51
|
Abstract
Vascular endothelial growth factor (VEGF) acting through VEGF receptor 2 (VEGFR2) on endothelial cells (ECs) is a key regulator of angiogenesis, a process essential for wound healing and tumor metastasis. Rap1a and Rap1b, 2 highly homologous small G proteins, are both required for angiogenesis in vivo and for normal EC responses to VEGF. Here we sought to determine the mechanism through which Rap1 promotes VEGF-mediated angiogenesis. Using lineage-restricted Rap1-knockout mice we show that Rap1-deficiency in endothelium leads to defective angiogenesis in vivo, in a dose-dependent manner. Using ECs obtained from Rap1-deficient mice we demonstrate that Rap1b promotes VEGF-VEGFR2 kinase activation and regulates integrin activation. Importantly, the Rap1b-dependent VEGF-VEGFR2 activation is in part mediated via integrin α(v)β(3). Furthermore, in an in vivo model of zebrafish angiogenesis, we demonstrate that Rap1b is essential for the sprouting of intersomitic vessels, a process known to be dependent on VEGF signaling. Using 2 distinct pharmacologic VEGFR2 inhibitors we show that Rap1b and VEGFR2 act additively to control angiogenesis in vivo. We conclude that Rap1b promotes VEGF-mediated angiogenesis by promoting VEGFR2 activation in ECs via integrin α(v)β(3). These results provide a novel insight into the role of Rap1 in VEGF signaling in ECs.
Collapse
|
52
|
Davenport J, Manjarrez JR, Peterson L, Krumm B, Blagg BSJ, Matts RL. Gambogic acid, a natural product inhibitor of Hsp90. JOURNAL OF NATURAL PRODUCTS 2011; 74:1085-92. [PMID: 21486005 PMCID: PMC3103600 DOI: 10.1021/np200029q] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A high-throughput screening of natural product libraries identified (-)-gambogic acid (1), a component of the exudate of Garcinia harburyi, as a potential Hsp90 inhibitor, in addition to the known Hsp90 inhibitor celastrol (2). Subsequent testing established that 1 inhibited cell proliferation, brought about the degradation of Hsp90 client proteins in cultured cells, and induced the expression of Hsp70 and Hsp90, which are hallmarks of Hsp90 inhibition. Gambogic acid also disrupted the interaction of Hsp90, Hsp70, and Cdc37 with the heme-regulated eIF2α kinase (HRI, an Hsp90-dependent client) and blocked the maturation of HRI in vitro. Surface plasmon resonance spectroscopy indicated that 1 bound to the N-terminal domain of Hsp90 with a low micromolar Kd, in a manner that was not competitive with the Hsp90 inhibitor geldanamycin (3). Molecular docking experiments supported the posit that 1 binds Hsp90 at a site distinct from Hsp90s ATP binding pocket. The data obtained have firmly established 1 as a novel Hsp90 inhibitor and have provided evidence of a new site that can be targeted for the development of improved Hsp90 inhibitors.
Collapse
Affiliation(s)
- Jason Davenport
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Jacob R. Manjarrez
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Laura Peterson
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, Kansas 66045
| | - Brian Krumm
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Brian S. J. Blagg
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, Kansas 66045
| | - Robert L. Matts
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
53
|
The role of β3-integrins in tumor angiogenesis: context is everything. Curr Opin Cell Biol 2011; 23:630-7. [PMID: 21565482 DOI: 10.1016/j.ceb.2011.03.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/26/2011] [Indexed: 02/07/2023]
Abstract
Integrins are a family of cell-extracellular matrix adhesion molecules that play important roles in tumor angiogenesis. αvβ3-Integrin has received much attention as a potential anti-angiogenic target because it is upregulated in tumor-associated blood vessels. Agents targeting αvβ3-integrin are now showing some success in phase III clinical trails for the treatment of glioblastoma, but the exact function of this integrin in tumor angiogenesis is still relatively unknown. This review highlights some of the recent data illustrating that β3-integrins play both pro-angiogenic and anti-angiogenic roles in tumor angiogenesis depending on the context. Specifically we will discuss how the following differentially influence β3-integrin's role in tumor angiogenesis: first, cell-matrix interactions, second, β3-integrin inhibitor doses, third, cell type, and fourth, other interacting molecules.
Collapse
|
54
|
Zhang X, Song Y, Wu Y, Dong Y, Lai L, Zhang J, Lu B, Dai F, He L, Liu M, Yi Z. Indirubin inhibits tumor growth by antitumor angiogenesis via blocking VEGFR2-mediated JAK/STAT3 signaling in endothelial cell. Int J Cancer 2011; 129:2502-11. [DOI: 10.1002/ijc.25909] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 12/08/2010] [Indexed: 11/08/2022]
|
55
|
Stewart JA, West TA, Lucchesi PA. Nitric oxide-induced collagen IV expression and angiogenesis: FAK or fiction? Focus on "Collagen IV contributes to nitric oxide-induced angiogenesis of lung endothelial cells". Am J Physiol Cell Physiol 2011; 300:C968-9. [PMID: 21389280 DOI: 10.1152/ajpcell.00059.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
56
|
Galvagni F, Pennacchini S, Salameh A, Rocchigiani M, Neri F, Orlandini M, Petraglia F, Gotta S, Sardone GL, Matteucci G, Terstappen GC, Oliviero S. Endothelial Cell Adhesion to the Extracellular Matrix Induces c-Src–Dependent VEGFR-3 Phosphorylation Without the Activation of the Receptor Intrinsic Kinase Activity. Circ Res 2010; 106:1839-48. [DOI: 10.1161/circresaha.109.206326] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rationale
:
Integrins cooperate with growth factor receptors to promote downstream signaling for cell proliferation and migration. However, the mechanism of receptor activation is still unknown.
Objective
:
To analyze the mechanism of phosphorylation of the vascular endothelial growth factor receptor (VEGFR)-3 by cell adhesion.
Methods and Results
:
We show that VEGFR-3 phosphorylation, induced by cell attachment to the extracellular matrix, is independent from the intrinsic kinase activity of the receptor, as evidenced from phosphorylation cell adhesion experiments with a mutant kinase dead receptor or in the presence of the specific kinase inhibitor MAZ 51. Cell adhesion experiments in the presence of the c-Src inhibitor PP2 or in fibroblast triple knockout for c-Src, Yes, and Fyn (SYF) demonstrate that VEGFR-3 phosphorylation, induced by extracellular matrix, is mediated by c-Src. Kinase assays in vitro with recombinant c-Src show that VEGFR-3 is a direct c-Src target and mass spectrometry analysis identified the sites phosphorylated by c-Src as tyrosine 830, 833, 853, 1063, 1333, and 1337, demonstrating that integrin-mediated receptor phosphorylation induces a phosphorylation pattern that is distinct from that induced by growth factors. Furthermore, pull-down assays show that integrin-mediated VEGFR-3 phosphorylation activates the recruitment to the receptor of the adaptor proteins CRKI/II and SHC inducing activation of JNK.
Conclusions
:
These data suggest that cell adhesion to extracellular matrix induces a downstream signaling using the tyrosine kinase receptor VEGFR-3 as scaffold.
Collapse
Affiliation(s)
- Federico Galvagni
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| | - Susanna Pennacchini
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| | - Ahmad Salameh
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| | - Marina Rocchigiani
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| | - Francesco Neri
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| | - Maurizio Orlandini
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| | - Felice Petraglia
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| | - Stefano Gotta
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| | - Gian Luca Sardone
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| | - Giacomo Matteucci
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| | - Georg C. Terstappen
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| | - Salvatore Oliviero
- From Dipartimento di Biologia Molecolare (F.G., S.P., A.S., M.R., F.N., M.O., S.O.), Università degli Studi di Siena; Dipartimento di Pediatria (F.P.), Ostetricia e Medicina della riproduzione, Università degli Studi di Siena; Siena Biotech (S.G., G.L.S., G.C.T.); and Novartis Vaccines (G.M.), Siena, Italy
| |
Collapse
|
57
|
Thomas M, Felcht M, Kruse K, Kretschmer S, Deppermann C, Biesdorf A, Rohr K, Benest AV, Fiedler U, Augustin HG. Angiopoietin-2 stimulation of endothelial cells induces alphavbeta3 integrin internalization and degradation. J Biol Chem 2010; 285:23842-9. [PMID: 20519501 DOI: 10.1074/jbc.m109.097543] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The angiopoietins (Ang-1 and Ang-2) have been identified as agonistic and antagonistic ligands of the endothelial receptor tyrosine kinase Tie2, respectively. Both ligands have been demonstrated to induce translocation of Tie2 to cell-cell junctions. However, only Ang-1 induces Tie2-dependent Akt activation and subsequent survival signaling and endothelial quiescence. Ang-2 interferes negatively with Ang-1/Tie2 signaling, thereby antagonizing the Ang-1/Tie2 axis. Here, we show that both Ang-1 and Ang-2 recruit beta3 integrins to Tie2. This co-localization is most prominent in cell-cell junctions. However, only Ang-2 stimulation resulted in complex formation among Tie2, alphavbeta3 integrin, and focal adhesion kinase as evidenced by co-immunoprecipitation experiments. Focal adhesion kinase was phosphorylated in the FAT domain at Ser(910) upon Ang-2 stimulation and the adaptor proteins p130Cas and talin dissociated from alphavbeta3 integrin. The alphavbeta3 integrin was internalized, ubiquitinylated, and gated toward lysosomes. Taken together, the experiments define Tie2/alphavbeta3 integrin association-induced integrin internalization and degradation as mechanistic consequences of endothelial Ang-2 stimulation.
Collapse
Affiliation(s)
- Markus Thomas
- Joint Research Division Vascular Biology, Medical Faculty Mannheim (CBTM), Heidelberg University, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Adham SAI, Sher I, Coomber BL. Molecular blockade of VEGFR2 in human epithelial ovarian carcinoma cells. J Transl Med 2010; 90:709-23. [PMID: 20195243 PMCID: PMC2878326 DOI: 10.1038/labinvest.2010.52] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human epithelial ovarian cancer (EOC) is the most lethal neoplasm affecting the female genital tract, and is characterized by overexpression of vascular endothelial growth factor (VEGF) and growth as ascites. Anti-VEGF strategies are currently used in EOC therapy with promising results; however, molecular targeting of specific VEGF receptors on the cancer cells themselves has not been explored to date. We previously showed that activation of a VEGF/VEGFR2 signaling loop in EOC cells supports their survival in suspension, and short-term pharmacological inhibition of this loop increased EOC cell apoptosis in vitro. In this study, we stably knocked down VEGFR2 in OVCAR-3 and SKOV-3 EOC cells using short hairpin RNA (shRNA), an RNA interference strategy that could potentially overcome chemoresistance arising with angiogenic inhibitors. Unexpectedly, we observed an induction of more aggressive cellular behavior in transfected cells, leading to increased growth in mouse xenografts, enhanced accumulation of ascites, increased VEGF and neuropilin-1 (NRP-1) expression, and decreased expression of adhesion proteins, notably cadherins and integrins. Sonic hedgehog (SHH) pathways do not seem to be involved in the upregulation of NRP-1 message in VEGFR2 knockdown cells. Supporting our mouse model, we also found a significant increase in the ratio between NRP-1 and VEGFR2 with increasing tumor grade in 80 cases of human EOC. The change in EOC behavior that we report in this study occurred independent of the angiogenic response and shows the direct effect of VEGF blockade on the cancer cells themselves. Our findings highlight the possible confounding events that may affect the usefulness of RNAi in a therapeutic setting for disrupting EOC cell survival in ascites.
Collapse
Affiliation(s)
- Sirin A. I. Adham
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | - Brenda L. Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1,CORRESPONDING AUTHOR: Dr. Brenda L. Coomber, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1. Phone: 519-824-4120, ext. 54922; Fax: 519-767-1450;
| |
Collapse
|
59
|
Yalcin M, Dyskin E, Lansing L, Bharali DJ, Mousa SS, Bridoux A, Hercbergs AH, Lin HY, Davis FB, Glinsky GV, Glinskii A, Ma J, Davis PJ, Mousa SA. Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. J Clin Endocrinol Metab 2010; 95:1972-80. [PMID: 20133461 DOI: 10.1210/jc.2009-1926] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Tetraiodothyroacetic acid (tetrac) blocks angiogenic and tumor cell proliferation actions of thyroid hormone initiated at the cell surface hormone receptor on integrin alphavbeta3. Tetrac also inhibits angiogenesis initiated by vascular endothelial growth factor and basic fibroblast growth factor. OBJECTIVE We tested antiangiogenic and antiproliferative efficacy of tetrac and tetrac nanoparticles (tetrac NP) against human medullary thyroid carcinoma (h-MTC) implants in the chick chorioallantoic membrane (CAM) and h-MTC xenografts in the nude mouse. DESIGN h-MTC cells were implanted in the CAM model (n = 8 per group); effects of tetrac and tetrac NP at 1 microg/CAM were determined on tumor angiogenesis and tumor growth after 8 d. h-MTC cells were also implanted sc in nude mice (n = 6 animals per group), and actions on established tumor growth of unmodified tetrac and tetrac NP ip were determined. RESULTS In the CAM, tetrac and tetrac NP inhibited tumor growth and tumor-associated angiogenesis. In the nude mouse xenograft model, established 450-500 mm(3) h-MTC tumors were reduced in size over 21 d by both tetrac formulations to less than the initial cell mass (100 mm(3)). Tumor tissue hemoglobin content of xenografts decreased by 66% over the course of administration of each drug. RNA microarray and quantitative real-time PCR of tumor cell mRNAs revealed that both tetrac formulations significantly induced antiangiogenic thrombospondin 1 and apoptosis activator gene expression. CONCLUSIONS Acting via a cell surface receptor, tetrac and tetrac NP inhibit growth of h-MTC cells and associated angiogenesis in CAM and mouse xenograft models.
Collapse
Affiliation(s)
- M Yalcin
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Yalcin M, Bharali DJ, Dyskin E, Dier E, Lansing L, Mousa SS, Davis FB, Davis PJ, Mousa SA. Tetraiodothyroacetic acid and tetraiodothyroacetic acid nanoparticle effectively inhibit the growth of human follicular thyroid cell carcinoma. Thyroid 2010; 20:281-6. [PMID: 20187783 DOI: 10.1089/thy.2009.0249] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Tetraiodothyroacetic acid (tetrac) is a deaminated analogue of L-thyroxine that blocks the actions of L-thyroxine and 3,5,3'-triiodo-L-thyronine at the cell surface receptor for thyroid hormone on integrin alpha v beta 3. Tetrac blocks the proliferative effects of thyroid hormone on tumor cells and the proangiogenesis actions of the hormone. In the absence of thyroid hormone, tetrac also blocks angiogenesis induced by various growth factors. Covalently linked to poly(lactide-co-glycolide), tetrac nanoparticles (tetrac NP) do not gain access to the cell interior and act exclusively at the integrin receptor. Here, the activity of tetrac and tetrac NP against follicular thyroid carcinoma (FTC)-236 cells was studied in two models: (1) tumor cell implants in the chick chorioallantoic membrane (CAM) system and (2) xenografts in the nude mouse. METHODS FTC-236 cells (10(6)) were implanted in the CAM (n = 8 each for control, and for tetrac and tetrac NP, both at 1 microg/CAM) and the actions of tetrac and tetrac NP were determined after 8 days on tumor-related angiogenesis and tumor growth. Xenografts of 10(7) FTC-236 cells were implanted in nude mice (n = 8 per group). Tetrac or tetrac NP was administered intraperitoneal (1 mg/kg and 1 mg tetrac equivalent/kg, respectively) every other day for 32 days beginning on day 10, when tumor volume was 200-250 mm(3). Animals were monitored after discontinuation of treatment up to day 40. RESULTS In the CAM paradigm, tetrac and tetrac NP arrested tumor-related angiogenesis and tumor growth. In the xenograft model, tetrac and tetrac NP promptly and progressively reduced tumor volume (p < 0.01) over 32 days. There was some regrowth of tumor after interruption of tetrac treatment, but at day 40, tumor volume and tumor weight at sacrifice were 45-55% below those of controls (p < 0.01). Animal weight gain was comparable in the control and treatment groups of animals. CONCLUSIONS Tetrac and tetrac NP effectively arrest FTC-236 cell tumor growth in the CAM and xenograft models, suggesting its potential utility against FTC.
Collapse
Affiliation(s)
- Murat Yalcin
- Albany College of Pharmacy and Health Sciences, Pharmaceutical Research Institute, Rensselaer, New York 12144, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Tsutsumi S, Beebe K, Neckers L. Impact of heat-shock protein 90 on cancer metastasis. Future Oncol 2009; 5:679-88. [PMID: 19519207 DOI: 10.2217/fon.09.30] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cancer metastasis is the result of complex processes, including alteration of cell adhesion/motility in the microenvironment and neoangiogenesis, that are necessary to support cancer growth in tissues distant from the primary tumor. The molecular chaperone heat-shock protein 90 (Hsp90), also termed the 'cancer chaperone', plays a crucial role in maintaining the stability and activity of numerous signaling proteins involved in these processes. Small-molecule Hsp90 inhibitors display anticancer activity both in vitro and in vivo, and multiple Phase II and Phase III clinical trials of several structurally distinct Hsp90 inhibitors are currently underway. In this review, we will highlight the importance of Hsp90 in cancer metastasis and the therapeutic potential of Hsp90 inhibitors as antimetastasis drugs.
Collapse
Affiliation(s)
- Shinji Tsutsumi
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892-1107, USA
| | | | | |
Collapse
|
62
|
Somanath PR, Malinin NL, Byzova TV. Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 2009; 12:177-85. [PMID: 19267251 DOI: 10.1007/s10456-009-9141-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/16/2009] [Indexed: 11/30/2022]
Abstract
The cross-talk between receptor tyrosine kinases and integrin receptors are known to be crucial for a number of cellular functions. On endothelial cells, an interaction between integrin alphavbeta3 and VEGFR2 seems to be particularly important process during vascularization. Importantly, the functional association between VEGFR2 and integrin alphavbeta3 is of reciprocal nature since each receptor is able to promote activation of its counterpart. This mutually beneficial relationship regulates a number of cellular activities involved in angiogenesis, including endothelial cell migration, survival and tube formation, and hematopoietic cell functions within vasculature. This article discusses several possible mechanisms reported by different labs which mediate formation of the complex between VEGFR-2 and alphavbeta3 on endothelial cells. The pathological consequences and regulatory events involved in this receptor cross-talk are also presented.
Collapse
Affiliation(s)
- Payaningal R Somanath
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, NB50, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
63
|
Expression of integrins on human choroidal neovascular membranes. J Ocul Biol Dis Infor 2009; 2:12-9. [PMID: 20072642 PMCID: PMC2802503 DOI: 10.1007/s12177-009-9015-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 01/28/2009] [Indexed: 11/24/2022] Open
|
64
|
Bojungbangdocktang inhibits vascular endothelial growth factor induced angiogenesis via blocking the VEGF/VEGFR2 signaling pathway in human umbilical vein endothelial cells. Sci Bull (Beijing) 2009. [DOI: 10.1007/s11434-008-0567-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
65
|
Doshi BM, Perdrizet GA, Hightower LE. Wound healing from a cellular stress response perspective. Cell Stress Chaperones 2008; 13:393-9. [PMID: 18626792 PMCID: PMC2673931 DOI: 10.1007/s12192-008-0059-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 11/28/2022] Open
Abstract
This meeting review highlights areas of mutual interest to investigators in the cellular stress response field and to those carrying out wound-healing research. Inflammation, perhaps the major unifying theme of this meeting, is an essential component of the adult wound response and understanding the control of inflammation is a common interest shared with researchers of the cellular stress response. The particular interest of the authors of this review is in chronic non-healing wounds that frequently occur in patients with major illnesses such as diabetes and diseases of the blood vessels. This orientation has undoubtedly influenced the selection of topics. It is fair to say that the authors were often surprised and certainly impressed with the overlapping interests and possibilities for collaboration among investigators of these two research areas.
Collapse
Affiliation(s)
- Bindi M. Doshi
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, CT 06269 USA
| | | | - Lawrence E. Hightower
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
66
|
Yi T, Yi Z, Cho SG, Luo J, Pandey MK, Aggarwal BB, Liu M. Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res 2008; 68:1843-50. [PMID: 18339865 PMCID: PMC2587446 DOI: 10.1158/0008-5472.can-07-5944] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gambogic acid (GA), the main active compound of Gamboge hanburyi, has been previously reported to activate apoptosis in many types of cancer cell lines by targeting transferrin receptor and modulating nuclear factor-kappaB signaling pathway. Whether GA inhibits angiogenesis, which is crucial for cancer and other human diseases, remains unknown. Here, we found that GA significantly inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, migration, invasion, tube formation, and microvessel growth at nanomolar concentration. In a xenograft prostate tumor model, we found that GA effectively inhibited tumor angiogenesis and suppressed tumor growth with low side effects using metronomic chemotherapy with GA. GA was more effective in activating apoptosis and inhibiting proliferation and migration in HUVECs than in human prostate cancer cells (PC3), suggesting GA might be a potential drug candidate in cancer therapy through angioprevention with low chemotoxicity. Furthermore, we showed that GA inhibited the activations of vascular endothelial growth factor receptor 2 and its downstream protein kinases, such as c-Src, focal adhesion kinase, and AKT. Together, these data suggest that GA inhibits angiogenesis and may be a viable drug candidate in antiangiogenesis and anticancer therapies.
Collapse
Affiliation(s)
- Tingfang Yi
- Center for Cancer and Stem Cell Biology, Institute for Bioscience and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | - Zhengfang Yi
- Institute of Biomedical Sciences and College of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Sung-Gook Cho
- Center for Cancer and Stem Cell Biology, Institute for Bioscience and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | - Jian Luo
- Institute of Biomedical Sciences and College of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Manoj K. Pandey
- Cytokine Research Laboratory, Department of Experimental Therapeutics, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B. Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Mingyao Liu
- Center for Cancer and Stem Cell Biology, Institute for Bioscience and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
- Institute of Biomedical Sciences and College of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
67
|
Albig AR, Becenti DJ, Roy TG, Schiemann WP. Microfibril-associate glycoprotein-2 (MAGP-2) promotes angiogenic cell sprouting by blocking notch signaling in endothelial cells. Microvasc Res 2008; 76:7-14. [PMID: 18417156 DOI: 10.1016/j.mvr.2008.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 12/12/2022]
Abstract
Angiogenesis is highly sensitive to the composition of the vascular microenvironment, however, our understanding of the structural and matricellular components of the vascular microenvironment that regulate angiogenesis and the molecular mechanisms by which these molecules function remains incomplete. Our previous results described a novel pro-angiogenic activity for Microfibril-Associated Glycoprotein-2 (MAGP-2), but did not address the molecular mechanism(s) by which this is accomplished. We now demonstrate that MAGP-2 promotes angiogenic cell sprouting by antagonizing Notch signaling pathways in endothelial cells. MAGP-2 decreased basal and Jagged1 induced expression from the Notch sensitive Hes-1 promoter in ECs, and blocked Jagged1 stimulated Notch1 receptor processing in transiently transfected 293T cells. Interestingly, inhibition of Notch signaling by MAGP-2 seems to be restricted to ECs since MAGP-2 increased Hes-1 promoter activity and Notch1 receptor processing in heterologous cell types. Importantly, constitutive activation of the Notch signaling pathway blocked the ability of MAGP-2 to promote angiogenic cell sprouting, as well as morphological changes associated with angiogenesis. Collectively, these observations indicate that MAGP-2 promotes angiogenic cell spouting in vitro by antagonizing Notch signaling pathways in ECs.
Collapse
Affiliation(s)
- Allan R Albig
- Department of Life Sciences, 600 Chestnut St., Indiana State University, Terre Haute, IN 47809, USA.
| | | | | | | |
Collapse
|
68
|
Vournakis JN, Eldridge J, Demcheva M, Muise-Helmericks RC. Poly-N-acetyl glucosamine nanofibers regulate endothelial cell movement and angiogenesis: dependency on integrin activation of Ets1. J Vasc Res 2007; 45:222-32. [PMID: 18097146 DOI: 10.1159/000112544] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 08/13/2007] [Indexed: 02/02/2023] Open
Abstract
Poly-N-acetyl glucosamine (pGlcNAc) nanofiber-derived materials effectively achieve hemostasis during surgical procedures. Treatment of cutaneous wounds with pGlcNAc in a diabetic mouse animal model causes marked increases in cell proliferation and angiogenesis. We sought to understand the effect of the pGlcNAc fibers on primary endothelial cells (EC) in culture and found that pGlcNAc induces EC motility. Cell motility induced by pGlcNAc fibers is blocked by antibodies directed against alphaVbeta3 and alpha5beta1 integrins, both known to play important roles in the regulation of EC motility, in vitroand in vivo. pGlcNAc treatment activates mitogen-activated protein kinase and increases Ets1, vascular endothelial growth factor (VEGF) and interleukin 1 (IL-1) expression. pGlcNAc activity is not secondary to its induction of VEGF; inhibition of the VEGF receptor does not inhibit the pGlcNAc-induced expression of Ets1 nor does pGlcNAc cause the activation of VEGF receptor. Both dominant negative and RNA interference inhibition of Ets1 blocks pGlcNAc-induced EC motility. Antibody blockade of integrin results in the inhibition of pGlcNAc-induced Ets1 expression. These findings support the hypothesis that pGlcNAc fibers induce integrin activation which results in the regulation of EC motility and thus in angiogenesis via a pathway dependent on the Ets1 transcription factor and demonstrate that Ets1 is a downstream mediator of integrin activation.
Collapse
Affiliation(s)
- John N Vournakis
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
69
|
Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 2007; 11:183-90. [DOI: 10.1007/s10456-007-9088-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
|
70
|
Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood 2007; 111:2647-56. [PMID: 17993608 DOI: 10.1182/blood-2007-08-109710] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is the main mechanism of vascular remodeling during late development and, after birth, in wound healing. Perturbations of angiogenesis occur in cancer, diabetes, ischemia, and inflammation. While much progress has been made in identifying factors that control angiogenesis, the understanding of the precise molecular mechanisms involved is incomplete. Here we identify a small GTPase, Rap1b, as a positive regulator of angiogenesis. Rap1b-deficient mice had a decreased level of Matrigel plug and neonatal retinal neovascularization, and aortas isolated from Rap1b-deficient animals had a reduced microvessel sprouting response to 2 major physiological regulators of angiogenesis: vascular endothelial growth factor (VEGF) and basic fibroblasts growth factor (bFGF), indicating an intrinsic defect in endothelial cells. Proliferation of retinal endothelial cells in situ and in vitro migration of lung endothelial cells isolated from Rap1b-deficient mice were inhibited. At the molecular level, activation of 2 MAP kinases, p38 MAPK and p42/44 ERK, important regulators of endothelial migration and proliferation, was decreased in Rap1b-deficient endothelial cells in response to VEGF stimulation. These studies provide evidence that Rap1b is required for normal angiogenesis and reveal a novel role of Rap1 in regulation of proangiogenic signaling in endothelial cells.
Collapse
|
71
|
Napione L, Cascone I, Mitola S, Serini G, Bussolino F. Integrins: A flexible platform for endothelial vascular tyrosine kinase receptors. Autoimmun Rev 2007; 7:18-22. [DOI: 10.1016/j.autrev.2007.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
72
|
Duval M, Le Bœuf F, Huot J, Gratton JP. Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol Biol Cell 2007; 18:4659-68. [PMID: 17855507 PMCID: PMC2043550 DOI: 10.1091/mbc.e07-05-0467] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nitric oxide (NO) release from endothelial cells, via endothelial NO synthase (eNOS) activation, is central to the proangiogenic actions of vascular endothelial growth factor (VEGF). VEGF signaling to eNOS is principally mediated by an Akt-dependent phosphorylation of eNOS and by increased association of eNOS to the molecular chaperone, heat-shock protein 90 kDa (Hsp90). Herein, we report that VEGFR-2 activation induces tyrosine phosphorylation of VEGF receptor 2 (VEGFR-2)-associated Hsp90beta. Tyrosine phosphorylation of Hsp90beta in response to VEGF is dependent on internalization of the VEGFR-2 and on Src kinase activation. Furthermore, we demonstrate that c-Src directly phosphorylates Hsp90 on tyrosine 300 residue and that this event is essential for VEGF-stimulated eNOS association to Hsp90 and thus NO release from endothelial cells. Our work identifies Y300 phosphorylation of Hsp90 as a novel regulated posttranslational modification of the chaperone and demonstrates its importance in the proangiogenic actions of VEGF, namely by regulating NO release from endothelial cells.
Collapse
Affiliation(s)
- Martine Duval
- *Laboratory of Endothelial Cell Biology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Departments of Pharmacology and
| | - Fabrice Le Bœuf
- Le Centre de Recherche en Cancérologie de l'Université Laval, Québec, QC, G1R 2J6, Canada
| | - Jacques Huot
- Le Centre de Recherche en Cancérologie de l'Université Laval, Québec, QC, G1R 2J6, Canada
| | - Jean-Philippe Gratton
- *Laboratory of Endothelial Cell Biology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Departments of Pharmacology and
- Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada; and
| |
Collapse
|
73
|
Terentiev AA, Moldogazieva NT. Cell adhesion proteins and α-fetoprotein. Similar structural motifs as prerequisites for common functions. BIOCHEMISTRY (MOSCOW) 2007; 72:920-35. [DOI: 10.1134/s0006297907090027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
74
|
Abstract
Endothelial cell migration is essential to angiogenesis. This motile process is directionally regulated by chemotactic, haptotactic, and mechanotactic stimuli and further involves degradation of the extracellular matrix to enable progression of the migrating cells. It requires the activation of several signaling pathways that converge on cytoskeletal remodeling. Then, it follows a series of events in which the endothelial cells extend, contract, and throw their rear toward the front and progress forward. The aim of this review is to give an integrative view of the signaling mechanisms that govern endothelial cell migration in the context of angiogenesis.
Collapse
Affiliation(s)
- Laurent Lamalice
- Le Centre de recherche en cancérologie, l'Université Laval, L'Hôtel-Dieu de Québec, Québec, Canada
| | | | | |
Collapse
|
75
|
Casalou C, Fragoso R, Nunes JFM, Dias S. VEGF/PLGF induces leukemia cell migration via P38/ERK1/2 kinase pathway, resulting in Rho GTPases activation and caveolae formation. Leukemia 2007; 21:1590-4. [PMID: 17392818 DOI: 10.1038/sj.leu.2404668] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
76
|
Antonova GN, Snead CM, Antonov AS, Dimitropoulou C, Venema RC, Catravas JD. Nitric oxide preconditioning regulates endothelial monolayer integrity via the heat shock protein 90-soluble guanylate cyclase pathway. Am J Physiol Heart Circ Physiol 2006; 292:H893-903. [PMID: 17012359 DOI: 10.1152/ajpheart.00498.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large (pathological) amounts of nitric oxide (NO) induce cell injury, whereas low (physiological) NO concentrations often ameliorate cell injury. We tested the hypotheses that pretreatment of endothelial cells with low concentrations of NO (preconditioning) would prevent injury induced by high NO concentrations. Apoptosis, induced in bovine aortic endothelial cells (BAECs) by exposing them to either 4 mM sodium nitroprusside (SNP) or 0.5 mM N-(2-aminoethyl)-N-(2-hydroxy-2-nitrosohydrazino)-1,2-ethylenediamine (spermine NONOate) for 8 h, was abolished by 24-h pretreatment with either 100 microM SNP, 10 microM spermine NONOate, or 100 microM 8-bromo-cGMP (8-Br-cGMP). Repair of BAECs following wounding, measured as the recovery rate of transendothelial electrical resistance, was delayed by 8-h exposure to 4 mM SNP, and this delay was significantly attenuated by 24-h pretreatment with 100 microM SNP. NO preconditioning produced increased association and expression of soluble guanyl cyclase (sGC) and heat shock protein 90 (HSP90). The protective effect of NO preconditioning, but not the injurious effect of 4 mM SNP, was abolished by either a sGC activity inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) or a HSP90 binding inhibitor (radicicol) and was mimicked by 8-Br-cGMP. We conclude that preconditioning with a low dose of NO donor accelerates repair and maintains endothelial integrity via a mechanism that includes the HSP90/sGC pathway. HSP90/sGC may thus play a role in the protective effects of NO-generating drugs from injurious stimuli.
Collapse
Affiliation(s)
- Galina N Antonova
- Vascular Biology Center, Medical College of Georgia, Augusta, GA, 30912-2500, USA.
| | | | | | | | | | | |
Collapse
|
77
|
Le Boeuf F, Houle F, Sussman M, Huot J. Phosphorylation of focal adhesion kinase (FAK) on Ser732 is induced by rho-dependent kinase and is essential for proline-rich tyrosine kinase-2-mediated phosphorylation of FAK on Tyr407 in response to vascular endothelial growth factor. Mol Biol Cell 2006; 17:3508-20. [PMID: 16760434 PMCID: PMC1525237 DOI: 10.1091/mbc.e05-12-1158] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Focal adhesion kinase (FAK) is phosphorylated on tyrosine and serine residues after cell activation. In the present work, we investigated the relationship between tyrosine and serine phosphorylation of FAK in promoting endothelial cell migration in response to vascular endothelial growth factor (VEGF). We found that VEGF induces the activation of the Rho-dependent kinase (ROCK) downstream from vascular endothelial growth factor receptor (VEGFR) 2. In turn, activated ROCK directly phosphorylates FAK on Ser732. Proline-rich tyrosine kinase-2 (Pyk2) is also activated in response to VEGF. Its activation requires the clustering of integrin alphavbeta3 and triggers directly the phosphorylation of Tyr407 within FAK, an event necessary for cell migration. Interestingly, ROCK-mediated phosphorylation of Ser732 is essential for Pyk2-dependent phosphorylation of Tyr407, because the latter is abrogated in cells expressing a FAK mutant that is nonphosphorylatable on Ser732. We suggest that VEGF elicits the activation of the VEGFR2-ROCK pathway, leading to phosphorylation of Ser732 within FAK. In turn, phosphorylation of Ser732 would change the conformation of FAK, making it accessible to Pyk2 activated in response to its association with integrin beta3. Then, activated Pyk2 triggers the phosphorylation of FAK on Tyr407, promoting cell migration.
Collapse
Affiliation(s)
- Fabrice Le Boeuf
- *Le Centre de Recherche en Cancérologie de l’Université Laval, Québec, Québec G1R-2J6, Canada; and
| | - François Houle
- *Le Centre de Recherche en Cancérologie de l’Université Laval, Québec, Québec G1R-2J6, Canada; and
| | - Mark Sussman
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182
| | - Jacques Huot
- *Le Centre de Recherche en Cancérologie de l’Université Laval, Québec, Québec G1R-2J6, Canada; and
| |
Collapse
|
78
|
Shimamura N, Matchett G, Yatsushige H, Calvert JW, Ohkuma H, Zhang J. Inhibition of integrin alphavbeta3 ameliorates focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Stroke 2006; 37:1902-9. [PMID: 16741177 DOI: 10.1161/01.str.0000226991.27540.f2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Recent studies have shown that selective inhibition of specific subsets of intercellular adhesion molecules protects the brain during ischemia. We studied selective inhibition of integrin alphavbeta3 with cyclo [Arg-Gly-Asp-D-Phe-Val] (cRGDfV) in the rat middle cerebral artery occlusion model (MCAO). METHODS Rats were treated before and after MCAO with cRGDfV. Physiological parameters, expression of integrin alphavbeta3, infarction volume, brain water content, Evans Blue exudation, IgG exudation, histology, immunohistochemistry, and western blotting were studied in 4 groups of animals: sham operation (n=13), untreated (n=18), nonfunctioning peptide treatment (n=19), and cRGDfV treatment (n=27). RESULTS Treatment with cRGDfV reduced infarction, reduced brain edema, reduced exudation of Evans blue and IgG, and prevented fibrinogen deposition. Western blotting showed reduction of phosphorylated Flk-1 (a vascular endothelial growth factor [VEGF] receptor), reduction of phosphorylated FAK (an intracellular kinase phosphorylated in the presence of VEGF), reduction of VEGF, and reduction of fibrinogen in the cRGDfV treatment group. CONCLUSIONS The selective integrin alphavbeta3 inhibitor cRGDfV improves outcomes in the MCAO model by preserving the blood-brain barrier, which mechanistically may occur in a VEGF- and VEGF-receptor-dependent manner.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/drug effects
- Brain Edema/etiology
- Brain Edema/pathology
- Brain Edema/prevention & control
- Cerebral Infarction/etiology
- Cerebral Infarction/pathology
- Cerebral Infarction/prevention & control
- Drug Evaluation, Preclinical
- Evans Blue/pharmacokinetics
- Extravasation of Diagnostic and Therapeutic Materials/prevention & control
- Fibrinogen/analysis
- Focal Adhesion Kinase 1/metabolism
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Integrin alphaVbeta3/antagonists & inhibitors
- Male
- Models, Animal
- Nerve Tissue Proteins/antagonists & inhibitors
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Peptides, Cyclic/pharmacology
- Peptides, Cyclic/therapeutic use
- Phosphorylation
- Protein Processing, Post-Translational/drug effects
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Norihito Shimamura
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, Calif 92350, USA
| | | | | | | | | | | |
Collapse
|
79
|
Sanderson S, Valenti M, Gowan S, Patterson L, Ahmad Z, Workman P, Eccles SA. Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis. Mol Cancer Ther 2006; 5:522-32. [PMID: 16546966 DOI: 10.1158/1535-7163.mct-05-0439] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in maintaining the correct conformation and stability of its client proteins. This study investigated the effects of Hsp90 inhibitors on client protein expression and key cellular functions required for tumor angiogenesis. The benzoquinone ansamycin Hsp90 inhibitors geldanamycin and/or its derivatives 17-allylamino-17-demethoxygeldanamycin (17-AAG) and 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin inhibited production of vascular endothelial growth factor (VEGF)-A by tumor cells and blocked proliferative responses of human endothelial cells at nanomolar concentrations. 17-AAG also significantly reduced endothelial cell migration, tubular differentiation, invasion through Matrigel, and secretion of urokinase-type plasminogen activator at concentrations at or below those that inhibited proliferation. 17-AAG significantly reduced expression of VEGF receptor (VEGFR)-2 and established Hsp90 client proteins in human endothelial cells in vitro as well as in mouse vena cava, mesenteric vessels, and blood vessels within human tumor xenografts in vivo; this was associated with decreased tumor microvessel density. Finally, we showed for the first time that Hsp90 inhibitors also reduce expression of VEGFR-1 on human vascular endothelial cells, VEGFR-3 on lymphatic endothelial cells in vitro, and all three VEGFRs on mouse vasculature in vivo. Thus, we identify Hsp90 inhibitors as important regulators of many aspects of tumor angiogenesis (and potentially lymphangiogenesis) and suggest that they may provide therapeutic benefit not only via direct effects on tumor cells but also indirectly by inhibiting the production of angiogenic cytokines and responses of activated endothelial cells that contribute to tumor progression and metastasis.
Collapse
Affiliation(s)
- Sharon Sanderson
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Surrey, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
80
|
Lu H, Murtagh J, Schwartz EL. The microtubule binding drug laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is synergistic when combined with docetaxel (taxotere). Mol Pharmacol 2006; 69:1207-15. [PMID: 16415178 DOI: 10.1124/mol.105.019075] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Laulimalide, a natural product from marine sponges, is a microtubule-stabilizing agent that binds to tubulin at a site distinct from that of the taxoids. In the present study, we found that laulimalide inhibited human umbilical vein endothelial cell (HUVEC) tubule formation and vascular endothelial growth factor (VEGF)-induced HUVEC migration, key components of the angiogenic process. These occurred at concentrations substantially lower than that which inhibited HUVEC proliferation. When combined, laulimalide and docetaxel (Taxotere) synergistically inhibited migration and tubule formation, but their combined effect on proliferation was antagonistic. Possible mechanism(s) by which laulimalide inhibited VEGF-induced HUVEC migration were explored. Similar to docetaxel, laulimalide had no effect on the VEGF-induced tyrosine phosphorylation of the VEGF receptor Flk-1/KDR (VEGFR-2). Low concentrations of laulimalide substantially blocked subsequent VEGFR-2 downstream events, as did docetaxel, including the phosphorylation of the Tyr397 and Tyr407 residues of focal adhesion kinase (FAK), the association of VEGFR-2 with FAK and Hsp90, and the Tyr31 phosphorylation of paxillin. Laulimalide inhibited integrin activation; however, compared with docetaxel, it had a weaker inhibitory effect on the VEGF-induced association of VEGFR-2 with the alpha5beta1 integrin. Compared with docetaxel, laulimalide more potently caused a reduction in the constitutive levels (i.e., in the absence of VEGF) of phosphorylated paxillin and more potently inhibited the association of RhoA with the alpha5beta1 integrin. In conclusion, although both docetaxel and laulimalide inhibited integrin-associated signaling pathways that mediated VEGF-induced cell migration, their actions on the signaling cascade seemed not to be identical. These complementary actions could account for their synergistic effects on HUVEC.
Collapse
Affiliation(s)
- Haiyan Lu
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA
| | | | | |
Collapse
|
81
|
Abstract
Factor XIII is a plasma transglutaminase that participates in the final stage of the coagulation cascade. Thrombin-activated FXIII (FXIIIa) catalyzes the formation of covalent cross-links between gamma-glutamyl and epsilon-lysyl residues on adjacent fibrin chains in polymerized fibrin to yield the mature clot. In addition to its role in hemostasis, FXIII is known to participate in wound healing and embryo implantation, which are processes involving angiogenesis. In this review, we discuss the role of FXIII in angiogenesis and the molecular mechanisms underlying its proangiogenic effects. The FXIII role in tissue repair and remodeling may at least in part be attributed to its pro-angiogenic activity.
Collapse
Affiliation(s)
- R Dardik
- Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, Israel
| | | | | |
Collapse
|
82
|
Parker SL, Parker MS, Sah R, Sallee F. Angiogenesis and rhodopsin-like receptors: a role for N-terminal acidic residues? Biochem Biophys Res Commun 2005; 335:983-92. [PMID: 16023616 DOI: 10.1016/j.bbrc.2005.06.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 06/23/2005] [Indexed: 12/22/2022]
Abstract
Numerous rhodopsin-like G-protein coupling receptors induce or inhibit angiogenesis. The active human receptors include several chemokine receptors, apelin APJ receptor, neuropeptide Y Y2 receptor, Duffy antigen, and herpes virus-8 receptor. A common and striking feature of these receptors is the large fraction (up to 42%) of residues with anionic sidechains (Asp, Glu, and benzene anions Tyr, Trp, and Phe) in the N-terminal extracellular domain. These residues (which are frequently clustered) can assist the binding of ligand peptides, but should also support interactions that help tubular arraying of cells, e.g., via cationic bridges and/or hydrogen bonding with cell-connecting receptors such as integrins, or with proteins of the extracellular matrix.
Collapse
Affiliation(s)
- Steven L Parker
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
83
|
Ben Mime L, Arnhold S, Fischer JH, Addicks K, Rainer de Vivie E, Bennink G, Suedkamp M. Pharmacologic cerebral capillary blood flow improvement after deep hypothermic circulatory arrest: An intravital fluorescence microscopy study in pigs. J Thorac Cardiovasc Surg 2005; 130:670-6. [PMID: 16153911 DOI: 10.1016/j.jtcvs.2005.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 02/24/2005] [Accepted: 03/21/2005] [Indexed: 11/30/2022]
Abstract
BACKGROUND Despite meticulous investigation of bypass techniques for deep hypothermic circulatory arrest, unfavorable long-term neurologic deficits have been well documented. Our aim was to improve brain perfusion by reducing platelet plugging with a glycoprotein IIb/IIIa inhibitor (eptifibatide) in an experimental model of deep hypothermic circulatory arrest-reperfusion in pigs. METHODS Two groups of 12 piglets each (eptifibatide group [eptifibatide + unfractionated heparin] vs UFH group [only unfractionated heparin]) underwent 10 minutes of normothermic bypass, 40 minutes of cooling during cardiopulmonary bypass (hematocrit, 30%; cardiopulmonary bypass flow, 100 mL x kg(-1) x min(-1)), 60 minutes of circulatory arrest at 15 degrees C, and a 40-minute rewarming period. Intravital fluorescence microscopy of pial vessels at set intervals was performed. RESULTS During the cooling period, there was a tendency toward reduced functional capillary density values without statistical significance in both groups. During reperfusion, the eptifibatide group demonstrated a significantly decreased platelet adhesion and aggregation (at 30 minutes of reperfusion: functional capillary density, 104% +/- 3% vs 77% +/- 4% relative to baseline, P = .02; red blood cell velocity, 0.65 vs 0.30 mm/s, P < .004). A more rapid recovery of tissue oxygenation (P < .001) was documented. Furthermore, a significant microvascular permeability reduction was achieved compared with that seen in the UFH group (P < .02). The use of eptifibatide resulted in fewer ultrastructural changes in hippocampal tissue, which is demonstrated by histologic examination. CONCLUSIONS Platelet plugging reduction with the glycoprotein IIb/IIIa inhibitor eptifibatide improves cerebral capillary blood flow and reduces cerebral ischemia in the setting of deep hypothermic circulatory arrest. Furthermore, significant endothelial cell injury and perivascular edema reduction can be achieved.
Collapse
Affiliation(s)
- Lotfi Ben Mime
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
84
|
Dardik R, Loscalzo J, Eskaraev R, Inbal A. Molecular mechanisms underlying the proangiogenic effect of factor XIII. Arterioscler Thromb Vasc Biol 2004; 25:526-32. [PMID: 15618543 DOI: 10.1161/01.atv.0000154137.21230.80] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Coagulation Factor XIII (FXIII) was previously shown by us to induce angiogenesis. The aim of this study was to elucidate the molecular events underlying the proangiogenic effects of activated FXIII (FXIIIa) on human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS As shown by coimmunoprecipitation studies, FXIIIa crosslinked alpha(v)beta3 with vascular endothelial growth factor receptor 2 (VEGFR-2) and enhanced the noncovalent interaction between the 2 receptors. In addition, FXIIIa induced tyrosine phosphorylation of VEGFR-2 in both the crosslinked high-molecular-weight and the noncovalent VEGFR-2/alpha(v)beta3 complexes. These effects as well as FXIIIa-induced proliferation and migration of HUVECs were abolished by iodoacetamide treatment of FXIIIa (I-FXIII) or by PTKI, an inhibitor of VEGFR-2. FXIIIa induced upregulation of c-Jun and Egr-1 as revealed by quantitative RT-PCR. Electrophoretic mobility-shift assay experiments showed that FXIIIa treatment of HUVECs enhanced binding of Wilm's tumor-1 (WT-1) but not of early growth response (Egr)-1 to the thrombospondin-1 (TSP-1) promoter sequence, suggesting that WT-1 but not Egr-1 is involved in downregulation of TSP-1 expression. CONCLUSIONS The proangiogenic effect of FXIIIa is mediated by (1) enhancement of crosslinked and noncovalent alpha(v)beta3/VEGFR-2 complex formation; (2) tyrosine phosphorylation and activation of VEGFR-2; (3) upregulation of c-Jun and Egr-1; and (4) downregulation of TSP-1 induced indirectly by c-Jun through WT-1. These processes may clarify FXIII role in vascular remodeling and tissue repair.
Collapse
Affiliation(s)
- Rima Dardik
- Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | |
Collapse
|
85
|
Laferrière J, Houle F, Huot J. Adhesion of HT-29 colon carcinoma cells to endothelial cells requires sequential events involving E-selectin and integrin beta4. Clin Exp Metastasis 2004; 21:257-64. [PMID: 15387376 DOI: 10.1023/b:clin.0000037708.09420.9a] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HT-29 colon carcinoma cells attach to TNFalpha-activated human umbilical vein endothelial cells (HUVECs) by their specific binding to E-selectin. This interaction activates, in the cancer cells, the MAPK SAPK2/p38, which leads to their transendothelial migration (Laferrière et al., J Biol Chem 2001; 276: 33762). In this study, we investigated the role of E-selectin in activating integrins to modulate adhesion and regulate integrin-mediated events. Blocking the integrins from HT-29 cells (alpha2, alpha3, alpha6, alphav/beta5, beta1 and beta4) with specific antibodies revealed a role for beta4 integrin in their adhesion to TNFalpha-treated HUVEC. The beta4 integrin-dependent adhesion was maximal after 30 min, whereas the-E-selectin-dependent adhesion was maximal after 15 min. Integrin beta4 became quickly phosphorylated upon addition of HT-29 cells to endothelial cells and the effect was independent of the expression of E-selectin. Moreover, a recombinant E-selectin/Fc chimera did not induce the phosphorylation of beta4. The phosphorylation of beta4 is not required for adhesion since adhesion was not affected in HT-29 cells that express a truncated form of beta4 that is deleted from its cytoplasmic phosphorylatable domain. However, the expression of the non-phosphorylatable deletant of beta4 was associated with decreased transendothelial cell migration underscoring the key role for the cytoplasmic domain of beta4 in cell migration. We suggest: 1) that the adhesion of HT-29 cells to activated endothelial cells follows at least two essential sequential steps involving the binding of E-selectin to its receptor on carcinoma cells and then the binding of beta4 to its own receptor on endothelial cells; 2) that the phosphorylation of integrin beta4 contributes to enhance the motile potential of cancer cells and increase their trans-endothelial migration. Overall, our results indicate that the interaction of metastatic cancer cells with endothelial cells implies a specific sequence of signaling events that ultimately leads to an increase in their efficient transendothelial migration.
Collapse
Affiliation(s)
- Julie Laferrière
- Le Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, 9 Rue McMahon, Québec, Canada G1R2J6
| | | | | |
Collapse
|
86
|
Le Boeuf F, Houle F, Huot J. Regulation of Vascular Endothelial Growth Factor Receptor 2-mediated Phosphorylation of Focal Adhesion Kinase by Heat Shock Protein 90 and Src Kinase Activities. J Biol Chem 2004; 279:39175-85. [PMID: 15247219 DOI: 10.1074/jbc.m405493200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of endothelial cells to vascular endothelial growth factor (VEGF) induced tyrosine phosphorylation of focal adhesion kinase (FAK) on site Tyr(407), an effect that required the association of VEGF receptor 2 (VEGFR2) with HSP90. The association of VEGFR2 with HSP90 involved the last 130 amino acids of VEGFR2 and was blocked by geldanamycin, a specific inhibitor of HSP90. Moreover, geldanamycin inhibited the VEGF-induced activation of the small GTPase RhoA, which resulted in an inhibition of phosphorylation of FAK on site Tyr(407). In this context, the inhibition of RhoA kinase (ROCK) with Y27632 or by expression of dominant negative forms of RhoA or ROCK impaired the VEGF-induced phosphorylation of Tyr(407) within FAK. In contrast to phosphorylation of Tyr(861), the phosphorylation of site Tyr(407) was insensitive to Src kinase inhibition by 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2). We also found that the recruitment of paxillin to FAK was inhibited by geldanamycin but not by PP2, whereas both geldanamycin and PP2 inhibited the recruitment of vinculin to FAK. In accordance, the recruitment of paxillin and vinculin to FAK was inhibited in cells that express the mutant FAK-Y407F, whereas the expression of the mutant Y861F inhibited the recruitment of paxillin but not of vinculin. Importantly, cell migration was abolished in cells in which the signal from the VEGFR2-HSP90 pathway was blocked by the expression of Delta130VEGFR2, a deletant of VEGFR2 that does not associate with HSP90. Our findings underscore for the first time the key role played by the VEGFR2-HSP90-RhoA-ROCK-FAK/Tyr(407) pathway in transducing the VEGF signal that leads to the assembly of focal adhesions and endothelial cell migration.
Collapse
Affiliation(s)
- Fabrice Le Boeuf
- Le Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Québec G1R 2J6, Canada
| | | | | |
Collapse
|
87
|
Akula SM, Ford PW, Whitman AG, Hamden KE, Shelton JG, McCubrey JA. Raf promotes human herpesvirus-8 (HHV-8/KSHV) infection. Oncogene 2004; 23:5227-41. [PMID: 15122343 DOI: 10.1038/sj.onc.1207643] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human herpesvirus-8 (HHV-8/KSHV) is etiologically associated with Kaposi's sarcoma (KS) and other tumors. Constitutive activation of the mitogen-activated protein kinase (MAPK) signaling pathway has been associated with a variety of tumors, including AIDS-related KS. The oncoprotein Raf is situated at a pivotal position in regulating the MAPK pathway. Hence, we analysed the effect of oncoprotein Raf on HHV-8 infectious entry into target cells. Here we report Raf expression to significantly enhance HHV-8 infection of target cells. These findings implicate a role for Raf not only in the infectious entry of HHV-8 but also in modulating KS pathogenesis.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | |
Collapse
|
88
|
Tandle A, Blazer DG, Libutti SK. Antiangiogenic gene therapy of cancer: recent developments. J Transl Med 2004; 2:22. [PMID: 15219236 PMCID: PMC455695 DOI: 10.1186/1479-5876-2-22] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 06/25/2004] [Indexed: 12/17/2022] Open
Abstract
With the role of angiogenesis in tumor growth and progression firmly established, considerable effort has been directed to antiangiogenic therapy as a new modality to treat human cancers. Antiangiogenic agents have recently received much widespread attention but strategies for their optimal use are still being developed. Gene therapy represents an attractive alternative to recombinant protein administration for several reasons. This review evaluates the potential advantages of gene transfer for antiangiogenic cancer therapy and describes preclinical gene transfer work with endogenous angiogenesis inhibitors demonstrating the feasibility of effectively suppressing and even eradicating tumors in animal models. Additionally, we describe the advantages and disadvantages of currently available gene transfer vectors and update novel developments in this field. In conclusion, gene therapy holds great promise in advancing antiangiogenesis as an effective cancer therapy and will undoubtedly be evaluated in human clinical trials in the near future.
Collapse
Affiliation(s)
- Anita Tandle
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Dan G Blazer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Steven K Libutti
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| |
Collapse
|
89
|
Abstract
Molecular chaperones are a functionally defined set of proteins which assist the structure formation of proteins in vivo. Without certain protective mechanisms, such as binding nascent polypeptide chains by molecular chaperones, cellular protein concentrations would lead to misfolding and aggregation. In the mammalian system, the molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins, like steroid hormone receptors, transcription factors, and kinases, some of which are involved in cancer progression. Hsp70 and Hsp90 form a multichaperone complex, in which both are connected by a third protein called Hop. The connection of and the interplay between the two chaperone machineries is of crucial importance for cell viability. This review provides a detailed view of the Hsp70 and Hsp90 machineries, their cofactors and their mode of regulation. It summarizes the current knowledge in the field, including the ATP-dependent regulation of the Hsp70/Hsp90 multichaperone cycle and elucidates the complex interplay and their synergistic interaction.
Collapse
Affiliation(s)
- H Wegele
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
90
|
Lamalice L, Houle F, Jourdan G, Huot J. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 2004; 23:434-45. [PMID: 14724572 DOI: 10.1038/sj.onc.1207034] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of the tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEGFR2) by VEGF leads to the activation of stress-activated protein kinase (SAPK)2/p38 and then to actin polymerization and reorganization into stress fibers in endothelial cells. In turn, this triggers endothelial cell migration. Yet, nothing is known about the molecular mechanisms that couple VEGFR2 to SAPK2/p38. Here, we found that VEGF increased by twofold the activity of the small GTPase Cdc42 and that the expression of two different constitutively active forms of Cdc42 (Cdc42 V12 and Cdc42 L61) led to a marked increase in the formation of stress fibers that was sensitive to SAPK2/p38 inhibition by SB203580. Moreover, the expression of a dominant-negative form of Cdc42 (Cdc42 N17) inhibited the activation of SAPK2/p38 and of its direct target MAP kinase-activated protein kinase 2. These results indicate that Cdc42 is upstream of SAPK2/p38 in response to the activation of VEGFR2 by VEGF. In contrast, we found that neither RhoA nor Rac was involved in the SAPK2/p38-mediated actin reorganization induced by VEGF. Using a site-specific mutant of the major autophosphorylation site Y1214 on VEGFR2, we found that the mutant Y1214F inhibited the activation of both Cdc42 and SAPK2/p38 in response to VEGF. We conclude that phosphorylation of Y1214 on VEGFR2 is required to trigger the sequential activation of Cdc42 and SAPK2/p38 and to drive the SAPK2/p38-mediated actin remodeling in stress fibers in endothelial cells exposed to VEGF.
Collapse
Affiliation(s)
- Laurent Lamalice
- Le Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, Canada G1R 2J6
| | | | | | | |
Collapse
|
91
|
Nakatsu MN, Sainson RCA, Pérez-del-Pulgar S, Aoto JN, Aitkenhead M, Taylor KL, Carpenter PM, Hughes CCW. VEGF(121) and VEGF(165) regulate blood vessel diameter through vascular endothelial growth factor receptor 2 in an in vitro angiogenesis model. J Transl Med 2003; 83:1873-85. [PMID: 14691306 DOI: 10.1097/01.lab.0000107160.81875.33] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is essential for the induction of angiogenesis and drives both endothelial cell (EC) proliferation and migration. It has been suggested that VEGF also regulates vessel diameter, although this has not been tested explicitly. The two most abundant isoforms, VEGF(121) and VEGF(165), both signal through VEGF receptor 2 (VEGFR-2). We recently optimized a three-dimensional in vitro angiogenesis assay using HUVECs growing on Cytodex beads and embedded in fibrin gels. Fibroblasts provide critical factors that promote sprouting, lumen formation, and vessel stability. Using this assay, we have examined the role of VEGF in setting vessel diameter. Low concentrations of both VEGF(121) and VEGF(165) promote growth of long, thin vessels, whereas higher concentrations of VEGF remarkably enhance vessel diameter. Placental growth factor, which binds to VEGFR-1 but not VEGFR-2, does not promote capillary sprouting. Moreover, specific inhibition of VEGFR-2 signaling results in a dramatic reduction of EC sprouting in response to VEGF, indicating the critical importance of this receptor. The increase in vessel diameter is the result of cell proliferation and migration, rather than cellular hypertrophy, and likely depends on MEK1-ERK1/2 signaling. Both phosphatidylinositol 3-kinase and p38 activity are required for cell survival. We conclude that the diameter of new capillary sprouts can be determined by the local concentration of VEGF and that the action of VEGF on angiogenic EC in this assay is critically dependent on signaling through VEGFR-2.
Collapse
Affiliation(s)
- Martin N Nakatsu
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|