51
|
Calses PC, Dhillon KK, Tucker N, Chi Y, Huang JW, Kawasumi M, Nghiem P, Wang Y, Clurman BE, Jacquemont C, Gafken PR, Sugasawa K, Saijo M, Taniguchi T. DGCR8 Mediates Repair of UV-Induced DNA Damage Independently of RNA Processing. Cell Rep 2017; 19:162-174. [PMID: 28380355 DOI: 10.1016/j.celrep.2017.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/24/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Ultraviolet (UV) radiation is a carcinogen that generates DNA lesions. Here, we demonstrate an unexpected role for DGCR8, an RNA binding protein that canonically functions with Drosha to mediate microRNA processing, in the repair of UV-induced DNA lesions. Treatment with UV induced phosphorylation on serine 153 (S153) of DGCR8 in both human and murine cells. S153 phosphorylation was critical for cellular resistance to UV, the removal of UV-induced DNA lesions, and the recovery of RNA synthesis after UV exposure but not for microRNA expression. The RNA-binding and Drosha-binding activities of DGCR8 were not critical for UV resistance. DGCR8 depletion was epistatic to defects in XPA, CSA, and CSB for UV sensitivity. DGCR8 physically interacted with CSB and RNA polymerase II. JNKs were involved in the UV-induced S153 phosphorylation. These findings suggest that UV-induced S153 phosphorylation mediates transcription-coupled nucleotide excision repair of UV-induced DNA lesions in a manner independent of microRNA processing.
Collapse
Affiliation(s)
- Philamer C Calses
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Molecular and Cellular Biology Graduate Program, University of Washington, 1959 NE Pacific, HSB T-466, Seattle, WA 98195-7275, USA
| | - Kiranjit K Dhillon
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Nyka Tucker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Yong Chi
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Jen-Wei Huang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Molecular and Cellular Biology Graduate Program, University of Washington, 1959 NE Pacific, HSB T-466, Seattle, WA 98195-7275, USA
| | - Masaoki Kawasumi
- Division of Dermatology, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109-4714, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109-4714, USA
| | - Yemin Wang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Bruce E Clurman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Celine Jacquemont
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Philip R Gafken
- Proteomics Core Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., DE-352, Seattle, WA 98109-1024, USA
| | - Kaoru Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masafumi Saijo
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan
| | - Toshiyasu Taniguchi
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
52
|
Bacik LC, Chung C. Human papillomavirus-associated cutaneous disease burden in human immunodeficiency virus (HIV)-positive patients: the role of human papillomavirus vaccination and a review of the literature. Int J Dermatol 2017; 57:627-634. [PMID: 29152727 DOI: 10.1111/ijd.13819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022]
Abstract
Human papillomavirus (HPV) infection is related to the development of cutaneous squamous cell carcinoma, oropharyngeal carcinoma, and anogenital malignancies. Patients infected with human immunodeficiency virus (HIV) have impaired cell-mediated immunity, placing them at risk for more prolonged infection with a greater likelihood of disease expression. This presents important implications for screening and treatment of HPV in the HIV patient population. The use of prophylactic vaccines directed against HPV has been a promising clinical development, though the immunogenicity of these vaccines in the immunocompromised host and in patients with previously established HPV infections has not been well established. In this review, we describe the pathogenesis and epidemiology of HPV-related cutaneous malignancies in patients with HIV. We outline the current guidelines and recent advances in the field of HPV vaccination. It is our hope that increasing awareness of the HPV-related HIV comorbidities will lead to developments in preventative medicine capable of reducing the burden of these diseases. We recognize the importance of prevention as a primary defense against disease and hope that this article organizes and disseminates recent findings in the field of HPV-associated comorbidities in the HIV population.
Collapse
Affiliation(s)
- Lindsay C Bacik
- Department of Dermatology, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Catherine Chung
- Department of Dermatology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
53
|
Wendel SO, Wallace NA. Loss of Genome Fidelity: Beta HPVs and the DNA Damage Response. Front Microbiol 2017; 8:2250. [PMID: 29187845 PMCID: PMC5694782 DOI: 10.3389/fmicb.2017.02250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022] Open
Abstract
While the role of genus alpha human papillomaviruses in the tumorigenesis and tumor maintenance of anogenital and oropharyngeal cancers is well-established, the role of genus beta human papilloviruses (β-HPVs) in non-melanoma skin cancers (NMSCs) is less certain. Persistent β-HPV infections cause NMSCs in sun-exposed skin of people with a rare genetic disorder, epidermodysplasia verruciformis. However, β-HPV infections in people without epidermodysplasia verruciformis are typically transient. Further, β-HPV gene expression is not necessary for tumor maintenance in the general population as on average there is fewer than one copy of the β-HPV genome per cell in NMSC tumor biopsies. Cell culture, epidemiological, and mouse model experiments support a role for β-HPV infections in the initiation of NMSCs through a "hit and run" mechanism. The virus is hypothesized to act as a cofactor, augmenting the genome destabilizing effects of UV. Supporting this idea, two β-HPV proteins (β-HPV E6 and E7) disrupt the cellular response to UV exposure and other genome destabilizing events by abrogating DNA repair and deregulating cell cycle progression. The aberrant damage response increases the likelihood of oncogenic mutations capable of driving tumorigenesis independent of a sustained β-HPV infection or continued viral protein expression. This review summarizes what is currently known about the deleterious effects of β-HPV on genome maintenance in the context of the virus's putative role in NMSC initiation.
Collapse
|
54
|
Taute S, Pfister HJ, Steger G. Induction of Tyrosine Phosphorylation of UV-Activated EGFR by the Beta-Human Papillomavirus Type 8 E6 Leads to Papillomatosis. Front Microbiol 2017; 8:2197. [PMID: 29176966 PMCID: PMC5686093 DOI: 10.3389/fmicb.2017.02197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 11/13/2022] Open
Abstract
Epidemiological evidence is accumulating that beta-human papillomaviruses (HPV) synergize with UV-light in the development of precancerous actinic keratosis, and cutaneous squamous cell carcinomas (cSCC), one of the most common cancers in the Caucasian population. We previously demonstrated the tumorigenic activity of beta-HPV type 8 (HPV8) in the skin of transgenic mice and its cooperation with UV-light. Analysis of underlying mechanisms now showed that in keratinocytes expressing the HPV8E6 protein a transient increase of tyrosine phosphorylated epidermal growth factor receptor (EGFR) in response to UV-irradiation occurred, while EGFR tyrosine phosphorylation, i.e., receptor tyrosine kinase (RTK)-activity was hardly affected in empty vector control cells. FACS and immunofluorescences revealed that the EGFR was internalized into early endosomes in response to UV-exposure in both, HPV8E6 positive and in control cells, yet with a higher rate in the presence of HPV8E6. Moreover, only in HPV8E6 expressing keratinocytes the EGFR was further sorted into CD63+ intraluminal vesicles, indicative for trafficking to late endosomes. The latter requires the ubiquitination of the EGFR, and in correlation, we could show that only in HPV8E6 positive keratinocytes the EGFR was ubiquitinated upon UV-exposure. HPV8E6 and tyrosine phosphorylated EGFR directly interacted which was enhanced by UV-irradiation. The treatment of K14-HPV8E6 transgenic mice with Canertinib, an inhibitor of the RTK-activity of the EGFR, suppressed skin papilloma growth in response to UV-irradiation. This confirms the crucial role of the RTK-activity of the EGFR in HPV8E6 and UV-mediated papillomatosis in transgenic mice. Taken together, our results demonstrate that HPV8E6 alters the signaling of the UV-activated EGFR and this is a critical step in papilloma formation in response to UV-light in transgenic mice. Our results provide a molecular basis how a beta-HPV type may support early steps of skin tumor formation in cooperation with UV-light.
Collapse
Affiliation(s)
- Stefanie Taute
- Institute of Virology, University of Cologne, Cologne, Germany
| | | | - Gertrud Steger
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
55
|
Hasche D, Stephan S, Braspenning-Wesch I, Mikulec J, Niebler M, Gröne HJ, Flechtenmacher C, Akgül B, Rösl F, Vinzón SE. The interplay of UV and cutaneous papillomavirus infection in skin cancer development. PLoS Pathog 2017; 13:e1006723. [PMID: 29190285 PMCID: PMC5708609 DOI: 10.1371/journal.ppat.1006723] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Cutaneous human papillomaviruses (HPVs) are considered as cofactors for non-melanoma skin cancer (NMSC) development, especially in association with UVB. Extensively studied transgenic mouse models failed to mimic all aspects of virus-host interactions starting from primary infection to the appearance of a tumor. Using the natural model Mastomys coucha, which reflects the human situation in many aspects, we provide the first evidence that only UVB and Mastomys natalensis papillomavirus (MnPV) infection strongly promote NMSC formation. Using UVB exposures that correspond to UV indices of different geographical regions, irradiated animals developed either well-differentiated keratinizing squamous cell carcinomas (SCCs), still supporting productive infections with high viral loads and transcriptional activity, or poorly differentiated non-keratinizing SCCs almost lacking MnPV DNA and in turn, early and late viral transcription. Intriguingly, animals with the latter phenotype, however, still showed strong seropositivity, clearly verifying a preceding MnPV infection. Of note, the mere presence of MnPV could induce γH2AX foci, indicating that viral infection without prior UVB exposure can already perturb genome stability of the host cell. Moreover, as shown both under in vitro and in vivo conditions, MnPV E6/E7 expression also attenuates the excision repair of cyclobutane pyrimidine dimers upon UVB irradiation, suggesting a viral impact on the DNA damage response. While mutations of Ras family members (e.g. Hras, Kras, and Nras) were absent, the majority of SCCs harbored-like in humans-Trp53 mutations especially at two hot-spots in the DNA-binding domain, resulting in a loss of function that favored tumor dedifferentiation, counter-selective for viral maintenance. Such a constellation provides a reasonable explanation for making continuous viral presence dispensable during skin carcinogenesis as observed in patients with NMSC.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Stephan
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilona Braspenning-Wesch
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julita Mikulec
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Niebler
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina E. Vinzón
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
56
|
Hong SY. DNA damage response is hijacked by human papillomaviruses to complete their life cycle. J Zhejiang Univ Sci B 2017; 18:215-232. [PMID: 28271657 DOI: 10.1631/jzus.b1600306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The DNA damage response (DDR) is activated when DNA is altered by intrinsic or extrinsic agents. This pathway is a complex signaling network and plays important roles in genome stability, tumor transformation, and cell cycle regulation. Human papillomaviruses (HPVs) are the main etiological agents of cervical cancer. Cervical cancer ranks as the fourth most common cancer among women and the second most frequent cause of cancer-related death worldwide. Over 200 types of HPVs have been identified and about one third of these infect the genital tract. The HPV life cycle is associated with epithelial differentiation. Recent studies have shown that HPVs deregulate the DDR to achieve a productive life cycle. In this review, I summarize current findings about how HPVs mediate the ataxia-telangiectasia mutated kinase (ATM) and the ATM-and RAD3-related kinase (ATR) DDRs, and focus on the roles that ATM and ATR signalings play in HPV viral replication. In addition, I demonstrate that the signal transducer and activator of transcription-5 (STAT)-5, an important immune regulator, can promote ATM and ATR activations through different mechanisms. These findings may provide novel opportunities for development of new therapeutic targets for HPV-related cancers.
Collapse
Affiliation(s)
- Shi-Yuan Hong
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
57
|
High-Risk Alphapapillomavirus Oncogenes Impair the Homologous Recombination Pathway. J Virol 2017; 91:JVI.01084-17. [PMID: 28768872 DOI: 10.1128/jvi.01084-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023] Open
Abstract
Persistent high-risk genus human Alphapapillomavirus (HPV) infections cause nearly every cervical carcinoma and a subset of tumors in the oropharyngeal tract. During the decades required for HPV-associated tumorigenesis, the cellular genome becomes significantly destabilized. Our analysis of cervical tumors from four separate data sets found a significant upregulation of the homologous-recombination (HR) pathway genes. The increased abundance of HR proteins can be replicated in primary cells by expression of the two HPV oncogenes (E6 and E7) required for HPV-associated transformation. HPV E6 and E7 also enhanced the ability of HR proteins to form repair foci, and yet both E6 and E7 reduce the ability of the HR pathway to complete double-strand break (DSB) repair by about 50%. The HPV oncogenes hinder HR by allowing the process to begin at points in the cell cycle when the lack of a sister chromatid to serve as a homologous template prevents completion of the repair. Further, HPV E6 attenuates repair by causing RAD51 to be mislocalized away from both transient and persistent DSBs, whereas HPV E7 is only capable of impairing RAD51 localization to transient lesions. Finally, we show that the inability to robustly repair DSBs causes some of these lesions to be more persistent, a phenotype that correlates with increased integration of episomal DNA. Together, these data support our hypothesis that HPV oncogenes contribute to the genomic instability observed in HPV-associated malignancies by attenuating the repair of damaged DNA.IMPORTANCE This study expands the understanding of HPV biology, establishing a direct role for both HPV E6 and E7 in the destabilization of the host genome by blocking the homologous repair of DSBs. To our knowledge, this is the first time that both viral oncogenes were shown to disrupt this DSB repair pathway. We show that HPV E6 and E7 allow HR to initiate at an inappropriate part of the cell cycle. The mislocalization of RAD51 away from DSBs in cells expressing HPV E6 and E7 hinders HR through a distinct mechanism. These observations have broad implications. The impairment of HR by HPV oncogenes may be targeted for treatment of HPV+ malignancies. Further, this attenuation of repair suggests HPV oncogenes may contribute to tumorigenesis by promoting the integration of the HPV genome, a common feature of HPV-transformed cells. Our data support this idea since HPV E6 stimulates the integration of episomes.
Collapse
|
58
|
Sominsky S, Shterzer N, Jackman A, Shapiro B, Yaniv A, Sherman L. E6 proteins of α and β cutaneous HPV types differ in their ability to potentiate Wnt signaling. Virology 2017; 509:11-22. [DOI: 10.1016/j.virol.2017.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023]
|
59
|
Spriggs CC, Laimins LA. Human Papillomavirus and the DNA Damage Response: Exploiting Host Repair Pathways for Viral Replication. Viruses 2017; 9:E232. [PMID: 28820495 PMCID: PMC5580489 DOI: 10.3390/v9080232] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
High-risk human papillomaviruses (HPVs) are the causative agents of cervical and other genital cancers. In addition, HPV infections are associated with the development of many oropharyngeal cancers. HPVs activate and repress a number of host cellular pathways to promote their viral life cycles, including those of the DNA damage response. High-risk HPVs activate the ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) DNA damage repair pathways, which are essential for viral replication (particularly differentiation-dependent genome amplification). These DNA repair pathways are critical in maintaining host genomic integrity and stability and are often dysregulated or mutated in human cancers. Understanding how these pathways contribute to HPV replication and transformation may lead to the identification of new therapeutic targets for the treatment of existing HPV infections.
Collapse
Affiliation(s)
- Chelsey C Spriggs
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| | - Laimonis A Laimins
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| |
Collapse
|
60
|
Hufbauer M, Akgül B. Molecular Mechanisms of Human Papillomavirus Induced Skin Carcinogenesis. Viruses 2017; 9:v9070187. [PMID: 28708084 PMCID: PMC5537679 DOI: 10.3390/v9070187] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Infection of the cutaneous skin with human papillomaviruses (HPV) of genus betapapillomavirus (βHPV) is associated with the development of premalignant actinic keratoses and squamous cell carcinoma. Due to the higher viral loads of βHPVs in actinic keratoses than in cancerous lesions, it is currently discussed that these viruses play a carcinogenic role in cancer initiation. In vitro assays performed to characterize the cell transforming activities of high-risk HPV types of genus alphapapillomavirus have markedly contributed to the present knowledge on their oncogenic functions. However, these assays failed to detect oncogenic functions of βHPV early proteins. They were not suitable for investigations aiming to study the interactive role of βHPV positive epidermis with mesenchymal cells and the extracellular matrix. This review focuses on βHPV gene functions with special focus on oncogenic mechanisms that may be relevant for skin cancer development.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany.
| | - Baki Akgül
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany.
| |
Collapse
|
61
|
Abstract
Patients suffering from Epidermodysplasia verruciformis (EV), a rare inherited skin disease, display a particular susceptibility to persistent infection with cutaneous genus beta-human papillomavirus (beta-HPV), such as HPV type 8. They have a high risk to develop non-melanoma skin cancer at sun-exposed sites. In various models evidence is emerging that cutaneous HPV E6 proteins disturb epidermal homeostasis and support carcinogenesis, however, the underlying mechanisms are not fully understood as yet. In this study we demonstrate that microRNA-203 (miR-203), a key regulator of epidermal proliferation and differentiation, is strongly down-regulated in HPV8-positive EV-lesions. We provide evidence that CCAAT/enhancer-binding protein α (C/EBPα), a differentiation-regulating transcription factor and suppressor of UV-induced skin carcinogenesis, directly binds the miR-203 gene within its hairpin region and thereby induces miR-203 transcription. Our data further demonstrate that the HPV8 E6 protein significantly suppresses this novel C/EBPα/mir-203-pathway. As a consequence, the miR-203 target ΔNp63α, a proliferation-inducing transcription factor, is up-regulated, while the differentiation factor involucrin is suppressed. HPV8 E6 specifically down-regulates C/EBPα but not C/EBPβ expression at the transcriptional level. As shown in knock-down experiments, C/EBPα is regulated by the acetyltransferase p300, a well-described target of cutaneous E6 proteins. Notably, p300 bound significantly less to the C/EBPα regulatory region in HPV8 E6 expressing keratinocytes than in control cells as demonstrated by chromatin immunoprecipitation. In situ analysis confirmed congruent suprabasal expression patterns of C/EBPα and miR-203 in non-lesional skin of EV-patients. In HPV8-positive EV-lesions both factors are potently down-regulated in vivo further supporting our in vitro data. In conclusion our study has unraveled a novel p300/C/EBPα/mir-203-dependent mechanism, by which the cutaneous HPV8 E6 protein may expand p63-positive cells in the epidermis of EV-patients and disturbs fundamental keratinocyte functions. This may drive HPV-mediated pathogenesis and may potentially also pave the way for skin carcinogenesis in EV-patients. Cutaneous genus beta-HPV types infect skin keratinocytes. Their potential role in skin carcinogenesis, particularly in immunosuppressed patients, has become a major field of interest. Patients suffering from the rare genetic disorder Epidermodysplasia verruciformis (EV) are highly susceptible to persistent genus beta-HPV infection and have an increased risk to develop non-melanoma skin cancer at sun-exposed sites. Thus, EV serves as a valuable model disease for studying genus beta-HPV biology. Here, we demonstrate that in human HPV8-infected EV skin lesions, the ‘stemness-repressing’ microRNA-203 is strongly down-regulated. In contrast, cells expressing the miR-203-regulated ‘stemness-maintaining’ factor p63, are highly amplified. Notably, we identified the transcription factor C/EBPα, a well-known suppressor of UV-induced skin carcinogenesis, as a p300-dependent target of the HPV8-encoded E6 oncoprotein and as a critical inducer of miR-203 gene expression. Our data provide evidence for a novel p300/C/EBPα/miR-203-dependent pathway, which links HPV8 infection to the expansion of p63-positive cells in the epidermis of EV-patients. This may contribute to the beta-HPV-induced disturbance of epidermal homeostasis and pave the way for skin carcinogenesis.
Collapse
|
62
|
Abstract
The beta genus comprises more than 50 beta human papillomavirus (HPV) types that are suspected to be involved, together with ultraviolet (UV) irradiation, in the development of non-melanoma skin cancer (NMSC), the most common form of human cancer. Two members of the genus beta, HPV5 and HPV8, were first identified in patients with a genetic disorder, epidermodysplasia verruciformis (EV), that confers high susceptibility to beta HPV infection and NMSC development. The fact that organ transplant recipients (OTRs) with an impaired immune system have an elevated risk of NMSC raised the hypothesis that beta HPV types may also be involved in skin carcinogenesis in non-EV patients. Epidemiological studies have shown that serological and viral DNA markers are weakly, but significantly, associated with history of NMSC in OTRs and the general population. Functional studies on mucosal high-risk (HR) HPV types have clearly demonstrated that the products of two early genes, E6 and E7, are the main viral oncoproteins, which are able to deregulate events closely linked to transformation, such as cell cycle progression and apoptosis. Studies on a small number of beta HPV types have shown that their E6 and E7 oncoproteins also have the ability to interfere with the regulation of key pathways/events associated with cellular transformation. However, the initial functional data indicate that the molecular mechanisms leading to cellular transformation are different from those of mucosal HR HPV types. Beta HPV types may act only at early stages of carcinogenesis, by potentiating the deleterious effects of other carcinogens, such as UV radiation.
Collapse
|
63
|
Cutaneous HPV8 and MmuPV1 E6 Proteins Target the NOTCH and TGF-β Tumor Suppressors to Inhibit Differentiation and Sustain Keratinocyte Proliferation. PLoS Pathog 2017; 13:e1006171. [PMID: 28107544 PMCID: PMC5287491 DOI: 10.1371/journal.ppat.1006171] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/01/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022] Open
Abstract
Cutaneous beta-papillomaviruses are associated with non-melanoma skin cancers that arise in patients who suffer from a rare genetic disorder, Epidermodysplasia verruciformis (EV) or after immunosuppression following organ transplantation. Recent studies have shown that the E6 proteins of the cancer associated beta human papillomavirus (HPV) 5 and HPV8 inhibit NOTCH and TGF-β signaling. However, it is unclear whether disruption of these pathways may contribute to cutaneous HPV pathogenesis and carcinogenesis. A recently identified papillomavirus, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinoma. To determine whether MmuPV1 may be an appropriate model to mechanistically dissect the molecular contributions of cutaneous HPV infections to skin carcinogenesis, we investigated whether MmuPV1 E6 shares biological and biochemical activities with HPV8 E6. We report that the HPV8 and MmuPV1 E6 proteins share the ability to bind to the MAML1 and SMAD2/SMAD3 transcriptional cofactors of NOTCH and TGF-beta signaling, respectively. Moreover, we demonstrate that these cutaneous papillomavirus E6 proteins inhibit these two tumor suppressor pathways and that this ability is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, we demonstrate that the ability of MmuPV1 E6 to bind MAML1 is necessary for papilloma formation in experimentally infected mice. Our results, therefore, suggest that experimental MmuPV1 infection in mice will be a robust and useful experimental system to model key aspects of cutaneous HPV infection, pathogenesis and carcinogenesis.
Collapse
|
64
|
Tomaić V. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites. Cancers (Basel) 2016; 8:cancers8100095. [PMID: 27775564 PMCID: PMC5082385 DOI: 10.3390/cancers8100095] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/15/2016] [Accepted: 10/08/2016] [Indexed: 01/13/2023] Open
Abstract
Approximately 200 human papillomaviruses (HPVs) infect human epithelial cells, of which the alpha and beta types have been the most extensively studied. Alpha HPV types mainly infect mucosal epithelia and a small group of these causes over 600,000 cancers per year worldwide at various anatomical sites, especially anogenital and head-and-neck cancers. Of these the most important is cervical cancer, which is the leading cause of cancer-related death in women in many parts of the world. Beta HPV types infect cutaneous epithelia and may contribute towards the initiation of non-melanoma skin cancers. HPVs encode two oncoproteins, E6 and E7, which are directly responsible for the development of HPV-induced carcinogenesis. They do this cooperatively by targeting diverse cellular pathways involved in the regulation of cell cycle control, of apoptosis and of cell polarity control networks. In this review, the biological consequences of papillomavirus targeting of various cellular substrates at diverse anatomical sites in the development of HPV-induced malignancies are highlighted.
Collapse
Affiliation(s)
- Vjekoslav Tomaić
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy.
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
65
|
Human Papillomavirus Infection and p16 Expression in Extragenital/Extraungual Bowen Disease in Immunocompromised Patients. Am J Dermatopathol 2016; 38:751-7. [DOI: 10.1097/dad.0000000000000530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
66
|
Cheng J, Yan S. Prognostic variables in high-risk cutaneous squamous cell carcinoma: a review. J Cutan Pathol 2016; 43:994-1004. [PMID: 27404896 DOI: 10.1111/cup.12766] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/27/2016] [Accepted: 04/13/2016] [Indexed: 12/29/2022]
Abstract
Cutaneous squamous cell carcinoma (SCC) is a growing public health problem in the United States. A subset of high-risk SCC exhibits a more aggressive clinical trajectory including increased local recurrence and lymph node metastasis. However, there are no universally accepted criteria to help define and manage these patients. This review provides an overview of the high-risk features of cutaneous SCC, prognostic stratification of various staging systems and treatment options. It further examines the prognostic factors influencing the staging of cutaneous head and neck SCC.
Collapse
Affiliation(s)
- Judy Cheng
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Shaofeng Yan
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
67
|
STAT-5 Regulates Transcription of the Topoisomerase IIβ-Binding Protein 1 (TopBP1) Gene To Activate the ATR Pathway and Promote Human Papillomavirus Replication. mBio 2015; 6:e02006-15. [PMID: 26695634 PMCID: PMC4701836 DOI: 10.1128/mbio.02006-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The life cycle of high-risk human papillomaviruses (HPVs) is dependent upon epithelial differentiation. Following infection of basal cells, HPV genomes are stably maintained at low copy numbers, and productive replication or amplification is restricted to highly differentiated suprabasal cells. In high-risk HPV infections, the ATM pathway is constitutively activated in the absence of external DNA-damaging agents and is required for productive viral replication. The ataxia telangiectasia (ATM) pathway repairs double-strand breaks in DNA, while the ataxia telangiectasia and Rad3-related (ATR) pathway targets single-strand breaks. Our studies show that the ATR pathway, like the ATM pathway, is activated in HPV-positive cells and that inhibitors of ATR or CHK1 phosphorylation block both amplification and late viral gene expression in differentiated cells while moderately reducing stable copy numbers in undifferentiated cells. TopBP1 is a critical upstream activator of the ATR pathway and is expressed at elevated levels in HPV-positive cells. This increased expression of TopBP1 is necessary for ATR/CHK1 activation in HPV-positive cells, and knockdown blocks amplification. Furthermore, TopBP1 activation is shown to be regulated at the level of transcription initiation by the innate immune regulator STAT-5, which is activated by HPV proteins. STAT-5 has also been shown to be a regulator of the ATM response, demonstrating that these two pathways are coordinately regulated in HPV-positive cells. These findings identify a novel link between the innate immune response and activation of the ATR DNA damage response in regulating the life cycle of high-risk HPVs. High-risk human papillomaviruses (HPVs) are the causative agents of cervical and other anogenital cancers, as well as many oral cancers. HPVs infect epithelial cells and restrict productive viral replication or amplification and virion production to differentiated cells. Our studies demonstrate that HPVs activate the ATR single-strand DNA repair pathway and this activation is necessary for HPV genome amplification. The innate immune regulator STAT-5 is shown to regulate transcription of the ATR binding factor TopBP1, and this is critical for the induction of the ATR pathway. Our study identifies important links between innate immune signaling, the ATR DNA damage pathway, and productive HPV replication that may lead to the characterization of new targets for the development of therapeutics to treat HPV-induced infections.
Collapse
|
68
|
Abstract
Cutaneous papillomaviruses are associated with specific skin diseases, such as extensive wart formation and the development of non-melanoma skin cancer (NMSC), especially in immunosuppressed patients. Hence, clinical approaches are required that prevent such lesions. Licensed human papillomavirus (HPV) vaccines confer type-restricted protection against HPV types 6, 11, 16 and 18, responsible of 90% of genital warts and 70% of cervical cancers, respectively. However, they do not protect against less prevalent high-risk types or cutaneous HPVs. Over the past few years, several studies explored the potential of developing vaccines targeting cutaneous papillomaviruses. These vaccines showed to be immunogenic and prevent skin tumor formation in certain animal models. Furthermore, under conditions mimicking the ones found in the intended target population (i.e., immunosuppression and in the presence of an already established infection before vaccination), recent preclinical data shows that immunization can still be effective. Strategies are currently focused on finding vaccine formulations that can confer protection against a broad range of papillomavirus-associated diseases. The state-of-the-art of these approaches and the future directions in the field will be presented.
Collapse
Affiliation(s)
- Sabrina E Vinzón
- a Division of Viral Transformation Mechanisms ; German Cancer Research Center (DKFZ) ; Heidelberg , Germany
| | | |
Collapse
|
69
|
Wieringa HW, van der Zee AGJ, de Vries EGE, van Vugt MATM. Breaking the DNA damage response to improve cervical cancer treatment. Cancer Treat Rev 2015; 42:30-40. [PMID: 26643553 DOI: 10.1016/j.ctrv.2015.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/25/2022]
Abstract
Every year, cervical cancer affects ∼500,000 women worldwide, and ∼275,000 patients die of this disease. The addition of platin-based chemotherapy to primary radiotherapy has increased 5-year survival of advanced-stage cervical cancer patients, which is, however, still only 66%. One of the factors thought to contribute to treatment failure is the ability of tumor cells to repair chemoradiotherapy-induced DNA damage. Therefore, sensitization of tumor cells for chemoradiotherapy via inhibition of the DNA damage response (DDR) as a novel strategy to improve therapy effect, is currently studied pre-clinically as well as in the clinic. Almost invariably, cervical carcinogenesis involves infection with the human papillomavirus (HPV), which inactivates part of the DNA damage response. This HPV-mediated partial inactivation of the DDR presents therapeutic targeting of the residual DDR as an interesting approach to achieve chemoradio-sensitization for cervical cancer. How the DDR can be most efficiently targeted, however, remains unclear. The fact that cisplatin and radiotherapy activate multiple signaling axes within the DDR further complicates a rational choice of therapeutic targets within the DDR. In this review, we provide an overview of the current preclinical and clinical knowledge about targeting the DDR in cervical cancer.
Collapse
Affiliation(s)
- Hylke W Wieringa
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
70
|
Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resist Updat 2015; 24:1-12. [PMID: 26830311 DOI: 10.1016/j.drup.2015.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
An increased tendency of genomic alterations during the life cycle of cells leads to genomic instability, which is a major driving force for tumorigenesis. A considerable fraction of tumor cells are tetraploid or aneuploid, which renders them intrinsically susceptible to mitotic aberrations, and hence, are particularly sensitive to the induction of mitotic catastrophe. Resistance to cell death is also closely linked to genomic instability, as it enables malignant cells to expand even in a stressful environment. Currently it is known that cells can die via multiple mechanisms. Mitotic catastrophe represents a step preceding apoptosis or necrosis, depending on the expression and/or proper function of several proteins. Mitotic catastrophe was proposed to be an onco-suppressive mechanism and the evasion of mitotic catastrophe constitutes one of the gateways to cancer development. Thus, stimulation of mitotic catastrophe appears to be a promising strategy in cancer treatment. Indeed, several chemotherapeutic drugs are currently used at concentrations that induce apoptosis irrespective of the cell cycle phase, yet are very efficient at triggering mitotic catastrophe at lower doses, significantly limiting side effects. In the present review we summarize current data concerning the role of mitotic catastrophe in cancer drug resistance and discuss novel strategies to break this link.
Collapse
|
71
|
Hufbauer M, Cooke J, van der Horst GTJ, Pfister H, Storey A, Akgül B. Human papillomavirus mediated inhibition of DNA damage sensing and repair drives skin carcinogenesis. Mol Cancer 2015; 14:183. [PMID: 26511842 PMCID: PMC4625724 DOI: 10.1186/s12943-015-0453-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The failure to mount an effective DNA damage response to repair UV induced cyclobutane pyrimidine dimers (CPDs) results in an increased propensity to develop cutaneous squamous cell carcinoma (cSCC). High-risk patient groups, such as organ transplant recipients (OTRs) frequently exhibit field cancerization at UV exposed body sites from which multiple human papillomavirus (HPV)-associated cSCCs develop rapidly, leading to profound morbidity and increased mortality. In vitro molecular evidence indicates that HPV of genus beta-papillomavirus (β-PV) play an important role in accelerating the early stages of skin tumorigenesis. METHODS We investigated the effects of UV induced DNA damage in murine models of β-PV E6 oncoprotein driven skin tumorigenesis by crossing K14-HPV8-E6wt mice (developing skin tumors after UV treatment) with K14-CPD-photolyase animals and by generating the K14-HPV8-E6-K136N mutant mouse strain. Thymine dimers (marker for CPDs) and γH2AX (a marker for DNA double strand breaks) levels were determined in the murine skin and organotypic skin cultures of E6 expressing primary human keratinocytes after UV-irradiation by immunohistochemistry and in cell lines by In Cell Western blotting. Phosphorylation of ATR/Chk1 and ATM were assessed in cell lines and organotypic skin cultures by Western blots and immunohistochemistry. RESULTS Skin tumor development after UV-irradiation in K14-HPV8-E6wt mice could completely be blocked through expression of CPD-photolyase. Through quantification of thymine dimers after UV irradiation in cells expressing E6 proteins with point mutations at conserved residues we identified a critical lysine in the C-terminal part of the protein for prevention of DNA damage repair and p300 binding. Whereas all K14-HPV8-E6wt animals develop skin tumors after UV expression of the HPV8-E6-K136N mutant significantly blocked skin tumor development after UV treatment. The persistence of CPDs in hyperproliferative epidermis K14-HPV8-E6wt skin resulted in the accumulation of γH2AX foci. DNA damage sensing was impaired in E6 positive cells grown as monolayer culture and in organotypic cultures, due to lack of phosphorylation of ATM, ATR and Chk1. CONCLUSION We showed that cells expressing E6 fail to sense and mount an effective response to repair UV-induced DNA lesions and demonstrated a physiological relevance of E6-mediated inhibition of DNA damage repair for tumor initiation. These are the first mechanistical in vivo data on the tumorigenicity of HPV8 and demonstrate that the impairment of DNA damage repair pathways by the viral E6 protein is a critical factor in HPV-driven skin carcinogenesis.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany
| | - James Cooke
- Centre for Cutaneous Research, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Gijsbertus T J van der Horst
- MGC, Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, 3000, CA, The Netherlands
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany
| | - Alan Storey
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Baki Akgül
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany.
| |
Collapse
|
72
|
Papillomavirus E6 Oncoproteins Take Common Structural Approaches to Solve Different Biological Problems. PLoS Pathog 2015; 11:e1005138. [PMID: 26470018 PMCID: PMC4607424 DOI: 10.1371/journal.ppat.1005138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
73
|
Human papillomaviruses: shared and distinct pathways for pathogenesis. Curr Opin Virol 2015; 14:87-92. [PMID: 26398222 DOI: 10.1016/j.coviro.2015.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/17/2022]
Abstract
Over 200 types of human papillomaviruses (HPV) have been identified that infect epithelial cells at different anatomic locations. HPVs are grouped into five genera with the alpha and beta viruses being the most commonly studied. Members of the alpha HPV genus infect genital epithelia and are the causative agents of many anogenital cancers. Beta HPVs infect cutaneous epithelia and have been suggested as co-factors in the development of non-melanoma skin cancers. Recent studies have shown that activation of DNA damage pathways is important for the productive life cycle of the alpha HPVs while the beta viruses suppress their activation. These differences likely contribute to the varying types of lesions and malignancies that are associated with these viruses.
Collapse
|
74
|
Abstract
Human papillomaviruses (HPVs) infect the epidermis as well as mucous membranes of humans. They are the causative agents of anogenital tract and some oropharyngeal cancers. Infections begin in the basal epithelia, where the viral genome replicates slowly along with its host cell. As infected cells begin to differentiate and progress toward the periphery, the virus drives proliferation in cells that would otherwise be quiescent. To uncouple differentiation from continued cellular propagation, HPVs express two oncoproteins, HPV E6 and E7. This review focuses on high-risk α-HPV E6, which in addition to supporting viral replication has transforming properties. HPV E6 promotes p53 degradation and activates telomerase, but the multifaceted oncoprotein has numerous other functions that are highlighted here.
Collapse
Affiliation(s)
- Nicholas A Wallace
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109;
| | - Denise A Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109;
| |
Collapse
|
75
|
Chockalingam R, Downing C, Tyring SK. Cutaneous Squamous Cell Carcinomas in Organ Transplant Recipients. J Clin Med 2015; 4:1229-39. [PMID: 26239556 PMCID: PMC4484997 DOI: 10.3390/jcm4061229] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/21/2023] Open
Abstract
Non-melanoma skin cancers represent a major cause of morbidity after organ transplantation. Squamous cell carcinomas (SCC) are the most common cutaneous malignancies seen in this population, with a 65-100 fold greater incidence in organ transplant recipients compared to the general population. In recent years, human papillomaviruses (HPV) of the beta genus have been implicated in the pathogenesis of post-transplant SCCs. The underlying mechanism of carcinogenesis has been attributed to the E6 and E7 proteins of HPV. Specific immunosuppressive medications, such as the calcineurin inhibitors and azathioprine, are associated with a higher incidence of post-transplant SCCs compared to other immunosuppressive agents. Compared to other immunosuppressives, mTOR inhibitors and mycophenolate mofetil have been associated with a decreased risk of developing post-transplant non-melanoma skin cancers. As a result, they may represent ideal immunosuppressive medications in organ transplant recipients. Treatment options for post-transplant SCCs include surgical excision, Mohs micrographic surgery, systemic retinoid therapy, adjunct topical therapy, electrodessication and curettage, and radiation therapy. This review will discuss the epidemiology, risk factors, and management options of post-transplant SCCs. In addition, the underlying mechanisms of beta-HPV mediated carcinogenesis will be discussed.
Collapse
Affiliation(s)
- Ramya Chockalingam
- Medical School, the University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX 77030, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, 1401 Binz, Suite 200, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
76
|
Modulation of DNA damage and repair pathways by human tumour viruses. Viruses 2015; 7:2542-91. [PMID: 26008701 PMCID: PMC4452920 DOI: 10.3390/v7052542] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
With between 10% and 15% of human cancers attributable to viral infection, there is great interest, from both a scientific and clinical viewpoint, as to how these pathogens modulate host cell functions. Seven human tumour viruses have been identified as being involved in the development of specific malignancies. It has long been known that the introduction of chromosomal aberrations is a common feature of viral infections. Intensive research over the past two decades has subsequently revealed that viruses specifically interact with cellular mechanisms responsible for the recognition and repair of DNA lesions, collectively known as the DNA damage response (DDR). These interactions can involve activation and deactivation of individual DDR pathways as well as the recruitment of specific proteins to sites of viral replication. Since the DDR has evolved to protect the genome from the accumulation of deleterious mutations, deregulation is inevitably associated with an increased risk of tumour formation. This review summarises the current literature regarding the complex relationship between known human tumour viruses and the DDR and aims to shed light on how these interactions can contribute to genomic instability and ultimately the development of human cancers.
Collapse
|
77
|
McKinney CC, Hussmann KL, McBride AA. The Role of the DNA Damage Response throughout the Papillomavirus Life Cycle. Viruses 2015; 7:2450-69. [PMID: 26008695 PMCID: PMC4452914 DOI: 10.3390/v7052450] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022] Open
Abstract
The DNA damage response (DDR) maintains genomic integrity through an elaborate network of signaling pathways that sense DNA damage and recruit effector factors to repair damaged DNA. DDR signaling pathways are usurped and manipulated by the replication programs of many viruses. Here, we review the papillomavirus (PV) life cycle, highlighting current knowledge of how PVs recruit and engage the DDR to facilitate productive infection.
Collapse
Affiliation(s)
- Caleb C McKinney
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Katherine L Hussmann
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
78
|
β-HPV 5 and 8 E6 disrupt homology dependent double strand break repair by attenuating BRCA1 and BRCA2 expression and foci formation. PLoS Pathog 2015; 11:e1004687. [PMID: 25803638 PMCID: PMC4372404 DOI: 10.1371/journal.ppat.1004687] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023] Open
Abstract
Recent work has explored a putative role for the E6 protein from some β-human papillomavirus genus (β-HPVs) in the development of non-melanoma skin cancers, specifically β-HPV 5 and 8 E6. Because these viruses are not required for tumor maintenance, they are hypothesized to act as co-factors that enhance the mutagenic capacity of UV-exposure by disrupting the repair of the resulting DNA damage. Supporting this proposal, we have previously demonstrated that UV damage signaling is hindered by β-HPV 5 and 8 E6 resulting in an increase in both thymine dimers and UV-induced double strand breaks (DSBs). Here we show that β-HPV 5 and 8 E6 further disrupt the repair of these DSBs and provide a mechanism for this attenuation. By binding and destabilizing a histone acetyltransferase, p300, β-HPV 5 and 8 E6 reduce the enrichment of the transcription factor at the promoter of two genes critical to the homology dependent repair of DSBs (BRCA1 and BRCA2). The resulting diminished BRCA1/2 transcription not only leads to lower protein levels but also curtails the ability of these proteins to form repair foci at DSBs. Using a GFP-based reporter, we confirm that this reduced foci formation leads to significantly diminished homology dependent repair of DSBs. By deleting the p300 binding domain of β-HPV 8 E6, we demonstrate that the loss of robust repair is dependent on viral-mediated degradation of p300 and confirm this observation using a combination of p300 mutants that are β-HPV 8 E6 destabilization resistant and p300 knock-out cells. In conclusion, this work establishes an expanded ability of β-HPV 5 and 8 E6 to attenuate UV damage repair, thus adding further support to the hypothesis that β-HPV infections play a role in skin cancer development by increasing the oncogenic potential of UV exposure. Human Papillomaviruses are a family of viruses with over 100 different members that infect mucous membranes and skin. Infections with some of these viruses are linked to cancers of the cervix and oropharynx. In this work, we explore the question of whether other members of this virus family may also contribute to skin cancer by inhibiting the ability of cells to repair the damage caused from UV exposure. Here, we build on our previous work showing that the E6 protein from two of these viruses (β-HPV 5 and 8) reduces the cellular response to UV damage by decreasing the abundance of two cellular proteins (p300 and ATR) involved in repairing the UV-damaged DNA, leading to more double strand DNA breaks following UV exposure. Here we show that the loss of p300 has further deleterious consequences, specifically that it results in diminished expression of two proteins (BRCA1 and BRCA2) involved in the repair of double strand breaks. Our data shows that this results in fewer BRCA1 and BRCA2 repair foci forming at sites of damage and ultimately in attenuated repair of these lesions. Together, this work provides further support for a link between β-HPV infections and skin cancer.
Collapse
|
79
|
Beta genus papillomaviruses and skin cancer. Virology 2015; 479-480:290-6. [PMID: 25724416 DOI: 10.1016/j.virol.2015.02.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 11/23/2022]
Abstract
A role for the beta genus HPVs in keratinocyte carcinoma (KC) remains to be established. In this article we examine the potential role of the beta HPVs in cancer revealed by the epidemiology associating these viruses with KC and supported by oncogenic properties of the beta HPV proteins. Unlike the cancer associated alpha genus HPVs, in which transcriptionally active viral genomes are invariably found associated with the cancers, that is not the case for the beta genus HPVs and keratinocyte carcinomas. Thus a role for the beta HPVs in KC would necessarily be in the carcinogenesis initiation and not in the maintenance of the tumor.
Collapse
|
80
|
Quint KD, Genders RE, de Koning MNC, Borgogna C, Gariglio M, Bouwes Bavinck JN, Doorbar J, Feltkamp MC. Human Beta-papillomavirus infection and keratinocyte carcinomas. J Pathol 2015; 235:342-54. [PMID: 25131163 DOI: 10.1002/path.4425] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 12/15/2022]
Abstract
Although the role of oncogenic human Alpha-papillomaviruses (HPVs) in the development of mucosal carcinomas at different body sites (eg cervix, anus, oropharynx) is fully recognized, a role for HPV in keratinocyte carcinomas (KCs; basal and squamous cell carcinomas) of the skin is not yet clear. KCs are the most common cancers in Caucasians, with the major risk factor being ultraviolet (UV) light exposure. A possible role for Beta-HPV types (BetaPV) in the development of KC was suggested several decades ago, supported by a number of epidemiological studies. Our current review summarizes the recent molecular and histopathological evidence in support of a causal association between BetaPV and the development of KC, and outlines the suspected synergistic effect of viral gene expression with UV radiation and immune suppression. Further insights into the molecular pathways and protein interactions used by BetaPV and the host cell is likely to extend our understanding of the role of BetaPV in KC.
Collapse
Affiliation(s)
- Koen D Quint
- Department of Dermatology, Leiden University Medical Centre, The Netherlands; DDL Diagnostic Laboratory, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Reusser NM, Downing C, Guidry J, Tyring SK. HPV Carcinomas in Immunocompromised Patients. J Clin Med 2015; 4:260-81. [PMID: 26239127 PMCID: PMC4470124 DOI: 10.3390/jcm4020260] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/13/2014] [Accepted: 12/19/2014] [Indexed: 12/20/2022] Open
Abstract
Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide and can result in pre-malignancies or overt malignancies of the skin and mucosal surfaces. HPV-related illnesses are an important personal and public health problem causing physical, mental, sexual and financial detriments. Moreover, this set of malignancies severely affects the immunosuppressed population, particularly HIV-positive patients and organ-transplant recipients. There is growing incidence of HPV-associated anogenital malignancies as well as a decrease in the average age of affected patients, likely related to the rising number of high-risk individuals. Squamous cell carcinoma is the most common type of HPV-related malignancy. Current treatment options for HPV infection and subsequent disease manifestations include imiquimod, retinoids, intralesional bleomycin, and cidofovir; however, primary prevention with HPV vaccination remains the most effective strategy. This review will discuss anogenital lesions in immunocompromised patients, cutaneous warts at nongenital sites, the association of HPV with skin cancer in immunocompromised patients, warts and carcinomas in organ-transplant patients, HIV-positive patients with HPV infections, and the management of cutaneous disease in the immunocompromised patient.
Collapse
Affiliation(s)
- Nicole M Reusser
- Medical School, the University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX 77030, USA.
| | | | - Jacqueline Guidry
- Center for Clinical Studies, 1401 Binz, Suite 200, Houston, TX 77004, USA.
| | - Stephen K Tyring
- Medical School, the University of Texas Health Science Center at Houston, 1401 Binz, Suite 200, Houston, TX 77004, USA.
| |
Collapse
|
82
|
Locke FL, Rollison DE, Sondak VK. Merkel cell carcinoma and immunosuppression: what we still need to know. J Natl Cancer Inst 2015; 107:dju422. [PMID: 25575646 DOI: 10.1093/jnci/dju422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Frederick L Locke
- Department of Blood & Marrow Transplantation, Moffitt Cancer Center, Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (FLL); Department of Cancer Epidemiology, Moffitt Cancer Center, Departments of Oncologic Sciences and Dermatology and Cutaneous Surgery, University of South Florida Morsani College of Medicine, Tampa, FL (DER); Department of Cutaneous Oncology, Moffitt Cancer Center, Department of Oncologic Sciences and Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida FL (VKS)
| | - Dana E Rollison
- Department of Blood & Marrow Transplantation, Moffitt Cancer Center, Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (FLL); Department of Cancer Epidemiology, Moffitt Cancer Center, Departments of Oncologic Sciences and Dermatology and Cutaneous Surgery, University of South Florida Morsani College of Medicine, Tampa, FL (DER); Department of Cutaneous Oncology, Moffitt Cancer Center, Department of Oncologic Sciences and Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida FL (VKS)
| | - Vernon K Sondak
- Department of Blood & Marrow Transplantation, Moffitt Cancer Center, Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (FLL); Department of Cancer Epidemiology, Moffitt Cancer Center, Departments of Oncologic Sciences and Dermatology and Cutaneous Surgery, University of South Florida Morsani College of Medicine, Tampa, FL (DER); Department of Cutaneous Oncology, Moffitt Cancer Center, Department of Oncologic Sciences and Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida FL (VKS).
| |
Collapse
|
83
|
Abstract
Human papillomaviruses (HPVs) infect the squamous epithelium and can induce benign and malignant lesions. To date, more than 200 different HPV types have been identified and classified into five genera, α, β, γ, μ, and ν. While high-risk α mucosal HPVs have a well-established role in cervical carcinoma and a significant percentage of other anogenital tract and oral carcinomas, the biology of the cutaneous β HPVs and their contribution to non-melanoma skin cancer (NMSC) has been less studied. Although the association of β HPV infection with NMSC in patients with a rare, genetically determined condition, epidermodysplasia verruciformis has been well established, the role of β HPV infection with NMSC in the normal population remains controversial. In stark contrast to α HPV-associated cancers, the presence of the β HPV genome does not appear to be mandatory for the maintenance of the malignant phenotype. Moreover, the mechanism of action of the β HPV E6 and E7 oncoproteins differs from the β HPV oncoproteins.
Collapse
Affiliation(s)
- Margaret E McLaughlin-Drubin
- Division of Infectious Diseases, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA.
| |
Collapse
|
84
|
Accardi R, Gheit T. Cutaneous HPV and skin cancer. Presse Med 2014; 43:e435-43. [DOI: 10.1016/j.lpm.2014.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/25/2014] [Indexed: 12/31/2022] Open
|
85
|
Ding X, Lucas T, Marcuzzi GP, Pfister H, Eming SA. Distinct Functions of Epidermal and Myeloid-Derived VEGF-A in Skin Tumorigenesis Mediated by HPV8. Cancer Res 2014; 75:330-43. [DOI: 10.1158/0008-5472.can-13-3007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
86
|
Shterzer N, Heyman D, Shapiro B, Yaniv A, Jackman A, Serour F, Chaouat M, Gonen P, Tommasino M, Sherman L. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes. Virology 2014; 468-470:647-659. [PMID: 25443667 DOI: 10.1016/j.virol.2014.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/14/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis.
Collapse
Affiliation(s)
- Naama Shterzer
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dariya Heyman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Beny Shapiro
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Abraham Yaniv
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anna Jackman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Francis Serour
- Department of Pediatric Surgery, The E. Wolfson Medical Center, Holon, Israel
| | - Malka Chaouat
- Laboratory of Experimental Surgery, Hadassah University Hospital, Ein Karem, Jerusalem, Israel
| | - Pinhas Gonen
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Levana Sherman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
87
|
|
88
|
Improved detection reveals active β-papillomavirus infection in skin lesions from kidney transplant recipients. Mod Pathol 2014; 27:1101-15. [PMID: 24390217 DOI: 10.1038/modpathol.2013.240] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023]
Abstract
The aim of this study was to determine whether detection of β-HPV gene products, as defined in epidermodysplasia verruciformis skin cancer, could also be observed in lesions from kidney transplant recipients alongside the viral DNA. A total of 111 samples, corresponding to 79 skin lesions abscised from 17 kidney transplant recipients, have been analyzed. The initial PCR analysis demonstrated that β-HPV-DNA was highly present in our tumor series (85%). Using a combination of antibodies raised against the E4 and L1 proteins of the β-genotypes, we were able to visualize productive infection in 4 out of 19 actinic keratoses, and in the pathological borders of 1 out of 14 squamous cell carcinomas and 1 out of 31 basal cell carcinomas. Increased expression of the cellular proliferation marker minichromosome maintenance protein 7 (MCM7), that extended into the upper epithelial layers, was a common feature of all the E4-positive areas, indicating that cells were driven into the cell cycle in areas of productive viral infections. Although the present study does not directly demonstrate a causal role of these viruses, the detection of E4 and L1 positivity in actinic keratosis and the adjacent pathological epithelium of skin cancer, clearly shows that β-HPV are actively replicating in the intraepidermal precursor lesions of kidney transplant recipients and can therefore cooperate with other carcinogenic agents, such as UVB, favoring skin cancer promotion.
Collapse
|
89
|
The ATR signaling pathway is disabled during infection with the parvovirus minute virus of mice. J Virol 2014; 88:10189-99. [PMID: 24965470 DOI: 10.1128/jvi.01412-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The ATR kinase has essential functions in maintenance of genome integrity in response to replication stress. ATR is recruited to RPA-coated single-stranded DNA at DNA damage sites via its interacting partner, ATRIP, which binds to the large subunit of RPA. ATR activation typically leads to activation of the Chk1 kinase among other substrates. We show here that, together with a number of other DNA repair proteins, both ATR and its associated protein, ATRIP, were recruited to viral nuclear replication compartments (autonomous parvovirus-associated replication [APAR] bodies) during replication of the single-stranded parvovirus minute virus of mice (MVM). Chk1, however, was not activated during MVM infection even though viral genomes bearing bound RPA, normally a potent trigger of ATR activation, accumulate in APAR bodies. Failure to activate Chk1 in response to MVM infection was likely due to our observation that Rad9 failed to associate with chromatin at MVM APAR bodies. Additionally, early in infection, prior to the onset of the virus-induced DNA damage response (DDR), stalling of the replication of MVM genomes with hydroxyurea (HU) resulted in Chk1 phosphorylation in a virus dose-dependent manner. However, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to HU and various other drug treatments. Finally, ATR phosphorylation became undetectable upon MVM infection, and although virus infection induced RPA32 phosphorylation on serine 33, an ATR-associated phosphorylation site, this phosphorylation event could not be prevented by ATR depletion or inhibition. Together our results suggest that MVM infection disables the ATR signaling pathway. IMPORTANCE Upon infection, the parvovirus MVM activates a cellular DNA damage response that governs virus-induced cell cycle arrest and is required for efficient virus replication. ATM and ATR are major cellular kinases that coordinate the DNA damage response to diverse DNA damage stimuli. Although a significant amount has been discovered about ATM activation during parvovirus infection, involvement of the ATR pathway has been less studied. During MVM infection, Chk1, a major downstream target of ATR, is not detectably phosphorylated even though viral genomes bearing the bound cellular single-strand binding protein RPA, normally a potent trigger of ATR activation, accumulate in viral replication centers. ATR phosphorylation also became undetectable. In addition, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to hydroxyurea and various other drug treatments. Our results suggest that MVM infection disables this important cellular signaling pathway.
Collapse
|
90
|
Genus beta human papillomavirus E6 proteins vary in their effects on the transactivation of p53 target genes. J Virol 2014; 88:8201-12. [PMID: 24850740 DOI: 10.1128/jvi.01197-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED The genus beta human papillomaviruses (beta HPVs) cause cutaneous lesions and are thought to be involved in the initiation of some nonmelanoma skin cancers (NMSCs), particularly in patients with the genetic disorder epidermodysplasia verruciformis (EV). We have previously reported that at least two of the genus beta HPV E6 proteins bind to and/or increase the steady-state levels of p53 in squamous epithelial cells. This is in contrast to a well-characterized ability of the E6 proteins of cancer-associated HPVs of genus alpha HPV, which inactivate p53 by targeting its ubiquitin-mediated proteolysis. In this study, we have investigated the ability of genus beta E6 proteins from eight different HPV types to block the transactivation of p53 target genes following DNA damage. We find that the E6 proteins from diverse beta HPV species and types vary in their capacity to block the induction of MDM2, p21, and proapoptotic genes after genotoxic stress. We conclude that some genus beta HPV E6 proteins inhibit at least some p53 target genes, although perhaps not by the same mechanism or to the same degree as the high-risk genus alpha HPV E6 proteins. IMPORTANCE This study addresses the ability of various human papillomavirus E6 proteins to block the activation of p53-responsive cellular genes following DNA damage in human keratinocytes, the normal host cell for HPVs. The E6 proteins encoded by the high-risk, cancer-associated HPV types of genus alpha HPV have a well-established activity to target p53 degradation and thereby inhibit the response to DNA damage. In this study, we have investigated the ability of genus beta HPV E6 proteins from eight different HPV types to block the ability of p53 to transactivate downstream genes following DNA damage. We find that some, but not all, genus beta HPV E6 proteins can block the transactivation of some p53 target genes. This differential response to DNA damage furthers the understanding of cutaneous HPV biology and may help to explain the potential connection between some beta HPVs and cancer.
Collapse
|
91
|
Horton JS, Stokes AJ. The transmembrane channel-like protein family and human papillomaviruses: Insights into epidermodysplasia verruciformis and progression to squamous cell carcinoma. Oncoimmunology 2014; 3:e28288. [PMID: 24800179 PMCID: PMC4006860 DOI: 10.4161/onci.28288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/25/2022] Open
Abstract
Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by increased sensitivity to infection by the β-subtype of human papillomaviruses (β-HPVs), causing persistent, tinea versicolor-like dermal lesions. In a majority of affected individuals, these macular lesions progress to invasive cutaneous squamous cell carcinoma (CSCC) in sun-exposed areas. While mutations in transmembrane channel-like 6 (TMC6 / EVER1) and 8 (TMC8 / EVER2) have been causally linked to EV, their molecular functions are unclear. It is likely that their protective effects involve regulation of the β-HPV life cycle, host keratinocyte apoptosis vs. survival balance and/or T-cell interaction with infected host cells.
Collapse
Affiliation(s)
- Jaime S Horton
- Laboratory of Experimental Medicine; John A. Burns School of Medicine; Honolulu, HI USA ; Department of Cell and Molecular Biology; John A. Burns School of Medicine; Honolulu, HI USA
| | - Alexander J Stokes
- Laboratory of Experimental Medicine; John A. Burns School of Medicine; Honolulu, HI USA ; Department of Cell and Molecular Biology; John A. Burns School of Medicine; Honolulu, HI USA ; Chaminade University; Honolulu, HI USA
| |
Collapse
|
92
|
Beta human papillomavirus E6 expression inhibits stabilization of p53 and increases tolerance of genomic instability. J Virol 2014; 88:6112-27. [PMID: 24648447 DOI: 10.1128/jvi.03808-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Infections with the beta genus of human papillomaviruses (β-HPVs) may contribute to the development of nonmelanoma skin cancers. However, β-HPV genomes are found at too low a copy number in tumors for the virus to be necessary for tumor maintenance. Instead, they are hypothesized to destabilize the host genome by allowing the persistence of mutations that can drive tumorigenesis independently of the viral genome. Supporting this premise is our previous finding that the expression of some β-HPV E6 proteins can attenuate p53 signaling in response to DNA damage. We show that β-HPV E6 proteins can prevent the stabilization of p53 in response to two types of genome-destabilizing events, aberrant mitosis and dysregulated centrosome duplication. The inability to stabilize p53 in response to these stimuli allows cells expressing HPV5, HPV8, or HPV38 E6 to remain proliferatively active, leading to further genome deterioration in a proportion of these cells. These phenotypes are lost by the introduction of a mutation into the p300 binding domain of HPV8 E6 or by the transfection of mutated p300 that is resistant to the degradation mediated by HPV5 or HPV8 E6. These findings expand the understanding of the role played by p300 in promoting the faithful resolution of mitotic figures as well as proper centrosome duplication. Finally, we describe a phenomenon by which binucleated cells are resolved via cytokinesis into two cells, each with one nucleus. These data support the hypothesis that β-HPV infections may promote tumorigenesis via genome destabilization. IMPORTANCE The work described in this report provides support for the hypothesis that β-HPV infections may contribute to nonmelanoma skin cancer by increasing the likelihood that tumorigenic mutations are introduced into the host cell's genome. We demonstrate that expression of the E6 proteins from some of these viruses increases the tolerance of two genome-destabilizing events, aberrant cell division and dysregulated centrosome duplication. Typically, these mutagenic occurrences elicit the stabilization of the tumor suppressor p53, which prevents further propagation of cells containing these errors. We show that the expression of β-HPV E6 restricts this stabilization of p53, leading not only to continued cellular proliferation but also to further accumulation of similar mutagenic events. Finally, in addition to supporting a role for β-HPV infections in certain skin cancers, we present studies with a mutated β-HPV E6 protein suggesting that the histone acetyltransferase p300 plays a role in promoting genome stability during replication.
Collapse
|
93
|
Manipulation of cellular DNA damage repair machinery facilitates propagation of human papillomaviruses. Semin Cancer Biol 2014; 26:30-42. [PMID: 24412279 DOI: 10.1016/j.semcancer.2013.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 01/08/2023]
Abstract
In general, the interplay among viruses and DNA damage repair (DDR) pathways can be divided based on whether the interaction promotes or inhibits the viral lifecycle. The propagation of human papillomaviruses is both promoted and inhibited by DDR proteins. As a result, HPV proteins both activate repair pathways, such as the ATM and ATR pathways, and inhibit other pathways, most notably the p53 signaling pathway. Indeed, the role of HPV proteins, with regard to the DDR pathways, can be divided into two broad categories. The first set of viral proteins, HPV E1 and E2 activate a DNA damage response and recruit repair proteins to viral replication centers, where these proteins are likely usurped to replicate the viral genome. Because the activation of the DDR response typically elicits a cell cycle arrest that would impeded the viral lifecycle, the second set of HPV proteins, HPV E6 and E7, prevents the DDR response from pausing cell cycle progression or inducing apoptosis. This review provides a detailed account of the interactions among HPV proteins and DDR proteins that facilitate HPV propagation.
Collapse
|
94
|
Tommasino M. The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol 2013; 26:13-21. [PMID: 24316445 DOI: 10.1016/j.semcancer.2013.11.002] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 01/17/2023]
Abstract
Human papillomaviruses (HPVs) are a family of small double-stranded DNA viruses that have a tropism for the epithelia of the genital and upper respiratory tracts and for the skin. Approximately 150 HPV types have been discovered so far, which are classified into several genera based on their DNA sequence. Approximately 15 high-risk mucosal HPV types are clearly associated with cervical cancer; HPV16 and HPV18 are the most carcinogenic since they are responsible for approximately 50% and 20% of all cervical cancers worldwide, respectively. It is now also clear that these viruses are linked to a subset of other genital cancers, as well as head and neck cancers. Due to their high level of carcinogenic activity, HPV16 and HPV18 are the most studied HPV types so far. Biological studies have highlighted the key roles in cellular transformation of the products of two viral early genes, E6 and E7. Many of the mechanisms of E6 and E7 in subverting the regulation of fundamental cellular events have been fully characterized, contributing not only to our knowledge of how the oncogenic viruses promote cancer development but also to our understanding of basic cell biology. Despite HPV research resulting in extraordinary achievements in the last four decades, significantly improving the screening and prophylaxis of HPV-induced lesions, additional research is necessary to characterize the biology and epidemiology of the vast number of HPV types that have been poorly investigated so far, with a final aim of clarifying their potential roles in other human diseases.
Collapse
Affiliation(s)
- Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer - World Health Organization, 150 Cours Albert-Thomas, 69372 Lyon cedex 08, France.
| |
Collapse
|
95
|
Martin E, Dang J, Bzhalava D, Stern J, Edelstein ZR, Koutsky LA, Kiviat NB, Feng Q. Characterization of three novel human papillomavirus types isolated from oral rinse samples of healthy individuals. J Clin Virol 2013; 59:30-7. [PMID: 24268765 DOI: 10.1016/j.jcv.2013.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Despite the strong evidence of HPV infection as the etiological agent in a subset of oral cancer, oral α-HPV detection is rare in healthy individuals, and little is known of the existing of novel HPV types in oral cavity. OBJECTIVE We determined whether novel HPV types can be isolated from oral rinse samples collected from healthy individuals. STUDY DESIGN We performed rolling circle amplification (RCA) coupled with degenerated PCR assay on 48 oral rinse samples to amplify novel HPV types. Full length HPV DNA was cloned using long range PCR. Quantitative type specific Taqman assays were used to determine the prevalence of novel HPV types in 158 archived oral tissue samples. RESULTS We were able to isolate four novel human papillomavirus types. Full length HPV DNA was cloned for three of the four novel HPV types. All four HPV types belong to the genus Gammapapillomavirus (γ-PV), where HPV 171 is most closely related to HPV 169, showing 88% similarity; HPV 172 is most closely related to HPV 156, showing 70% similarity; HPV 173 is most closely related to HPV 4, showing 73% similarity; oral sample lavage (OSL) 37 is most closely related to HPV 144, showing 69% similarity. Finally, we showed that HPV 173 was rarely present in oral tissues (2/158), HPV 172 was only detected in normal oral tissues (25/76), and HPV 171 was more prevalent in malignant oral tissues (17/82 vs. 10/76, p=0.21). CONCLUSIONS Novel γ-HPV types are present in oral cavity of healthy individuals.
Collapse
Affiliation(s)
- Erin Martin
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Juliet Dang
- Department of Oral Biology, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Davit Bzhalava
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joshua Stern
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Zoe R Edelstein
- HIV Center for Clinical and Behavioral Studies, Columbia University, New York, NY, United States
| | - Laura A Koutsky
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Nancy B Kiviat
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Qinghua Feng
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|
96
|
Toll A, Lloveras B, Masferrer E, Ferrándiz-Pulido C, García-Patos V, Gheit T, Pujol RM, Tommasino M. Human beta papillomavirus DNA study in primary cutaneous squamous cell carcinomas and their corresponding metastases. Arch Dermatol Res 2013; 306:93-5. [PMID: 24173126 DOI: 10.1007/s00403-013-1424-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/10/2013] [Accepted: 10/17/2013] [Indexed: 01/08/2023]
Abstract
The association between beta human papillomavirus (HPV) types and cutaneous squamous cell carcinomas (cSCCs) is controversial. Several studies have found such an association, especially at early stages of carcinogenesis, but the presence of beta HPV types in aggressive cSCCs has only been reported in three patients previously. We aimed to search for beta HPV DNA in primary cSCCs and their corresponding lymph node metastases in a series of patients. The presence of DNA from 25 beta HPV types was determined using a multiplex PCR protocol in 35 primary cSCCs from 35 patients and their corresponding lymph node metastases. DNA from beta HPV types was detected in 9 % of primary cSCCs and in 13 % of metastases. No primary cutaneous SCC or lymphatic metastases were found to share the same HPV DNA. These data suggest that beta HPV types do not play an etiopathogenic role in advanced stages of squamous cell carcinogenesis.
Collapse
Affiliation(s)
- A Toll
- Department of Dermatology, Hospital del Mar, Parc de Salut Mar, Pg/Marítim 25-29, 08003, Barcelona, Spain,
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Holloway A, Storey A. A conserved C-terminal sequence of high-risk cutaneous beta-human papillomavirus E6 proteins alters localization and signalling of β1-integrin to promote cell migration. J Gen Virol 2013; 95:123-134. [PMID: 24154967 DOI: 10.1099/vir.0.057695-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Beta-human papillomaviruses (β-HPV) infect cutaneous epithelia, and accumulating evidence suggests that the virus may act as a co-factor with UV-induced DNA damage in the development and progression of non-melanoma skin cancer, although the molecular mechanisms involved are poorly understood. The E6 protein of cutaneous β-HPV types encodes functions consistent with a role in tumorigenesis, and E6 expression can result in papilloma formation in transgenic animals. The E6 proteins of high-risk α-HPV types, which are associated with the development of anogenital cancers, have a conserved 4 aa motif at their extreme C terminus that binds to specific PDZ domain-containing proteins to promote cell invasion. Likewise, the high-risk β-HPVs HPV5 and HPV8 E6 proteins also share a conserved C-terminal motif, but this is markedly different from that of α-HPV types, implying functional differences. Using binding and functional studies, we have shown that β-HPV E6 proteins target β1-integrin using this C-terminal motif. E6 expression reduced membrane localization of β1-integrin, but increased overall levels of β1-integrin protein and its downstream effector focal adhesion kinase in human keratinocytes. Altered β1-integrin localization due to E6 expression was associated with actin cytoskeleton rearrangement and increased cell migration that was abolished by point mutations in the C-terminal motif of E6. We concluded that modulation of β1-integrin signalling by E6 proteins may contribute towards the pathogenicity of these β-HPV types.
Collapse
Affiliation(s)
- Amy Holloway
- Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Alan Storey
- Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
98
|
Oncoprotein E7 from beta human papillomavirus 38 induces formation of an inhibitory complex for a subset of p53-regulated promoters. J Virol 2013; 87:12139-50. [PMID: 24006445 DOI: 10.1128/jvi.01047-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our previous studies on cutaneous beta human papillomavirus 38 (HPV38) E6 and E7 oncoproteins highlighted a novel activity of IκB kinase beta (IKKβ) in the nucleus of human keratinocytes, where it phosphorylates and stabilizes ΔNp73α, an antagonist of p53/p73 functions. Here, we further characterize the role of the IKKβ nuclear form. We show that IKKβ nuclear translocation and ΔNp73α accumulation are mediated mainly by HPV38 E7 oncoprotein. Chromatin immunoprecipitation (ChIP)/Re-ChIP experiments showed that ΔNp73α and IKKβ are part, together with two epigenetic enzymes DNA methyltransferase 1 (DNMT1) and the enhancer of zeste homolog 2 (EZH2), of a transcriptional regulatory complex that inhibits the expression of some p53-regulated genes, such as PIG3. Recruitment to the PIG3 promoter of EZH2 and DNMT1 resulted in trimethylation of histone 3 on lysine 27 and in DNA methylation, respectively, both events associated with gene expression silencing. Decreases in the intracellular levels of HPV38 E7 or ΔNp73α strongly affected the recruitment of the inhibitory transcriptional complex to the PIG3 promoter, with consequent restoration of p53-regulated gene expression. Finally, the ΔNp73α/IKKβ/DNMT1/EZH2 complex appears to bind a subset of p53-regulated promoters. In fact, the complex is efficiently recruited to several promoters of genes encoding proteins involved in DNA repair and apoptosis, whereas it does not influence the expression of the prosurvival factor Survivin. In summary, our data show that HPV38 via E7 protein promotes the formation of a multiprotein complex that negatively regulates the expression of several p53-regulated genes.
Collapse
|
99
|
Connolly K, Manders P, Earls P, Epstein RJ. Papillomavirus-associated squamous skin cancers following transplant immunosuppression: one Notch closer to control. Cancer Treat Rev 2013; 40:205-14. [PMID: 24051018 DOI: 10.1016/j.ctrv.2013.08.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/06/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
The frequent occurrence of cutaneous squamous cell carcinomas (SCCs) containing weakly tumorigenic human papillomaviruses (HPVs) following iatrogenic immunosuppression for organ transplantation remains incompletely understood. Here we address this problem in the light of recent insights into (1) the association of low-risk β-HPVs with skin SCCs in the rare genetic syndromes of epidermodysplasia verruciformis and xeroderma pigmentosum, (2) the frequent recovery of post-transplant tumor control on substituting calcineurin-inhibitory with mTOR-inhibitory immunosuppression, (3) the unexpectedly favorable prognosis of node-positive SCCs containing high-risk α-HPVs originating in the activated immune niche of the oropharynx, (4) the rapid occurrence of HPV-negative SCCs in ultraviolet (UV)-damaged skin of melanoma patients receiving Raf-inhibitory drugs, and (5) the selective ability of β-HPV E6 oncoproteins to inhibit Notch tumor-suppressive signaling in cutaneous and mesenchymal tissues. The crosstalk so implied between oncogenic UV-induced mutations, defective host immunity, and β-HPV-dependent stromal-epithelial signaling suggests that immunosuppressants such as calcineurin inhibitors intensify mitogenic signalling in TP53-mutant keratinocytes while also abrogating immune-dependent Notch-mediated tumor repression. This emerging interplay between solar damage, viral homeostasis and immune control makes it timely to reappraise strategies for managing skin SCCs in transplant patients.
Collapse
Affiliation(s)
- Kate Connolly
- Department of Oncology, St. Vincent's Hospital, The Kinghorn Cancer Centre, UNSW Clinical School, Sydney, Australia
| | | | | | | |
Collapse
|
100
|
Haedicke J, Iftner T. Human papillomaviruses and cancer. Radiother Oncol 2013; 108:397-402. [PMID: 23830197 DOI: 10.1016/j.radonc.2013.06.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022]
Abstract
Human papillomaviruses (HPV) are small oncogenic DNA viruses of which more than 200 types have been identified to date. A small subset of these is etiologically linked to the development of anogenital malignancies such as cervical cancer. In addition, recent studies established a causative relationship between these high-risk HPV types and tonsillar and oropharyngeal cancer. Clinical management of cervical cancer and head and neck squamous cell carcinomas (HNSCCs) is largely standardized and involves surgical removal of the tumor tissue as well as adjuvant chemoradiation therapy. Notably, the response to therapeutic intervention of HPV-positive HNSCCs has been found to be better as compared to HPV-negative tumors. Although the existing HPV vaccine is solely licensed for the prevention of cervical cancer, it might also have prophylactic potential for the development of high-risk HPV-associated HNSCCs. Another group of viruses, which belongs to the beta-HPV subgroup, has been implicated in nonmelanoma skin cancer, however, the etiology remains to be established. Treatment of HPV-induced nonmelanoma skin cancer is based on local excision. However, topically applied immune-modulating substances represent non-surgical alternatives for the management of smaller cutaneous tumors. In this review we present the current knowledge of the role of HPV in cancer development and discuss clinical management options as well as targets for the development of future intervention therapies.
Collapse
Affiliation(s)
- Juliane Haedicke
- Medical Virology, Division of Experimental Virology, University Hospital Tübingen, Germany
| | | |
Collapse
|