dealing with Diversity. Front Immunol 2014; 5:601. [PMID: 25477886 PMCID: PMC4238375 DOI: 10.3389/fimmu.2014.00601] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022] Open
Abstract
The broad and potent tumor-reactivity of innate-like γδT cells makes them valuable additions to current cancer immunotherapeutic concepts based on adaptive immunity, such as monoclonal antibodies and αβT cells. However, clinical success using γδT cells to treat cancer has so far fallen short. Efforts of recent years have revealed a striking diversity in γδT cell functions and immunobiology, putting these cells forward as true “swiss army knives” of immunity. At the same time, however, this heterogeneity poses new challenges to the design of γδT cell-based therapeutic concepts and could explain their rather limited clinical efficacy in cancer patients. This review outlines the recent new insights into the different levels of γδT cell diversity, including the myriad of γδT cell-mediated immune functions, the diversity of specificities and affinities within the γδT cell repertoire, and the multitude of complex molecular requirements for γδT cell activation. A careful consideration of the diversity of antibodies and αβT cells has delivered great progress to their clinical success; addressing also the extraordinary diversity in γδT cells will therefore hold the key to more effective immunotherapeutic strategies with γδT cells as additional and valuable tools to battle cancer.
Collapse
Affiliation(s)
- Wouter Scheper
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Zsolt Sebestyen
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
55
|
Eberl M, Friberg IM, Liuzzi AR, Morgan MP, Topley N. Pathogen-Specific Immune Fingerprints during Acute Infection: The Diagnostic Potential of Human γδ T-Cells. Front Immunol 2014; 5:572. [PMID: 25431573 PMCID: PMC4230182 DOI: 10.3389/fimmu.2014.00572] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/26/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Matthias Eberl
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Ida M. Friberg
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Anna Rita Liuzzi
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Matt P. Morgan
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Cardiff and Vale University Health Board, Cardiff, UK
| | - Nicholas Topley
- Institute of Translation, Innovation, Methodology and Engagement, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
56
|
Marcu-Malina V, Balbir-Gurman A, Dardik R, Braun-Moscovici Y, Segel MJ, Bank I. A Novel Prothrombotic Pathway in Systemic Sclerosis Patients: Possible Role of Bisphosphonate-Activated γδ T Cells. Front Immunol 2014; 5:414. [PMID: 25250025 PMCID: PMC4157565 DOI: 10.3389/fimmu.2014.00414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/15/2014] [Indexed: 11/17/2022] Open
Abstract
Objectives: Infusions of aminobisphonates (ABP) activate Vγ9δ2T cells in vivo and induce an acute inflammatory response in 30% of patients treated for osteoporosis. Following the observation of digital thrombosis in a systemic sclerosis (SSc) patient after treatment with an intravenous ABP, zoledronate (Zol), we evaluated whether patient and control peripheral blood (PB) mononuclear cell (MC, PBMC) acquire a prothrombotic phenotype in response to Zol. Results: Vγ9δ2T cells of both patients and healthy donors (HD) upregulated the CD69 activation antigen and secreted tumor necrosis factor (TNF)α in response to Zol in vitro. In addition, exposure to either Zol or lipopolysaccharide (LPS), or to both additively, induced expression of the highly procoagulant, tissue factor (TF)-1 on CD14+ monocytes. Importantly, only Zol-induced TF-1 was blocked by a monoclonal antibody to TNFα. Interestingly, we found that SSc, but not HD, Vδ1+ T cells were concurrently activated by Zol to produce interleukin (IL)-4. Addition of plasma from the blood of the SSc patient who developed critical digital ischemia after infusion of Zol, but neither plasma from a second patient with no adverse clinical response to Zol infusion nor of a HD, strongly enhanced Zol-induced monocyte TF-1, which could still be blocked by anti-TNFα. Conclusion: Aminobisphonates induced secretion of TNFα by Vγ9δ2+ T cells may lead to TNFα-dependent induction of procoagulant TF-1 induction on monocytes. In certain clinical settings, e.g., SSc, TF-1+ monocytes could play a role in triggering clinically relevant thrombosis.
Collapse
Affiliation(s)
| | - Alexandra Balbir-Gurman
- B Shine Rheumatology Unit, Rambam Health Care Campus, Rambam Medical Center , Haifa , Israel
| | - Rima Dardik
- Institutes of Thrombosis and Hemostasis, Sheba Medical Center , Ramat Gan , Israel
| | - Yolanda Braun-Moscovici
- B Shine Rheumatology Unit, Rambam Health Care Campus, Rambam Medical Center , Haifa , Israel
| | - Michael J Segel
- Institute of Pulmonary Diseases, Sheba Medical Center , Ramat Gan , Israel
| | - Ilan Bank
- Laboratory of Immunoregulation, Sheba Medical Center , Ramat Gan , Israel ; Department of Medicine F, Sheba Medical Center , Ramat Gan , Israel ; Department of Medicine, Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
57
|
Davey MS, Morgan MP, Liuzzi AR, Tyler CJ, Khan MWA, Szakmany T, Hall JE, Moser B, Eberl M. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:3704-3716. [PMID: 25165152 DOI: 10.4049/jimmunol.1401018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The early immune response to microbes is dominated by the recruitment of neutrophils whose primary function is to clear invading pathogens. However, there is emerging evidence that neutrophils play additional effector and regulatory roles. The present study demonstrates that human neutrophils assume Ag cross-presenting functions and suggests a plausible scenario for the local generation of APC-like neutrophils through the mobilization of unconventional T cells in response to microbial metabolites. Vγ9/Vδ2 T cells and mucosal-associated invariant T cells are abundant in blood, inflamed tissues, and mucosal barriers. In this study, both human cell types responded rapidly to neutrophils after phagocytosis of Gram-positive and Gram-negative bacteria producing the corresponding ligands, and in turn mediated the differentiation of neutrophils into APCs for both CD4(+) and CD8(+) T cells through secretion of GM-CSF, IFN-γ, and TNF-α. In patients with acute sepsis, circulating neutrophils displayed a similar APC-like phenotype and readily processed soluble proteins for cross-presentation of antigenic peptides to CD8(+) T cells, at a time when peripheral Vγ9/Vδ2 T cells were highly activated. Our findings indicate that unconventional T cells represent key controllers of neutrophil-driven innate and adaptive responses to a broad range of pathogens.
Collapse
Affiliation(s)
- Martin S Davey
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Matt P Morgan
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom.,Cardiff & Vale University Health Board, Cardiff CF14 4XW, United Kingdom
| | - Anna Rita Liuzzi
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Christopher J Tyler
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Mohd Wajid A Khan
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Tamas Szakmany
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom.,Cwm Taf University Health Board, Llantrisant CF72 8XR, United Kingdom
| | - Judith E Hall
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Bernhard Moser
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Matthias Eberl
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
58
|
STAT3-silenced human dendritic cells have an enhanced ability to prime IFNγ production by both αβ and γδ T lymphocytes. Immunobiology 2014; 219:503-11. [PMID: 24674241 DOI: 10.1016/j.imbio.2014.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 02/03/2014] [Accepted: 02/25/2014] [Indexed: 12/28/2022]
Abstract
Dendritic cells (DC) are an attractive target for therapeutic manipulation of the immune system to enhance insufficient immune responses, such those occurring in cancer, or to dampen dangerous responses in allergic and autoimmune diseases. Main goal of this study was to manipulate human monocyte-derived DC (MDDC) function by silencing STAT3, since this transcription factor plays a key role as a negative regulator of immune surveillance, and is strongly involved in inflammation. STAT3 silencing did not affect the immunophenotype of both immature and toll-like receptor (TLR) ligand-matured DC. However, an altered cytokine secretion profile, characterized by lower IL10 and higher IL12 and TNFα levels, was observed in silenced DC with respect to control cells upon TLR triggering. Accordingly, STAT3 silenced MDDC promoted a higher IFNγ production by CD4(+) naïve T cells. Furthermore, STAT3 silencing in MDDC favored the activation of γδ T lymphocytes, an immune cell population with important antitumor effector activities. This effect was at least in part mediated by the increased IL12 production by silenced cells. STAT3 silencing also increased the levels of CCL4, a CCR5-binding chemokine known to be involved in T helper 1 (Th1) cell recruitment. Altogether these results strengthen the role of STAT3 as a critical check point of the suppression of Th1 responses, unraveling its potential to dampen DC capability to both induce and recruit different IFNγ producing T lymphocyte subsets.
Collapse
|
59
|
He Y, Wu K, Hu Y, Sheng L, Tie R, Wang B, Huang H. γδ T cell and other immune cells crosstalk in cellular immunity. J Immunol Res 2014; 2014:960252. [PMID: 24741636 PMCID: PMC3987930 DOI: 10.1155/2014/960252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 12/28/2022] Open
Abstract
γδ T cells have been recognized as effectors with immunomodulatory functions in cellular immunity. These abilities enable them to interact with other immune cells, thus having the potential for treatment of various immune-mediated diseases with adoptive cell therapy. So far, the interactions between γδ T cell and other immune cells have not been well defined. Here we will discuss the interactivities among them and the perspective on γδ T cells for their use in immunotherapy could be imagined. The understanding of the crosstalk among the immune cells in immunopathology might be beneficial for the clinical application of γδ T cell.
Collapse
Affiliation(s)
- Ying He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Kangni Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Lixia Sheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
60
|
The role of natural killer cells, gamma delta T-cells and other innate immune cells in spondyloarthritis. Curr Opin Rheumatol 2014; 25:434-9. [PMID: 23656711 DOI: 10.1097/bor.0b013e3283620163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Natural killer (NK) cells, gamma delta (γδ) T-cells and other innate immune cells are important lymphocyte subsets able both to produce cytokines including the pro-inflammatory cytokine IL-17 and to kill cellular targets. This review describes the features of NK cells, γδ T-cells and other innate immune cells, and outlines the evidence for their potential pathogenic roles in spondyloarthritis (SpA). RECENT FINDINGS NK cells and T cells both express receptors that recognize aberrantly folded human leucocyte antigen. This interaction seems to polarize towards a type 17 immunity programme which has been increasingly implicated in SpA pathology. γδ T-cells have also been shown to be polarized towards a type 17 immunity programme in SpA. Gut interactions with the microbiome can influence NK and innate lymphoid immune responses in SpA and other related diseases. A newly identified population of resident lymphoid cells at the enthesis for the first time offers an explanation for the anatomical localization of SpA. SUMMARY NK cells, γδ T-cells and other innate immune cells are capable of sharing expression of both transcription factors, including RORγt, and cell surface receptors, such as the killer immunoglobulin-like receptors. There is increasing genetic and functional evidence that they contribute to the RORγt-driven inflammatory type 17 immune responses, and they may link gut inflammation and joint pathology in SpA.
Collapse
|
61
|
Li W, Okuda A, Yamamoto H, Yamanishi K, Terada N, Yamanishi H, Tanaka Y, Okamura H. Regulation of development of CD56 bright CD11c + NK-like cells with helper function by IL-18. PLoS One 2013; 8:e82586. [PMID: 24376549 PMCID: PMC3869690 DOI: 10.1371/journal.pone.0082586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022] Open
Abstract
Human γδ T cells augment host defense against tumors and infections, and might have a therapeutic potential in immunotherapy. However, mechanism of γδ T cell proliferation is unclear, and therefore it is difficult to prepare sufficient numbers of γδ T cells for clinical immunotherapy. Recently, natural killer (NK)-like CD56(bright)CD11c(+) cells were shown to promote the proliferation of γδ T cells in an IL-18-dependent manner. In this study, we demonstrated that the NK-like CD56(bright)CD11c(+) cells could directly interact with γδ T cells to promote their sustained expansion, while conventional dendritic cells (DCs), IFN-α-induced DCs, plasmacytoid DCs or monocytes did not. We also examined the cellular mechanism underlying the regulation of CD56(bright)CD11c(+) cells. CD14(+) monocytes pre-incubated with IL-2/IL-18 formed intensive interactions with CD56(int)CD11c(+) cells to promote their differentiation to CD56(bright)CD11c(+) cells with helper function. The development of CD56(bright)CD11c(+) cells was suppressed in an IFN-α dependent manner. These results indicate that CD14(+) monocytes pretreated with IL-2/IL-18, but neither DCs nor monocytes, play a determining role on the development and proliferation of CD56(bright)CD11c(+) cells, which in turn modulate the expansion of γδ T cells. CD56(bright)CD11c(+) NK-like cells may be a novel target for immunotherapy utilizing γδ T cells, by overcoming the limitation of γδ T cells proliferation.
Collapse
MESH Headings
- Adult
- CD11c Antigen/metabolism
- CD56 Antigen/metabolism
- Cell Communication/drug effects
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Humans
- Interferon-alpha/pharmacology
- Interleukin-18/pharmacology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Lipopolysaccharide Receptors/metabolism
- Models, Immunological
- Monocytes/cytology
- Monocytes/drug effects
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
| | - Akico Okuda
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
- Department of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Hideyuki Yamamoto
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
| | - Kyosuke Yamanishi
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
- Department of Neuropsychiatry, Hyogo College of Medicine, Hyogo, Japan
| | - Nobuyuki Terada
- Department of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Hiromichi Yamanishi
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Hyogo, Japan
- * E-mail:
| |
Collapse
|
62
|
Lin CY, Roberts GW, Kift-Morgan A, Donovan KL, Topley N, Eberl M. Pathogen-specific local immune fingerprints diagnose bacterial infection in peritoneal dialysis patients. J Am Soc Nephrol 2013; 24:2002-9. [PMID: 24179164 PMCID: PMC3839555 DOI: 10.1681/asn.2013040332] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/26/2013] [Indexed: 12/21/2022] Open
Abstract
Accurate and timely diagnosis of bacterial infection is crucial for effective and targeted treatment, yet routine microbiological identification is inefficient and often delayed to an extent that makes it clinically unhelpful. The immune system is capable of a rapid, sensitive and specific detection of a broad spectrum of microbes, which has been optimized over millions of years of evolution. A patient's early immune response is therefore likely to provide far better insight into the true nature and severity of microbial infections than conventional tests. To assess the diagnostic potential of pathogen-specific immune responses, we characterized the local responses of 52 adult patients during episodes of acute peritoneal dialysis (PD)-associated peritonitis by multicolor flow cytometry and multiplex ELISA, and defined the immunologic signatures in relation to standard microbiological culture results and to clinical outcomes. We provide evidence that unique local "immune fingerprints" characteristic of individual organisms are evident in PD patients on the day of presentation with acute peritonitis and discriminate between culture-negative, Gram-positive, and Gram-negative episodes of infection. Those humoral and cellular parameters with the most promise for defining disease-specific immune fingerprints include the local levels of IL-1β, IL-10, IL-22, TNF-α, and CXCL10, as well as the frequency of local γδ T cells and the relative proportion of neutrophils and monocytes/macrophages among total peritoneal cells. Our data provide proof of concept for the feasibility of using immune fingerprints to inform the design of point-of-care tests that will allow rapid and accurate infection identification and facilitate targeted antibiotic prescription and improved patient management.
Collapse
Affiliation(s)
- Chan-Yu Lin
- Cardiff Institute of Infection and Immunity, Cardiff University, Cardiff, Wales, United Kingdom
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gareth W. Roberts
- Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ann Kift-Morgan
- Cardiff Institute of Infection and Immunity, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kieron L. Donovan
- Department of Nephrology and Transplant, Cardiff and Vale University Health Board, Cardiff, Wales, United Kingdom; and
| | - Nicholas Topley
- Institute of Translation, Innovation, Methodology and Engagement, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Matthias Eberl
- Cardiff Institute of Infection and Immunity, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
63
|
Anderson CAM, Ix JH. Sodium reduction in CKD: suggestively hazardous or intuitively advantageous? J Am Soc Nephrol 2013; 24:1931-3. [PMID: 24204000 DOI: 10.1681/asn.2013090923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Cheryl A M Anderson
- Department of Family and Preventive Medicine, Division of Preventive Medicine and
| | | |
Collapse
|
64
|
Fieren MWJA. Cloudy peritoneal dialysate: in search of a clear cause? J Am Soc Nephrol 2013; 24:1929-31. [PMID: 24179168 DOI: 10.1681/asn.2013080911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Marien W J A Fieren
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
65
|
Smith SB, Magid-Slav M, Brown JR. Host response to respiratory bacterial pathogens as identified by integrated analysis of human gene expression data. PLoS One 2013; 8:e75607. [PMID: 24086587 PMCID: PMC3785471 DOI: 10.1371/journal.pone.0075607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/20/2013] [Indexed: 01/24/2023] Open
Abstract
Respiratory bacterial pathogens are one of the leading causes of infectious death in the world and a major health concern complicated by the rise of multi-antibiotic resistant strains. Therapeutics that modulate host genes essential for pathogen infectivity could potentially avoid multi-drug resistance and provide a wider scope of treatment options. Here, we perform an integrative analysis of published human gene expression data generated under challenges from the gram-negative and Gram-positive bacteria pathogens, Pseudomonas aeruginosa and Streptococcus pneumoniae, respectively. We applied a previously described differential gene and pathway enrichment analysis pipeline to publicly available host mRNA GEO datasets resulting from exposure to bacterial infection. We found 72 canonical human pathways common between four GEO datasets, representing P. aeruginosa and S. pneumoniae. Although the majority of these pathways are known to be involved with immune response, we found several interesting new interactions such as the SUMO1 pathway that might have a role in bacterial infections. Furthermore, 36 host-bacterial pathways were also shared with our previous results for respiratory virus host gene expression. Based on our pathway analysis we propose several drug-repurposing opportunities supported by the literature.
Collapse
Affiliation(s)
- Steven B. Smith
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Michal Magid-Slav
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - James R. Brown
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
66
|
Du XZ, Li QY, Du FW, He ZG, Wang J. Sodium Valproate Sensitizes Non-Small Lung Cancer A549 Cells to γδ T-Cell-Mediated Killing through Upregulating the Expression of MICA. J Biochem Mol Toxicol 2013; 27:492-8. [PMID: 23918508 DOI: 10.1002/jbt.21513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 06/25/2013] [Accepted: 07/12/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Xian-zhi Du
- Department of Respiratory Medicine; The Second Affiliated Hospital, Chongqing Medical University; Chongqing 400010 People's Republic of China
| | - Qiong-ya Li
- Department of Respiratory Medicine; The Second Affiliated Hospital, Chongqing Medical University; Chongqing 400010 People's Republic of China
| | - Fa-wang Du
- Department of Respiratory Medicine; Suining Central Hospital; Suining 629000 People's Republic of China
| | - Zheng-guang He
- Department of Respiratory Medicine; Suining Central Hospital; Suining 629000 People's Republic of China
| | - Juan Wang
- Department of Respiratory Medicine; The Second Affiliated Hospital, Chongqing Medical University; Chongqing 400010 People's Republic of China
| |
Collapse
|
67
|
McCarthy NE, Bashir Z, Vossenkämper A, Hedin CR, Giles EM, Bhattacharjee S, Brown SG, Sanders TJ, Whelan K, MacDonald TT, Lindsay JO, Stagg AJ. Proinflammatory Vδ2+ T Cells Populate the Human Intestinal Mucosa and Enhance IFN-γ Production by Colonic αβ T Cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2752-63. [DOI: 10.4049/jimmunol.1202959] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
68
|
Chemotherapy sensitizes colon cancer initiating cells to Vγ9Vδ2 T cell-mediated cytotoxicity. PLoS One 2013; 8:e65145. [PMID: 23762301 PMCID: PMC3675136 DOI: 10.1371/journal.pone.0065145] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/23/2013] [Indexed: 11/19/2022] Open
Abstract
Colon cancer comprises a small population of cancer initiating stem cells (CIC) that is responsible for tumor maintenance and resistance to anti-cancer therapies, possibly allowing for tumor recapitulation once treatment stops. Combinations of immune-based therapies with chemotherapy and other anti-tumor agents may be of significant clinical benefit in the treatment of colon cancer. However, cellular immune-based therapies have not been experimented yet in the population of colon CICs. Here, we demonstrate that treatment with low concentrations of commonly used chemotherapeutic agents, 5-fluorouracyl and doxorubicin, sensitize colon CICs to Vγ9Vδ2 T cell cytotoxicity. Vγ9Vδ2 T cell cytotoxicity was largely mediated by TRAIL interaction with DR5, following NKG2D-dependent recognition of colon CIC targets. We conclude that in vivo activation of Vγ9Vδ2 T cells or adoptive administration of ex-vivo expanded Vγ9Vδ2 T cells at suitable intervals after chemotherapy may substantially increase anti-tumor activities and represent a novel strategy for colon cancer immunotherapy.
Collapse
|
69
|
Welton JL, Morgan MP, Martí S, Stone MD, Moser B, Sewell AK, Turton J, Eberl M. Monocytes and γδ T cells control the acute-phase response to intravenous zoledronate: insights from a phase IV safety trial. J Bone Miner Res 2013; 28:464-71. [PMID: 23074158 DOI: 10.1002/jbmr.1797] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 11/11/2022]
Abstract
Aminobisphosphonates (NBPs) are used widely against excessive bone resorption in osteoporosis and Paget's disease as well as in metastatic bone disease and multiple myeloma. Intravenous NBP administration often causes mild to severe acute-phase responses (APRs) that may require intervention with analgesics and antipyretics and lead to treatment noncompliance and nonadherence. We here undertook a phase IV safety trial in patients with osteoporosis to investigate the APR of otherwise healthy individuals to first-time intravenous treatment with the NBP zoledronate. This study provides unique insight into sterile acute inflammatory responses in vivo, in the absence of confounding factors such as infection or cancer. Our data show that both peripheral γδ T cells and monocytes become rapidly activated after treatment with zoledronate, which ultimately determines the clinical severity of the APR. Our study highlights a key role for IFN-γ in the zoledronate-induced APR and identifies pretreatment levels of monocytes and central/memory Vγ9/Vδ2 T cells as well as their responsiveness to zoledronate in vitro as predictive risk factors for the occurrence of subclinical and clinical symptoms. These findings have diagnostic and prognostic implications for patients with and without malignancy and are relevant for Vγ9/Vδ2 T-cell-based immunotherapy approaches.
Collapse
Affiliation(s)
- Joanne L Welton
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Lin CY, Kift-Morgan A, Moser B, Topley N, Eberl M. Suppression of pro-inflammatory T-cell responses by human mesothelial cells. Nephrol Dial Transplant 2013; 28:1743-50. [PMID: 23355626 DOI: 10.1093/ndt/gfs612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Human γδ T cells reactive to the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) contribute to acute inflammatory responses. We have previously shown that peritoneal dialysis (PD)-associated infections with HMB-PP producing bacteria are characterized by locally elevated γδ T-cell frequencies and poorer clinical outcome compared with HMB-PP negative infections, implying that γδ T cells may be of diagnostic, prognostic and therapeutic value in acute disease. The regulation by local tissue cells of these potentially detrimental γδ T-cell responses remains to be investigated. METHODS Freshly isolated γδ or αβ T cells were cultured with primary mesothelial cells derived from omental tissue, or with mesothelial cell-conditioned medium. Stimulation of cytokine production and proliferation by peripheral T cells in response to HMB-PP or CD3/CD28 beads was assessed by flow cytometry. RESULTS Resting mesothelial cells were potent suppressors of pro-inflammatory γδ T cells as well as CD4+ and CD8+ αβ T cells. The suppression of γδ T-cell responses was mediated through soluble factors released by primary mesothelial cells and could be counteracted by SB-431542, a selective inhibitor of TGF-β and activin signalling. Recombinant TGF-β1 but not activin-A mimicked the mesothelial cell-mediated suppression of γδ T-cell responses to HMB-PP. CONCLUSIONS The present findings indicate an important regulatory function of mesothelial cells in the peritoneal cavity by dampening pro-inflammatory T-cell responses, which may help preserve the tissue integrity of the peritoneal membrane in the steady state and possibly during the resolution of acute inflammation.
Collapse
Affiliation(s)
- Chan-Yu Lin
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | |
Collapse
|
71
|
Cimini E, Bonnafous C, Sicard H, Vlassi C, D'Offizi G, Capobianchi MR, Martini F, Agrati C. In vivo interferon-alpha/ribavirin treatment modulates Vγ9Vδ2 T-cell function during chronic HCV infection. J Interferon Cytokine Res 2013; 33:136-41. [PMID: 23308376 DOI: 10.1089/jir.2012.0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In chronic hepatitis C virus (HCV) infection, treatment failure and defective host immune response highly demand improved therapy strategies. Vγ9Vδ2 T-cells represent a good target for HCV immunotherapy, since phosphoantigen (PhAg)-activated Vγ9Vδ2 T-lymphocytes are able to inhibit subgenomic HCV replication by interferon (IFN)-γ release. A profound impairment of IFN-γ production by Vγ9Vδ2 T-cells during chronic HCV infection was previously shown. Interestingly, in vitro IFN-α partially restored Vγ9Vδ2 T-cells responsiveness to PhAg, by stabilizing IFN-γ-mRNA. To verify how in vivo IFN-α/ribavirin (RBV) treatment could affect Vγ9Vδ2 T-cells phenotype and responsiveness to PhAg in HCV-infected patients, 10 subjects underwent a longitudinal study before and after treatment. IFN-α/RBV therapy did not significantly modify Vγ9Vδ2 T-cell numbers and differentiation profile. Interestingly, Vγ9Vδ2 T-cell responsiveness remained unmodified until 3 weeks of therapy, but dropped after 1 month, suggesting that repeated in vivo IFN-α administration in the absence of T-cell receptor (TCR)-mediated signals results in Vγ9Vδ2 T-cell anergy. The present work defines the window of possible application of combined strategies targeting Vγ9Vδ2 T-cells during chronic HCV infection; specifically, the first 3 weeks from the beginning of treatment may represent the optimal time to target Vγ9Vδ2 T-cells in vivo, since their function in terms of IFN-γ production is preserved.
Collapse
Affiliation(s)
- Eleonora Cimini
- Cellular Immunology Laboratory, INMI L. Spallanzani, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Depletion and dysfunction of Vγ2Vδ2 T cells in HIV disease: mechanisms, impacts and therapeutic implications. Cell Mol Immunol 2012; 10:42-9. [PMID: 23241900 DOI: 10.1038/cmi.2012.50] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Infection with human immunodeficiency virus (HIV) disrupts the balance among γδ T cell subsets, with increasing Vδ1+ cells and substantial depletion of circulating Vδ2+ cells. Depletion is an indirect effect of HIV in CD4-negative Vδ2 cells, but is specific for phosphoantigen-responsive subpopulations identified by the Vγ2-Jγ1.2 (also called Vγ9-JγP) T cell receptor rearrangement. The extent of cell loss and recovery is related closely to clinical status, with highest levels of functional Vδ2 cells present in virus controllers (undetectable viremia in the absence of antiretroviral therapy). We review the mechanisms and clinical consequences for Vδ2 cell depletion in HIV disease. We address the question of whether HIV-mediated Vδ2 cell depletion, despite being an indirect effect of infection, is an important part of the immune evasion strategy for this virus. The important roles for Vδ2 cells, as effectors and immune regulators, identify key mechanisms affected by HIV and show the strong relationships between Vδ2 cell loss and immunodeficiency disease. This field is moving toward immune therapies based on targeting Vδ2 cells and we now have clear goals and expectations to guide interventional clinical trials.
Collapse
|
73
|
Cordova A, Toia F, La Mendola C, Orlando V, Meraviglia S, Rinaldi G, Todaro M, Cicero G, Zichichi L, Donni PL, Caccamo N, Stassi G, Dieli F, Moschella F. Characterization of human γδ T lymphocytes infiltrating primary malignant melanomas. PLoS One 2012; 7:e49878. [PMID: 23189169 PMCID: PMC3506540 DOI: 10.1371/journal.pone.0049878] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
T lymphocytes are often induced naturally in melanoma patients and infiltrate tumors. Given that γδ T cells mediate antigen-specific killing of tumor cells, we studied the representation and the in vitro cytokine production and cytotoxic activity of tumor infiltrating γδ T cells from 74 patients with primary melanoma. We found that γδ T cells represent the major lymphocyte population infiltrating melanoma, and both Vδ1(+) and Vδ2(+) cells are involved. The majority of melanoma-infiltrating γδ cells showed effector memory and terminally-differentiated phenotypes and, accordingly, polyclonal γδ T cell lines obtained from tumor-infiltrating immune cells produced IFN-γ and TNF-α and were capable of killing melanoma cell lines in vitro. The cytotoxic capability of Vδ2 cell lines was further improved by pre-treatment of tumor target cells with zoledronate. Moreover, higher rate of γδ T cells isolation and percentages of Vδ2 cells correlate with early stage of development of melanoma and absence of metastasis. Altogether, our results suggest that a natural immune response mediated by γδ T lymphocytes may contribute to the immunosurveillance of melanoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cytokines/biosynthesis
- Cytotoxicity, Immunologic
- Female
- Humans
- Immunologic Memory
- Immunophenotyping
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/pathology
- Middle Aged
- Neoplasm Staging
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Adriana Cordova
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Francesca Toia
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Carmela La Mendola
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Valentina Orlando
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Serena Meraviglia
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Gaetana Rinaldi
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Matilde Todaro
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Giuseppe Cicero
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Leonardo Zichichi
- Unità Operativa di Dermatologia, Azienda Ospedaliera “S. Antonio Abate”, Trapani, Italy, 4 Dipartimento di Scienze Economiche, Aziendali e Finanziarie, Università di Palermo, Palermo, Italy
| | | | - Nadia Caccamo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Giorgio Stassi
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Francesco Moschella
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| |
Collapse
|
74
|
Riganti C, Massaia M, Davey MS, Eberl M. Human γδ T-cell responses in infection and immunotherapy: common mechanisms, common mediators? Eur J Immunol 2012; 42:1668-76. [PMID: 22806069 DOI: 10.1002/eji.201242492] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Upon receiving the Nobel Prize in Physiology or Medicine in 1987, Susumu Tonegawa referred to the then recent discovery of the γδ T-cell receptor and stated that "while the function of the T cells bearing this receptor is currently unknown (…) these T cells may be involved in an entirely new aspect of immunity". [Tonegawa, S., Scand. J. Immunol. 1993. 38: 303-319]. Twenty-five years of intense research later this ambivalent view still holds true. Immunologists now appreciate that γδ T cells indeed represent a highly intriguing "new aspect of immunity" that is unique and distinct from conventional lymphocytes, yet even scientists in the field still struggle to understand the molecular basis of γδ T-cell responses, especially with respect to the enigmatic mode of antigen recognition. Here, we portray the peculiar responsiveness of human Vγ9/Vδ2 T cells to microorganisms, tumor cells and aminobisphosphonates, in an attempt to integrate the corresponding - and at times confusing - findings into a "theory of everything" that may help explain how such diverse stimuli result in similar γδ T-cell responses via the recognition of soluble low molecular weight phosphoantigens.
Collapse
Affiliation(s)
- Chiara Riganti
- Dipartimento di Genetica, Biologia e Biochimica, Università degli Studi di Torino, Torino, Italy
| | | | | | | |
Collapse
|
75
|
Chen ZW. Multifunctional immune responses of HMBPP-specific Vγ2Vδ2 T cells in M. tuberculosis and other infections. Cell Mol Immunol 2012; 10:58-64. [PMID: 23147720 DOI: 10.1038/cmi.2012.46] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Vγ2Vδ2 T (also known as Vγ9Vδ2 T) cells exist only in primates, and in humans represent a major γδ T-cell sub-population in the total population of circulating γδ T cells. Results from recent studies suggest that while (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen from Mycobacterium tuberculosis (Mtb) and other microbes activates and expands primate Vγ2Vδ2 T cells, the Vγ2Vδ2 T-cell receptor (TCR) recognizes and binds to HMBPP on antigen-presenting cells (APC). In response to HMBPP stimulus, Vγ2Vδ2 TCRs array to form signaling-related nanoclusters or nanodomains during the activation of Vγ2Vδ2 T cells. Primary infections with HMBPP-producing pathogens drive the evolution of multieffector functional responses in Vγ2Vδ2 T cells, although Vγ2Vδ2 T cells display different patterns of responses during the acute and chronic phases of Mtb infection and in other infections. Expanded Vγ2Vδ2 T cells in primary Mtb infection can exhibit a broader TCR repertoire and a greater clonal response than previously assumed, with different distribution patterns of Vγ2Vδ2 T-cell clones in lymphoid and non-lymphoid compartments. Emerging in vivo data suggest that HMBPP activation of Vγ2Vδ2 T cells appears to impact other immune cells during infection.
Collapse
Affiliation(s)
- Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
76
|
Mechanisms underlying lineage commitment and plasticity of human γδ T cells. Cell Mol Immunol 2012; 10:30-4. [PMID: 23085943 DOI: 10.1038/cmi.2012.42] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phenotypic and functional heterogeneity are the hallmarks of effector and memory T cells. Upon antigen stimulation, γδ T cells differentiate into two major types of memory T cells: central memory cells, which patrol the blood and secondary lymphoid organs, and effector memory cells, which migrate to peripheral tissues. γδ T cells display in vitro a certain degree of plasticity in their function that is reminiscent of that which is observed in conventional CD4 T cells. Similar to CD4 T cells, in which a plethora of specialized subsets affect the host response, γδ T cells may readily and rapidly assume distinct Th1-, Th2-, Th17-, T(FH) and T regulatory-like effector functions, suggesting that they profoundly influence cell-mediated and humoral immune responses. In addition to differences in cytokine repertoire, γδ T cells exhibit diversity in homing, such as migration to lymph node follicles, to help B cells versus migration to inflamed tissues. Here, we review our current understanding of γδ T-cell lineage heterogeneity and flexibility, with an emphasis on the human system, and propose a classification of effector γδ T cells based on distinct functional phenotypes.
Collapse
|
77
|
Abstract
γδ-T cells represent a small population of immune cells, but play an indispensable role in host defenses against exogenous pathogens, immune surveillance of endogenous pathogenesis and even homeostasis of the immune system. Activation and expansion of γδ-T cells are generally observed in diverse human infectious diseases and correlate with their progression and prognosis. γδ-T cells have both 'innate' and 'adaptive' characteristics in the immune response, and their anti-infection activities are mediated by multiple pathways that are under elaborate regulation by other immune components. In this review, we summarize the current state of the literature and the recent advancements in γδ-T cell-mediated immune responses against common human infectious pathogens. Although further investigation is needed to improve our understanding of the characteristics of different γδ-T cell subpopulations under specific conditions, γδ-T cell-based therapy has great potential for the treatment of infectious diseases.
Collapse
|
78
|
Li Z. Potential of human γδ T cells for immunotherapy of osteosarcoma. Mol Biol Rep 2012; 40:427-37. [PMID: 23065272 DOI: 10.1007/s11033-012-2077-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/03/2012] [Indexed: 12/26/2022]
Abstract
Recurrent or metastatic osteosarcomas remain a challenging malignancy to treat. Therefore, development and testing of novel therapeutic strategies to target these patients are needed. Adoptive cellular therapy strategies are being evaluated intensively as a novel therapeutic strategy for cancer. Unlike αβ T cells requiring antigen processing and MHC-restricted peptide displayed by antigen-presenting cells, γδ T cells exhibit the potent MHC-unrestricted lytic activity against various tumors in vitro and in vivo. The recent considerable success of γδ T cell-based immunotherapy in lung metastasis of renal cell carcinoma warrants further efforts to apply this treatment to other cancers including osteosarcoma, especially recurrent and metastatic osteosarcomas. In this review, we summarize the available evidence on γδ T cell-based immunotherapy for osteosarcoma that has been achieved to date. More importantly, we discuss potential strategies of the combination of expanded γδ T cells and bisphosphonates, and modification and expansion of αβ TCR modified γδ T cells for improving its efficacy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Zhaoxu Li
- Department of Orthopaedics, No. 2, Affiliated Hospital of Guilin Medical University, Guilin Medical University, No. 15, Lequn Road, Guilin 541004, People's Republic of China.
| |
Collapse
|
79
|
Abstract
Obesity and related type 2 diabetes are increasing at epidemic proportions globally. It is now recognized that inflammatory responses mediated within the adipose tissue in obesity are central to the development of disease. Once initiated, chronic inflammation associated with obesity leads to the modulation of immune cell function. This review will focus specifically on the impact of obesity on γδ T cells, a T-cell subset that is found in high concentrations in epithelial tissues such as the skin, intestine, and lung. Epithelial γδ T cell function is of particular concern in obesity as they are the guardians of the epithelial barrier and mediate repair. A breakdown in their function, and subsequently the deterioration of the epithelium can result in dire consequences for the host. Obese patients are more prone to non-healing injuries, infection, and disease. The resulting inflammation from these pathologies further perpetuates the disease condition already present in obese hosts. Here we will provide insight into the immunomodulation of γδ T cells that occurs in the epithelial barrier during obesity and discuss current therapeutic options.
Collapse
|
80
|
Caccamo N, Todaro M, La Manna MP, Sireci G, Stassi G, Dieli F. IL-21 regulates the differentiation of a human γδ T cell subset equipped with B cell helper activity. PLoS One 2012; 7:e41940. [PMID: 22848667 PMCID: PMC3405033 DOI: 10.1371/journal.pone.0041940] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/27/2012] [Indexed: 11/21/2022] Open
Abstract
Vγ9Vδ2 T lymphocytes recognize nonpeptidic antigens without presentation by MHC molecules and display pleiotropic features. Here we report that coculture of Vγ9Vδ2 cells with phosphoantigen and IL-21 leads to selective expression of the transcription repressor Bcl-6 and polarization toward a lymphocyte subset displaying features of follicular B-helper T (TFH) cells. TFH-like Vγ9Vδ2 cells have a predominant central memory (CD27+CD45RA−) phenotype and express ICOS, CD40L and CXCR5. Upon antigen activation, they secrete IL-4, IL-10 and CXCL13, and provide B-cell help for antibody production in vitro. Our findings delineate a subset of human Vγ9Vδ2 lymphocytes, which, upon interaction with IL-21-producing CD4 TFH cells and B cells in secondary lymphoid organs, is implicated in the production of high affinity antibodies against microbial pathogens.
Collapse
Affiliation(s)
- Nadia Caccamo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
| | - Matilde Todaro
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università degli Studi di Palermo, Palermo, Italy
| | - Marco P. La Manna
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
| | - Guido Sireci
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
| | - Giorgio Stassi
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università degli Studi di Palermo, Palermo, Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
- * E-mail:
| |
Collapse
|
81
|
Rowland CA, Hartley MG, Flick-Smith H, Laws TR, Eyles JE, Oyston PCF. Peripheral human γδ T cells control growth of both avirulent and highly virulent strains of Francisella tularensis in vitro. Microbes Infect 2012; 14:584-9. [PMID: 22370220 DOI: 10.1016/j.micinf.2012.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/16/2022]
Abstract
In this paper we evaluate the role of human γδ T cells in control of Francisella tularensis infection. Using an in vitro model of infection, a reduction in bacterial numbers was detected in the presence of human γδ T cells for both attenuated LVS and virulent SCHU S4 strains of F. tularensis. Antibody neutralisation of IFN-γ caused an increase in survival of F. tularensis LVS suggesting that γδ T cell-mediated control of F. tularensis infection is partially mediated by IFN-γ.
Collapse
|
82
|
Ryan-Payseur B, Frencher J, Shen L, Chen CY, Huang D, Chen ZW. Multieffector-functional immune responses of HMBPP-specific Vγ2Vδ2 T cells in nonhuman primates inoculated with Listeria monocytogenes ΔactA prfA*. THE JOURNAL OF IMMUNOLOGY 2012; 189:1285-93. [PMID: 22745375 DOI: 10.4049/jimmunol.1200641] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although Listeria monocytogenes can induce systemic infection causing spontaneous abortion, septicemia, and meningitis, studies have not been performed to investigate human anti-L. monocytogenes immune responses, including those of Ag-specific Vγ2Vδ2 T cells, a dominant human γδ T cell subset. L. monocytogenes is the only pathogen known to possess both the mevalonate and non-mevalonate isoprenoid biosynthesis pathways that produce metabolic phosphates or phosphoantigens activating human Vγ2Vδ2 T cells, making it interesting to explore in vivo anti-L. monocytogenes immune responses of Vγ2Vδ2 T cells. In this study, we demonstrated that subclinical systemic L. monocytogenes infection of rhesus macaques via parenteral inoculation or vaccination with an attenuated Listeria strain induced multieffector-functional immune responses of phosphoantigen-specific Vγ2Vδ2 T cells. Subclinical systemic infection and reinfection with attenuated L. monocytogenes uncovered the ability of Vγ2Vδ2 T cells to mount expansion and adaptive or recall-like expansion. Expanded Vγ2Vδ2 T cells could traffic to and accumulate in the pulmonary compartment and intestinal mucosa. Expanded Vγ2Vδ2 T cells could evolve into effector cells producing IFN-γ, TNF-α, IL-4, IL-17, or perforin after L. monocytogenes infection, and some effector Vγ2Vδ2 T cells could coproduce IL-17 and IFN-γ, IL-4 and IFN-γ, or TNF-α and perforin. Surprisingly, in vivo-expanded Vγ2Vδ2 T effector cells in subclinical L. monocytogenes infection could directly lyse L. monocytogenes-infected target cells and inhibit intracellular L. monocytogenes bacteria. Thus, we present the first demonstration, to our knowledge, of multieffector-functional Vγ2Vδ2 T cell responses against L. monocytogenes.
Collapse
Affiliation(s)
- Bridgett Ryan-Payseur
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
83
|
Heuston S, Begley M, Gahan CGM, Hill C. Isoprenoid biosynthesis in bacterial pathogens. Microbiology (Reading) 2012; 158:1389-1401. [DOI: 10.1099/mic.0.051599-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sinéad Heuston
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Máire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G. M. Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
84
|
Koenig A, Fortner KA, King BR, Madden J, Buskiewicz IA, Budd RC. Proliferating γδ T cells manifest high and spatially confined caspase-3 activity. Immunology 2012; 135:276-86. [PMID: 22117649 DOI: 10.1111/j.1365-2567.2011.03540.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caspase-8 serves two paradoxical roles in T lymphocytes: it initiates apoptosis following death receptor engagement, and is also indispensible for proliferation following T-cell antigen receptor (TCR) signalling. These opposing processes appear to be controlled by both spatial and quantitative differences in caspase-8 activation. Given differences in the turnover of T-cell subsets, we compared caspase activity and susceptibility to cell death following TCR restimulation in murine CD4(+) and CD8(+) αβ T cells and γδ T cells. We observed a spectrum of caspase activity in non-dying effector T cells in which CD4(+) T cells manifested the lowest levels of active caspases whereas γδ T cells manifested the highest levels. Further analysis revealed that most of the difference in T-cell subsets was the result of high levels of active caspase-3 in non-dying effector γδ T cells. Despite this, γδ T cells manifested little spontaneous or CD3 restimulation-induced cell death as the result of confinement of active caspases to the cell membrane. By contrast, CD4(+) T cells were highly sensitive to CD3-induced cell death, associated with the appearance of active caspases in the cytoplasm and cleavage of the caspase substrates Bid and ICAD. Hence, the location and amount of active caspases distinguishes effector T-cell subsets and profoundly influences the fate of the T-cell response.
Collapse
Affiliation(s)
- Andreas Koenig
- Department of Medicine, Immunobiology Program, The University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | | | | | | | | | | |
Collapse
|
85
|
Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediators Inflamm 2012; 2012:484167. [PMID: 22577250 PMCID: PMC3337720 DOI: 10.1155/2012/484167] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 01/08/2023] Open
Abstract
The success of peritoneal dialysis (PD) is dependent on the structural and functional integrity of the
peritoneal membrane. The mesothelium lines the peritoneal membrane and is the first line of
defense against chemical and/or bacterial insult. Peritonitis remains a major complication of PD and
is a predominant cause of technique failure, morbidity and mortality amongst PD patients. With
appropriate antibiotic treatment, peritonitis resolves without further complications, but in some PD
patients excessive peritoneal inflammatory responses lead to mesothelial cell exfoliation and
thickening of the submesothelium, resulting in peritoneal fibrosis and sclerosis. The detrimental
changes in the peritoneal membrane structure and function correlate with the number and severity
of peritonitis episodes and the need for catheter removal. There is evidence that despite clinical
resolution of peritonitis, increased levels of inflammatory and fibrotic mediators may persist in the
peritoneal cavity, signifying persistent injury to the mesothelial cells. This review will describe the
structural and functional changes that occur in the peritoneal membrane during peritonitis and how
mesothelial cells contribute to these changes and respond to infection. The latter part of the review
discusses the potential of mesothelial cell transplantation and genetic manipulation in the
preservation of the peritoneal membrane.
Collapse
|
86
|
Accardo Palumbo A, Forte G, Pileri D, Vaccarino L, Conte F, D’Amelio L, Palmeri M, Triolo A, D’Arpa N, Scola L, Misiano G, Milano S, Lio D. Analysis of IL-6, IL-10 and IL-17 genetic polymorphisms as risk factors for sepsis development in burned patients. Burns 2012; 38:208-13. [DOI: 10.1016/j.burns.2011.07.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/11/2011] [Accepted: 07/13/2011] [Indexed: 12/31/2022]
|
87
|
The local inflammatory responses to infection of the peritoneal cavity in humans: their regulation by cytokines, macrophages, and other leukocytes. Mediators Inflamm 2012; 2012:976241. [PMID: 22481867 PMCID: PMC3317024 DOI: 10.1155/2012/976241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 11/16/2011] [Indexed: 12/22/2022] Open
Abstract
Studies on infection-induced inflammatory reactions in humans rely largely on findings in the blood compartment. Peritoneal leukocytes from patients treated with peritoneal dialysis offer a unique opportunity to study in humans the inflammatory responses taking place at the site of infection. Compared with peritoneal macrophages (pMϕ) from uninfected patients, pMϕ from infected patients display ex vivo an upregulation and downregulation of proinflammatory and anti-inflammatory mediators, respectively. Pro-IL-1β processing and secretion rather than synthesis proves to be increased in pMϕ from infectious peritonitis suggesting up-regulation of caspase-1 in vivo. A crosstalk between pMϕ, γδ T cells, and neutrophils has been found to be involved in augmented TNFα expression and production during infection. The recent finding in experimental studies that alternatively activated macrophages (Mϕ2) increase by proliferation rather than recruitment may have significant implications for the understanding and treatment of chronic inflammatory conditions such as encapsulating peritoneal sclerosis (EPS).
Collapse
|
88
|
Gutman D, Epstein-Barash H, Tsuriel M, Golomb G. Alendronate liposomes for antitumor therapy: activation of γδ T cells and inhibition of tumor growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 733:165-79. [PMID: 22101722 DOI: 10.1007/978-94-007-2555-3_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Circulating γδ T cells are cytotoxic lymphocytes that are unique to primates. Recent -studies have shown that amino-bisphosphonates (nBP) activate γδ T cells to kill tumor cells in an indirect mechanism, which requires antigen presenting cells (APC). We hypothesized that selective targeting of nBP to monocytes would result in a more potent γδ T cells activation in circulation, and in tissue associated macrophages (TAM) following monocytes-laden drug extravasation and liposomes accumulation at the tumor site. In addition, inhibition of TAM by alendronate liposomes (ALN-L) is expected. ALN was targeted exclusively to monocytes, but not to lymphocytes, by encapsulating it in negatively-charged liposomes. The proportion of human γd-T cells in the CD3(+) population following treatment with ALN-L or the free drug was increased, from 5.6 ± 0.4% to 50.9 ;± 12.2% and 49.5 ± 12.9%, respectively. ALN solution and liposomes treatments resulted in an increased, and in a dose dependent manner, TNFα secretion from h-PBMC. Preliminary results showed that ALN-L inhibited tumor growth in a nude mouse breast tumor model. It is suggested that enhanced activation of γδ T cells could be obtained due to interaction with circulating monocytes as well as by TAM endocytosing liposomal nBP leading to a potentiated anti-tumor effect of nBP. It should be noted that this could be validated only in primates/humans since γδ T cells are unique in these species.
Collapse
Affiliation(s)
- Dikla Gutman
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | | | |
Collapse
|
89
|
Bansal RR, Mackay CR, Moser B, Eberl M. IL-21 enhances the potential of human γδ T cells to provide B-cell help. Eur J Immunol 2011; 42:110-9. [PMID: 22009762 DOI: 10.1002/eji.201142017] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/14/2011] [Accepted: 10/13/2011] [Indexed: 12/18/2022]
Abstract
Vγ9/Vδ2 T cells are a minor subset of T cells in human blood and differ from all other lymphocytes by their specific responsiveness to (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), a metabolite produced by a large range of microbial pathogens. Vγ9/Vδ2 T cells can be skewed towards distinct effector functions, in analogy to, and beyond, the emerging plasticity of CD4(+) T cells. As such, depending on the microenvironment, Vγ9/Vδ2 T cells can assume features reminiscent of Th1, Th2, Th17 and Treg cells as well as professional APCs. We here demonstrate that Vγ9/Vδ2 T cells express markers associated with follicular B helper T (T(FH) ) cells when stimulated with HMB-PP in the presence of IL-21. HMB-PP induces upregulation of IL-21R on Vγ9/Vδ2 T cells. In return, IL-21 plays a co-stimulatory role in the expression of the B-cell-attracting chemokine CXCL13, the CXCL13 receptor CXCR5 and the inducible co-stimulator by activated Vγ9/Vδ2 T cells, and enhances their potential to support antibody production by B cells. The interaction between HMB-PP-responsive Vγ9/Vδ2 T cells, IL-21-producing T(FH) cells and B cells in secondary lymphoid tissues is likely to impact on the generation of high affinity, class-switched antibodies in microbial infections.
Collapse
Affiliation(s)
- Raj R Bansal
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
90
|
Gong D, Farley K, White M, Hartshorn KL, Benarafa C, Remold-O'Donnell E. Critical role of serpinB1 in regulating inflammatory responses in pulmonary influenza infection. J Infect Dis 2011; 204:592-600. [PMID: 21791661 DOI: 10.1093/infdis/jir352] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Excessive inflammatory host response increases morbidity and mortality associated with seasonal respiratory influenza, and highly pathogenic virus strains are characterized by massive infiltration of monocytes and/or macrophages that produce a storm of injurious cytokines. METHODS Here, we examined the role in respiratory influenza of serpinB1, an endogenous inhibitor of the serine proteases elastase, cathepsin G, and proteinase-3, increasingly recognized as regulators of inflammation. RESULTS After challenge with high-dose surfactant protein-D (SP-D)-sensitive influenza A/Philadelphia/82 (H3N2), serpinB1(-/-) mice died earlier and in greater numbers than did wild-type mice. Sublethally infected animals suffered increased morbidity, delayed resolution of epithelial injury, and increased immune cell death. Viral clearance and SP-D/SP-A upregulation were unimpaired and so were early virus-induced cytokine and chemokine burst and influx of large numbers of neutrophils and monocytes. Whereas initial cytokines and chemokines rapidly cleared in wild-type mice, TNF-α, IL-6, KC/CXCL1, G-CSF, IL-17A, and MCP-1/CCL2 remained elevated in serpinB1(-/-) mice. Monocyte-derived cells were the dominant immune cells in influenza-infected lungs, and those from serpinB1(-/-) mice produced excessive IL-6 and TNF-α when tested ex vivo. Pulmonary γδ T-cells that produced IL-17A were also increased. CONCLUSIONS Because viral clearance was unimpaired, the study highlights the critical role of serpinB1 in mitigating inflammation and restricting pro-inflammatory cytokine production in influenza infection.
Collapse
Affiliation(s)
- Dapeng Gong
- Immune Disease Institute and Program in Cellular and Molecular Medicine at Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
91
|
Davies SJ. Peritoneal dialysis research in the UK: the Cardiff contribution. Perit Dial Int 2011; 31 Suppl 2:S39-42. [PMID: 21364206 DOI: 10.3747/pdi.2010.00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hallmark of the Cardiff contribution to our understanding of peritoneal dialysis over the past quarter century has been their translational approach to research, combining strong basic science with intelligent clinical questions. Their themes have included describing the biology of the dialyzed membrane; elucidation of several overlapping mechanisms of bioincompatibility, resulting in the development and testing of more biocompatible solutions; and describing the morphological changes with time on treatment and the membrane's response to infection. This has extended to investigation of the mechanisms controlling initiation and resolution by the innate immune system, relevant to both long-term membrane injury and a wider understanding of immunobiology. More than any other group, they have held the torch for basic science in peritoneal dialysis research.
Collapse
Affiliation(s)
- Simon J Davies
- Department of Nephrology, University Hospital of North Staffordshire, Stoke-on-Trent, Staffordshire, United Kingdom.
| |
Collapse
|
92
|
Prinz I. Dynamics of the interaction of γδ T cells with their neighbors in vivo. Cell Mol Life Sci 2011; 68:2391-8. [PMID: 21584813 PMCID: PMC11114905 DOI: 10.1007/s00018-011-0701-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/15/2022]
Abstract
γδ T cells are a diverse component of the immune system in humans and mice with presumably important but still largely unknown functions. Understanding the dynamic interaction of γδ T cells with their neighbors should help to understand their physiological role. This review addresses recent advances and strategies to visualize the dynamic interactions of γδ T cells with their neighbors in vivo. Current knowledge regarding the dynamic contacts of tissue resident γδ T cells and epithelial cells, but also of the communication between circulating γδ T cells and DCs, monocytes and FoxP3(+) regulatory T cells is revisited with emphasis on the role of γδ T cell motility.
Collapse
MESH Headings
- Animals
- Cell Communication/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Mice
- Microscopy, Confocal/methods
- Microscopy, Fluorescence, Multiphoton/methods
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany, Prinz.
| |
Collapse
|
93
|
Moser B, Eberl M. γδ T-APCs: a novel tool for immunotherapy? Cell Mol Life Sci 2011; 68:2443-52. [PMID: 21573785 PMCID: PMC11114695 DOI: 10.1007/s00018-011-0706-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 01/03/2023]
Abstract
The series of seminal articles in this book clearly illustrate the multi-functional nature of γδ T cells. Some of the functions correlate with the tissue tropism of distinct γδ T cell subsets whereas others appear to result from oligoclonal selection. Here, we discuss the antigen-presenting cell (APC) function of the major subset of circulating γδ T cells, Vγ9/Vδ2 T cells, present in human blood. During tissue culture, Vγ9/Vδ2 T cells uniformly respond to a class of non-peptide antigens, so-called prenyl pyrophosphates, derived from stressed host cells or from microbes. It is this feature that distinguishes human (and primate) Vγ9/Vδ2 T cells from αβ and γδ T cells of all other species and that forms the basis for detailed studies of human Vγ9/Vδ2 T cells. One of the consequences of Vγ9/Vδ2 T cell activation is the rapid acquisition of APC characteristics (γδ T-APCs) reminiscent of mature dendritic cells (DCs). In the following discussion, we will discriminate between the potential use of γδ T-APCs as a cellular vaccine in immunotherapy and their role in anti-microbial immunity. Exploiting the APC function in γδ T-APCs represents a true novelty in current immunotherapy research and may lead to effective, anti-tumor immunity in cancer patients.
Collapse
Affiliation(s)
- Bernhard Moser
- Department of Infection, Immunity & Biochemistry, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | | |
Collapse
|
94
|
Chen ZW. Immune biology of Ag-specific γδ T cells in infections. Cell Mol Life Sci 2011; 68:2409-17. [PMID: 21667064 DOI: 10.1007/s00018-011-0703-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Accumulating evidence suggests that human γδ T cells act as non-classical T cells and contribute to both innate and adaptive immune responses in infections. Vγ2 Vδ2 T (also termed Vγ9 Vδ2 T) cells exist only in primates, and in humans represent a dominant circulating γδ T-cell subset. Primate Vγ2 Vδ2 T cells are the only γδ T cell subset capable of recognizing microbial phosphoantigen. Since nonhuman primate Vγ2 Vδ2 T cells resemble their human counterparts, in-depth studies have been undertaken in macaques to understand the biology and function of human Vγ2 Vδ2 T cells. This article reviews the recent progress for immune biology of Vγ2 Vδ2 T cells in infections.
Collapse
Affiliation(s)
- Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
95
|
Davey MS, Lin CY, Roberts GW, Heuston S, Brown AC, Chess JA, Toleman MA, Gahan CGM, Hill C, Parish T, Williams JD, Davies SJ, Johnson DW, Topley N, Moser B, Eberl M. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection. PLoS Pathog 2011; 7:e1002040. [PMID: 21589907 PMCID: PMC3093373 DOI: 10.1371/journal.ppat.1002040] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 03/11/2011] [Indexed: 11/18/2022] Open
Abstract
Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early infection and suggest novel diagnostic and therapeutic approaches. The immune system of all jawed vertebrates harbors three distinct lymphocyte populations – αβ T cells, γδ T cells and B cells – yet only higher primates including humans possess so-called Vγ9/Vδ2 T cells, an enigmatic γδ T cell subset that uniformly responds to the majority of bacterial pathogens. For reasons that are not understood, this responsiveness is absent in all other animals although they too are constantly exposed to a plethora of potentially harmful micro-organisms. We here investigated how Vγ9/Vδ2 T cells respond to live microbes by mimicking physiological conditions in acute disease. Our experiments demonstrate that Vγ9/Vδ2 T cells recognize a small common molecule released when invading bacteria become ingested and killed by other white blood cells. The stimulation of Vγ9/Vδ2 T cells at the site of infection amplifies the inflammatory response and has important consequences for pathogen clearance and the development of microbe-specific immunity. However, if triggered at the wrong time or the wrong place, this rapid reaction toward bacteria may also lead to inflammation-related damage. These findings improve our insight into the complex cellular interactions in early infection, identify novel biomarkers of diagnostic and predictive value and highlight new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Martin S. Davey
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Chan-Yu Lin
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gareth W. Roberts
- Institute of Nephrology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sinéad Heuston
- Alimentary Pharmabiotic Centre and Department of Microbiology, University College Cork, Cork, Ireland
| | - Amanda C. Brown
- Centre for Immunology and Infectious Disease, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - James A. Chess
- Department of Nephrology, Morriston Hospital, Swansea, United Kingdom
| | - Mark A. Toleman
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Cormac G. M. Gahan
- Alimentary Pharmabiotic Centre and Department of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre and Department of Microbiology, University College Cork, Cork, Ireland
| | - Tanya Parish
- Centre for Immunology and Infectious Disease, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - John D. Williams
- Institute of Nephrology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon J. Davies
- Department of Nephrology, University Hospital of North Staffordshire, Keele University, Stoke-on-Trent, United Kingdom
| | - David W. Johnson
- Department of Nephrology, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
- Australia and New Zealand Dialysis Transplant Registry, University of Adelaide, Adelaide, Australia
| | - Nicholas Topley
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Bernhard Moser
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
96
|
Guzman E, Price S, Poulsom H, Hope J. Bovine γδ T cells: cells with multiple functions and important roles in immunity. Vet Immunol Immunopathol 2011; 148:161-7. [PMID: 21501878 DOI: 10.1016/j.vetimm.2011.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/01/2011] [Accepted: 03/05/2011] [Indexed: 12/01/2022]
Abstract
The γδ T-cell receptor (TCR)-positive lymphocytes are a major circulating lymphocyte population in cattle, especially in young calves. In contrast, human and mice have low levels of circulating γδ TCR(+) T cells (γδ T cells). The majority of the circulating γδ T cells in ruminants express the workshop cluster 1 (WC1) molecule and are of the phenotype WC1(+) CD2(-) CD4(-) CD8(-). WC1 is a 220000 molecular weight glycoprotein with homology to the scavenger receptor cysteine-rich (SRCR) family, closely related to CD163. The existence of 13 members in the bovine WC1 gene family has recently been demonstrated and although murine and human orthologues to WC1 genes exist, functional gene products have not been identified in species other than ruminants and pigs. Highly diverse TCRδ usage has been reported, with expanded variable genes in cattle compared to humans and mice. Differential γ chain usage is evident between populations of bovine γδ T cells, this may have implications for functionality. There is a growing body of evidence that WC1(+) γδ T cells are important in immune responses to mycobacteria and may have important roles in T cell regulation and antigen presentation. In this review, we will summarize recent observations in γδ T cell biology and the importance of γδ T cells in immune responses to mycobacterial infections in cattle.
Collapse
Affiliation(s)
- Efrain Guzman
- Institute for Animal Health, Division of Immunology, Compton, Newbury RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|
97
|
Preferential Th1 cytokine profile of phosphoantigen-stimulated human Vγ9Vδ2 T cells. Mediators Inflamm 2011; 2010:704941. [PMID: 21403900 PMCID: PMC3043297 DOI: 10.1155/2010/704941] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/07/2010] [Accepted: 12/21/2010] [Indexed: 11/17/2022] Open
Abstract
Human Vγ9Vδ2 T cells recognise pyrophosphate-based antigens (phosphoantigens) and have multiple functions in innate and adaptive immunity, including a unique ability to activate other cells of the immune system. We used flow cytometry and ELISA to define the early cytokine profiles of Vγ9Vδ2 T cells stimulated in vitro with isopentenyl pyrophosphate (IPP) and (E)-4-hydroxy-3-methyl-but-2 enyl pyrophosphate (HMB-PP) in the absence and presence of IL-2 and IL-15. We show that fresh Vγ9Vδ2 T cells produce interferon-γ (IFN-γ) and tumour necrosis factor-α (TNF-α) within 4 hours of stimulation with phosphoantigen, but neither IL-10, IL-13, nor IL-17 was detectable up to 72 hours under these
conditions. Cytokine production was not influenced by expression or lack, thereof, of CD4 or CD8. Addition of IL-2 or IL-15 caused expansion of IFN-γ-producing Vγ9Vδ2 T cells, but did not enhance IFN-γ secretion after 24–72 hours. Thus, phosphoantigen-stimulated Vγ9Vδ2 T cells have potential as Th1-biasing adjuvants for immunotherapy.
Collapse
|
98
|
Characterization of avian γδ T-cell subsets after Salmonella enterica serovar Typhimurium infection of chicks. Infect Immun 2010; 79:822-9. [PMID: 21078853 DOI: 10.1128/iai.00788-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian γδ T lymphocytes are frequently found in blood and organs and are assumed to be crucial to the immune defense against Salmonella infections of chicks. To elucidate the so-far-unknown immunological features of subpopulations of avian γδ T cells in the course of infection, day-old chicks were infected orally with Salmonella enterica serovar Typhimurium. Until 11 days after infection, the occurrence as well as transcription of the CD8 antigen and immunologically relevant protein genes of CD8α(-) and CD8α(+high) (CD8αα(+) CD8αβ(+)) γδ cells were analyzed using flow cytometry and quantitative real-time reverse transcription-PCR (RT-PCR) with blood, spleen, thymus, and cecum samples. After infection, an increased percentage of CD8α(+high) γδ T lymphocytes was found in blood, in spleen, and, with the highest values and most rapidly, in cecum. Within the CD8α(+high) subset, a significant rise in the number of CD8αα(+) cells was accompanied by enhanced CD8α antigen expression and reduced gene transcription of the CD8β chain. CD8αα(+) and CD8αβ(+) cells showed elevated transcription for Fas, Fas ligand (FasL), interleukin-2 receptor α (IL-2Rα), and gamma interferon (IFN-γ). While the highest fold changes in mRNA levels were observed in CD8αβ(+) cells, the mRNA expression rates of CD8αβ(+) cells never significantly exceeded those of the CD8αα(+) cells. In conclusion, both CD8α(+high) γδ T-cell subpopulations (CD8αα(+) and CD8αβ(+)) might be a potential source of IFN-γ in Salmonella-infected chicks. However, due to their prominent frequency in blood and organs after infection, the avian CD8αα(+) γδ T-cell subset seems to be unique and of importance in the course of Salmonella Typhimurium infection of very young chicks.
Collapse
|
99
|
Dunne MR, Madrigal-Estebas L, Tobin LM, Doherty DG. (E)-4-hydroxy-3-methyl-but-2 enyl pyrophosphate-stimulated Vgamma9Vdelta2 T cells possess T helper type 1-promoting adjuvant activity for human monocyte-derived dendritic cells. Cancer Immunol Immunother 2010; 59:1109-20. [PMID: 20306041 PMCID: PMC11030662 DOI: 10.1007/s00262-010-0839-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 02/20/2010] [Indexed: 10/19/2022]
Abstract
Vgamma9Vdelta2 T cells respond to pyrophosphate antigens and display potent antitumour activity in vitro. We have investigated the potential of the most potent phosphoantigen known to activate Vgamma9Vdelta2 T cells, (E)-4-hydroxy-3-methyl-but-2 enyl pyrophosphate (HMB-PP), as an adjuvant for dendritic cell (DC)-based vaccines. A single stimulation of peripheral blood mononuclear cells with HMB-PP and IL-2 was sufficient to generate lines of effector memory Vgamma9Vdelta2 T cells that retained their cytolytic and cytokine secretion activities. These cells induced differentiation of DC into semi-mature antigen-presenting cells expressing CD86, CD11c, CD54, HLA-DR, CD83 and CD40, which secreted low levels of bioactive IL-12 but no IL-10. Vgamma9Vdelta2 T cells also strongly costimulated IL-12 release but inhibited IL-10 production by lipopolysaccharide (LPS)-stimulated DC. When substituted for Vgamma9Vdelta2 T cells, IFN-gamma did not induce full DC maturation but it augmented IL-12 and inhibited IL-10 release by LPS-stimulated DC, in a manner similar to HMB-PP-activated Vgamma9Vdelta2 T cells. Our findings indicate that Vgamma9Vdelta2 T cells, stimulated with nanomolar concentrations of HMB-PP, strongly promote T helper type 1 (Th1) responses through their ability to induce DC maturation and IL-12 secretion. This adjuvant activity may prove useful in DC-based cancer therapies.
Collapse
Affiliation(s)
- Margaret R. Dunne
- Department of Immunology and Institute of Molecular Medicine, Trinity College Dublin, St. James’s Hospital, Dublin 8, Ireland
- Institute of Immunology, National University of Ireland, Maynooth, Ireland
| | | | - Laura M. Tobin
- Institute of Immunology, National University of Ireland, Maynooth, Ireland
| | - Derek G. Doherty
- Department of Immunology and Institute of Molecular Medicine, Trinity College Dublin, St. James’s Hospital, Dublin 8, Ireland
- Institute of Immunology, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
100
|
Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10:467-78. [PMID: 20539306 DOI: 10.1038/nri2781] [Citation(s) in RCA: 731] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gammadelta T cells have several innate cell-like features that allow their early activation following recognition of conserved stress-induced ligands. Here we review recent observations revealing the ability of gammadelta T cells to rapidly produce cytokines that regulate pathogen clearance, inflammation and tissue homeostasis in response to tissue stress. These studies provide insights into how they acquire these properties, through both developmental programming in the thymus and functional polarization in the periphery. Innate features of gammadelta T cells underlie their non-redundant role in several physiopathological contexts and are therefore being exploited in the design of new immunotherapeutic approaches.
Collapse
|