51
|
Goldstein JM, Hale T, Foster SL, Tobet SA, Handa RJ. Sex differences in major depression and comorbidity of cardiometabolic disorders: impact of prenatal stress and immune exposures. Neuropsychopharmacology 2019; 44:59-70. [PMID: 30030541 PMCID: PMC6235859 DOI: 10.1038/s41386-018-0146-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Major depressive disorder topped ischemic heart disease as the number one cause of disability worldwide in 2012, and women have twice the risk of men. Further, the comorbidity of depression and cardiometabolic disorders will be one of the primary causes of disability worldwide by 2020, with women at twice the risk. Thus, understanding the sex-dependent comorbidities has public health consequences worldwide. We propose here that sex differences in MDD-cardiometabolic comorbidity originate, in part, from pathogenic processes initiated in fetal development that involve sex differences in shared pathophysiology between the brain, the vascular system, the CNS control of the heart and associated hormonal, immune, and metabolic physiology. Pathways implicate neurotrophic and angiogenic growth factors, gonadal hormone receptors, and neurotransmitters such as gamma amino butyric acid (GABA) on neuronal and vascular development of HPA axis regions, such as the paraventricular nucleus (PVN), in addition to blood pressure, in part through the renin-angiotensin system, and insulin and glucose metabolism. We show that the same prenatal exposures have consequences for sex differences across multiple organ systems that, in part, share common pathophysiology. Thus, we believe that applying a sex differences lens to understanding shared biologic substrates underlying these comorbidities will provide novel insights into the development of sex-dependent therapeutics. Further, taking a lifespan perspective beginning in fetal development provides the opportunity to target abnormalities early in the natural history of these disorders in a sex-dependent way.
Collapse
Affiliation(s)
- Jill M Goldstein
- Departments of Psychiatry and Obstetrics and Gynecology, Massachusetts General Hospital (MGH), Boston, MA, 02120, USA.
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA.
| | - Taben Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Simmie L Foster
- Department of Psychiatry, Harvard Medical School, at Massachusetts General Hospital, Boston, MA, USA
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert J Handa
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
52
|
Miranda ASD, Miranda ASD, Teixeira AL. Lamotrigine as a mood stabilizer: insights from the pre-clinical evidence. Expert Opin Drug Discov 2018; 14:179-190. [PMID: 30523725 DOI: 10.1080/17460441.2019.1553951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Lamotrigine (LTG) is a well-established anticonvulsant that is also approved for the prevention of mood relapses in bipolar disorder. However, the mechanisms underlying LTG mood stabilizing effects remain unclear. Areas covered: Herein, the pre-clinical evidence concerning LTG's' mode of action in depression and mania is reviewed. Bottlenecks and future perspectives for this expanding and promising field are also discussed. Pre-clinical studies have indicated that neurotransmitter systems, especially serotoninergic, noradrenergic and glutamatergic, as well as non-neurotransmitter pathways such as inflammation and oxidative processes might play a role in LTG's antidepressant effects. The mechanisms underlying LTG's anti-manic properties remain to be fully explored, but the available pre-clinical evidence points out to the role of glutamatergic neurotransmission, possibly through AMPA-receptors. Expert opinion: A major limitation of current pre-clinical investigations is that there are no experimental models that recapitulate the complexity of bipolar disorder. Significant methodological differences concerning time and dose of LTG treatment, administration route, animal strains, and behavioral paradigms also hamper the reproducibility of the findings, leading to contradictory conclusions. Moreover, the role of other mechanisms (e.g. inositol phosphate and GSK3β pathways) implicated in the mode of action of different mood-stabilizers must also be consolidated with LTG.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- a Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,b Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Brasil
| | - Amanda Silva de Miranda
- c Departamento de Química , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais , Belo Horizonte , Brasil
| | - Antônio Lúcio Teixeira
- a Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,d Neuropsychiatry Program & Immuno-Psychiatry Lab, Department of Psychiatry & Behavioral Sciences, McGovern Medical School , University of Texas Health Science Center at Houston , Houston , USA
| |
Collapse
|
53
|
Effect of Acute Stress on the Expression of BDNF, trkB, and PSA-NCAM in the Hippocampus of the Roman Rats: A Genetic Model of Vulnerability/Resistance to Stress-Induced Depression. Int J Mol Sci 2018; 19:ijms19123745. [PMID: 30477252 PMCID: PMC6320970 DOI: 10.3390/ijms19123745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
The Roman High-Avoidance (RHA) and the Roman Low-Avoidance (RLA) rats, represent two psychogenetically-selected lines that are, respectively, resistant and prone to displaying depression-like behavior, induced by stressors. In the view of the key role played by the neurotrophic factors and neuronal plasticity, in the pathophysiology of depression, we aimed at assessing the effects of acute stress, i.e., forced swimming (FS), on the expression of brain-derived neurotrophic factor (BDNF), its trkB receptor, and the Polysialilated-Neural Cell Adhesion Molecule (PSA-NCAM), in the dorsal (dHC) and ventral (vHC) hippocampus of the RHA and the RLA rats, by means of western blot and immunohistochemical assays. A 15 min session of FS elicited different changes in the expression of BDNF in the dHC and the vHC. In RLA rats, an increment in the CA2 and CA3 subfields of the dHC, and a decrease in the CA1 and CA3 subfields and the dentate gyrus (DG) of the vHC, was observed. On the other hand, in the RHA rats, no significant changes in the BDNF levels was seen in the dHC and there was a decrease in the CA1, CA3, and DG of the vHC. Line-related changes were also observed in the expression of trkB and PSA-NCAM. The results are consistent with the hypothesis that the differences in the BDNF/trkB signaling and neuroplastic mechanisms are involved in the susceptibility of RLA rats and resistance of RHA rats to stress-induced depression.
Collapse
|
54
|
Ran Y, Jin Z, Chen X, Zhao N, Fang X, Zhang L, Zhang Y, Li Y. Hypidone Hydrochloride (YL-0919) Produces a Fast-Onset Reversal of the Behavioral and Synaptic Deficits Caused by Chronic Stress Exposure. Front Cell Neurosci 2018; 12:395. [PMID: 30524234 PMCID: PMC6256289 DOI: 10.3389/fncel.2018.00395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Our previous study showed that hypidone hydrochloride (YL-0919), a partial serotonin 1A (5-HT1A) receptor agonist and 5-HT reuptake inhibitor, exerts a significant antidepressant effect in various animal models. The aim of the present study was to further investigate the underlying mechanisms and whether it could act as a fast-onset antidepressant. In the current study, depressive-like behavior was induced in rats by a chronic unpredictable stress (CUS) model and assessed with the Sucrose Preference Test (SPT). Treatment with YL-0919 (2.5 mg/kg, i.g.), but not with fluoxetine (Flx; 10 mg/kg, i.g.), caused a fast improvement in the SPT scores. In CUS-exposed rats, YL-0919 treatment for 5 days decreased the immobility time in a forced swimming test (FST), and a 10-day treatment decreased the latency to feed in a Novelty-Suppressed Feeding Test (NSFT). In addition to the behavioral tests, the effects of YL-0919 on synaptic protein expression were also evaluated. Western blotting showed that YL-0919 significantly enhanced the expression levels of synaptic proteins such as synapsin I, postsynaptic density protein 95 (PSD95), phosphorylated mammalian targeting of rapamycin (pmTOR) and brain-derived neurotrophic factor (BDNF) in the hippocampus. To determine how the mTOR signaling is involved in the fast-onset antidepressant-like effects of YL-0919, the mTOR-specific inhibitor rapamycin was administered intracerebroventricularly (i.c.v.) together with the YL-0919 treatment. The observed changes in behavioral tests and protein expression could be reversed by rapamycin treatment. This suggests that the fast-onset antidepressant effects of YL-0919 were partially caused by changes in synaptogenesis mediated by activation of mTOR pathways. Our data suggest that YL-0919 may be a powerful/effective antidepressant with fast-onset.
Collapse
Affiliation(s)
- Yuhua Ran
- State Key Laboratory of Toxicology Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Zengliang Jin
- State Key Laboratory of Toxicology Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaofei Chen
- State Key Laboratory of Toxicology Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Nan Zhao
- State Key Laboratory of Toxicology Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Xinxin Fang
- State Key Laboratory of Toxicology Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Liming Zhang
- State Key Laboratory of Toxicology Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Youzhi Zhang
- State Key Laboratory of Toxicology Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Yunfeng Li
- State Key Laboratory of Toxicology Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| |
Collapse
|
55
|
Ohno Y, Kinboshi M, Shimizu S. Inwardly Rectifying Potassium Channel Kir4.1 as a Novel Modulator of BDNF Expression in Astrocytes. Int J Mol Sci 2018; 19:ijms19113313. [PMID: 30356026 PMCID: PMC6274740 DOI: 10.3390/ijms19113313] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/02/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key molecule essential for neural plasticity and development, and is implicated in the pathophysiology of various central nervous system (CNS) disorders. It is now documented that BDNF is synthesized not only in neurons, but also in astrocytes which actively regulate neuronal activities by forming tripartite synapses. Inwardly rectifying potassium (Kir) channel subunit Kir4.1, which is specifically expressed in astrocytes, constructs Kir4.1 and Kir4.1/5.1 channels, and mediates the spatial potassium (K+) buffering action of astrocytes. Recent evidence illustrates that Kir4.1 channels play important roles in bringing about the actions of antidepressant drugs and modulating BDNF expression in astrocytes. Although the precise mechanisms remain to be clarified, it seems likely that inhibition (down-regulation or blockade) of astrocytic Kir4.1 channels attenuates K+ buffering, increases neuronal excitability by elevating extracellular K+ and glutamate, and facilitates BDNF expression. Conversely, activation (up-regulation or opening) of Kir4.1 channels reduces neuronal excitability by lowering extracellular K+ and glutamate, and attenuates BDNF expression. Particularly, the former pathophysiological alterations seem to be important in epileptogenesis and pain sensitization, and the latter in the pathogenesis of depressive disorders. In this article, we review the functions of Kir4.1 channels, with a focus on their regulation of spatial K+ buffering and BDNF expression in astrocytes, and discuss the role of the astrocytic Kir4.1-BDNF system in modulating CNS disorders.
Collapse
Affiliation(s)
- Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masato Kinboshi
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
56
|
Mao R, Zhang C, Chen J, Zhao G, Zhou R, Wang F, Xu J, Yang T, Su Y, Huang J, Wu Z, Cao L, Wang Y, Hu Y, Yuan C, Yi Z, Hong W, Wang Z, Peng D, Fang Y. Different levels of pro- and anti-inflammatory cytokines in patients with unipolar and bipolar depression. J Affect Disord 2018; 237:65-72. [PMID: 29778935 DOI: 10.1016/j.jad.2018.04.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Immune system dysregulation is critical in the physiopathology of major depressive disorder (MDD) and bipolar disorder (BD). However, it is unclear whether both diseases present the same inflammatory patterns during depressive episodes. We explored the differences in pro- and anti-inflammatory cytokines between unipolar and bipolar depression (BDD) and the trajectory of these cytokines after acute-phase treatment. METHODS Sixty-four MDD patients, 61 BDD patients, and 62 healthy controls (HCs) were enrolled. We assessed the clinical features and cytokines plasma levels at baseline and week 12. The pro-inflammatory cytokines (IL-6, TNF-α) and anti-inflammatory cytokines (IL-4, IL-13) of all subjects were assessed by multiplexed sandwich ELISA-based quantitative arrays. RESULTS Before acute-phase treatment, the initial levels of TNF-α and IL-13 were significantly lower in the BDD patients than in the MDD patients. The results demonstrated that there was no relationship between each cytokine level and clinical features of unipolar and bipolar depressions. After 12 weeks, TNF-α, IL-4, and IL-13 levels became lower in MDD patients than in the other two groups regardless of the patients' response to treatment while the levels of TNF-α and IL-4 increased only in the BDD responders. LIMITATIONS The effects of different drugs on inflammatory cytokines in MDD or BDD could not be explored further due to the relatively small sample size. CONCLUSION Even within the same depressive states, MDD and BDD patients present different inflammatory features, particularly in regard to pro-inflammatory TNF-α and anti-inflammatory IL-13. In addition, the fluctuations of cytokines induced by medication may provide a hint regarding the prediction of treatment response.
Collapse
Affiliation(s)
- Ruizhi Mao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Jun Chen
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Guoqing Zhao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Department of Psychology, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Rubai Zhou
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Fan Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jingjing Xu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Tao Yang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yousong Su
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jia Huang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhiguo Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lan Cao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yong Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yingyan Hu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chengmei Yuan
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhenghui Yi
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wu Hong
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zuowei Wang
- Division of Mood Disorders, Hongkou District Mental Health Center of Shanghai, Shanghai, 200083, China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology, China; Shanghai Key Laboratory of Psychotic Disorders, China.
| |
Collapse
|
57
|
Gbyl K, Videbech P. Electroconvulsive therapy increases brain volume in major depression: a systematic review and meta-analysis. Acta Psychiatr Scand 2018; 138:180-195. [PMID: 29707778 DOI: 10.1111/acps.12884] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The main purpose of this review was to synthesise evidence on ECT's effects on brain's structure. METHOD A systematic literature review of longitudinal studies of depressed patients treated with ECT using magnetic resonance imaging (MRI) and meta-analysis of ECT's effect on hippocampal volume. RESULTS Thirty-two studies with 467 patients and 285 controls were included. The MRI studies did not find any evidence of ECT-related brain damage. All but one of the newer MRI volumetric studies found ECT-induced volume increases in certain brain areas, most consistently in hippocampus. Meta-analysis of effect of ECT on hippocampal volume yielded pooled effect size: g = 0.39 (95% CI = 0.18-0.61) for the right hippocampus and g = 0.31 (95% CI = 0.09-0.53) for the left. The DTI studies point to an ECT-induced increase in the integrity of white matter pathways in the frontal and temporal lobes. The results of correlations between volume increases and treatment efficacy were inconsistent. CONCLUSION The MRI studies do not support the hypothesis that ECT causes brain damage; on the contrary, the treatment induces volume increases in fronto-limbic areas. Further studies should explore the relationship between these increases and treatment effect and cognitive side effects.
Collapse
Affiliation(s)
- K Gbyl
- Centre for Neuropsychiatric Depression Research, Mental Health Centre Glostrup, Glostrup, Denmark
| | - P Videbech
- Centre for Neuropsychiatric Depression Research, Mental Health Centre Glostrup, Glostrup, Denmark
| |
Collapse
|
58
|
Ayuob NN, Balgoon MJ. Histological and molecular techniques utilized to investigate animal models of depression. An updated review. Microsc Res Tech 2018; 81:1143-1153. [PMID: 30168883 DOI: 10.1002/jemt.23105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022]
Abstract
This review aimed to summarize the different histopathological techniques and procedures utilized during investigating the different animal models of depression in order to explore the pathophysiological aspect of depression and testing the efficacy of the antidepressant drugs or new treatments. This will be helpful while designing researches aiming to achieve these objectives. It was found that the major obstacle during investigating the animal models of depression was the restricted availability of validated animal models. The chronic stress models have face, construct, and predictive validity. It was found that the histological techniques used in investigating the animal models of depression that was described in the literatures fall under three categories; the light microscopic, the electron microscopic and the molecular biological studies. The light microscope studies were performed using the routine histological staining and immunohistochemical technique that aimed to describe the hippocampal histopathological changes induced by depression. Establishment of a preclinical behavioral science laboratory is highly recommended. It will encourage and support the conduction of high quality, multidisciplinary researches targeting anxiety and other psychiatric disorders and will indirectly improve the health care provided to the psychiatric patients. RESEARCH HIGHLIGHTS: Chronic stress models are valid ones. Light microscope was utilized to examine the routinely or immunohistochemically stained sections in hippocampus of animal models of depression while electron microscope was utilized to examine its ultrastructure.
Collapse
Affiliation(s)
- Nasra Naeim Ayuob
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Saudi Arabia.,Histology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Maha Jameal Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
59
|
Moore A, Beidler J, Hong MY. Resveratrol and Depression in Animal Models: A Systematic Review of the Biological Mechanisms. Molecules 2018; 23:E2197. [PMID: 30200269 PMCID: PMC6225181 DOI: 10.3390/molecules23092197] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Depression is currently treated by pharmacotherapies that can elicit debilitating side effects for patients. Novel treatment options with limited side effects are currently being researched. Resveratrol is a polyphenol and phytoalexin found in the skins of grapes, red wine, Japanese knotweed, and peanuts. It has been studied extensively for its antioxidant and anti-inflammatory properties. Resveratrol has also gained attention for its neuroprotective properties. The aim of the review was to examine the mechanisms by which resveratrol reduces depressive behaviors in animal models. In total, 22 studies met the established criteria for final review. Behavioral aspects of depression were investigated using validated measures such as the forced swimming test, tail suspension test, sucrose preference test, and open field test. While many physical measures were taken, three main biological mechanisms were explored: Regulation of the hypothalamic⁻pituitary⁻adrenal axis; decreased inflammation; and increased Brain-Derived Neurotrophic Factor and neurogenesis. Based on these findings, resveratrol may be deemed an effective treatment for depression in animal models at doses between 10⁻80 mg/kg/day, although higher doses had the most significant effects. Future studies should examine the effects of resveratrol on depression in humans to determine the eligibility of resveratrol as a natural antidepressant with less severe side effects.
Collapse
Affiliation(s)
- Alyssa Moore
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA.
| | - Joshua Beidler
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA.
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
60
|
Abstract
OBJECTIVES The main aims of this paper are to review and evaluate the neurobiology of the depressive syndrome from a neurodevelopmental perspective. METHODS An English language literature search was performed using PubMed. RESULTS Depression is a complex syndrome that involves anatomical and functional changes that have an early origin in brain development. In subjects with genetic risk for depression, early stress factors are able to mediate not only the genetic risk but also gene expression. There is evidence that endocrine and immune interactions have an important impact on monoamine function and that the altered monoamine signalling observed in the depressive syndrome has a neuro-endocrino-immunological origin early in the development. CONCLUSIONS Neurodevelopment is a key aspect to understand the whole neurobiology of depression.
Collapse
Affiliation(s)
- Juan M Lima-Ojeda
- a Department of Psychiatry and Psychotherapy , University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- a Department of Psychiatry and Psychotherapy , University of Regensburg, Regensburg, Germany
| | - Thomas C Baghai
- a Department of Psychiatry and Psychotherapy , University of Regensburg, Regensburg, Germany
| |
Collapse
|
61
|
Abstract
Attachment theory was developed by John Bowlby in the 1950s. He defined attachment as a specific neurobiological system that resulted in the infant connecting to the primary caretaker in such a way to create an inner working model of relationships that continues throughout life and affects the future mental health and physical health of the infant. Given the significance of this inner working model, there has been a tremendous amount of research done in animals as well as humans to better understand the neurobiology. In this article the neurobiology of early development will be outlined with respect to the formation of attachment. This article will review what we have begun to understand as the neurobiology of attachment and will describe how the relationship with the primary caretaker affects the infant in a way leading to neurobiological changes that later in life affect emotional responses, reward, and perception difficulties that we recognize as psychiatric illness and medical morbidity.
Collapse
Affiliation(s)
- Joanna Chambers
- Associate Professor of Clinical Psychiatry, Indiana University School of Medicine; Chair of Scientific Programs, American Academy of Psychoanalysis and Dynamic Psychiatry
| |
Collapse
|
62
|
Najjar F, Ahmad M, Lagace D, Leenen FHH. Sex differences in depression-like behavior and neuroinflammation in rats post-MI: role of estrogens. Am J Physiol Heart Circ Physiol 2018; 315:H1159-H1173. [PMID: 30052050 DOI: 10.1152/ajpheart.00615.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with heart failure (HF) have a high prevalence of depression associated with a worse prognosis, particularly in older women. The present study evaluated whether sex and estrogens affect depression-like behavior and associated neuroinflammation induced by myocardial infarction (MI) in rats. MI was induced by occlusion of the left anterior descending artery in young adult male and female Wistar rats or in ovariectomized (OVX) female rats without and with estrogen [17β-estradiol (E2)] replacement. MI groups showed a comparable degree of cardiac dysfunction. Eight weeks post-MI, male rats with HF exhibited depression-like behaviors, including anhedonia and higher immobility in the sucrose preference and forced swim tests, which were not observed in female rats with HF. In the cued fear conditioning test, male but not female rats with HF froze more than sham rats. After OVX, female sham rats developed mild depression-like behaviors that were pronounced in OVX female rats post-MI and were largely prevented by E2 replacement. Cytokine levels in the plasma and paraventricular nucleus increased in both sexes with HF, but only male rats with HF showed an increase in cytokine levels in the prefrontal cortex. OVX alone did not affect cytokine levels, but OVX-MI caused significant increases in the prefrontal cortex, which were shifted to an anti-inflammatory pattern by E2 replacement. These results suggest that estrogens prevent depression-like behavior induced by HF post-MI in young adult female rats by inhibiting proinflammatory cytokine production and actions in the prefrontal cortex. NEW & NOTEWORTHY In contrast to male rats, female rats with heart failure after myocardial infarction do not develop depression-like behavior or increases in prefrontal cortex cytokines. However, after ovariectomy, female rats exhibit similar changes, which are prevented by 17β-estradiol replacement. Neuroinflammation in the prefrontal cortex in male subjects may contribute to depression-like behavior, whereas its estrogen-dependent absence in female subjects may protect against depression.
Collapse
Affiliation(s)
- Fatimah Najjar
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| | - Diane Lagace
- Department of Cellular and Molecular Medicine and Neuroscience Program, University of Ottawa Brain and Mind Institute , Ottawa, Ontario , Canada
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| |
Collapse
|
63
|
Lian L, Xu Y, Zhang J, Yu Y, Zhu N, Guan X, Huang H, Chen R, Chen J, Shi G, Pan J. Antidepressant-like effects of a novel curcumin derivative J147: Involvement of 5-HT 1A receptor. Neuropharmacology 2018; 135:506-513. [PMID: 29626566 DOI: 10.1016/j.neuropharm.2018.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
Depression is a dysthymia disorder characterized by a pervasive or persistent mental disorder that causes mood, cognitive and memory deficits. J147, a curcumin analogue, increases brain derived neurotrophic factor (BDNF) levels and facilitates memory in animals. Because curcumin has the antidepressant-like activity, the present study investigated the potential antidepressant-like effects of J147 in the forced swimming test (FST) and tail suspension tests (TST) and the involvement of 5-HT receptors related to cAMP signaling. The results suggested that acute treatment of J147 at doses of 5 and 10 mg/kg via gavage markedly reduced the duration of immobility in both TST and FST, either 1 h or 3 h after treatment, respectively. It did not alter locomotor activity but influence the immobile response. The molecular biological assays showed that 5-HT1A receptor expression was significantly increased at 1 h after treatment with J147 at a dose of 10 mg/kg. In addition, pre-treatment of mice with WAY-100635 blocked the J147's effect in the FST. 5-HT1B receptor expression was not significantly increased with increasing doses of J147. The 5-HT1B receptors antagonist isamoltan partially prevented J147's effect in the FST. The levels of downstream molecular targets, cAMP, PKA, pCREB and BDNF were significantly increased 1 h after treatment with J147 at doses of 5 and 10 mg/kg. The up-regulated pCREB and BDNF levels lasted for 3 h after 10 mg/kg of J147. These findings demonstrated that J147 has antidepressant-like effects that are mediated, at least in part, by activating the 5-HT1A/cAMP/PKA/CREB/BDNF-signaling pathway.
Collapse
Affiliation(s)
- Lejing Lian
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ying Xu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jianbo Zhang
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yingcong Yu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang Province, 325000, China; Clinical Institute of Gastroenterology, Zhejiang University, Zhejiang Province, 310016, China
| | - Naping Zhu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaofei Guan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hui Huang
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jie Chen
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guilan Shi
- Zibo Vocational Institute, Zibo, Shandong Province, 255000, China
| | - Jianchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
64
|
Thakare VN, Patil RR, Oswal RJ, Dhakane VD, Aswar MK, Patel BM. Therapeutic potential of silymarin in chronic unpredictable mild stress induced depressive-like behavior in mice. J Psychopharmacol 2018; 32:223-235. [PMID: 29215318 DOI: 10.1177/0269881117742666] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Silymarin, a plant-derived polyphenolic flavonoid of Silybum marianum, elicited significant antidepressant-like activity in an acute restraint stress model of depression. It improved monoamines, mainly 5-hydroxytryptamine (5-HT) levels in the cortex, dopamine (DA) and norepinephrine (NE) in the cerebellum in mice. The present study was undertaken to explore the antidepressant potential of silymarin in chronic unpredictable mild stress (CUMS) induced depressive-like behavior in mice, and to find out its probable mechanism(s) of action, mainly neurogenesis, neuroinflammation, and/or oxidative stress. The mice were subjected to CUMS for 28 days (4 weeks) and administered with silymarin (100 mg/kg and 200 mg/kg), or fluoxetine or vehicle from days 8 to 28 (3 weeks simultaneously). Animals were evaluated for behavioral changes, such as anhedonia by sucrose preference test, behavioral despair by forced swim test, and exploratory behaviors by an open field test. In addition, neurobiochemical alterations, mainly monoamines, 5-HT, NE, DA, neurotrophic factor BDNF, and cytokines, IL-6, TNF-α, oxidant-antioxidant parameters by determining the malondialdehyde formation (an index of lipid peroxidation process), superoxide dismutase (SOD) and catalase (CAT) activity in hippocampus and cerebral cortex along with serum corticosterone were investigated. Our findings reveal that mice subjected to CUMS exhibited lower sucrose preference, increase immobility time without affecting general locomotion of the animals, and reduce BDNF, 5-HT, NE, and DA level, increased serum corticosterone, IL-6 and TNF-α along with an oxidant-antioxidant imbalance in the hippocampus and cerebral cortex. Silymarin significantly reversed the CUMS-induced changes in the hippocampus and cerebral cortex in mice. Thus, the possible mechanism involved in the antidepressant-like activity of silymarin is correlated to the alleviation of monoaminergic, neurogenesis (enhancing 5-HT, NE, and BDNF levels), and attenuation of inflammatory cytokines system and oxidative stress by modulation of corticosterone response, restoration of antioxidant defense system in cerebral cortex and hippocampus.
Collapse
Affiliation(s)
- Vishnu N Thakare
- 1 Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, India.,4 Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Rajesh R Patil
- 1 Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, India
| | - Rajesh J Oswal
- 1 Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, India
| | | | - Manoj K Aswar
- 3 Department of Pharmacology, Sinhgad Institute of Pharmacy, Nerhe, Pune, India
| | - Bhoomika M Patel
- 4 Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
65
|
Holmes SE, Esterlis I, Mazure CM, Lim YY, Ames D, Rainey-Smith S, Fowler C, Ellis K, Martins RN, Salvado O, Doré V, Villemagne VL, Rowe CC, Laws SM, Masters CL, Pietrzak RH, Maruff P. Trajectories of depressive and anxiety symptoms in older adults: a 6-year prospective cohort study. Int J Geriatr Psychiatry 2018; 33:405-413. [PMID: 28736899 PMCID: PMC5773367 DOI: 10.1002/gps.4761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/05/2017] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Depressive and anxiety symptoms are common in older adults, significantly affect quality of life, and are risk factors for Alzheimer's disease. We sought to identify the determinants of predominant trajectories of depressive and anxiety symptoms in cognitively normal older adults. METHOD Four hundred twenty-three older adults recruited from the general community underwent Aβ positron emission tomography imaging, apolipoprotein and brain-derived neurotrophic factor genotyping, and cognitive testing at baseline and had follow-up assessments. All participants were cognitively normal and free of clinical depression at baseline. Latent growth mixture modeling was used to identify predominant trajectories of subthreshold depressive and anxiety symptoms over 6 years. Binary logistic regression analysis was used to identify baseline predictors of symptomatic depressive and anxiety trajectories. RESULTS Latent growth mixture modeling revealed two predominant trajectories of depressive and anxiety symptoms: a chronically elevated trajectory and a low, stable symptom trajectory, with almost one in five participants falling into the elevated trajectory groups. Male sex (relative risk ratio (RRR) = 3.23), lower attentional function (RRR = 1.90), and carriage of the brain-derived neurotrophic factor Val66Met allele in women (RRR = 2.70) were associated with increased risk for chronically elevated depressive symptom trajectory. Carriage of the apolipoprotein epsilon 4 allele (RRR = 1.92) and lower executive function in women (RRR = 1.74) were associated with chronically elevated anxiety symptom trajectory. CONCLUSION Our results indicate distinct and sex-specific risk factors linked to depressive and anxiety trajectories, which may help inform risk stratification and management of these symptoms in older adults at risk for Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sophie E Holmes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Carolyn M. Mazure
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yen Ying Lim
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, St. Vincent’s Health, Department of Psychiatry, The University of Melbourne, Kew, Victoria, Australia,National Ageing Research Institute, Parkville, Victoria, Australia
| | - Stephanie Rainey-Smith
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Chris Fowler
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn Ellis
- National Ageing Research Institute, Parkville, Victoria, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia,Sir James McCusker Alzheimer’s Disease Research Unit, Hollywood Private Hospital, Perth, Western Australia, Australia
| | - Olivier Salvado
- The Commonwealth Scientific and Industrial Research Organization, Canberra, Australia
| | - Vincent Doré
- The Commonwealth Scientific and Industrial Research Organization, Canberra, Australia,Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Victor L. Villemagne
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia,Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Simon M. Laws
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia,Co-operative Research Centre for Mental Health,School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University
| | - Colin L. Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Robert H. Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia,Cogstate Ltd., Melbourne, Victoria, Australia
| | | |
Collapse
|
66
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
67
|
Huang X, Huang X, Zhou Y, He H, Mei F, Sun B, Soares JC, Yang Zhang X. Association of serum BDNF levels with psychotic symptom in chronic patients with treatment-resistant depression in a Chinese Han population. Psychiatry Res 2017; 257:279-283. [PMID: 28783576 DOI: 10.1016/j.psychres.2017.07.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/06/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
The neurotrophic hypothesis of depression is supported by consistent findings of lower serum BDNF levels in depressed patients. Increasing evidence shows different clinical characteristics of patients with psychotic major depression versus nonpsychotic major depression. However, the possible association between BDNF and psychotic symptoms in depression has not been investigated. We recruited 90 treatment-resistant depression (TRD) patients and 90 gender- and age-matched healthy control subjects and examined serum BDNF in both groups. Patients' depressive symptoms were assessed using the 17-item Hamilton Depression Rating Scale (HDRS-17), and psychopathological symptoms by the 18-item Brief Psychiatric Rating Scale (BPRS-18). Our results showed that BDNF levels were significantly lower in patients than controls. Correlation analysis revealed a significantly positive correlation between BDNF and the thought disturbance subscale of BPRS-18 (p < 0.05), and a trend toward a significantly positive correlation between BDNF and the BPRS-18 total score (p = 0.06). Stepwise multiple regression analyses confirmed BDNF as the influencing factor for the thought disturbance subscales of the BPRS-18. Our findings suggest that BDNF may be involved in the pathophysiology of TRD, and its associated psychotic symptoms, especially thought disturbance.
Collapse
Affiliation(s)
- Xingbing Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiong Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.
| | - Yanling Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Hongbo He
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Fang Mei
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Bin Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiang Yang Zhang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China.
| |
Collapse
|
68
|
Serra MP, Poddighe L, Boi M, Sanna F, Piludu MA, Corda MG, Giorgi O, Quartu M. Expression of BDNF and trkB in the hippocampus of a rat genetic model of vulnerability (Roman low-avoidance) and resistance (Roman high-avoidance) to stress-induced depression. Brain Behav 2017; 7:e00861. [PMID: 29075579 PMCID: PMC5651403 DOI: 10.1002/brb3.861] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The selective breeding of Roman High- (RHA) and Low-Avoidance (RLA) rats for, respectively, rapid versus poor acquisition of the active avoidance response has generated two distinct phenotypes differing in many behavioral traits, including coping strategies to aversive conditions. Thus, RLA rats are considered as a genetic model of vulnerability to stress-induced depression whereas RHA rats are a model of resilience to that trait. Besides the monoamine hypothesis of depression, there is evidence that alterations in neuronal plasticity in the hippocampus and other brain areas are critically involved in the pathophysiology of mood disorders. MATERIALS AND METHODS Western blot (WB) and immunohistochemistry were used to investigate the basal immunochemical occurrence of brain-derived neurotrophic factor (BDNF) and its high-affinity tyrosine-kinase receptor trkB in the dorsal and ventral hippocampus of adult RHA and RLA rats. RESULTS WB analysis indicated that the optical density of BDNF- and trkB-positive bands in the dorsal hippocampus is, respectively, 48% and 25% lower in RLA versus RHA rats. Densitometric analysis of BDNF- and trkB-like immunoreactivity (LI) in brain sections showed that BDNF-LI is 24% to 34% lower in the different sectors of the Ammon's horn of RLA versus RHA rats, whereas line-related differences are observed in the dentate gyrus (DG) only in the ventral hippocampus. As for trkB-LI, significant differences are observed only in the dorsal hippocampus, where density is 23% lower in the DG of RLA versus RHA rats, while no differences across lines occur in the Ammon's horn. CONCLUSION These findings support the hypothesis that a reduced BDNF/trkB signaling in the hippocampus of RLA versus RHA rats may contribute to their more pronounced vulnerability to stress-induced depression.
Collapse
Affiliation(s)
- M Pina Serra
- Department of Biomedical Sciences University of Cagliari Monserrato (CA) Italy
| | - Laura Poddighe
- Department of Biomedical Sciences University of Cagliari Monserrato (CA) Italy
| | - Marianna Boi
- Department of Biomedical Sciences University of Cagliari Monserrato (CA) Italy
| | - Francesco Sanna
- Department of Life and Environmental Sciences University of Cagliari Cagliari Italy
| | - M Antonietta Piludu
- Department of Life and Environmental Sciences University of Cagliari Cagliari Italy
| | - M Giuseppa Corda
- Department of Life and Environmental Sciences University of Cagliari Cagliari Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences University of Cagliari Cagliari Italy
| | - Marina Quartu
- Department of Biomedical Sciences University of Cagliari Monserrato (CA) Italy
| |
Collapse
|
69
|
Can Ocimum basilicum relieve chronic unpredictable mild stress-induced depression in mice? Exp Mol Pathol 2017; 103:153-161. [DOI: 10.1016/j.yexmp.2017.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022]
|
70
|
Zegarra-Valdivia JA. Insulin-like growth factor type 1 and its relation with neuropsychiatric disorders. Medwave 2017; 17:e7031. [DOI: 10.5867/medwave.2017.07.7031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/06/2017] [Indexed: 11/27/2022] Open
|
71
|
Krystal JH, Abdallah CG, Averill LA, Kelmendi B, Harpaz-Rotem I, Sanacora G, Southwick SM, Duman RS. Synaptic Loss and the Pathophysiology of PTSD: Implications for Ketamine as a Prototype Novel Therapeutic. Curr Psychiatry Rep 2017; 19:74. [PMID: 28844076 PMCID: PMC5904792 DOI: 10.1007/s11920-017-0829-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Studies of the neurobiology and treatment of PTSD have highlighted many aspects of the pathophysiology of this disorder that might be relevant to treatment. The purpose of this review is to highlight the potential clinical importance of an often-neglected consequence of stress models in animals that may be relevant to PTSD: the stress-related loss of synaptic connectivity. RECENT FINDINGS Here, we will briefly review evidence that PTSD might be a "synaptic disconnection syndrome" and highlight the importance of this perspective for the emerging therapeutic application of ketamine as a potential rapid-acting treatment for this disorder that may work, in part, by restoring synaptic connectivity. Synaptic disconnection may contribute to the profile of PTSD symptoms that may be targeted by novel pharmacotherapeutics.
Collapse
Affiliation(s)
- John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Psychiatry Services, Yale-New Haven Hospital, New Haven, CT, USA
| | - Chadi G. Abdallah
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Lynette A. Averill
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Benjamin Kelmendi
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Steven M. Southwick
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ronald S. Duman
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
72
|
Ali SS, Abd El Wahab MG, Ayuob NN, Suliaman M. The antidepressant-like effect of Ocimum basilicum in an animal model of depression. Biotech Histochem 2017; 92:390-401. [DOI: 10.1080/10520295.2017.1323276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- SS Ali
- Anatomy Department, Faculty of Medicine, King Abdulaziz University
| | - MG Abd El Wahab
- Anatomy Department, Faculty of Medicine for Girls, Al Azhar University
- Faculty of Nurses, National Gard, King Saud University, Yousef Abdullatif Jameel Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - NN Ayuob
- Anatomy Department, Faculty of Medicine, King Abdulaziz University
- Histology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - M Suliaman
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
73
|
Thakare VN, Aswar MK, Kulkarni YP, Patil RR, Patel BM. Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response. Physiol Behav 2017; 179:401-410. [PMID: 28711395 DOI: 10.1016/j.physbeh.2017.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 05/05/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Silymarin is a polyphenolic flavonoid of Silybum marianum, exhibited neuroprotection and antidepressant like activity in acute restraint stressed mice. The main objective of the present study is to investigate possible antidepressant like activity of silymarin in experimentally induced depressive behavior in rats. The depressive behaviors were induced in rats by olfactory bulbectomized (OBX) technique. Wistar rats were administered with silymarin at a dose of 100mg/kg and 200mg/kg, by per oral in OBX and sham operated rats. Behavioral (ambulatory and rearing activity and immobility time), neurochemical [serotonin (5-HT), dopamine (DA), norepinephrine (NE) and brain derived neurotrophic factor (BDNF) level], biochemical (MDA formation, IL-6, TNF-α and antioxidants) changes in hippocampus and cerebral cortex along with serum corticosterone were investigated. Rats subjected to OBX elicited significant increase in immobility time, ambulatory and rearing behaviors, reduced BDNF level, 5-HT, DA, NE and antioxidant parameters along with increased serum corticosterone, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex compared to sham operated rats. Administration of with silymarin significantly attenuated immobility time, ambulatory and rearing behaviors, serum corticosterone and improved BDNF expression, 5-HT, DA, NE and antioxidant paradigms in cerebral cortex as well as hippocampus. In addition, silymarin attenuated IL-6, and TNF-α significantly in hippocampus and cerebral cortex in OBX rats. Thus, silymarin exhibits anti-depressant-like activity in OBX rats due to alterations in several neurotransmitters, endocrine and immunologic systems, including BDNF, 5-HT, DA, NE, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex as well as serum corticosterone.
Collapse
Affiliation(s)
- Vishnu N Thakare
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala 410401, Maharashtra, India; Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, Gujarat, India
| | - Manoj K Aswar
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Nerhe, Pune, Maharashtra, India
| | - Yogesh P Kulkarni
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala 410401, Maharashtra, India
| | - Rajesh R Patil
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala 410401, Maharashtra, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, Gujarat, India.
| |
Collapse
|
74
|
Morais M, Patrício P, Mateus-Pinheiro A, Alves ND, Machado-Santos AR, Correia JS, Pereira J, Pinto L, Sousa N, Bessa JM. The modulation of adult neuroplasticity is involved in the mood-improving actions of atypical antipsychotics in an animal model of depression. Transl Psychiatry 2017; 7:e1146. [PMID: 28585931 PMCID: PMC5537642 DOI: 10.1038/tp.2017.120] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 11/09/2022] Open
Abstract
Depression is a prevalent psychiatric disorder with an increasing impact in global public health. However, a large proportion of patients treated with currently available antidepressant drugs fail to achieve remission. Recently, antipsychotic drugs have received approval for the treatment of antidepressant-resistant forms of major depression. The modulation of adult neuroplasticity, namely hippocampal neurogenesis and neuronal remodeling, has been considered to have a key role in the therapeutic effects of antidepressants. However, the impact of antipsychotic drugs on these neuroplastic mechanisms remains largely unexplored. In this study, an unpredictable chronic mild stress protocol was used to induce a depressive-like phenotype in rats. In the last 3 weeks of stress exposure, animals were treated with two different antipsychotics: haloperidol (a classical antipsychotic) and clozapine (an atypical antipsychotic). We demonstrated that clozapine improved both measures of depressive-like behavior (behavior despair and anhedonia), whereas haloperidol aggravated learned helplessness in the forced-swimming test and behavior flexibility in a cognitive task. Importantly, an upregulation of adult neurogenesis and neuronal survival was observed in animals treated with clozapine, whereas haloperidol promoted a downregulation of these processes. Furthermore, clozapine was able to re-establish the stress-induced impairments in neuronal structure and gene expression in the hippocampus and prefrontal cortex. These results demonstrate the modulation of adult neuroplasticity by antipsychotics in an animal model of depression, revealing that the atypical antipsychotic drug clozapine reverts the behavioral effects of chronic stress by improving adult neurogenesis, cell survival and neuronal reorganization.
Collapse
Affiliation(s)
- M Morais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - P Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - N D Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A R Machado-Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J S Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - L Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal,Life and Health Science Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail:
| |
Collapse
|
75
|
Li G, Jing P, Liu Z, Li Z, Ma H, Tu W, Zhang W, Zhuo C. Beneficial effect of fluoxetine treatment aganist psychological stress is mediated by increasing BDNF expression in selected brain areas. Oncotarget 2017; 8:69527-69537. [PMID: 29050222 PMCID: PMC5642497 DOI: 10.18632/oncotarget.17891] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/29/2017] [Indexed: 01/03/2023] Open
Abstract
SSRI antidepressant fluoxetine is widely used to treat psychological stress related disorders, however the underlying working mechanisms is not fully understood, as SSRIs can rapidly increase the extracellular serotonin levels but it normally takes weeks to reveal their therapeutic effect in the stress-related psychological disorders. Our previous study demonstrated that purely psychological stress without any physic stimuli induces a biphasic change in the expression of brain-derived neurotrophic factor (BDNF), which immediately decrease and then gradually increase after the stress; and that the latter BDNF increase in response to the psychological stress involves the activation of serotonin system. To investigate the role of BDNF in the fluoxetine treatment for stress-related psychological disorders, we examined the mRNA and protein levels of BDNF in the brain of Sprague-Dawley (SD) rats, which were pretreated with fluoxetine at 10 mg/kg or vehicle solution for 14 days, over 24 hour after an acute psychological stress exposure. In situ hybridization and immunohistochemistry were performed to detect the expression of BDNF at different time points in various brain regions after the psychological stress. We found that fluoxetine treatment completely blocked the BDNF decrease induced by the psychological stress, and also enhanced the gradual increase in the expression of BDNF in most of the brain regions except VTA after the psychological stress. The results suggest that the enhancement in BDNF levels induced by chronic fluoxetine treatment mediates the therapeutic effect against psychological stress.
Collapse
Affiliation(s)
- Gongying Li
- Insitute of Mental health, Jining Medical University, Jining, 272067, China
| | - Ping Jing
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| | - Zhidong Liu
- Tianjin Fourth Central Hospital of Tianjin Medical University, Tianjin, 300000, China
| | - Zhiruo Li
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Hongxia Ma
- Department of Psychiatry, The Second Affiliated Hospital of Jining Medical University, Jining, 272051, China
| | - Wenzhen Tu
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| | - Wei Zhang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China.,Insitute of Mental health, Jining Medical University, Jining, 272067, China.,Department of Psychiatric Neuroimaging Laboratory, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin 300222, China.,Department of Psychiatry, Tianjin Anning Hospital, Tianjin 300300, China
| |
Collapse
|
76
|
Azogu I, Plamondon H. Blockade of TrkB receptors in the nucleus accumbens prior to heterotypic stress alters corticotropin-releasing hormone (CRH), vesicular glutamate transporter 2 (vGluT2) and glucocorticoid receptor (GR) within the mesolimbic pathway. Horm Behav 2017; 90:98-112. [PMID: 28257759 DOI: 10.1016/j.yhbeh.2017.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 12/27/2022]
Abstract
Inhibition of stress-induced elevations in brain-derived neurotrophic factor (BDNF) or its primary receptor tyrosine-related kinase B (TrkB) within the reward pathway may modulate vulnerability to anxiety and mood disorders. The current study examined the role of BDNF/TrkB signaling on biochemistry and behavior under basal conditions and following exposure to a 10-day heterotypic stress paradigm in male rats. Effects of intra-accumbal administration of TrkB antagonist ANA-12 (0.25μg/0.5μl/min) on anxiety, and expression of Trk-B, corticotropin-releasing hormone (CRH), vesicular glutamate transporter 2 (vGluT2) and glucocorticoid receptor (GR) within the mesolimbic pathway were determined. Notably, ANA-12 attenuated anxiety-like behavior in stress rats while increasing anxiety in the non-stress group in the elevated plus maze (EPM). At the neurochemical level, ANA-12 blocked the increased vGluT2 and CRH expressions in the hypothalamic PVN and basolateral amygdala in stress rats, while it enhanced vGluT2 and CRH expressions in non-stress rats. ANA-12 also showed state-dependent effects at the NAc core, attenuating TrkB-ir in non-stress rats while reversing reduced expression in stressed rats. At the cingulate cortex, ANA-12 normalized stress-induced increase in TrkB expression. Notably, ANA-12 showed region-specific effects on GR-ir at the NAc core and shell, with increased GR-ir in non-stress rats, although the drug attenuated stress-induced GR-ir expression only in the core portion of the NAc, while having no impact at the cingulate cortex. Elevated blood CORT levels post-stress was not influenced by ANA-12 treatment. Together, these findings suggest that BDNF-mediated TrkB activation exerts differential impact in regulating emotional response under basal and stress conditions.
Collapse
Affiliation(s)
- Idu Azogu
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Helene Plamondon
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada.
| |
Collapse
|
77
|
Torres-Sanchez S, Perez-Caballero L, Berrocoso E. Cellular and molecular mechanisms triggered by Deep Brain Stimulation in depression: A preclinical and clinical approach. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73:1-10. [PMID: 27644164 DOI: 10.1016/j.pnpbp.2016.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022]
Abstract
Deep Brain Stimulation (DBS) was originally developed as a therapeutic approach to manage movement disorders, in particular Parkinson's Disease. However, DBS also seems to be an effective treatment against refractory depression when patients fail to respond satisfactorily to conventional therapies. Thus, DBS targeting specific brain areas can produce an antidepressant response that improves depressive symptomatology, these areas including the subcallosal cingulate region, nucleus accumbens, ventral capsule/ventral striatum, medial forebrain bundle, the inferior thalamic peduncle and lateral habenula. Although the efficacy and safety of this therapy has been demonstrated in some clinical trials and preclinical studies, the intrinsic mechanisms underlying its antidepressant effect remain poorly understood. This review aims to provide a comprehensive overview of DBS, focusing on the molecular and cellular changes reported after its use that could shed light on the mechanisms underpinning its antidepressant effect. Several potential mechanisms of action of DBS are considered, including monoaminergic and glutamatergic neurotransmission, neurotrophic and neuroinflammatory mechanisms, as well as potential effects on certain intracellular signaling pathways. Although future studies will be necessary to determine the key molecular events underlying the antidepressant effect of DBS, the findings presented provide an insight into some of its possible modes of action.
Collapse
Affiliation(s)
- S Torres-Sanchez
- Department of Neuroscience, Pharmacology and Psychiatry, University of Cádiz, Neuropsychopharmacology & Psychobiology Research Group, CIBER for Mental Health (CIBERSAM), Spain
| | - L Perez-Caballero
- Department of Psychology, Area of Psychobiology, University of Cádiz, Neuropsychopharmacology & Psychobiology Research Group, CIBER for Mental Health (CIBERSAM), Spain
| | - E Berrocoso
- Department of Psychology, Area of Psychobiology, University of Cádiz, Neuropsychopharmacology & Psychobiology Research Group, CIBER for Mental Health (CIBERSAM), Spain.
| |
Collapse
|
78
|
Biological mechanisms of depression following treatment with interferon for chronic hepatitis C: A critical systematic review. J Affect Disord 2017; 209:235-245. [PMID: 27936453 DOI: 10.1016/j.jad.2016.11.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/11/2016] [Accepted: 11/25/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND A significant subset of patients infected by the hepatitis C virus (HCV) develops a major depressive episode (MDE) during Interferon-alpha (IFN-α) based immunotherapy. We performed a systematic review of studies which examined biological mechanisms contributing to the onset of a MDE during IFN-α-based immunotherapy for HCV. METHODS Major electronic databases were searched from inception up until 15th February 2016 for peer-reviewed prospective studies that had enrolled HCV infected patients who received IFN-α treatment. A diagnosis of MDE had to be established by means of a standardized diagnostic interview at baseline and endpoint. RESULTS Eight unique references met inclusion criteria. A total of 826 participants with HCV (37.3% females, mean age 46.7 years) were included in this systematic review. The overall MDE incidence rate was 34.8%, with follow-up ranging between 4 and 48 weeks. The methodological quality varied across selected studies. It was observed that Interleukin-6, salivary cortisol, arachidonic acid / eicosapentaenoicacid plus docosahexaenoic acid ratio, and genetic polymorphisms may present variations which are linked to a predisposition to INF-α-induced depression. LIMITATIONS A meta-analysis could not be performed due to the diverse biological mechanisms investigated and the lack of replicated evidence. CONCLUSIONS This systematic review indicates that several potential mechanisms may be implicated in the onset of a MDE following IFN-α-based immunotherapy for chronic HCV. However, replicated evidence is lacking and therefore the mechanisms involved in IFN-α-induced depression in humans remain unclear.
Collapse
|
79
|
Evidence for the involvement of heme oxygenase-1 in the antidepressant-like effect of zinc. Pharmacol Rep 2017; 69:497-503. [PMID: 31994098 DOI: 10.1016/j.pharep.2017.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/18/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Considering that heme oxygenase-1 (HO-1) and the brain-derived neurotrophic factor (BDNF)-mediated pathway are involved in the pathophysiology of depression and that zinc has been shown to exert beneficial effects in the management of depression, this study investigated the influence of these targets on the antidepressant-like effect of zinc. METHODS Mice were treated with sub-effective or effective doses of zinc chloride (ZnCl2, 10 mg/kg, po), and 45 min later, they received intracerebroventricular (icv) injections of sub-effective doses of either zinc protoporphyrin IX (ZnPP, 10 μg/mouse, HO-1 inhibitor), cobalt protoporphyrin IX (CoPP, 0.01 μg/mouse, HO-1 inducer) or K-252a (1 μg/mouse, TrkB receptor antagonist). Immobility time and locomotor activity were evaluated through the tail suspension test (TST) and open-field test (OFT), respectively. HO-1 immunocontents were evaluated in the prefrontal cortex and hippocampus 60 min after ZnCl2 (10 mg/kg, po) treatment. RESULTS The antidepressant-like effect of ZnCl2 was prevented by the treatment with ZnPP and K-252a. Furthermore, sub-effective doses of CoPP and ZnCl2 produced a synergistic antidepressant-like effect in the TST. None of the treatments altered locomotor activity. ZnCl2 administration increased HO-1 immunocontents only in the prefrontal cortex. CONCLUSIONS The results indicate that the antidepressant-like effect of ZnCl2 in the TST may depend on the induction of HO-1, and activation of TrkB receptor.
Collapse
|
80
|
Abstract
Depression is a pervasive and debilitating mental disorder that is inadequately treated by current pharmacotherapies in a majority of patients. Although opioids have long been known to regulate mood states, the use of opioids to treat depression is rarely discussed. This chapter explores the preclinical and clinical evidence supporting the antidepressant-like effects of opioid ligands, and in particular, delta opioid receptor (DOR) agonists. DOR agonists have been shown to produce antidepressant-like effects in a number of animal models. Some DOR agonists also produce convulsions which has limited their clinical utility. However, DOR agonists that generate antidepressant-like effects without convulsions have recently been developed and these drugs are beginning to be evaluated in humans. Work investigating potential mechanisms of action for the antidepressant-like effects of DOR agonists is also explored. Understanding mechanisms that give rise to DOR-mediated behaviors is critical for the development of DOR drugs with improved safety and clinical utility, and future work should be devoted to elucidating these pathways.
Collapse
|
81
|
Levada OA, Troyan AS. Insulin-like growth factor-1: a possible marker for emotional and cognitive disturbances, and treatment effectiveness in major depressive disorder. Ann Gen Psychiatry 2017; 16:38. [PMID: 29093741 PMCID: PMC5659027 DOI: 10.1186/s12991-017-0161-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023] Open
Abstract
Depression and cognitive dysfunction share a common neuropathological platform. Abnormal neural plasticity in the frontolimbic circuits has been linked to changes in the expression of neurotrophic factors, including IGF-1. These changes may result in clinical abnormalities observed over the course of major depressive disorder (MDD), including cognitive dysfunction. The present review aimed to summarize evidence regarding abnormalities of peripheral IGF-1 in MDD patients and assess a marker and predictive role of the neurotrophin for emotional and cognitive disturbances, and treatment effectiveness. A literature search of the PubMed database was conducted for studies, in which peripheral IGF-1 levels were evaluated. Our analysis revealed four main findings: (1) IGF-1 levels in MDD patients mismatch across the studies, which may arise from various factors, e.g., age, gender, the course of the disease, presence of cognitive impairment, ongoing therapy, or general health conditions; (2) the initial peripheral IGF-1 levels may predict the occurrence of depression in future; (3) peripheral IGF-1 levels may reflect cognitive dysfunction, although the data is limited; (4) it is difficult to evaluate the influence of treatment on IGF-1 levels as there is discrepancy of this growth factor among the studies at baseline, although most of them showed a decrease in IGF-1 levels after treatment.
Collapse
Affiliation(s)
- Oleg A Levada
- State Institution "Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine", 20 Winter boulevard, Zaporizhzhia, 69096 Ukraine
| | - Alexandra S Troyan
- State Institution "Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine", 20 Winter boulevard, Zaporizhzhia, 69096 Ukraine
| |
Collapse
|
82
|
Pishva E, Rutten BPF, van den Hove D. DNA Methylation in Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:185-196. [PMID: 28523547 DOI: 10.1007/978-3-319-53889-1_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetic mechanisms regulate gene expression, influencing protein levels and ultimately shaping phenotypes during life. However, both stochastic epigenetic variations and environmental reprogramming of the epigenome might influence neurodevelopment and ageing, and this may contribute to the origins of mental ill-health. Studying the role of epigenetic mechanisms is challenging, as genotype-, tissue- and cell type-dependent epigenetic changes have to be taken into account, while the nature of mental disorders also poses significant challenges for linking them with biological profiles. In this chapter, we summarise the current evidence suggesting the role of DNA methylation as a key epigenetic mechanism in major depressive disorder.
Collapse
Affiliation(s)
- Ehsan Pishva
- Complex Disease Epigenetic Group, University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK. .,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, Maastricht, 6200 MD, The Netherlands.
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, Maastricht, 6200 MD, The Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, Maastricht, 6200 MD, The Netherlands.,Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, Wurzburg, 97080, Germany
| |
Collapse
|
83
|
You Z, Yao Q, Shen J, Gu Z, Xu H, Wu Z, Chen C, Li L. Antidepressant-like effects of ginsenoside Rg3 in mice via activation of the hippocampal BDNF signaling cascade. J Nat Med 2016; 71:367-379. [PMID: 28013484 DOI: 10.1007/s11418-016-1066-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
Current antidepressants are clinically effective only after several weeks of administration. Ginsenoside Rg3 is one component of ginsenosides, with a similar chemical structure to ginsenoside Rg1. Here, we investigated the antidepressant effects of Rg3 in mouse models of depression. The antidepressant actions of Rg3 were first examined in the forced swim test (FST) and tail suspension test (TST), and then assessed in the chronic social defeat stress (CSDS) model of depression. The changes in the hippocampal brain-derived neurotrophic factor (BDNF) signaling pathway after CSDS and Rg3 treatment were investigated. A tryptophan hydroxylase inhibitor and a BDNF signaling inhibitor were also used to determine the pharmacological mechanisms of Rg3. It was found that Rg3 produced antidepressant effects in the FST and TST without affecting locomotor activity. Rg3 also prevented the CSDS-induced depressive-like symptoms. Moreover, Rg3 fully restored the CSDS-induced decrease in the hippocampal BDNF signaling pathway, and use of the BDNF signaling inhibitor blocked the antidepressant effects of Rg3. In conclusion, ginsenoside Rg3 has antidepressant effects via promotion of the hippocampal BDNF signaling pathway.
Collapse
Affiliation(s)
- Zhengchen You
- Department of Burns and Plastic Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical College of Nantong University, No. 210 Yingchun Road, Taizhou, 225300, Jiangsu, China.
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhikai Gu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Hui Xu
- Department of Neurosurgery, The Sixth People's Hospital of Nantong, Nantong, 226001, Jiangsu, China
| | - Zhonghua Wu
- Department of Neurosurgery, The Sixth People's Hospital of Nantong, Nantong, 226001, Jiangsu, China
| | - Chuanjun Chen
- Department of Burns and Plastic Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical College of Nantong University, No. 210 Yingchun Road, Taizhou, 225300, Jiangsu, China
| | - Luozhu Li
- Department of Burns and Plastic Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical College of Nantong University, No. 210 Yingchun Road, Taizhou, 225300, Jiangsu, China
| |
Collapse
|
84
|
Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, Mennenga SE, Belser A, Kalliontzi K, Babb J, Su Z, Corby P, Schmidt BL. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol 2016; 30:1165-1180. [PMID: 27909164 PMCID: PMC5367551 DOI: 10.1177/0269881116675512] [Citation(s) in RCA: 827] [Impact Index Per Article: 103.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinically significant anxiety and depression are common in patients with cancer, and are associated with poor psychiatric and medical outcomes. Historical and recent research suggests a role for psilocybin to treat cancer-related anxiety and depression. METHODS In this double-blind, placebo-controlled, crossover trial, 29 patients with cancer-related anxiety and depression were randomly assigned and received treatment with single-dose psilocybin (0.3 mg/kg) or niacin, both in conjunction with psychotherapy. The primary outcomes were anxiety and depression assessed between groups prior to the crossover at 7 weeks. RESULTS Prior to the crossover, psilocybin produced immediate, substantial, and sustained improvements in anxiety and depression and led to decreases in cancer-related demoralization and hopelessness, improved spiritual wellbeing, and increased quality of life. At the 6.5-month follow-up, psilocybin was associated with enduring anxiolytic and anti-depressant effects (approximately 60-80% of participants continued with clinically significant reductions in depression or anxiety), sustained benefits in existential distress and quality of life, as well as improved attitudes towards death. The psilocybin-induced mystical experience mediated the therapeutic effect of psilocybin on anxiety and depression. CONCLUSIONS In conjunction with psychotherapy, single moderate-dose psilocybin produced rapid, robust and enduring anxiolytic and anti-depressant effects in patients with cancer-related psychological distress. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00957359.
Collapse
Affiliation(s)
- Stephen Ross
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA .,New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA.,Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA.,Department of Psychiatry, Bellevue Hospital Center, New York, USA.,NYU Langone Medical Center, New York, NY, USA.,New York University-Health and Hospitals Corporation (NYU-HHC) Clinical and Translational Science Institute, New York, NY, USA
| | - Anthony Bossis
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA,New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA,Department of Psychiatry, Bellevue Hospital Center, New York, USA
| | - Jeffrey Guss
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA,New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA,Department of Psychiatry, Bellevue Hospital Center, New York, USA
| | | | - Tara Malone
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Barry Cohen
- Department of Psychology, New York University, New York, NY, USA
| | - Sarah E Mennenga
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Alexander Belser
- Department of Applied Psychology, New York University Steinhardt School of Culture, Education, and Human Development, New York, NY, USA
| | - Krystallia Kalliontzi
- New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA
| | - James Babb
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Zhe Su
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Patricia Corby
- New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA
| | - Brian L Schmidt
- New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY, USA
| |
Collapse
|
85
|
Sakharkar AJ, Vetreno RP, Zhang H, Kokare DM, Crews FT, Pandey SC. A role for histone acetylation mechanisms in adolescent alcohol exposure-induced deficits in hippocampal brain-derived neurotrophic factor expression and neurogenesis markers in adulthood. Brain Struct Funct 2016; 221:4691-4703. [PMID: 26941165 PMCID: PMC5010799 DOI: 10.1007/s00429-016-1196-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/30/2016] [Indexed: 02/06/2023]
Abstract
Binge drinking during adolescence is a risk factor for neuropsychiatric disorders that can develop later in life. Histone acetylation is an important epigenetic mechanism that contributes to neurodevelopment. We investigated the effects of adolescent intermittent ethanol (AIE) exposure, as opposed to normal saline (AIS) exposure, on histone acetylation-mediated regulation of brain-derived neurotrophic factor (BDNF) expression and developmental stages of neurogenesis (proliferating and immature neurons) in the hippocampus in adulthood. AIE exposure increased whole hippocampal histone deacetylase (HDAC) activity and decreased binding protein of cyclic adenosine monophosphate response element binding protein (CBP) and histone H3-K9 acetylation levels in the CA1, CA2, and CA3 regions of the hippocampus. BDNF protein and exon IV mRNA levels in the CA1 and CA3 regions of the hippocampus of AIE-exposed adult rats were decreased as compared to AIS-exposed adult rats. AIE-induced anxiety-like behaviors and deficits in histone H3 acetylation at BDNF exon IV promoter in the hippocampus during adulthood, which were reversed by treatment with the HDAC inhibitor, trichostatin A (TSA). Similarly, neurogenesis was inhibited by AIE in adulthood as demonstrated by the decrease in Ki-67 and doublecortin (DCX)-positive cells in the dentate gyrus, which was normalized by TSA treatment. These results indicate that AIE exposure increases HDACs and decreases CBP levels that may be associated with a decrease in histone H3 acetylation in the hippocampus. These epigenetic changes potentially decrease BDNF expression and inhibit neurogenesis in the hippocampus that may be involved in AIE-induced behavioral abnormalities, including anxiety, in adulthood.
Collapse
Affiliation(s)
- Amul J Sakharkar
- Department of Psychiatry, Center for Alcohol Research in Epigenetics (CARE), University of Illinois at Chicago, 1601 West Taylor Street (m/c 912), Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huaibo Zhang
- Department of Psychiatry, Center for Alcohol Research in Epigenetics (CARE), University of Illinois at Chicago, 1601 West Taylor Street (m/c 912), Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Dadasaheb M Kokare
- Department of Psychiatry, Center for Alcohol Research in Epigenetics (CARE), University of Illinois at Chicago, 1601 West Taylor Street (m/c 912), Chicago, IL, 60612, USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Subhash C Pandey
- Department of Psychiatry, Center for Alcohol Research in Epigenetics (CARE), University of Illinois at Chicago, 1601 West Taylor Street (m/c 912), Chicago, IL, 60612, USA.
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
86
|
Peila C, Coscia A, Bertino E, Li Volti G, Galvano F, Barbagallo I, Visser GHA, Gazzolo D. The Effect of Holder Pasteurization on Activin A Levels in Human Milk. Breastfeed Med 2016; 11:469-473. [PMID: 27529435 DOI: 10.1089/bfm.2016.0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION There is evidence that mother's own milk is the best nutrient in terms of multiorgan protection and infection prevention. However, when maternal milk is scarce, the solution can be represented by donor milk (DM), which requires specific storage procedures such as Holder Pasteurization (HoP). HoP is not free from side effects since it is widely known that it causes qualitative/quantitative changes in milk composition, particularly in the protein content. Therefore, the aim of this study is to investigate the effects of HoP on Activin A, a neurobiomarker known to play an important role in the development and protection of the central nervous system. METHODS In 24 mothers who delivered preterm (n = 12) and term (n = 12) healthy newborns, we conducted a pretest/test study where the milk donors acted as their own controls. Each sample was divided into two parts: the first was frozen at -80°C (Group 1); the second was Holder-pasteurized before freezing at -80°C (Group 2). Activin A was quantified using an ELISA test. RESULTS Activin A was detected in all samples. There were no significant differences (p > 0.05) between the two groups, also when the analysis was stratified for gestational age at delivery and milk maturation degree (p > 0.05, for both). CONCLUSION The present findings on the absence of any side effects of HoP on the milk concentration of Activin A offer additional support to the efficacy of HoP in DM storage. Our data open up to further investigations on neurobiomarkers' assessment in human milk and their preanalytical stability according to storage procedures.
Collapse
Affiliation(s)
- Chiara Peila
- 1 Neonatology Unit, Department of Public Health and Pediatrics, University of Turin , Turin, Italy
| | - Alessandra Coscia
- 1 Neonatology Unit, Department of Public Health and Pediatrics, University of Turin , Turin, Italy
| | - Enrico Bertino
- 1 Neonatology Unit, Department of Public Health and Pediatrics, University of Turin , Turin, Italy
| | - Giovanni Li Volti
- 2 Department of Biological Chemistry, Medical Chemistry and Molecular Biology, University of Catania , Catania, Italy
| | - Fabio Galvano
- 2 Department of Biological Chemistry, Medical Chemistry and Molecular Biology, University of Catania , Catania, Italy
| | - Ignazio Barbagallo
- 2 Department of Biological Chemistry, Medical Chemistry and Molecular Biology, University of Catania , Catania, Italy
| | - Gerard H A Visser
- 3 Department of Obstetrics, University Medical Center , Utrecht, the Netherlands
| | - Diego Gazzolo
- 4 Department of Maternal, Fetal and Neonatal Health, C. Arrigo Children's Hospital , Alessandria, Italy
| |
Collapse
|
87
|
Crews FT, Vetreno RP, Broadwater MA, Robinson DL. Adolescent Alcohol Exposure Persistently Impacts Adult Neurobiology and Behavior. Pharmacol Rev 2016; 68:1074-1109. [PMID: 27677720 PMCID: PMC5050442 DOI: 10.1124/pr.115.012138] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative-motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increased lifetime risks for the development of alcohol dependence, violence, and injuries. Brain synapses, myelination, and neural circuits mature in adolescence to adult levels in parallel with increased reflection on the consequence of actions and reduced impulsivity and thrill seeking. Alcohol binge drinking could alter human development, but variations in genetics, peer groups, family structure, early life experiences, and the emergence of psychopathology in humans confound studies. As adolescence is common to mammalian species, preclinical models of binge drinking provide insight into the direct impact of alcohol on adolescent development. This review relates human findings to basic science studies, particularly the preclinical studies of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium. These studies focus on persistent adult changes in neurobiology and behavior following adolescent intermittent ethanol (AIE), a model of underage drinking. NADIA studies and others find that AIE results in the following: increases in adult alcohol drinking, disinhibition, and social anxiety; altered adult synapses, cognition, and sleep; reduced adult neurogenesis, cholinergic, and serotonergic neurons; and increased neuroimmune gene expression and epigenetic modifiers of gene expression. Many of these effects are specific to adolescents and not found in parallel adult studies. AIE can cause a persistence of adolescent-like synaptic physiology, behavior, and sensitivity to alcohol into adulthood. Together, these findings support the hypothesis that adolescent binge drinking leads to long-lasting changes in the adult brain that increase risks of adult psychopathology, particularly for alcohol dependence.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Margaret A Broadwater
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
88
|
Antidepressant-like effects of standardized gypenosides: involvement of brain-derived neurotrophic factor signaling in hippocampus. Psychopharmacology (Berl) 2016; 233:3211-21. [PMID: 27385417 DOI: 10.1007/s00213-016-4357-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/13/2016] [Indexed: 12/19/2022]
Abstract
RATIONALE Gypenosides have been reported to produce neuroprotective effects and increase monoamine neurotransmitter levels in the brain. OBJECTIVE Considering that depression is involved in monoamine reduction, this study evaluated the antidepressant-like effects of gypenosides in mice exposed to chronic unpredictable mild stress (CUMS). METHODS The sucrose preference test and forced swimming test were performed after administration of gypenosides (at 25, 50, or 100 mg/kg) for 4 weeks. Hippocampal brain-derived neurotrophic factor (BDNF) and its downstream targets were analyzed by western blot. Additionally, hippocampal neuronal proliferation was measured by immunohistochemistry. RESULTS Four-week treatment with fluoxetine (20 mg/kg) and gypenosides (at either 50 or 100 mg/kg) increased sucrose preference and decreased the immobility time in mice exposed to CUMS. In addition, gypenosides (at either 50 or 100 mg/kg) also increased BDNF expression and neuronal proliferation in the hippocampus of CUMS animals. Further, we showed that treating CUMS mice with K252a, which is an inhibitor of the BDNF receptor TrkB, blocked the effects of gypenosides (100 mg/kg), including behavioral improvements, neuronal proliferation, and up-regulation of p-TrkB, p-ERK, and p-Akt proteins. CONCLUSIONS This study demonstrates that gypenosides exhibit antidepressant-like effects in mice, which may be mediated by activation of the BDNF-ERK/Akt signaling pathway in the hippocampus.
Collapse
|
89
|
Nishinaka T, Nakamoto K, Tokuyama S. [Influence of early life stress on the chronic pain in maturation period]. Nihon Yakurigaku Zasshi 2016; 148:134-138. [PMID: 27581960 DOI: 10.1254/fpj.148.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
90
|
Neuroprotective, Neurotrophic and Anti-oxidative Role of Bacopa monnieri on CUS Induced Model of Depression in Rat. Neurochem Res 2016; 41:3083-3094. [PMID: 27506204 DOI: 10.1007/s11064-016-2029-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/21/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Major depression is a life threatening neuropsychiatric disorder that produces mental illness and major cause of morbidity. The present study was conducted to evaluate the neuroprotective, neurotrophic and antioxidant potential of Bacopa monnieri extract (BME) on chronic unpredictable stress (CUS) induced behavioral depression in rats. Behavioral tests were carried out for investigation of antidepressant like effects of BME, and potential mechanism was assessed by determining neurotrophin level and hippocampal neurogenesis. Depressive-like behavior was assessed by shuttle-box escape test, forced swim test and tail suspension test. Effect of BME on hypothalamic-pituitary-adrenal (HPA) axis was evaluated by measuring the plasma level of adrenocorticotropic hormone (ACTH) and corticosterone. The expression of brain derived neurotrophic factor (BDNF), neuronal marker doublecortin (DCX) in the hippocampus were measured and hippocampal neurogenesis was investigated by 5-bromo-2-deoxyuridine/neuronal nuclei (BrdU/NeuN). In addition, effects of BME on oxidative stress markers were also measured in the hippocampus of CUS exposed rats. The results indicated that BME significantly able to attenuate the depressive-like behaviors, normalized the levels of ACTH, corticosterone, and up-regulate the expression of BDNF, DCX and BrdU/NeuN in CUS induced rats compared to BME treated rats. It is also found that BME significantly increased the activity of antioxidant enzymes on CUS induced rats. These findings revealed that BME exerted neuroprotective effects possibly by promoting hippocampal neurogenesis with elevation of BDNF level and antioxidant defense against oxidative stress.
Collapse
|
91
|
The antidepressant effect of musk in an animal model of depression: a histopathological study. Cell Tissue Res 2016; 366:271-284. [DOI: 10.1007/s00441-016-2468-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/04/2016] [Indexed: 11/25/2022]
|
92
|
Evaluation of the antidepressant-like effect of musk in an animal model of depression: how it works. Anat Sci Int 2016; 92:539-553. [PMID: 27444866 DOI: 10.1007/s12565-016-0357-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022]
Abstract
Depression has become a common public health problem that is showing increasing prevalence. Slow onset of action, low response rates and drug resistance are potential limitations of the current antidepressant drugs. Alternative therapy using natural substances, specifically aromatherapy, is currently tried to treat depression. This work aimed to assess the efficacy of musk in relieving the behavioral, biochemical and hippocampal histopathological changes induced by exposure to chronic mild stress in mice and explore the possible mechanism behind this antidepressant-like effect. Forty male albino mice were divided into four groups (n = 10): control, a group exposed to chronic unpredictable mild stress (CUMS) and two groups exposed to CUMS and then treated with fluoxetine or musk. Behavioral changes and serum corticosterone levels were assessed at the end of the experiment. Protein and gene expressions of brain-derived neurotropic factor (BDNF) and glucocorticoid receptors (GRs) in the hippocampus were assessed using ELISA and real-time RT-PCR, respectively. Histopathological examination of the hippocampus and immunohistochemical techniques using glial fibrillary acidic protein (GFAP), Ki67, caspase-3, BDNF and GR were performed. Inhalation of musk had an antidepressant-like effect in an animal model of depression. Musk alleviated the behavioral changes and elevated serum corticosterone levels induced by exposure to chronic stress. It reduced the hippocampal neuronal apoptosis and stimulated neurogenesis in the dentate gyrus. Musk's action may be related to the upregulation of hippocampal GR and BDNF expressions. Musk is considered a potential antidepressant so it is advisable to assess its efficacy in treating depressed patient.
Collapse
|
93
|
Bot M, Milaneschi Y, Penninx BWJH, Drent ML. Plasma insulin-like growth factor I levels are higher in depressive and anxiety disorders, but lower in antidepressant medication users. Psychoneuroendocrinology 2016; 68:148-55. [PMID: 26974499 DOI: 10.1016/j.psyneuen.2016.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
It has been postulated that many peripheral and (neuro)biological systems are involved in psychiatric disorders such as depression. Some studies found associations of depression and antidepressant treatment with insulin-like growth factor 1 (IGF-I) - a pleiotropic hormone affecting neuronal growth, survival and plasticity - but evidence is mixed. We therefore studied whether depressive and anxiety disorders were associated with plasma IGF-I, and explored the role of antidepressant medication in this association in a large observational study. The sample consisted of 2714 participants enrolled in The Netherlands Study of Depression and Anxiety, classified as healthy controls (n=602), antidepressant users (76 remitted and 571 with current depressive and/or anxiety disorder(s), n=647), persons having remitted depressive and/or anxiety disorder(s) without antidepressant use (n=502), and persons having current depressive and/or anxiety disorder(s) without antidepressant use (n=963). Associations with IGF-I concentrations were studied and adjusted for socio-demographic, health, and lifestyle variables. Relative to healthy controls, antidepressant-free individuals with current disorders had significantly higher IGF-I levels (Cohen's d=0.08, p=0.006), whereas antidepressant-free individuals with remitted disorders had a trend towards higher IGF-I levels (d=0.06, p=0.09). Associations were evident for depressive and for anxiety disorders. In contrast, antidepressant users had significantly lower IGF-I levels compared to healthy controls (d=-0.08, p=0.028). Our findings suggests that antidepressant medication use modifies the association between depressive/anxiety disorders and plasma IGF-I. These results corroborate with findings of some previous small-scale case-control and intervention studies. The higher IGF-I levels related to depression and anxiety might point to a compensatory mechanism to counterbalance the impaired neurogenesis, although future studies are needed to support this hypothesis.
Collapse
Affiliation(s)
- Mariska Bot
- VU University Medical Center and GGZ inGeest, Department of Psychiatry, EMGO Institute for Health and Care Research, Amsterdam, The Netherlands.
| | - Yuri Milaneschi
- VU University Medical Center and GGZ inGeest, Department of Psychiatry, EMGO Institute for Health and Care Research, Amsterdam, The Netherlands
| | - Brenda W J H Penninx
- VU University Medical Center and GGZ inGeest, Department of Psychiatry, EMGO Institute for Health and Care Research, Amsterdam, The Netherlands
| | - Madeleine L Drent
- VU University Medical Center, Department of Internal Medicine, Endocrine Section, Department of Clinical Neuropsychology, Faculty of Psychology and Education, VU University, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
94
|
Foltran RB, Diaz SL. BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J Neurochem 2016; 138:204-21. [PMID: 27167299 DOI: 10.1111/jnc.13658] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/08/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
The brain-derived neurotrophic factor, BDNF, was discovered more than 30 years ago and, like other members of the neurotrophin family, this neuropeptide is synthetized as a proneurotrophin, the pro-BDNF, which is further cleaved to yield mature BDNF. The myriad of actions of these two BDNF isoforms in the central nervous system is constantly increasing and requires the development of sophisticated tools and animal models to refine our understanding. This review is focused on BDNF isoforms, their participation in the process of neurogenesis taking place in the hippocampus of adult mammals, and the modulation of their expression by serotonergic agents. Interestingly, around this triumvirate of BDNF, serotonin, and neurogenesis, a series of recent research has emerged with apparently counterintuitive results. This calls for an exhaustive analysis of the data published so far and encourages thorough work in the quest for new hypotheses in the field. BDNF is synthetized as a pre-proneurotrophin. After removal of the pre-region, proBDNF can be cleaved by intracellular or extracellular proteases. Mature BDNF can bind TrkB receptors, promoting their homodimerization and intracellular phosphorylation. Phosphorylated-TrkB can activate three different signaling pathways. Whereas G-protein-coupled receptors can transactivate TrkB receptors, truncated forms can inhibit mBDNF signaling. Pro-BDNF binds p75(NTR) by its mature domain, whereas the pro-region binds co-receptors.
Collapse
Affiliation(s)
- Rocío Beatriz Foltran
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, CONICET-UBA, Fac. de Medicina - UBA, Buenos Aires, Argentina
| | - Silvina Laura Diaz
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, CONICET-UBA, Fac. de Medicina - UBA, Buenos Aires, Argentina
| |
Collapse
|
95
|
Gilman SE, Cherkerzian S, Buka SL, Hahn J, Hornig M, Goldstein JM. Prenatal immune programming of the sex-dependent risk for major depression. Transl Psychiatry 2016; 6:e822. [PMID: 27244231 PMCID: PMC5545649 DOI: 10.1038/tp.2016.91] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/23/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
Maternal immune functioning during pregnancy contributes to sex-dependent deficits in neurodevelopment and to behaviors associated with affective traits in preclinical studies, and has been indirectly associated with offspring depression in epidemiologic studies. We therefore investigated the association between immune activity during pregnancy and the risk of depression among male and female offspring. We conducted a case-control study of depression (n=484 cases and n=774 controls) using data from the New England Family Study, a pregnancy cohort enrolled between 1959 and 1966 that assessed psychiatric outcomes in adult offspring (mean age=39.7 years). We assayed concentrations of three pro-inflammatory cytokines, interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, and the anti-inflammatory cytokine, IL-10, in maternal serum collected at the end of the second and beginning of the third trimesters. High maternal TNF-α was associated with reduced odds of depression among both male and female offspring (odds ratio (OR)=0.68; confidence interval (CI)=0.48, 0.98). However, when considering the TNF-α to IL-10 ratio, a measure of the ratio of pro- to anti-inflammatory loading, maternal immune effects on offspring depression differed significantly by sex (χ(2)=13.9, degrees of freedom=4, P=0.008). Among females, higher maternal TNF-α:IL-10 was associated with reduced odds of depression (OR=0.51; CI=0.32, 0.81), whereas, among males, high maternal TNF-α:IL-10 was associated with elevated odds of depression (OR=1.86; CI=1.02, 3.39). Thus, the balance between TNF-α and IL-10 in maternal prenatal serum was associated with depression in a sex-dependent manner. These findings are consistent with the role of TNF-α in the maturation of the sexually dimorphic fetal brain circuitry that regulates stress and affective responses, and support a prenatal stress-immune model of depression pathogenesis.
Collapse
Affiliation(s)
- S E Gilman
- Health Behavior Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD, USA,Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Health Behavior Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6100 Executive Boulevard, Room 7B13M, Rockville, MD 20852, USA. E-mail
| | - S Cherkerzian
- Connors Center for Women’s Health and Gender Biology, Boston, MA, USA,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - S L Buka
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - J Hahn
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - M Hornig
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - J M Goldstein
- Connors Center for Women’s Health and Gender Biology, Boston, MA, USA,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA,Division of Psychiatric Neuroscience, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
96
|
Richards EM, Mathews DC, Luckenbaugh DA, Ionescu DF, Machado-Vieira R, Niciu MJ, Duncan WC, Nolan NM, Franco-Chaves JA, Hudzik T, Maciag C, Li S, Cross A, Smith MA, Zarate CA. A randomized, placebo-controlled pilot trial of the delta opioid receptor agonist AZD2327 in anxious depression. Psychopharmacology (Berl) 2016; 233:1119-30. [PMID: 26728893 PMCID: PMC5103283 DOI: 10.1007/s00213-015-4195-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022]
Abstract
RATIONALE Patients with anxious major depressive disorder (AMDD) have more severe symptoms and poorer treatment response than patients with non-AMDD. Increasing evidence implicates the endogenous opioid system in the pathophysiology of depression. AZD2327 is a selective delta opioid receptor (DOR) agonist with anxiolytic and antidepressant activity in animal models. OBJECTIVE This double-blind, parallel group design, placebo-controlled pilot study evaluated the safety and efficacy of AZD2327 in a preclinical model and in patients with AMDD. METHODS We initially tested the effects of AZD2327 in an animal model of AMDD. Subsequently, 22 subjects with AMDD were randomized to receive AZD2327 (3 mg BID) or placebo for 4 weeks. Primary outcome measures included the Hamilton Depression Rating Scale (HAM-D) and the Hamilton Anxiety Rating Scale (HAM-A). We also evaluated neurobiological markers implicated in mood and anxiety disorders, including vascular endothelial growth factor (VEGF) and electroencephalogram (EEG). RESULTS Seven (54 %) patients responded to active drug and three (33 %) responded to placebo. No significant main drug effect was found on either the HAM-D (p = 0.39) or the HAM-A (p = 0.15), but the HAM-A had a larger effect size. Levels of AZ12311418, a major metabolite of AZD2327, were higher in patients with an anti-anxiety response to treatment compared to nonresponders (p = 0.03). AZD2327 treatment decreased VEGF levels (p = 0.02). There was a trend (p < 0.06) for those with an anti-anxiety response to have higher EEG gamma power than nonresponders. CONCLUSION These results suggest that AZD2327 has larger potential anxiolytic than antidepressant efficacy. Additional research with DOR agonists should be considered.
Collapse
Affiliation(s)
- Erica M Richards
- Experimental Therapeutics and Pathophysiology Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, 10 Center Drive CRC, Room 7-5545, Bethesda, MD, 20892, USA.
| | - Daniel C Mathews
- Experimental Therapeutics and Pathophysiology Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, 10 Center Drive CRC, Room 7-5545, Bethesda, MD, 20892, USA
- Lundbeck LLC, Chicago, IL, USA
| | - David A Luckenbaugh
- Experimental Therapeutics and Pathophysiology Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, 10 Center Drive CRC, Room 7-5545, Bethesda, MD, 20892, USA
| | - Dawn F Ionescu
- Experimental Therapeutics and Pathophysiology Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, 10 Center Drive CRC, Room 7-5545, Bethesda, MD, 20892, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, 10 Center Drive CRC, Room 7-5545, Bethesda, MD, 20892, USA
| | - Mark J Niciu
- Experimental Therapeutics and Pathophysiology Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, 10 Center Drive CRC, Room 7-5545, Bethesda, MD, 20892, USA
| | - Wallace C Duncan
- Experimental Therapeutics and Pathophysiology Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, 10 Center Drive CRC, Room 7-5545, Bethesda, MD, 20892, USA
| | - Neal M Nolan
- Experimental Therapeutics and Pathophysiology Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, 10 Center Drive CRC, Room 7-5545, Bethesda, MD, 20892, USA
| | - Jose A Franco-Chaves
- Experimental Therapeutics and Pathophysiology Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, 10 Center Drive CRC, Room 7-5545, Bethesda, MD, 20892, USA
- Veteran Affairs Caribbean Healthcare System, San Juan, Puerto Rico
| | - Thomas Hudzik
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, USA
- AbbVie, Chicago, IL, USA
| | - Carla Maciag
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, USA
- Sage Therapeutics, Cambridge, MA, USA
| | - Shuang Li
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, USA
| | - Alan Cross
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, USA
| | - Mark A Smith
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, 10 Center Drive CRC, Room 7-5545, Bethesda, MD, 20892, USA
| |
Collapse
|
97
|
Comorbidity Factors and Brain Mechanisms Linking Chronic Stress and Systemic Illness. Neural Plast 2016; 2016:5460732. [PMID: 26977323 PMCID: PMC4761674 DOI: 10.1155/2016/5460732] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/11/2015] [Accepted: 10/25/2015] [Indexed: 12/16/2022] Open
Abstract
Neuropsychiatric symptoms and mental illness are commonly present in patients with chronic systemic diseases. Mood disorders, such as depression, are present in up to 50% of these patients, resulting in impaired physical recovery and more intricate treatment regimen. Stress associated with both physical and emotional aspects of systemic illness is thought to elicit detrimental effects to initiate comorbid mental disorders. However, clinical reports also indicate that the relationship between systemic and psychiatric illnesses is bidirectional, further increasing the complexity of the underlying pathophysiological processes. In this review, we discuss the recent evidence linking chronic stress and systemic illness, such as activation of the immune response system and release of common proinflammatory mediators. Altogether, discovery of new targets is needed for development of better treatments for stress-related psychiatric illnesses as well as improvement of mental health aspects of different systemic diseases.
Collapse
|
98
|
Antidepressant, antioxidant and neurotrophic properties of the standardized extract of Cocos nucifera husk fiber in mice. J Nat Med 2016; 70:510-21. [DOI: 10.1007/s11418-016-0970-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/18/2016] [Indexed: 12/28/2022]
|
99
|
Nase S, Köhler S, Jennebach J, Eckert A, Schweinfurth N, Gallinat J, Lang UE, Kühn S. Role of Serum Brain Derived Neurotrophic Factor and Central N-Acetylaspartate for Clinical Response under Antidepressive Pharmacotherapy. Neurosignals 2016; 24:1-14. [DOI: 10.1159/000442607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2015] [Indexed: 01/15/2023] Open
|
100
|
Wang X, Zheng Y, Zhang Y, Li J, Zhang H, Wang H. Effects of β-diketone antibiotic mixtures on behavior of zebrafish (Danio rerio). CHEMOSPHERE 2016; 144:2195-2205. [PMID: 26595314 DOI: 10.1016/j.chemosphere.2015.10.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
To date, few data are available on neurotoxicity of β-diketone antibiotics (DKAs) from the perspective of animal behavior. Herein, the effects of long-term DKAs exposure on zebrafish (Danio rerio) behavior were assessed for locomotor activity, anxiety, social interaction and their related molecular mechanisms. DKAs exposure to zebrafish consisted of six DKA species, including ofloxacin, ciprofloxacin, enrofloxacin, doxycycline, chlortetracycline and oxytetracycline, with equal weight concentration and equal volume. DKAs at 6.25 mg/L significantly increased the time spent in the upper portion of the test tank (+40%) and the number of line crossings (±42%), indicating occurrence of anxiolytic behavior. For conditioned place preference test, long-term DKAs exposure at 6.25 mg/L increased the number of motionless positions in the non-preferred white side (+31%), number of transitions to the white side (+221%) and time spent in the white side (+35%) in relation to the control. DKAs at 6.25 mg/L significantly increased zebrafish shoaling behavior (+38%) resulting from an anxiety-like state, but 25 mg/L DKAs exposure decreased zebrafish social cohesion (-41%) possibly due to an autism-like state. With increasing DKAs-exposure concentration, the signal intensity of (1)O2 gradually decreased, leading to insufficient energy supply and movement functional disorders. Based on GO functional annotation and metabolic pathway analysis, 11 genes closely associated with locomotor behavior were identified. Using qRT-PCR, we confirmed that DKAs exposure led to changes in the transcriptional levels of 11 locomotor-related genes. These results suggest that behavior is a potential strategy for evaluating mechanisms underlying the neurochemical basis triggered by stress in zebrafish.
Collapse
Affiliation(s)
- Xuedong Wang
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuansi Zheng
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuna Zhang
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Jieyi Li
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongqin Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|