51
|
Yu J, Bao C, Dong Y, Liu X. Activation of autophagy in rat brain cells following focal cerebral ischemia reperfusion through enhanced expression of Atg1/pULK and LC3. Mol Med Rep 2015; 12:3339-3344. [PMID: 26018745 PMCID: PMC4526088 DOI: 10.3892/mmr.2015.3850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the activation of Atg1/pULK, and LC3 in the cerebral cortex following focal cerebral ischemia reperfusion (CIR) injury, thereby examining its effect on autophagy in brain cells. Rat CIR models were established using the technique of middle cerebral artery occlusion. The neurological function score, TTC staining and the water content of brain tissue were used to evaluate the CIR model. Levels of autophagy in the brain cells were examined at different time‑points following CIR damage using electron microscopy. Immunohistochemistry and western blot analysis were also used for the qualitative and quantitative detection of levels of Atg1/pULK and LC3 in the cerebral cortex. Autophagy was observed in the early stage of CIR, and the expression of Atg1/pULK and LC3 were observed 1 h following CIR in the rats and reached peak expression levels after12 h, which following which the they gradually decreased. These results suggested Atg1/pULK and LC3 are key in the regulation of autophagy following CIR in the rat brain.
Collapse
Affiliation(s)
- Jingwei Yu
- Department of Histology and Embryology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Cuifen Bao
- Key Laboratory of Molecular Cell Biology and New Drug Development, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yanru Dong
- Department of Histology and Embryology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xia Liu
- Department of Histology and Embryology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
52
|
Abstract
Autophagy is a catabolic recycling pathway triggered by various intra- or extracellular stimuli that is conserved from yeast to mammals. During autophagy, diverse cytosolic constituents are enveloped by double-membrane vesicles, autophagosomes, which later fuse with lysosomes or the vacuole to degrade their cargo. Dysregulation in autophagy is associated with a diverse range of pathologies including cardiovascular disease, the leading cause of death in the world. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been characterized widely in cardiomyocytes, cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells. In all cases, a window of optimal autophagic activity seems to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. Here, we review the molecular mechanisms that govern autophagosome formation and analyze the link between autophagy and cardiovascular disease.
Collapse
Affiliation(s)
- Damián Gatica
- From the Department of Molecular, Cellular and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor (D.G., D.J.K.); Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile (M.C., S.L.); and Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas (S.L.)
| | - Mario Chiong
- From the Department of Molecular, Cellular and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor (D.G., D.J.K.); Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile (M.C., S.L.); and Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas (S.L.)
| | - Sergio Lavandero
- From the Department of Molecular, Cellular and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor (D.G., D.J.K.); Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile (M.C., S.L.); and Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas (S.L.)
| | - Daniel J Klionsky
- From the Department of Molecular, Cellular and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor (D.G., D.J.K.); Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile (M.C., S.L.); and Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas (S.L.).
| |
Collapse
|
53
|
Schneider JL, Cuervo AM. Autophagy and human disease: emerging themes. Curr Opin Genet Dev 2014; 26:16-23. [PMID: 24907664 DOI: 10.1016/j.gde.2014.04.003] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/11/2014] [Indexed: 12/13/2022]
Abstract
Malfunction of autophagy, the process that mediates breakdown and recycling of intracellular components in lysosomes, has been linked to a variety of human diseases. As the number of pathologies associated with defective autophagy increases, emphasis has switched from the mere description of the status of autophagy in these conditions to a more mechanistic dissection of the autophagic changes. Understanding the reasons behind the autophagic defect, the immediate consequences of the autophagic compromise and how autophagy changes with the evolution of the disease has become a 'must,' especially now that manipulation of autophagy is being considered as a therapeutic strategy. Here, we comment on some of the common themes that have emerged from such detailed analyses of the interplay between autophagy and disease conditions.
Collapse
Affiliation(s)
- Jaime L Schneider
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
54
|
Hou X, Hu Z, Xu H, Xu J, Zhang S, Zhong Y, He X, Wang N. Advanced glycation endproducts trigger autophagy in cadiomyocyte via RAGE/PI3K/AKT/mTOR pathway. Cardiovasc Diabetol 2014; 13:78. [PMID: 24725502 PMCID: PMC3998738 DOI: 10.1186/1475-2840-13-78] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 02/14/2014] [Indexed: 02/06/2023] Open
Abstract
Methods Rat neonate cardiomyocytes were cultured and treated with AGEs at different concentration. Two classic autophagy markers, microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1, were detected by western blot assay. The inhibition of RAGE and phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mTOR pathway were applied to cells, respectively. Results AGEs administration enhanced the expression of Beclin-1 and LC3 II in cardiomyocytes, increased the number of autophagic vacuoles and impaired the cell viability in dose-dependant manners. Also, AGEs inhibited the PI3K/Akt/mTOR pathway via RAGE. Inhibition of RAGE with RAGE antibody reduced expression of Beclin-1 and LC3 II/I and inhibited the cellular autophagy, accompanied by the reactivation of PI3K/Akt/mTOR pathway in cultured cells. Notably, the presence of inhibition of PI3K/Akt/mTOR pathway abolished the protective effect of RAGE inhibition on cardiomyocytes. Conclusion This study provides evidence that AGEs induces cardiomyocyte autophagy by, at least in part, inhibiting the PI3K/Akt/mTOR pathway via RAGE. Previous studies showed that the accumulation of advanced glycation end products (AGEs) induce cardiomyocyte apoptoisis, leading to heart dysfunction. However, the effect of AGEs on another cell death pathway, autophagy, in cardiomyocytes remains unknown.
Collapse
Affiliation(s)
- Xuwei Hou
- Department of Cardiology, Hangzhou Hospital, Nanjing Medical University & Hangzhou First Municipal Hospital, Hangzhou 310006, China.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Zhang Y, Xu M, Xia M, Li X, Boini KM, Wang M, Gulbins E, Ratz PH, Li PL. Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovasc Res 2014; 102:68-78. [PMID: 24445604 DOI: 10.1093/cvr/cvu011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM Autophagic flux is an important process during autophagy maturation in smooth muscle cells. However, the molecular mechanisms underlying autophagic flux in these cells are largely unknown. Here, we revealed a previously undefined role of CD38, an enzyme that metabolizes NADP(+) into NAADP, in the regulation of autophagic flux in coronary arterial myocytes (CAMs). METHODS AND RESULTS In vivo CD38 gene knockout mice (CD38(-/-)) fed the high-fat Western diet showed increased accumulation of autophagosomes in coronary arterial media compared with that in wild-type (CD38(+/+)) mice, suggesting that CD38 gene deletion results in a defective autophagic process in CAMs of coronary arteries. In primary cultured CAMs, CD38 gene deletion markedly enhanced 7-ketocholesterol (7-Ket, an atherogenic stimulus and autophagy inducer)-induced accumulation of autophagosomes and increased expression of an autophagic marker, LC3B. However, no difference in autophagosome formation was observed between CD38(+/+) and CD38(-/-) CAMs when autophagic flux was blocked, which indicates that CD38 regulates autophagic flux rather than induction of autophagosome formation. Further, 7-Ket-induced formation of autophagolysosomes was markedly attenuated in CD38(-/-) CAMs compared with CD38(+/+) CAMs. Mechanistically, CD38 gene deletion markedly inhibited 7-Ket-induced dynein activation and autophagosome trafficking, which were associated with attenuated lysosomal Ca(2+) release. Importantly, coronary arterial smooth muscle from CD38(-/-) mice fed the Western diet exhibited phenotypic changes towards a more dedifferentiated state with abnormal extracellular matrix metabolism. CONCLUSION Taken together, these results suggest that CD38 plays a critical role in autophagosome trafficking and fusion with lysosomes, thus controlling autophagic flux in CAMs under atherogenic stimulation.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
|
57
|
Zheng Y, Hou J, Liu J, Yao M, Li L, Zhang B, Zhu H, Wang Z. Inhibition of Autophagy Contributes to Melatonin-Mediated Neuroprotection Against Transient Focal Cerebral Ischemia in Rats. J Pharmacol Sci 2014; 124:354-64. [DOI: 10.1254/jphs.13220fp] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
58
|
Tran E, Chow A, Goda T, Wong A, Blakely K, Rocha M, Taeb S, Hoang VC, Liu SK, Emmenegger U. Context-dependent role of ATG4B as target for autophagy inhibition in prostate cancer therapy. Biochem Biophys Res Commun 2013; 441:726-31. [PMID: 24184480 DOI: 10.1016/j.bbrc.2013.10.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 01/13/2023]
Abstract
ATG4B belongs to the autophagin family of cysteine proteases required for autophagy, an emerging target of cancer therapy. Developing pharmacological ATG4B inhibitors is a very active area of research. However, detailed studies on the role of ATG4B during anticancer therapy are lacking. By analyzing PC-3 and C4-2 prostate cancer cells overexpressing dominant negative ATG4B(C74A)in vitro and in vivo, we show that the effects of ATG4B(C74A) are cell type, treatment, and context-dependent. ATG4B(C74A) expression can either amplify the effects of cytotoxic therapies or contribute to treatment resistance. Thus, the successful clinical application of ATG4B inhibitors will depend on finding predictive markers of response.
Collapse
Affiliation(s)
- Elisa Tran
- Biological Sciences, Sunnybrook Research Institute, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63:207-21. [PMID: 23702245 PMCID: PMC3729625 DOI: 10.1016/j.freeradbiomed.2013.05.014] [Citation(s) in RCA: 441] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| |
Collapse
|
60
|
Xu M, Li XX, Xiong J, Xia M, Gulbins E, Zhang Y, Li PL. Regulation of autophagic flux by dynein-mediated autophagosomes trafficking in mouse coronary arterial myocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3228-3236. [PMID: 24095928 DOI: 10.1016/j.bbamcr.2013.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/06/2023]
Abstract
Autophagic flux is an important process during autophagy maturation in coronary arterial myocytes (CAMs). Here, we defined the role and molecular mechanism of the motor protein dynein in the regulation of autophagic flux in CAMs. In mouse CAMs, dynein protein is abundantly expressed. Pharmacological or genetic inhibition of dynein activity dramatically enhanced 7-ketocholesterol (7-Ket)-induced expression of the autophagic marker LC3B and increased the cellular levels of p62, a selective substrate for autophagy. Inhibition of dynein activity increased 7-Ket-induced formation of autophagosomes (APs), but reduced the number of autophagolysosomes (APLs) in CAMs. Furthermore, 7-Ket increased the fusion of APs with lysosomes and the velocity of APs movement in mouse CAMs, which was abolished when the dynein activity in these cells was inhibited. Interestingly, 7-Ket increased lysosomal Ca(2+) release and stimulated dynein ATPase activity, both of which were abolished by NAADP antagonists, NED-19 and PPADS. Taken together, our data suggest that NAADP-mediated Ca(2+) release plays a crucial role in regulating dynein activity, which mediates APs trafficking and fusion with lysosomes to form APLs thus regulating autophagic flux in CAMs under atherogenic stimulation.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiao-Xue Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jing Xiong
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Min Xia
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse, 55, 45122 Essen, Germany
| | - Yang Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
61
|
Wei YM, Li X, Xu M, Abais JM, Chen Y, Riebling CR, Boini KM, Li PL, Zhang Y. Enhancement of autophagy by simvastatin through inhibition of Rac1-mTOR signaling pathway in coronary arterial myocytes. Cell Physiol Biochem 2013; 31:925-37. [PMID: 23817226 PMCID: PMC3753088 DOI: 10.1159/000350111] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIMS In addition to their action of lowering blood cholesterol levels, statins modulate biological characteristics and functions of arterial myocytes such as viability, proliferation, apoptosis, survival and contraction. The present study tested whether simvastatin, as a prototype statin, enhances autophagy in coronary arterial myocytes (CAMs) to thereby exert their beneficial effects in atherosclerosis. METHODS AND RESULTS Using flow cytometry, we demonstrated that simvastatin significantly increased the autophagsome formation in CAMs. Western blot analysis confirmed that simvastatin significantly increased protein expression of typical autophagy markers LC3B and Beclin1 in these CAMs. Confocal microscopy further demonstrated that simvastatin increased fusion of autophagosomes with lysosomes, which was blocked by autophagy inhibitor 3-methyladenine or silencing of Atg7 genes. Simvastatin reduced mammalian target of rapamycin (mTOR) activity, which was reversed by Rac1-GTPase overexpression and the mTOR agonist phosphatidic acid. Moreover, both Rac1-GTPase overexpression and activation of mTOR by phosphatidic acid drastically blocked simvastatin-induced autophagosome formation in CAMs. Interestingly, simvastatin increased protein expression of a contractile phenotype marker calponin in CAMs, which was blocked by autophagy inhibitor 3-methyladenine. Simvastatin markedly reduced proliferation of CAMs under both control and proatherogenic stimulation. However, this inhibitory effect of simvastatin on CAM proliferation was blocked by by autophagy inhibitor 3-methyladenine or silencing of Atg7 genes. Lastly, animal experiments demonstrated that simvastatin increased protein expression of LC3B and calponin in mouse coronary arteries. CONCLUSION Our results indicate that simvastatin inhibits the Rac1-mTOR pathway and thereby increases autophagy in CAMs which may stabilize CAMs in the contractile phenotype to prevent proliferation and growth of these cells.
Collapse
Affiliation(s)
- Yu-Miao Wei
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Li PL, Zhang Y, Abais JM, Ritter JK, Zhang F. Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. ACTA ACUST UNITED AC 2013; 2:63-85. [PMID: 24749015 DOI: 10.1166/msr.2013.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), two intracellular Ca2+ mobilizing second messengers, have been recognized as a fundamental signaling mechanism regulating a variety of cell or organ functions in different biological systems. Here we reviewed the literature regarding these ADP-ribosylcyclase products in vascular cells with a major focus on their production, physiological roles, and related underlying mechanisms mediating their actions. In particular, several hot topics in this area of research are comprehensively discussed, which may help understand some of the controversial evidence provided by different studies. For example, some new models are emerging for the agonist receptor coupling of CD38 or ADP-ribosylcyclase and for the formation of an acidic microenvironment to facilitate the production of NAADP in vascular cells. We also summarized the evidence regarding the NAADP-mediated two-phase Ca2+ release with a slow Ca2+-induced Ca2+ release (CICR) and corresponding physiological relevance. The possibility of a permanent structural space between lysosomes and sarcoplasmic reticulum (SR), as well as the critical role of lysosome trafficking in phase 2 Ca2+ release in response to some agonists are also explored. With respect to the molecular targets of NAADP within cells, several possible candidates including SR ryanodine receptors (RyRs), lysosomal transient receptor potential-mucolipin 1 (TRP-ML1) and two pore channels (TPCs) are presented with supporting and opposing evidence. Finally, the possible role of NAADP-mediated regulation of lysosome function in autophagy and atherogenesis is discussed, which may indicate a new direction for further studies on the pathological roles of cADPR and NAADP in the vascular system.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| |
Collapse
|
63
|
Chen G, Zhang W, Li YP, Ren JG, Xu N, Liu H, Wang FQ, Sun ZJ, Jia J, Zhao YF. Hypoxia-induced autophagy in endothelial cells: a double-edged sword in the progression of infantile haemangioma? Cardiovasc Res 2013; 98:437-48. [PMID: 23408345 DOI: 10.1093/cvr/cvt035] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS The aim of this study was to investigate the precise role of hypoxia-induced autophagy in endothelial cells, and whether it contributes to the distinctive progression of infantile haemangioma (IH). METHODS AND RESULTS The endothelial cells (EOMA and HUVECs) were cultured under hypoxic conditions for indicated times (0-72 h). The results showed that short exposure of the endothelial cells to hypoxia resulted in increased cell survival and proliferation, accompanied by occurrence of autophagy. Prolonged hypoxia-induced autophagy, correlating with increased cell death, was also detected afterwards. Correspondingly, autophagy inhibition prevented the enhanced cell survival and proliferation capacity, advanced the occurrence of cell-death in early hypoxic stage, and meanwhile attenuated the ability of prolonged hypoxia in cell-death induction. Moreover, our data demonstrated that the functional transformation of hypoxia-induced autophagy, pro-survival to pro-death, was rigorously regulated by the switch between hypoxia-inducible factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR) pathways. Importantly, we also revealed the activation levels of HIF-1α and mTOR, as well as the autophagy status during the progression of IH. CONCLUSION This study unmasks the functional switch between HIF-1α and mTOR in regulating hypoxia-induced autophagy in endothelial cells and, more importantly, indicates its potential role in the progression of IH.
Collapse
Affiliation(s)
- Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Role of beclin 1-dependent autophagy in cardioprotection of ischemic preconditioning. ACTA ACUST UNITED AC 2013; 33:51-56. [DOI: 10.1007/s11596-013-1070-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Indexed: 01/29/2023]
|
65
|
Abstract
Endothelial cell (EC) apoptosis and apoptosis resistant proliferation have been proposed to play crucial roles in the development of featured plexiform lesions in the pathogenesis of pulmonary hypertension (PH). Subsequently, EC injury associated smooth muscle cell (SMC) proliferation facilitates vascular remodeling and eventually leads to narrowed vascular lumen, increased pulmonary vascular resistance, increased pulmonary arterial pressure, and right heart failure. The imbalance between cell death and proliferation occurs in every stage of pulmonary vascular remodeling and pathogenesis of PH, and involves every cell type in the vasculature including, but not limited to ECs, SMCs, and fibroblasts. Despite extensive studies, the detailed cellular and molecular mechanisms on how the transition from initial apoptosis of ECs to apoptosis resistant proliferation on ECs and SMCs remains unclear. Recent knowledge on autophagy, a conservative and powerful regulatory machinery existing in almost all mammalian cells, has shed light on the complex and delicate control on cell fate in the development of vascular remodeling in PH. In this review, we will discuss the recent understandings on how the cross-talk between apoptosis and autophagy regulates cell death or proliferation in PH pathogenesis, particularly in pulmonary vascular remodeling involving ECs and SMCs.
Collapse
Affiliation(s)
- Yang Jin
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
66
|
Macrophage autophagy in atherosclerosis. Mediators Inflamm 2013; 2013:584715. [PMID: 23401644 PMCID: PMC3563164 DOI: 10.1155/2013/584715] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022] Open
Abstract
Macrophages play crucial roles in atherosclerotic immune responses. Recent investigation into macrophage autophagy (AP) in atherosclerosis has demonstrated a novel pathway through which these cells contribute to vascular inflammation.
AP is a cellular catabolic process involving the delivery of cytoplasmic contents to the lysosomal machinery for ultimate degradation and recycling. Basal levels of macrophage AP play an essential role in atheroprotection during early atherosclerosis. However, AP becomes dysfunctional in the more advanced stages of the pathology and its deficiency promotes vascular inflammation, oxidative stress, and plaque necrosis. In this paper, we will discuss the role of macrophages and AP in atherosclerosis and the emerging evidence demonstrating the contribution of macrophage AP to vascular pathology. Finally, we will discuss how AP could be targeted for therapeutic utility.
Collapse
|
67
|
Liu H, Yu S, Zhang H, Xu J. Angiogenesis impairment in diabetes: role of methylglyoxal-induced receptor for advanced glycation endproducts, autophagy and vascular endothelial growth factor receptor 2. PLoS One 2012; 7:e46720. [PMID: 23056421 PMCID: PMC3463541 DOI: 10.1371/journal.pone.0046720] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/07/2012] [Indexed: 12/20/2022] Open
Abstract
Diabetes impairs physiological angiogenesis by molecular mechanisms that are not fully understood. Methylglyoxal (MGO), a metabolite of glycolysis, is increased in patients with diabetes. This study defined the role of MGO in angiogenesis impairment and tested the mechanism in diabetic animals. Endothelial cells and mouse aortas were subjected to Western blot analysis of vascular endothelial growth factor receptor 2 (VEGFR2) protein levels and angiogenesis evaluation by endothelial cell tube formation/migration and aortic ring assays. Incubation with MGO reduced VEGFR2 protein, but not mRNA, levels in a time and dose dependent manner. Genetic knockdown of the receptor for advanced glycation endproducts (RAGE) attenuated the reduction of VEGFR2. Overexpression of Glyoxalase 1, the enzyme that detoxifies MGO, reduced the MGO-protein adducts and prevented VEGFR2 reduction. The VEGFR2 reduction was associated with impaired angiogenesis. Suppression of autophagy either by inhibitors or siRNA, but not of the proteasome and caspase, normalized both the VEGFR2 protein levels and angiogenesis. Conversely, induction of autophagy either by rapamycin or overexpression of LC3 and Beclin-1 reduced VEGFR2 and angiogenesis. MGO increased endothelial LC3B and Beclin-1, markers of autophagy, which were accompanied by an increase of both autophagic flux (LC3 punctae) and co-immunoprecipitation of VEGFR2 with LC3. Pharmacological or genetic suppression of peroxynitrite (ONOO(-)) generation not only blocked the autophagy but also reversed the reduction of VEGFR2 and angiogenesis. Like MGO-treated aortas from normglycemic C57BL/6J mice, aortas from diabetic db/db and Akita mice presented reductions of angiogenesis or VEGFR2. Administration of either autophagy inhibitor ex vivo or superoxide scavenger in vivo abolished the reductions. Taken together, MGO reduces endothelial angiogenesis through RAGE-mediated, ONOO(-)dependent and autophagy-induced VEGFR2 degradation, which may represent a new mechanism for diabetic angiogenesis impairment.
Collapse
Affiliation(s)
- Hongtao Liu
- Section of Endocrinology, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Shujie Yu
- Section of Endocrinology, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Hua Zhang
- Section of Endocrinology, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jian Xu
- Section of Endocrinology, Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
68
|
Zhang L, Cui L, Zhou G, Jing H, Guo Y, Sun W. Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J Nutr Biochem 2012; 24:903-11. [PMID: 22898568 DOI: 10.1016/j.jnutbio.2012.06.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 06/05/2012] [Indexed: 02/08/2023]
Abstract
Chemical modulators of macroautophagy (herein referred to as autophagy) have aroused widespread interest among biologists and clinical physicians because of their potential for disease therapy. Pterostilbene (PT), a natural small-molecular compound, has been demonstrated to inhibit oxidized low-density lipoprotein (oxLDL)-induced apoptosis in vascular endothelial cells (VECs). The aim of the present study was to investigate whether and how PT could induce VEC autophagy. PT at 0.5 or 1 μM could effectively induce autophagosome formation in human umbilical vein VECs (HUVECs). PT promoted autophagy via a rapid elevation in intracellular calcium ([Ca(2+)]i) concentration and subsequent AMP-activated protein kinase α1 subunit (AMPKα1) activation, which in turn inhibited mammalian target of rapamycin, a potent inhibitor of autophagy. PT-induced AMPKα1 activation and autophagy were refractory to the depletion of serine/threonine kinase 11 but depended on calcium/calmodulin-dependent protein kinase kinase-β activation. Interestingly, PT stimulated cytoprotective autophagy so as to aid in the removal of accumulated toxic oxLDL and inhibit apoptosis in HUVECs. Our study provides a potent small molecule enhancer of autophagy and a novel useful tool in exploring the molecular mechanisms for crosstalk between apoptosis and autophagy. PT could serve as a potential lead compound for developing a class of autophagy regulator as autophagy-related diseases therapy.
Collapse
Affiliation(s)
- Lu Zhang
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China.
| | | | | | | | | | | |
Collapse
|
69
|
Pan L, Li Y, Jia L, Qin Y, Qi G, Cheng J, Qi Y, Li H, Du J. Cathepsin S deficiency results in abnormal accumulation of autophagosomes in macrophages and enhances Ang II-induced cardiac inflammation. PLoS One 2012; 7:e35315. [PMID: 22558139 PMCID: PMC3340377 DOI: 10.1371/journal.pone.0035315] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/13/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cathepsin S (Cat S) is overexpressed in human atherosclerotic and aneurysmal tissues and may contributes to degradation of extracellular matrix, especially elastin, in inflammatory diseases. We aimed to define the role of Cat S in cardiac inflammation and fibrosis induced by angiotensin II (Ang II) in mice. METHODS AND RESULTS Cat S-knockout (Cat S(-/-)) and littermate wild-type (WT) C57BL/6J mice were infused continuously with Ang II (750 ng/kg/min) or saline for 7 days. Cat S(-/-) mice showed severe cardiac fibrosis, including elevated expression of collagen I and α-smooth muscle actin (α-SMA), as compared with WT mice. Moreover, macrophage infiltration and expression of inflammatory cytokines (tumor necrosis factor α, transforming growth factor β and interleukin 1β) were significantly greater in Cat S(-/-) than WT hearts. These Ang II-induced effects in Cat S(-/-) mouse hearts was associated with abnormal accumulation of autophagosomes and reduced clearance of damaged mitochondria, which led to increased levels of reactive oxygen species (ROS) and activation of nuclear factor-kappa B (NF-κB) in macrophages. CONCLUSION Cat S in lysosomes is essential for mitophagy processing in macrophages, deficiency in Cat S can increase damaged mitochondria and elevate ROS levels and NF-κB activity in hypertensive mice, so it regulates cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Lili Pan
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yulin Li
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Lixin Jia
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yanwen Qin
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Guanming Qi
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jizhong Cheng
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yongfen Qi
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Huihua Li
- Department of Pathology, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- * E-mail:
| |
Collapse
|
70
|
Teng RJ, Du J, Welak S, Guan T, Eis A, Shi Y, Konduri GG. Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2012; 302:L651-63. [PMID: 22245997 DOI: 10.1152/ajplung.00177.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Autophagy is a process for cells to degrade proteins or entire organelles to maintain a balance in the synthesis, degradation, and subsequent recycling of cellular products. Increased reactive oxygen species formation is known to induce autophagy. We previously reported that increased NADPH oxidase (NOX) activity in pulmonary artery endothelial cells (PAEC) from fetal lambs with persistent pulmonary hypertension (PPHN) contributes to impaired angiogenesis in PPHN-PAEC compared with normal PAEC. We hypothesized that increased NOX activity in PPHN-PAEC is associated with increased autophagy, which, in turn, contributes to impaired angiogenesis in PPHN-PAEC. In the present study, we detected increased autophagy in PPHN-PAEC as shown by increased ratio of the microtubule-associated protein 1 light chain (LC3)-II to LC3-I and increased percentage of green fluorescent protein-LC3 punctate positive cells. Inhibiting autophagy by 3-methyladenine, chloroquine, and beclin-1 knockdown in PPHN-PAEC has led to decreased autophagy and increased in vitro angiogenesis. Inhibition of autophagy also decreased the association between gp91(phox) and p47(phox), NOX activity, and superoxide generation. A nonspecific antioxidant N-acetylcysteine and a NOX inhibitor apocynin decreased autophagy in PPHN-PAEC. In conclusion, autophagy may contribute to impaired angiogenesis in PPHN-PAEC through increasing NOX activity. Our results suggest that, in PPHN-PAEC, a positive feedback relationship between autophagy and NOX activity may regulate angiogenesis.
Collapse
Affiliation(s)
- Ru-Jeng Teng
- Div. of Neonatology, Dept. of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
71
|
Rezzani R, Stacchiotti A, Rodella LF. Morphological and biochemical studies on aging and autophagy. Ageing Res Rev 2012; 11:10-31. [PMID: 21939784 DOI: 10.1016/j.arr.2011.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 12/11/2022]
Abstract
To maintain health in the elderly is a crucial objective for modern medicine that involves both basic and clinical researches. Autophagy is a fundamental auto-cannibalizing process that preserves cellular homeostasis and, if altered, either by excess or defect, greatly changes cell fate and can result in incapacitating human diseases. Efficient autophagy may prolong lifespan, but unfortunately this process becomes less efficient with age. The present review is focused on the close relationship between autophagy and age-related disorders in different tissues/organs and in transgenic animal models. In particular, it comments on the up to date literature on mechanisms responsible for age-related impairment of autophagy. Moreover, before discussing about these mechanisms, it is necessary to describe the metabolic autophagic regulation of autophagy and the proteins involved in this process. At the end, these data would summarize the autophagic link with aging process, as important tools in the future biogerontology scenario.
Collapse
|
72
|
Abstract
Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. During starvation, autophagy exerts a homeostatic function that promotes cell survival by recycling metabolic precursors. Additionally, autophagy can interact with other vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms, and thereby potentially influence disease pathogenesis. Macrophages deficient in autophagic proteins display enhanced caspase-1-dependent proinflammatory cytokine production and the activation of the inflammasome. Autophagy provides a functional role in infectious diseases and sepsis by promoting intracellular bacterial clearance. Mutations in autophagy-related genes, leading to loss of autophagic function, have been implicated in the pathogenesis of Crohn's disease. Furthermore, autophagy-dependent mechanisms have been proposed in the pathogenesis of several pulmonary diseases that involve inflammation, including cystic fibrosis and pulmonary hypertension. Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases associated with inflammation.
Collapse
|
73
|
Zheng YH, Tian C, Meng Y, Qin YW, Du YH, Du J, Li HH. Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells. J Cell Physiol 2011; 227:127-35. [PMID: 21374592 DOI: 10.1002/jcp.22709] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Osteopontin (OPN) exerts pro-inflammatory effect and is associated with the development of abdominal aortic aneurysm (AAA). However, the molecular mechanism underlying this association remains obscure. In the present study, we compared gene expression profiles of AAA tissues using microarray assay, and found that OPN was the highest expressed gene (>125-fold). Furthermore, the expression of LC3 protein and autophagy-related genes including Atg4b, Beclin1/Atg6, Bnip3, and Vps34 was markedly upregulated in AAA tissues. To investigate the ability of OPN to stimulate autophagy as a potential mechanism involved in the pathogenesis of this disease, we treated vascular smooth muscle cells (SMCs) with OPN, and found that OPN significantly increased the formation of autophagosomes, expression of autophagy-related genes and cell death, whereas blocking the signal by anti-OPN antibody markedly inhibited OPN-induced autophagy and SMC death. Furthermore, inhibition of integrin/CD44 and p38 MAPK signaling pathways markedly abrogated the biological effects of OPN on SMCs. These data for the first time demonstrate that OPN sitmulates autophagy directly through integrin/CD44 and p38 MAPK-mediated pathways in SMCs. Thus, inhibition of OPN-induced autophagy might be a potential therapeutic target in the treatment of AAA disease. J. Cell. Physiol. 227: 127-135, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
|
74
|
Chiang HS, Maric M. Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radic Biol Med 2011; 51:688-99. [PMID: 21640818 DOI: 10.1016/j.freeradbiomed.2011.05.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/29/2011] [Accepted: 05/14/2011] [Indexed: 12/19/2022]
Abstract
Redox regulation is critical for a number of cellular functions and has been implicated in the etiology and progression of several diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. It has been shown that, in the absence of gamma-interferon inducible lysosomal thiol reductase (GILT), cells are under increased oxidative stress with higher superoxide levels and decreased stability, expression, and function of mitochondrial manganese superoxide dismutase (SOD2). Here, we further elucidate the role of GILT in the homeostatic regulation of oxidative stress. We show that GILT-deficient fibroblasts exhibit reduced glutathione levels, shift in GSSG/GSH ratio toward the oxidized form, and accumulate dysfunctional mitochondria. Redox-sensitive pathways involving Erk1/2 activation and nuclear high mobility group box 1 (HMGB1) protein cytosolic translocation are both activated and associated with increased autophagy in GILT-/- fibroblasts. We hypothesize that these events are responsible for degrading the damaged mitochondria and mitochondrial SOD2 in the absence of GILT. This is the first time to our knowledge that a lysosomal enzyme has been implicated in global effects within the cell.
Collapse
Affiliation(s)
- Hao-Sen Chiang
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | |
Collapse
|