51
|
Chang WSW, Chou RH, Wu CW, Chang JY. Human tissue kallikreins as prognostic biomarkers and as potential targets for anticancer therapy. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.10.1227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
52
|
Expression of kallikrein-related peptidases (KRP/hK5, 7, 6, 8) in subtypes of human lung carcinoma. Int Immunopharmacol 2007; 8:300-6. [PMID: 18182244 DOI: 10.1016/j.intimp.2007.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/10/2007] [Accepted: 08/12/2007] [Indexed: 01/07/2023]
Abstract
Lung cancer is currently the leading cause of cancer mortality worldwide. Expression of kallikrein-related peptidases (KRP/hK/KLK) may be induced during lung carcinogenesis. To test the hypothesis that KRP/hK, previously identified in the skin (KRP/hK5, 7) and brain (KRP/hK6, 8), are expressed in lung tumours, experiments were designed to investigate their localization in four malignant sub-types of human lung cancer. Using specific antibodies, expression of these KRP/hK was determined in archived lung tumour sections of the four subtypes, and in normal skin, brain, lung and submandibular gland tissue sections. Immunoperoxidase labelled sections were visualized by brightfield microscopy. In the squamous cell carcinoma, small cell carcinoma and carcinoid tumour, 40-90% of the malignant cells showed positive cytoplasmic labelling for KRP/hK5, 7, 6 and 8 (intensity grade 2+/3+). In the adenocarcinoma there was no cytoplasmic labelling for any of the KRP/hK, but the nuclei of 20% of the tumour cells were labelled for KRP/hK5, 7 and 8 (intensity grade 2+/3+). Further studies are required to determine the functional significance of the expression of KRP/hK in human lung carcinomas, and whether any of these proteins may be potential biomarkers for specific sub-types of lung cancer.
Collapse
|
53
|
Abstract
Abstract
Background: Kallikreins (KLKs) are a group of 15 secreted serine proteases. Some KLKs are established or candidate cancer biomarkers, but for most the physiological function is unknown. We characterized the protein and mRNA abundance patterns of all 15 KLKs in multiple panels of human tissues and biological fluids.
Methods: We used sensitive and specific sandwich-type ELISAs for each KLK. Reverse transcription PCR was used for transcript amplification. Multiple panels of human tissue extracts (adult and fetal) were tested, along with various biological fluids.
Results: Quantitative protein expression data on 7 sets of adult and 3 sets of fetal tissues were collected for all 15 KLKs. KLKs were also quantified in the following biological fluids: seminal plasma, breast milk, follicular fluid, breast cyst fluid, breast cancer cytosol, amniotic fluid, ovarian cancer ascites, cerebrospinal fluid, cervicovaginal fluid, and urine. The data were used to generate heat maps of KLK concentrations in tissues and fluids and categorize KLK abundance as highly restricted (KLK2 and KLK3 in prostate), restricted (KLK5 in skin, salivary gland, breast, and esophagus; KLK6 in brain and central nervous system; KLK7 in esophagus, heart, liver, and skin; KLK8 in breast, esophagus, skin, and tonsil; KLK13 in esophagus and tonsil), or wide (KLKs 1, 4, 9, 10, 11, 12, 14, and 15).
Conclusions: Quantitative KLK concentrations in tissues and fluids aid in the elucidation of KLK function, and coexpression patterns provide clues for KLK participation in proteolytic cascades.
Collapse
Affiliation(s)
- Julie L V Shaw
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
54
|
Abstract
Angioedema is an underestimated clinical problem. Many cases are nonallergic reactions, e.g. bradykinin-induced angioedema caused by genetic defects and angiotensin-converting enzyme (ACE) inhibitors. This difference is crucial for successful therapy, in particular when complete emergency care is not available. Five important forms of nonallergic angioedema can be distinguished: hereditary (HAE), acquired (AAE), renin-angiotensin-aldosterone system (RAAS)-blocker-induced (RAE), pseudoallergic angioedema (PAE) and idiopathic angioedema (IAE). Some angioedema are present in the larynx and may cause death. A vast majority of nonallergic angioedema are RAE, particularly those caused by ACE inhibitors. It appears important to emphasize that in patients with complete intolerance to RAAS-blockers, cessation of RAAS-blockers is likely to be associated with increased cardiovascular risk. Currently, there is no published algorithm for diagnosis and treatment. Angioedema is usually treated by a conservative clinical approach using artificial ventilation, glucocorticoids and antihistamines. Today, a plasma pool C1-esterase inhibitor (C1-INH) concentrate is the therapy of choice in HAE. The current pharmacotherapy of nonallergic angioedema is not satisfactory, thus requiring the identification of effective agents in clinical trials. Recently, several new drugs were developed: a recombinant C1-INH, a kallikrein inhibitor (ecallantide) and a specific bradykinin-B2-receptor antagonist (icatibant). According to currently available reports, these drugs may improve the treatment of kinin-induced angioedema.
Collapse
Affiliation(s)
- M Bas
- Hals-, Nasen- und Ohrenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
55
|
Shinoda Y, Kozaki KI, Imoto I, Obara W, Tsuda H, Mizutani Y, Shuin T, Fujioka T, Miki T, Inazawa J. Association of KLK5 overexpression with invasiveness of urinary bladder carcinoma cells. Cancer Sci 2007; 98:1078-86. [PMID: 17459052 PMCID: PMC11158320 DOI: 10.1111/j.1349-7006.2007.00495.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Array-based comparative genomic hybridization (array-CGH) has powerful potential for high-throughput identification of genetic aberrations in cell genomes. We identified high-level amplification of kallikrein (KLK) genes, which are mapped to 19q13.3 and belong to the serine protease family, in the course of a program to screen a panel of urinary bladder carcinoma cell lines for genomic copy number aberrations using our in-house CGH-array. Expression levels of KLK5, -6, -8 and -9 were significantly increased in three cell lines with copy number gains of these KLK genes. Knockdown of these KLK transcripts by specific small interfering RNA significantly inhibited the invasion of a bladder carcinoma cell line through Matrigel in vitro. Reverse transcription-polymerase chain reaction analysis of 42 primary bladder tumor samples showed that increased expression of KLK5 was frequently observed in invasive tumors (pT2-pT4) (14.3%, 6/42) compared with superficial tumors (pTa, pT1) (0%, 0/42; P = 0.0052), and expression levels of KLK5, -6, -8 and -9 mRNA were higher in invasive tumors than in superficial tumors (P < 0.0001, P = 0.0043, P = 0.0790 and P = 0.0037, respectively). These observations indicate that KLK5, -6, -8 and -9 may be the most likely targets of the 19q13.3 amplification, and may play a crucial role in promoting cancer-cell invasion in bladder tumor.
Collapse
Affiliation(s)
- Yasuo Shinoda
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Nier B, Weinberg PD, Rimbach G, Stöcklin E, Barella L. Differential gene expression in skeletal muscle of rats with vitamin E deficiency. IUBMB Life 2007; 58:540-8. [PMID: 17002982 DOI: 10.1080/15216540600871100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Vitamin E (VE) deficiency is accompanied by myopathy in various animal species including man. Although gene expression profiles related to degenerative and regenerative processes in different kinds of myopathies have been studied, no global expression profile for skeletal muscle subject to VE deficiency has previously been reported. In the present study, Affymetrix GeneChip technology was used to obtain such a profile. Two groups of male rats were fed with either a diet deficient in VE or a control diet. Differential gene expression was monitored at five time-points over 430 days, with all animals individually profiled. Out of approximately 7000 genes represented on the Genechip, 56 were found to be up-regulated in response to VE deficiency in at least four consecutive time-points from as early as 91 days of deficiency. Up-regulated genes included muscle structure and extra cellular matrix genes, as well as anti-oxidative, anti-inflammatory and anti-fibrotic genes. Our data show that molecular transcription might provide a very early marker to detect oncoming degenerative conditions in VE deficiency. They provide further insight into possible molecular mechanisms underlying VE deficiency in skeletal muscle, and reveal the activation of an intensive protection program that can explain the long maintenance of muscle structure during deficiency.
Collapse
Affiliation(s)
- Bettina Nier
- Physiological Flow Studies Group, Department of Bioengineering, Imperial College London, London, UK
| | | | | | | | | |
Collapse
|
57
|
Davidson B, Xi Z, Saatcioglu F. Kallikrein 4 is expressed in malignant mesothelioma—Further evidence for the histogenetic link between mesothelial and epithelial cells. Diagn Cytopathol 2007; 35:80-4. [PMID: 17230566 DOI: 10.1002/dc.20588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of this study was to analyze Kallikrein 4 protein (hK4) expression in effusions and solid tumors of patients diagnosed with malignant mesothelioma (MM) and compare hK4 expression in MM with that in breast and ovarian adenocarcinomas. Sections from 65 MM (21 effusions, 44 solid tumors) and 63 breast carcinomas (28 effusions, 35 solid tumors) were stained for hK4 using immunohistochemistry. Results were compared with our previously published data for 284 ovarian carcinomas (181 effusions, 103 solid tumors). Expression of hK4 was detected in 26/65 (40%) MM and 52/63 (83%) breast carcinomas. Ovarian carcinoma showed staining values that were comparable to those in breast carcinoma (expression of hK4 in 144/181; 80% effusions and 85/103; 83% solid tumors). As opposed to our previous findings in ovarian carcinoma, hK4 expression was higher in solid tumors when compared with to effusions in both MM (P = 0.013) and breast carcinoma (P = 0.002). Comparative analysis of the three tumor types showed significantly higher expression in ovarian and breast adenocarcinomas when compared with MM (P < 0.001). In conclusion, hK4 is frequently expressed in MM, with higher levels detected in solid tumors, although its expression is more limited than in gynecological adenocarcinomas. The presence of hK4 in MM, a non-hormonally regulated tumor, provides further support to the histogenetic link between mesothelial and epithelial cells.
Collapse
Affiliation(s)
- Ben Davidson
- Pathology Clinic, Rikshospitalet-Radiumhospitalet Medical Center, Montebello, N-0310 Oslo, Norway.
| | | | | |
Collapse
|
58
|
Debela M, Magdolen V, Schechter N, Valachova M, Lottspeich F, Craik CS, Choe Y, Bode W, Goettig P. Specificity Profiling of Seven Human Tissue Kallikreins Reveals Individual Subsite Preferences. J Biol Chem 2006; 281:25678-88. [PMID: 16740631 DOI: 10.1074/jbc.m602372200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human tissue kallikreins (hKs) form a family of 15 closely related (chymo)trypsin-like serine proteinases. These tissue kallikreins are expressed in a wide range of tissues including the central nervous system, the salivary gland, and endocrine-regulated tissues, such as prostate, breast, or testis, and may have diverse physiological functions. For several tissue kallikreins, a clear correlation has been established between expression and different types of cancer. For example, the prostate-specific antigen (PSA or hK3) serves as tumor marker and is used to monitor therapy response. Using a novel strategy, we have cloned, expressed in Escherichia coli or in insect cells, refolded, activated, and purified the seven human tissue kallikreins hK3/PSA, hK4, hK5, hK6, hK7, hK10, and hK11. Moreover, we have determined their extended substrate specificity for the nonprime side using a positional scanning combinatorial library of tetrapeptide substrates. hK3/PSA and hK7 exhibited a chymotrypsin-like specificity preferring large hydrophobic or polar residues at the P1 position. In contrast, hK4, hK5, and less stringent hK6 displayed a trypsin-like specificity with strong preference for P1-Arg, whereas hK10 and hK11 showed an ambivalent specificity, accepting both basic and large aliphatic P1 residues. The extended substrate specificity profiles are in good agreement with known substrate cleavage sites but also in accord with experimentally solved (hK4, hK6, and hK7) or modeled structures. The specificity profiles may lead to a better understanding of human tissue kallikrein functions and assist in identifying their physiological protein substrates as well as in designing more selective inhibitors.
Collapse
Affiliation(s)
- Mekdes Debela
- Max-Planck-Institut für Biochemie, Proteinase Research Group, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Scarisbrick IA, Blaber SI, Tingling JT, Rodriguez M, Blaber M, Christophi GP. Potential scope of action of tissue kallikreins in CNS immune-mediated disease. J Neuroimmunol 2006; 178:167-76. [PMID: 16824622 DOI: 10.1016/j.jneuroim.2006.05.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/22/2006] [Accepted: 05/25/2006] [Indexed: 01/08/2023]
Abstract
The objective of this study was to define the potential scope of action of tissue kallikreins in T cell-mediated disease of the CNS. We demonstrate quantitatively the differential expression of all 15 human tissue kallikreins within brain, spinal cord and immune compartments. In human Jurkat T cells we demonstrate differential regulation of select kallikreins by CD3 receptor, Concanavilin A (Con A), interleukin 2 (IL2), and lipopolysaccharide (LPS)-mediated activation and by exposure to steroid hormones, dexamethasone, norgestrel, androstan and estradiol. The patterns of co-expression and co-regulation described point to novel effector roles for select tissue kallikreins in neurological disorders involving T cells, such as multiple sclerosis.
Collapse
Affiliation(s)
- I A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate Schools, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Obiezu CV, Michael IP, Levesque MA, Diamandis EP. Human kallikrein 4: enzymatic activity, inhibition, and degradation of extracellular matrix proteins. Biol Chem 2006; 387:749-59. [PMID: 16800736 DOI: 10.1515/bc.2006.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human kallikrein 4 (hK4) is a member of the expanded family of human kallikreins, a group of 15 secreted proteases. While this protein has been associated with ovarian and prostate cancer prognosis, only limited functional information exists. Therefore, we have undertaken an investigation of its enzymatic properties regarding substrate preference, degradation of extracellular matrix proteins, and its inhibition by various inhibitors. We successfully expressed and purified active recombinant hK4 from supernatants of the Pichia pastoris expression system. This enzyme seems to cleave more efficiently after Arg compared to Lys at the P1 position and exhibits modest specificity for amino acids at positions P2 and P3. hK4 forms complexes with alpha1-antitrypsin, alpha2-antiplasmin and alpha2-macroglobulin. The protease mediates limited degradation of extracellular matrix proteins such as collagen I and IV, and more efficient degradation of the alpha-chain of fibrinogen. The cleavage of extracellular matrix proteins by hK4 suggests that this enzyme may play a role in tissue remodeling and cancer metastasis.
Collapse
Affiliation(s)
- Chistina V Obiezu
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, and Department of Laboratory Medicine and Pathobiology, University of Toronto, 100 College Street, Toronto M5G 1L5, ON, Canada
| | | | | | | |
Collapse
|
61
|
Debela M, Magdolen V, Grimminger V, Sommerhoff C, Messerschmidt A, Huber R, Friedrich R, Bode W, Goettig P. Crystal structures of human tissue kallikrein 4: activity modulation by a specific zinc binding site. J Mol Biol 2006; 362:1094-107. [PMID: 16950394 DOI: 10.1016/j.jmb.2006.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/29/2006] [Accepted: 08/01/2006] [Indexed: 11/24/2022]
Abstract
Human tissue kallikrein 4 (hK4) belongs to a 15-member family of closely related serine proteinases. hK4 is predominantly expressed in prostate, activates hK3/PSA, and is up-regulated in prostate and ovarian cancer. We have identified active monomers of recombinant hK4 besides inactive oligomers in solution. hK4 crystallised in the presence of zinc, nickel, and cobalt ions in three crystal forms containing cyclic tetramers and octamers. These structures display a novel metal site between His25 and Glu77 that links the 70-80 loop with the N-terminal segment. Micromolar zinc as present in prostatic fluid inhibits the enzymatic activity of hK4 against fluorogenic substrates. In our measurements, wild-type hK4 exhibited a zinc inhibition constant (IC50) of 16 microM including a permanent residual activity, in contrast to the zinc-independent mutants H25A and E77A. Since the Ile16 N terminus of wild-type hK4 becomes more accessible for acetylating agents in the presence of zinc, we propose that zinc affects the hK4 active site via the salt-bridge formed between the N terminus and Asp194 required for a functional active site. hK4 possesses an unusual 99-loop that creates a groove-like acidic S2 subsite. These findings explain the observed specificity of hK4 for the P1 to P4 substrate residues. Moreover, hK4 shows a negatively charged surface patch, which may represent an exosite for prime-side substrate recognition.
Collapse
Affiliation(s)
- Mekdes Debela
- Max-Planck-Institut für Biochemie, Proteinase Research Group, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Moreau ME, Adam A. Aspect multifactoriel des effets secondaires aigus des inhibiteurs de l′enzyme de conversion de l′angiotensine. ANNALES PHARMACEUTIQUES FRANÇAISES 2006; 64:276-86. [PMID: 16902391 DOI: 10.1016/s0003-4509(06)75320-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Angiotensin converting enzyme inhibitors are a class of drugs successfully used in the treatment of cardiovascular diseases. Despite their effectiveness, treatment with these drugs is characterized by chronic and acute side effects with variable expression depending on the clinical context. Angioedema occurs in patients with hypertension or heart failure. Anaphylactoid reaction is also reported in hemodialysis patients and severe hypotensive reaction in patients receiving transfused blood products and plasmapheresis. In this paper, we describe the role of kinins and metallopeptidases in the pathophysiology of these acute side effects. We also propose different experimental and clinical evidences which plead for an ecogenetic nature of these rare but life-threatening events.
Collapse
Affiliation(s)
- M-E Moreau
- Faculté de pharmacie, Université de Montréal, Québec, Canada
| | | |
Collapse
|
63
|
Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A. The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci 2006; 99:6-38. [PMID: 16177542 DOI: 10.1254/jphs.srj05001x] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The kallikrein-kinin system is an endogenous metabolic cascade, triggering of which results in the release of vasoactive kinins (bradykinin-related peptides). This complex system includes the precursors of kinins known as kininogens and mainly tissue and plasma kallikreins. The pharmacologically active kinins, which are often considered as either proinflammatory or cardioprotective, are implicated in many physiological and pathological processes. The interest of the various components of this multi-protein system is explained in part by the multiplicity of its pharmacological activities, mediated not only by kinins and their receptors, but also by their precursors and their activators and the metallopeptidases and the antiproteases that limit their activities. The regulation of this system by serpins and the wide distribution of the different constituents add to the complexity of this system, as well as its multiple relationships with other important metabolic pathways such as the renin-angiotensin, coagulation, or complement pathways. The purpose of this review is to summarize the main properties of this kallikrein-kinin system and to address the multiple pharmacological interventions that modulate the functions of this system, restraining its proinflammatory effects or potentiating its cardiovascular properties.
Collapse
|
64
|
Spillmann F, Van Linthout S, Schultheiss HP, Tschöpe C. Cardioprotective mechanisms of the kallikrein-kinin system in diabetic cardiopathy. Curr Opin Nephrol Hypertens 2006; 15:22-9. [PMID: 16340662 DOI: 10.1097/01.mnh.0000199009.56799.2b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE OF REVIEW Multiple pathogenic mechanisms contribute to the development of diabetic cardiopathy, including intramyocardial inflammation, cardiac fibrosis, abnormal intracellular Ca handling, microangiopathy and endothelial dysfunction. Moreover, the cardiac kallikrein-kinin system is thought to be altered under diabetic conditions and an improvement of this peptide system, e.g. by gene therapeutic approaches, has also been associated with an amelioration of the diabetic heart. In this review, we will discuss the hypothesis that the stimulation of the kallikrein-kinin system could be a promising target for the treatment of diabetic cardiopathy. RECENT FINDINGS The kallikrein-kinin system has cardioprotective properties, which may be particularly important under diabetic conditions. For example, its potential for endothelium-dependent vasodilation, and for improvement of glucose transport and utilization, make bradykinin an important mediator for reducing the consequences of diabetes-related oxidative stress on both the myocardium and vessels. SUMMARY The different synergistic cardioprotective effects of the kallikrein-kinin system in the diabetic heart suggest that the stimulation of the kallikrein-kinin system might open new avenues for the treatment of diabetic cardiopathy.
Collapse
Affiliation(s)
- Frank Spillmann
- Department of Cardiology and Pneumology, Charité-University Medicine of Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | |
Collapse
|
65
|
Wang HK, Fung HC, Hsu WC, Wu YR, Lin JC, Ro LS, Chang KH, Hwu FJ, Hsu Y, Huang SY, Lee-Chen GJ, Chen CM. Apolipoprotein E, angiotensin-converting enzyme and kallikrein gene polymorphisms and the risk of Alzheimer's disease and vascular dementia. J Neural Transm (Vienna) 2006; 113:1499-509. [PMID: 16465461 DOI: 10.1007/s00702-005-0424-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 11/19/2005] [Indexed: 11/29/2022]
Abstract
Lipoproteins and vascular factors may play roles in the development of Alzheimer's disease (AD) and/or vascular dementia (VaD). In this study, odd ratios (ORs) and 95% confidence intervals (CIs) for apolipoprotein E (APOE), angiotensin-converting enzyme (ACE), and kallikrein (KLK1) polymorphisms were computed to test their association with the disease by a case-control study. The risk of AD was significantly increased for individuals with APOE varepsilon4 allele (OR = 3.73, 95% CI = 2.38-5.98). The risk of AD was also significant for people with ACE DD genotype, D allele, or T-D haplotype [OR (95% CI) = 4.29 (1.96-10.23), 1.90 (1.35-2.70), or 2.91 (1.71-5.10), respectively]. The above association between ACE-VaD was also strong (p = 0.0012, 0.0050, 0.0007, respectively). Reporter constructs containing the -240 A or T allele displayed similar transcriptional activity in both HEK-293 and IMR-32 cells. Thus, another putative pathogenic marker that is linked with the Alu D allele might affect the risk of AD and VaD in Taiwan.
Collapse
Affiliation(s)
- H K Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Stefansson K, Brattsand M, Ny A, Glas B, Egelrud T. Kallikrein-related peptidase 14 may be a major contributor to trypsin-like proteolytic activity in human stratum corneum. Biol Chem 2006; 387:761-8. [PMID: 16800737 DOI: 10.1515/bc.2006.095] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously presented evidence that two human kallikrein-related peptidases, KLK5 (hK5, stratum corneum tryptic enzyme, SCTE) and KLK7 (hK7, stratum corneum chymotryptic enzyme, SCCE), which are abundant in the stratum corneum, may be involved in desquamation. Since we had noted that not all trypsin-like activity in the plantar stratum corneum could be ascribed to KLK5, we set out to identify other skin proteases with similar primary substrate specificity. Here we describe purification of a protease identified as KLK14 from plantar stratum corneum, and show that this enzyme may be responsible for as much as 50% of the total trypsin-like activity in this tissue, measured as activity towards a chromogenic substrate cleaved by a wide variety of enzymes with trypsin-like specificity. This was in spite of very low levels of KLK14 protein compared to KLK5 and KLK7. KLK14 could be detected by immunoblotting in normal superficial stratum corneum of all individuals examined. The majority of KLK14 in the plantar stratum corneum is present in its catalytically active form. KLK14 could be immunohistochemically detected in sweat ducts, preferentially in the intraepidermal parts (the acrosyringium), and in sweat glands. The role played by this very efficient protease under normal and disease conditions in the skin remains to be elucidated.
Collapse
Affiliation(s)
- Kristina Stefansson
- Department of Public Health and Clinical Medicine, Dermatology and Venereology, Umeå University, S-901 85 Umeå, Sweden
| | | | | | | | | |
Collapse
|
67
|
Rajapakse S, Ogiwara K, Takano N, Moriyama A, Takahashi T. Biochemical characterization of human kallikrein 8 and its possible involvement in the degradation of extracellular matrix proteins. FEBS Lett 2005; 579:6879-84. [PMID: 16337200 DOI: 10.1016/j.febslet.2005.11.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 11/13/2005] [Accepted: 11/16/2005] [Indexed: 11/28/2022]
Abstract
Human kallikrein 8 (KLK8) is a member of the human kallikrein gene family of serine proteases, and its protein, hK8, has recently been suggested to serve as a new ovarian cancer marker. To gain insights into the physiological role of hK8, the active recombinant enzyme was obtained in a pure state for biochemical and enzymatic characterizations. hK8 had trypsin-like activity with a strong preference for Arg over Lys in the P1 position, and its activity was inhibited by typical serine protease inhibitors. The protease degraded casein, fibronectin, gelatin, collagen type IV, fibrinogen, and high-molecular-weight kininogen. hK8 also converted human single-chain tissue-type plasminogen activator (65 kDa) to its two-chain form (32 and 33 kDa) by specifically cleaving the peptide bond Arg275-Ile276. This conversion resulted in a drastic increase in the activity of the activator toward the fluorogenic substrate Pyr-Gly-Arg-MCA and plasminogen in the absence of fibrin. Our findings suggest that hK8 may be implicated in ECM protein degradation in the area surrounding hK8-producing cells.
Collapse
Affiliation(s)
- Sanath Rajapakse
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
68
|
Dlamini Z, Bhoola KD. Upregulation of tissue kallikrein, kinin B1 receptor, and kinin B2 receptor in mast and giant cells infiltrating oesophageal squamous cell carcinoma. J Clin Pathol 2005; 58:915-22. [PMID: 16126870 PMCID: PMC1770819 DOI: 10.1136/jcp.2004.021444] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2004] [Indexed: 11/04/2022]
Abstract
BACKGROUND The mitogenic kinin peptides formed by the serine protease, tissue kallikrein (TK1), stimulate the proliferation of tumour cells and, by increasing vascular permeability, enhance metastasis. Oesophageal mucosal epithelial cells are derived from the epithelial cell germ layer, which expresses the kallikrein-kinin cascade. AIM To determine the cellular distribution of active TK1, prokallikrein, and the kinin B(1) and B(2) receptors in oesophageal carcinoma by immunocytochemistry and in situ hybridisation (ISH). METHODS Fifty oesophageal specimens (33 biopsies and 17 resections) and 10 control specimens adjacent to tumour or normal oesophageal biopsies were studied. Specific antibodies were used to determine the cellular localisation of TK1, prokallikrein, and the kinin B(1) and B(2) receptors in normal and oesophageal specimens by standard immunohistochemical techniques. The intensity of immunolabelling was quantified by image analysis. Antisense probes for TK1 and the kinin B(1) and B(2) receptors were also used to localise mRNA. RESULTS TK1 (active and prokallikrein) was expressed in the mucosa of normal and tumour oesophageal epithelium. In general, expression was highest in activated mast cells, followed by giant tumour cells. Immunolabelling results were confirmed by ISH experiments. CONCLUSIONS This is the first demonstration that TK1 and kinin B(1) and B(2) receptors are expressed in oesophageal carcinoma. Because TK1 released from tumour cells enzymatically generates mitogenic kinins from its endogenous substrate, kininogen, it is possible that third generation kinin receptor antagonists, which have been shown to be cytotoxic to cancer cells, may be useful therapeutic agents in this disease.
Collapse
Affiliation(s)
- Z Dlamini
- School of Anatomical Sciences, University of the Witwatersrand, Faculty of Health Sciences, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | | |
Collapse
|
69
|
Yousef GM, White NMA, Michael IP, Cho JCK, Robb JD, Kurlender L, Khan S, Diamandis EP. Identification of new splice variants and differential expression of the human kallikrein 10 gene, a candidate cancer biomarker. Tumour Biol 2005; 26:227-35. [PMID: 16103744 DOI: 10.1159/000087377] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 04/12/2005] [Indexed: 11/19/2022] Open
Abstract
The human kallikrein gene 10 (KLK10) is a member of the kallikrein gene family on chromosome 19q13.4. This gene was identified by its downregulation in breast cancer, and preliminary evidence suggests that it may act as a tumor suppressor. A computer-based analysis was performed on EST and SAGE clones from the Cancer Genome Anatomy Project and other databases. Experimental verification of differential expression of KLK10 in cancer was performed by PCR using gene-specific primers. The mRNA and EST analysis allowed the construction of the longest transcript of the gene and characterization of a 5' extension of the reported mRNA. In addition, seven new splice variants of KLK10 were identified. One of these variants, named KLK10 splice variant 3 (KLK10-SV3) which starts with a novel first exon, was experimentally verified. This variant is predicted to encode for the same protein as the 'classical' KLK10 mRNA, since the first exon is untranslated. One variant mRNA partially matches with the sequence of KLK10, while the rest of the mRNA matches with a portion of the polycystic kidney disease gene, found on chromosome 15. This variant could not be experimentally verified in either normal or cancerous tissues. There are 39 reported single nucleotide polymorphisms (SNPs) for the gene, in which three result in amino acid substitutions. SAGE analysis shows a clear upregulation of KLK10 in ovarian, pancreatic, colon, and gastric cancers. The gene is, however, downregulated in breast and prostate cancers. A three-fold decrease in expression levels was noted in actinic keratosis, compared to normal skin from the same patient. The differential regulation of KLK10 in ovarian and prostate cancers was experimentally verified by RT-PCR analysis. In addition, a significant number of clones were isolated from carcinomas of the head and neck. Fewer clones were found in carcinomas of the skin, brain and prostate. Orthologues were identified in three other species, with the highest degree of homology observed with the mouse and rat orthologues (42% in each). In conclusion new splice variants of the KLK10 gene were identified. These in silico analyses show a differential expression of the gene in various malignancies and provide the basis for directing experimental efforts to investigate the possible role of the gene as a cancer biomarker.
Collapse
Affiliation(s)
- George M Yousef
- Discipline of Laboratory Medicine, Memorial University, St. John's, Canada
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
A number of molecules have been postulated to be involved in long-term potentiation, an experimental model for learning and short-term memory. Although the molecular mechanisms of the long-term potentiation have been considerably well understood, it is not yet known why and how real memory can last very long with outstanding stability. A mechanical change of synaptic morphology at acquisition, consolidation and retention of memory is hypothesized to explain long-lasting memory. Changes in the synaptic morphology may be due, at least in part, to local extracellular proteolysis of cell adhesion and extracellular matrix molecules. Some extracellular serine proteases of the Clan PA family may modulate synaptic adhesion and associate with long-term potentiation and learning behavior. In the present review, candidate proteases that are involved in the hippocampal memory are overviewed.
Collapse
Affiliation(s)
- Sadao Shiosaka
- Division of Structural Cell Biology, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
71
|
Kurlender L, Borgono C, Michael IP, Obiezu C, Elliott MB, Yousef GM, Diamandis EP. A survey of alternative transcripts of human tissue kallikrein genes. Biochim Biophys Acta Rev Cancer 2005; 1755:1-14. [PMID: 15878240 DOI: 10.1016/j.bbcan.2005.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 02/10/2005] [Accepted: 02/11/2005] [Indexed: 12/01/2022]
Abstract
Alternative splicing is prevalent within the human tissue kallikrein gene locus. Aside from being the most important source of protein diversity in eukaryotes, this process plays a significant role in development, physiology and disease. A better understanding of alternative splicing could lead to the use of gene variants as drug targets, therapeutic agents or diagnostic markers. With the rapidly rising number of alternative kallikrein transcripts, classifying new transcripts and piecing together the significance of existing data are becoming increasingly challenging. In this review, we present a systematic analysis of all currently known kallikrein alternative transcripts. By defining a reference form for each of the 15 kallikrein genes (KLK1 to KLK15), we were able to classify alternative splicing patterns. We identified 82 different kallikrein gene transcript forms, including reference forms. Alternative splicing may lead to the synthesis of 56 different protein forms for KLK1-15. In the kallikrein locus, the majority of alternative splicing events occur within the protein-coding region, and to a lesser extent in the 5' untranslated regions (UTRs). The most common alternative splicing event is exon skipping (35%) and the least common events are cryptic exons (3%) and internal exon deletion (3%). Seventy-six percent of kallikrein splice variants that are predicted to encode truncated proteins are the result of frameshifts. Eighty-nine percent of putative proteins encoded by splice variants are predicted to be secreted. Although several reports describe the identification of kallikrein splice variants and their potential clinical utility, this is the first extensive review on this subject. Accumulating evidence suggests that alternative kallikrein forms could be involved in many pathologic conditions or could have practical applications as biomarkers. The organization and analysis of the kallikrein transcripts will facilitate future work in this area and may lead to novel clinical and diagnostic applications.
Collapse
Affiliation(s)
- Lisa Kurlender
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 600 University Avenue, Toronto, Ontario, Canada M5G 1L5
| | | | | | | | | | | | | |
Collapse
|
72
|
Davidson B, Xi Z, Klokk TI, Tropé CG, Dørum A, Scheistrøen M, Saatcioglu F. Kallikrein 4 Expression Is Up-Regulated in Epithelial Ovarian Carcinoma Cells in Effusions. Am J Clin Pathol 2005. [DOI: 10.1309/ptbb5bpckx8k9v69] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
73
|
Yousef GM, Obiezu CV, Luo LY, Magklara A, Borgoño CA, Kishi T, Memari N, Michael LP, Sidiropoulos M, Kurlender L, Economopolou K, Kapadia C, Komatsu N, Petraki C, Elliott M, Scorilas A, Katsaros D, Levesque MA, Diamandis EP. Human Tissue Kallikreins: From Gene Structure to Function and Clinical Applications. Adv Clin Chem 2005; 39:11-79. [PMID: 16013667 DOI: 10.1016/s0065-2423(04)39002-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- George M Yousef
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Moodley R, Snyman C, Odhav B, Bhoola KD. Visualisation of transforming growth factor-β1, tissue kallikrein, and kinin and transforming growth factor-β receptors on human clear-cell renal carcinoma cells. Biol Chem 2005; 386:375-82. [PMID: 15899700 DOI: 10.1515/bc.2005.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) has a biphasic effect on the growth of renal epithelial cells. In transformed cells, TGF-beta1 appears to accelerate the proliferation of malignant cells. The diverse cellular functions of TGF-beta1 are regulated by three high-affinity serine/threonine kinase receptors, namely TbetaRI, TbetaRII and TbetaRIII. The renal serine protease tissue kallikrein acts on its endogenous protein substrate kininogen to form kinin peptides. The cellular actions of kinins are mediated through B1 and B2 G protein-coupled rhodopsin receptors. Both kinin peptides and TGF-beta1 are mitogenic, and therefore may play an important role in carcinogenesis. Experiments were designed to immunolabel tissue kallikrein, TGF-beta1, TbetaRII, TbetaRIII and kinin receptors using specific antibodies on serial sections of normal kidney and clear-cell renal carcinoma (CCRC) tissue, which included both the tumour and the adjacent renal parenchyma. The essential result was the localisation of tissue kallikrein, kinin B 1 and B 2 receptors and TGF-beta1 primarily on the cell membranes of CCRC cells. In the distal and proximal tubules of the renal parenchyma adjacent to the carcinoma (RPTAC), immunolabelling for tissue kallikrein was reduced, but the expression of kinin B1 and B2 receptors was enhanced. Immunolabelling for TbetaRII and TbetaRIII was more pronounced in the proximal tubules of the tissue adjacent to the carcinoma when compared to the normal kidney. The expression of tissue kallikrein, kinin receptors, and TbetaRII and TbetaRIII may be relevant to the parenchymal invasion and metastasis of clear-cell renal carcinoma.
Collapse
Affiliation(s)
- Rumesha Moodley
- Department of Biotechnology, M L Sultan Campus, Durban Institute of Technology, Durban 4001, South Africa
| | | | | | | |
Collapse
|
75
|
Fogaça SE, Melo RL, Pimenta DC, Hosoi K, Juliano L, Juliano MA. Differences in substrate and inhibitor sequence specificity of human, mouse and rat tissue kallikreins. Biochem J 2004; 380:775-81. [PMID: 15040788 PMCID: PMC1224235 DOI: 10.1042/bj20031047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 02/23/2004] [Accepted: 03/25/2004] [Indexed: 01/12/2023]
Abstract
The kininogenase activities of mouse (mK1), rat (rK1) and human (hK1) tissue kallikreins were assayed with the bradykinin-containing synthetic peptides Abz-MTEMARRPPGFSPFRSVTVQNH2 (where Abz stands for o-aminobenzoyl) and Abz-MTSVIRRPPGFSPFRAPRV-NH2, which correspond to fragments Met374-Gln393 and Met375-Val393 of mouse and rat LMWKs (low-molecular-mass kininogens) with the addition of Abz. Bradykinin was released from these peptides by the mK1- and rK1-mediated hydrolysis of Arg-Arg and Arg-Ser (or Arg-Ala) peptide bonds. However, owing to preferential hydrolysis of Phe-Arg compared with the Arg-Ala bond in the peptide derived from rat LMWK, hK1 released bradykinin only from the mouse LMWK fragment and preferentially released des-[Arg9]bradykinin from the rat LMWK fragment (Abz-MTSVIRRPPGFSPFRAPRV-NH2). The formation of these hydrolysis products was examined in more detail by determining the kinetic parameters for the hydrolysis of synthetic, internally quenched fluorescent peptides containing six N- or C-terminal amino acids of bradykinin added to the five downstream or upstream residues of mouse and rat kininogens respectively. One of these peptides, Abz-GFSPFRAPRVQ-EDDnp (where EDDnp stands for ethylenediamine 2,4-dinitrophenyl), was preferentially hydrolysed at the Phe-Arg bond, confirming the potential des-[Arg9]bradykinin-releasing activity of hK1 on rat kininogen. The proline residue that is two residues upstream of bradykinin in rat kininogen is, in part, responsible for this pattern of hydrolysis, since the peptide Abz-GFSPFRASRVQ-EDDnp was preferentially cleaved at the Arg-Ala bond by hK1. Since this peptidase accepts the arginine or phenylalanine residue at its S1 subsite, this preference seems to be determined by the prime site of the substrates. These findings also suggested that the effects observed in rats overexpressing hK1 should consider the activation of B1 receptors by des-[Arg9]bradykinin. For further comparison, two short internally quenched fluorescent peptides that bind to hK1 with affinity in the nM range and some inhibitors described previously for hK1 were also assayed with mK1 and rK1.
Collapse
Affiliation(s)
- Sandro E Fogaça
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Tres de Maio 100, São Paulo 04044-20, Brazil
| | | | | | | | | | | |
Collapse
|
76
|
Yousef GM, Borgono CA, Michael IP, Diamandis EP. Cloning of a kallikrein pseudogene. Clin Biochem 2004; 37:961-7. [PMID: 15498522 DOI: 10.1016/j.clinbiochem.2004.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 06/16/2004] [Accepted: 07/22/2004] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Kallikreins are a group of serine proteases clustered together on a small region of chromosome 19q13.4. Recent reports suggest that kallikreins are differentially expressed in malignancy and have potential as cancer biomarkers. The human kallikrein gene locus has now been fully characterized and 15 functional kallikreins were identified. Although many kallikrein pseudogenes have already been characterized in rodents, none have been identified in humans. METHODS AND RESULTS In the current study, we identified the first human kallikrein pseudogene named PsiKLK1 and mapped it between the KLK2 and KLK4 genes. This pseudogene shares a moderate degree of similarity with the adjacent functional kallikreins. It has a conserved histidine residue of the catalytic triad of serine proteases and its surrounding motif, but lacks the aspartate and serine residues. Positions of some cysteine residues are also conserved in the pseudogene. This pseudogene lacks intronic sequences and should thus be classified as a processed pseudogene. EST and PCR analyses indicate that this pseudogene may be transcriptionally active, because mRNA was detected in many tissues including the prostate, testis, pituitary, and adrenal glands, as well as in tissues of the female genital organs. DISCUSSION The mRNA sequence of the gene is, however, defective and is not predicted to code for a protein. Highly conserved sequences were found in the flanking region of the pseudogene, thus supporting the view that it evolved by retrotransposition. We also identified another serine protease fragment that has only the conserved histidine residue. The functional significance of the pseudogene and the other fragment is yet to be identified.
Collapse
Affiliation(s)
- George M Yousef
- Discipline of Pathology, Health Care Corporation of St. John's, St. John's, Newfoundland, Canada
| | | | | | | |
Collapse
|
77
|
Lee-Chen GJ, Liu KP, Lai YC, Juang HS, Huang SY, Lin CY. Significance of the tissue kallikrein promoter and transforming growth factor-beta1 polymorphisms with renal progression in children with vesicoureteral reflux. Kidney Int 2004; 65:1467-72. [PMID: 15086490 DOI: 10.1111/j.1523-1755.2004.00526.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tissue kallikrein regulates blood circulation. Low urinary kallikrein excretion was associated with hypertension and renal disease in blacks. The polymorphic KLK1 promoter includes -130 GN coupled with multiple single base substitutions. The -130 G12 allele in the KLK1 promoter was associated with lower transcriptional activity and hypertensive end-stage renal disease (ESRD) in blacks. Transforming growth factor-beta1 (TGF-beta1) regulates matrix production, and induces fibrosis in a variety of tissues. High circulating TGF-beta1 levels mediating renal fibrosis and loss of function in transgenic mice. The -509 T allele in the TGF-beta1 promoter showed marginally higher transcriptional activity, and was associated with increased TGF-beta1 production in humans. The aim of this study was to investigate whether the tissue KLK1 promoter and TGF-beta1 polymorphism are involved in primary vesicoureteric reflux (VUR) with renal progression in children. METHODS Seventy-four primary VUR children were studied with regular annual follow-up for more than 18 years, all of them more than grade II (diagnosed by voiding cystourethroradiography). All of them were born before 1984. Patients were classified into two groups according to the renal function with progressive deterioration or not. Patients with baseline creatinine clearance (CCr) less than 25 mL/min were defined as having chronic renal insufficiency (CRI). The TGF-beta1 -509 T-C polymorphism was analyzed by Bsu36I restriction fragment length polymorphism (RFLP)-polymerase chain reaction (PCR). In KLK1 promoter, the -130 GN length polymorphism and multiple single base substitutions were analyzed by electrophoresis of fluoresced PCR products in sequencing gels, single strand conformation polymorphism (SSCP), allele-specific PCR, and DNA sequencing. Patients' TGF-beta1 and KLK1 promoter polymorphisms were evaluated for association with VUR susceptibility and progression in Taiwanese children. Annual echocardiography study was used to evaluate left ventricular mass index (LVMI). RESULTS Four alleles were identified in the complex KLK1 promoter: A (-130 G10), B (-130 G2CG7), H (-130 G11), and K (-130 G12). The polymorphic KLK1 promoter showed no association with VUR susceptibility. However, the frequency distribution of KLK1 promoter among VUR patients with or without CRI (A, 50.0% and 67.5%; B, 17.9% and 8.3%; H, 14.3% and 18.3%; K, 17.9% and 5.8%, respectively) was statistically different (P = 0.008). Significantly higher K allele frequency was present in primary VUR with CRI children, as it was in the renal survival curve study. A significant increase of LVMI was also found in the A allele group compared with the non-A allele group of KLK1 promoter gene at the age of 18 years old with renal progression. The TGF-beta1 gene polymorphism was determined, and we found significant over-representation of the TT genotype in primary VUR patients with CRI compared with normal renal function (P= 0.0035). CONCLUSION The K allele of KLK1 promoter and TT genotype of TGF-beta1 may be a genetic KLK1 -130 GN and -128 G-C, and the susceptibility factor contributing to progressive renal deterioration in Taiwanese primary VUR children.
Collapse
Affiliation(s)
- Guey-Jen Lee-Chen
- Department of Biological Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
78
|
Dupont J, Tanwar MK, Thaler HT, Fleisher M, Kauff N, Hensley ML, Sabbatini P, Anderson S, Aghajanian C, Holland EC, Spriggs DR. Early detection and prognosis of ovarian cancer using serum YKL-40. J Clin Oncol 2004; 22:3330-9. [PMID: 15310777 DOI: 10.1200/jco.2004.09.112] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE YKL-40 is a secreted glycoprotein (chitinase family). We compared YKL-40 with two ovarian cancer serum markers, CA125 and CA15-3, for the detection of early-stage ovarian cancer. MATERIALS AND METHODS Serum YKL-40 levels were assayed by enzyme-linked immunosorbent assay for 46 healthy subjects, 61 high-risk individuals, 33 patients with benign gynecologic processes, and 50 preoperative patients subsequently diagnosed with predominantly early-stage ovarian cancer. Serum CA125 and CA15-3 values were obtained. RESULTS Median YKL-40 level was 28 ng/mL (range, 15 to 166 ng/mL) for healthy subjects, 36 ng/mL (range, 9 to 69 ng/mL) for high-risk individuals without prior cancer, 44.5 ng/mL (range, 5 to 133 ng/mL) for high-risk patients with prior breast cancer, and 38 ng/mL (range, 5 to 67 ng/mL) for individuals with benign gynecologic processes (P = NS). Median preoperative YKL-40 level for ovarian cancer patients was 94 ng/mL (range, 17 to 517 ng/mL; P <.0001 compared with normal and high-risk). YKL-40 was elevated (>/= 62 ng/mL) in 36 (72%) of 50 patients compared with 23 (46%) of 50 and 13 (26%) of 50 patients for CA125 and CA15-3 (P <.008). Twenty (65%) of 31 early-stage patients had elevated serum YKL-40 levels compared with 11 (35%) of 31 and four (13%) of 31 patients for CA125 and CA15-3 (P =.039). YKL-40 levels increased with stage (P <.005), regardless of grade, histology, or patient age. Patients with early-stage tumors with YKL-40 values more than 80 ng/mL had a worse prognosis (71% recurrence v no recurrence [P =.034]). CONCLUSION YKL-40 may represent a novel marker for the detection of early-stage ovarian cancer. YKL-40 levels in early-stage patients may also predict disease recurrence and survival. The utility of YKL-40 in detection of early-stage ovarian cancer deserves further investigation.
Collapse
Affiliation(s)
- Jakob Dupont
- Developmental Chemotherapy Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, Howard 905, 1275 York Ave, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Olsson AY, Lilja H, Lundwall A. Taxon-specific evolution of glandular kallikrein genes and identification of a progenitor of prostate-specific antigen. Genomics 2004; 84:147-56. [PMID: 15203212 DOI: 10.1016/j.ygeno.2004.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 01/25/2004] [Indexed: 12/31/2022]
Abstract
In a previous study we demonstrated that repeated duplications of the tissue kallikrein gene (Klk1) had resulted in 24 paralogs in mouse. Here we demonstrate a different evolution of rat glandular kallikrein genes. Repeated duplications of an approximately 30-kb region, encompassing Klk1, Klk15, and Klk2-ps, resulted in 10 copies of each gene, but only the Klk1 paralogs are functional. The number of genes varies also between nonrodent mammals, e.g., there are probably no paralogs to KLK1 in cow and pig, whereas horse could have up to 5. In the dog, the gene encoding the prostatic arginine esterase was identified as an ortholog to the progenitor of the PSA and hK2 genes, and it carries the same conserved androgen-responsive elements directing prostate transcription as these genes. This is highly interesting with respect to animal models of benign prostate hyperplasia and prostate adenocarcinoma--diseases that have been described only in humans and dogs.
Collapse
Affiliation(s)
- A Yvonne Olsson
- Wallenberg Laboratory, Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, 4th Floor, University Hospital MAS, S-205 02 Malmö, Sweden.
| | | | | |
Collapse
|
80
|
Abstract
OBJECTIVE Molecular mechanisms involved in ovarian carcinogenesis are still unclear, but there is growing evidence that estrogens promote tumor progression in an epithelial ovarian cancer (EOC) subgroup. METHODS We reviewed current knowledge on the effects of estrogens in ovarian carcinogenesis and new potential research focuses concerning hormonal therapy of EOC. RESULTS Experimentally, estrogen stimulates the growth of ovarian tumor cell lines expressing estrogen receptors (ER). We and other authors have demonstrated differential expression of ERalpha or beta during ovarian carcinogenesis, with overexpression of ERalpha as compared to ERbeta in cancer. This differential expression in ER suggests that estrogen-induced proteins may act as ovarian tumor-promoting agents. Among these proteins, c-myc, fibulin-1, cathepsin-D, or several kallikreins may play a role, since high expression levels have been found in EOC. Consistently, recent prospective epidemiological studies have indicated that estrogen replacement therapy in postmenopausal women may increase ovarian cancer incidence and mortality. CONCLUSION Questions on the estrogen-sensitivity and potential benefits of new hormone therapies in an EOC subgroup should be readdressed in the light of recent experimental and clinical data.
Collapse
Affiliation(s)
- Séverine Cunat
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire de Montpellier, Hôpital Arnaud de Villeneuve, Montpellier Cedex 5, France
| | | | | |
Collapse
|
81
|
Mikolajczyk SD, Song Y, Wong JR, Matson RS, Rittenhouse HG. Are multiple markers the future of prostate cancer diagnostics? Clin Biochem 2004; 37:519-28. [PMID: 15234233 DOI: 10.1016/j.clinbiochem.2004.05.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2004] [Indexed: 01/18/2023]
Abstract
Prostate specific antigen (PSA) is the most successful and widely employed cancer serum marker in use today. There is growing evidence that the introduction of wide PSA screening and earlier detection can result in decreased cancer mortality associated with a decline in metastatic disease. PSA circulates in a number of distinct forms. Measurement of these in addition to total PSA significantly increases diagnostic utility. Diagnostic utility is likely to be further increased by adding kallikreins, cytokines, growth factors, receptors and cellular adhesion factors to the biomarker panel. The need for multiple markers reflects the multidimensional nature of prostate disease which ranges from metastatic cancer to indolent cancer to benign hyperplasia and inflammation, all of which require distinct treatments and medical interventions.
Collapse
|
82
|
Borgoño CA, Michael IP, Diamandis EP. Human Tissue Kallikreins: Physiologic Roles and Applications in Cancer. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.257.2.5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Tissue kallikreins are members of the S1 family (clan SA) of trypsin-like serine proteases and are present in at least six mammalian orders. In humans, tissue kallikreins (hK) are encoded by 15 structurally similar, steroid hormone–regulated genes (KLK) that colocalize to chromosome 19q13.4, representing the largest cluster of contiguous protease genes in the entire genome. hKs are widely expressed in diverse tissues and implicated in a range of normal physiologic functions from the regulation of blood pressure and electrolyte balance to tissue remodeling, prohormone processing, neural plasticity, and skin desquamation. Several lines of evidence suggest that hKs may be involved in cascade reactions and that cross-talk may exist with proteases of other catalytic classes. The proteolytic activity of hKs is regulated in several ways including zymogen activation, endogenous inhibitors, such as serpins, and via internal (auto)cleavage leading to inactivation. Dysregulated hK expression is associated with multiple diseases, primarily cancer. As a consequence, many kallikreins, in addition to hK3/PSA, have been identified as promising diagnostic and/or prognostic biomarkers for several cancer types, including ovarian, breast, and prostate. Recent data also suggest that hKs may be causally involved in carcinogenesis, particularly in tumor metastasis and invasion, and, thus, may represent attractive drug targets to consider for therapeutic intervention.
Collapse
Affiliation(s)
- Carla A. Borgoño
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Iacovos P. Michael
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
83
|
Tschöpe C, Walther T, Königer J, Spillmann F, Westermann D, Escher F, Pauschinger M, Pesquero JB, Bader M, Schultheiss HP, Noutsias M. Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. FASEB J 2004; 18:828-35. [PMID: 15117887 DOI: 10.1096/fj.03-0736com] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diabetic cardiomyopathy includes fibrosis. Kallikrein (KLK) can inhibit collagen synthesis and promote collagen breakdown. We investigated cardiac fibrosis and left ventricular (LV) function in transgenic rats (TGR) expressing the human kallikrein 1 (hKLK1) gene in streptozotocin (STZ) -induced diabetic conditions. Six weeks after STZ injection, LV function was determined in male Sprague-Dawley (SD) rats and TGR(hKLK1) (n=10/group) by a Millar tip catheter. Total collagen content (Sirius Red staining) and expression of types I, III, and VI collagen were quantified by digital image analysis. SD-STZ hearts demonstrated significantly higher total collagen amounts than normoglycemic controls, reflected by the concomitant increment of collagen types I, III, and VI. This correlated with a significant reduction of LV function vs. normoglycemic controls. In contrast, surface-specific content of the extracellular matrix, including collagen types I, III, and VI expression, was significantly lower in TGR(hKLK1)-STZ, not exceeding the content of SD and TGR(hKLK1) controls. This was paralleled by a preserved LV function in TGR(hKLK1)-STZ animals. The kallikrein inhibitor aprotinin and the bradykinin (BK) B2 receptor antagonist icatibant reduced the beneficial effects on LV function and collagen content in TGR(hKLK1)-STZ animals. Transgenic expression of hKLK1 counteracts the progression of LV contractile dysfunction and extracellular matrix remodeling in STZ-induced diabetic cardiomyopathy via a BK B2 receptor-dependent pathway.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Department of Cardiology and Pneumonology, Campus Benjamin Franklin, Charité-University Medicine, Free University of Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Diamandis EP, Yousef GM, Olsson AY. An update on human and mouse glandular kallikreins. Clin Biochem 2004; 37:258-60. [PMID: 15003726 DOI: 10.1016/j.clinbiochem.2003.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 12/24/2003] [Indexed: 10/26/2022]
Abstract
Human glandular kallikreins are secreted serine proteases, involved in many biological processes. Recently, the complete organization of the human and mouse genomic loci has been elucidated. These loci harbor the largest clusters of serine proteases within the human and mouse genomes. Mouse orthologs to all human kallikrein genes, except for KLK2 and KLK3 genes, have now been identified. Here, we describe an update of the genomic organization of these families in human and mouse, and provide some thoughts for future research directions.
Collapse
Affiliation(s)
- Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
85
|
Abstract
The wide range of currently available treatments for metastatic prostate cancer have demonstrated a modest palliative effect, but none to date has shown an increase in overall survival. The immune system has evolved to protect against infection, however, the modulation of this system represents the possibility of allowing it to identify and destroy cancer cells. The immune system is capable of inciting a powerful immune response against tissues, in the form of transplant rejection, and the potential exists to harness these powers to fight against tumors. Modest clinical responses have been seen in patients with metastatic prostate cancer treated with DC therapies; however, no increase in overall survival has been demonstrated. The current state of DC immunotherapy for prostate cancer is reviewed.
Collapse
Affiliation(s)
- P W Swindle
- Mater Prostate Cancer Research Centre, Mater Medical Research Institute, Queensland, South Brisbane, Australia
| | | | | |
Collapse
|
86
|
Xi Z, Klokk TI, Korkmaz K, Kurys P, Elbi C, Risberg B, Danielsen H, Loda M, Saatcioglu F. Kallikrein 4 is a Predominantly Nuclear Protein and Is Overexpressed in Prostate Cancer. Cancer Res 2004; 64:2365-70. [PMID: 15059887 DOI: 10.1158/0008-5472.can-03-2025] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kallikreins (KLKs) are highly conserved serine proteases that play key roles in a variety of physiological and pathological processes. KLKs are secreted proteins that have extracellular substrates and function. For example, prostate-specific antigen (or KLK3) is a secreted protein that is widely used as a diagnostic marker for prostate cancer. KLK4 is a recently identified member of the kallikrein family that is regulated by androgens and is highly specific to prostate for expression. Here, we show that the gene product of KLK4, hK4, is the first member of the KLK family that is intracellularly localized. We provide strong evidence that the previously assigned first exon that was predicted to code for a signal peptide that would target hK4 for secretion is not part of the physiologically relevant form of KLK4 mRNA. In addition to detailed mapping of the KLK4 mRNA 5' end by RT-PCR, this conclusion is supported by predominantly nuclear localization of the hK4 protein in the cell, documented by both immunofluorescence and cell fractionation experiments. Furthermore, in addition to androgens, hK4 expression is regulated by estrogen and progesterone in prostate cancer cells. Finally, in situ hybridization on normal and hyperplastic prostate samples in tissue microarrays indicate that KLK4 is predominantly expressed in the basal cells of the normal prostate gland and overexpressed in prostate cancer. These data suggest that KLK4 has a unique structure and function compared with other members of the KLK family and may have a role in the biology and characterization of prostate cancer.
Collapse
Affiliation(s)
- Zhijun Xi
- Department of Biology, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Yousef GM, Yacoub GM, Polymeris ME, Popalis C, Soosaipillai A, Diamandis EP. Kallikrein gene downregulation in breast cancer. Br J Cancer 2004; 90:167-72. [PMID: 14710225 PMCID: PMC2395319 DOI: 10.1038/sj.bjc.6601451] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recent evidence suggests that many members of the human kallikrein gene family are differentially regulated in breast cancer and other endocrine-related malignancies. In this study, we utilised the serial analysis of gene expression (SAGE) and expressed sequence tag (EST) databases of the Cancer Genome Anatomy Project (CGAP) to perform in silico analyses of the expression pattern of the 15 human kallikrein genes in normal and cancerous breast tissues and cell lines using different analytical tools such as Virtual Northern blotting, Digital Differential Display and X-profiler. Our results indicate that at least four kallikrein genes (KLK5, 6, 8, 10) are downregulated in breast cancer. Probing eight normal and 24 breast cancer SAGE libraries with gene-specific tags for each of the above kallikreins indicated moderate-to-high expression densities in normal breast (27–319 tags per million; tpm, in two to five out of eight libraries), compared to no or low expression (0 – 34 tpm in zero to two libraries out of 24) in breast cancer. These data were verified by screening the EST databases, where all mRNA clones isolated for these genes, except for one in each, were from normal breast libraries, with no clones detected from breast cancer tissues or cell lines (with the exception of KLK8). X-profiler comparison of two pools of normal and breast cancer libraries further verified the presence of significant downregulation of expression levels of 4 of the kallikreins genes (KLK5, 6, 10, 12). We experimentally verified the downregulation of these four kallikreins (KLK5, 6, 8, 10 and 12) by RT – PCR analysis.
Collapse
Affiliation(s)
- G M Yousef
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - G M Yacoub
- University of Virginia School of Medicine, Roanoke-Salem Internal Medicine Program, Roanoke, VA 24033, USA
| | - M-E Polymeris
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - C Popalis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - A Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - E P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, 600 University Avenue, Toronto, Ontario Canada M5G 1X5. E-Mail:
| |
Collapse
|
88
|
Faussner A, Schuessler S, Seidl C, Jochum M. Inhibition of sequestration of human B2 bradykinin receptor by phenylarsine oxide or sucrose allows determination of a receptor affinity shift and ligand dissociation in intact cells. Biol Chem 2004; 385:835-43. [PMID: 15493879 DOI: 10.1515/bc.2004.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Depending on their interaction with intracellular proteins, G protein-coupled receptors (GPCR) often display different affinities for agonists at 37 degrees C. Determining the affinity at that temperature is often difficult in intact cells as most GPCRs are internalized after activation. When sequestration of the B2 bradykinin receptor (B2R) was inhibited by either 0.5 M sucrose or phenylarsine oxide (PAO), a shift in the affinity was detected when the incubation temperature was raised from 4 degrees C to 37 degrees C or lowered from 37 degrees C to 4 degrees C. In contrast, binding of the antagonist [3H]NPC 17731 was temperature-independent. B2R mutants displayed different affinity shifts allowing conclusions on the role of the involved amino acids. By inhibiting receptor sequestration it was possible to determine also dissociation of [3H]BK and of [3H]NPC 17731 from intact cells at 37 degrees C. Surprisingly, both dissociation rates were markedly enhanced by the addition of unlabeled ligand, most likely via prevention of reassociation of dissociated [3H]ligand. This suggests that dissociated [3H]ligand cannot move freely away from the receptor. In summary, our data demonstrate that inhibition of receptor internalization either by PAO or sucrose provides an excellent method to study receptor function and the effects of mutations in intact cells.
Collapse
Affiliation(s)
- Alexander Faussner
- Ludwig-Maximilians-Universität München, Abteilung für Klinische Chemie und Klinische Biochemie, Nussbaumstrasse 20, D-80336 München, Germany.
| | | | | | | |
Collapse
|
89
|
Yousef GM, Diamandis EP. An overview of the kallikrein gene families in humans and other species: emerging candidate tumour markers. Clin Biochem 2003; 36:443-52. [PMID: 12951170 DOI: 10.1016/s0009-9120(03)00055-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Kallikreins are serine proteases with diverse physiologic functions. They are represented by multigene families in many animal species, especially in rat and mouse. Recently, the human kallikrein gene family has been fully characterized and includes 15 members, tandemly localized on chromosome 19q13.4. A new definition has now been proposed for kallikreins, which is not based on function but, rather, on close proximity and structural similarities. In this review, we summarize available information about kallikreins in many animal species with special emphasis on human kallikreins. We discuss the common structural features of kallikreins at the DNA, mRNA and protein levels and overview their evolutionary history. Kallikreins are expressed in a wide range of tissues including the salivary gland, endocrine or endocrine-related tissues such as testis, prostate, breast and endometrium and in the central nervous system. Most, if not all, genes are under steroid hormone regulation. Accumulating evidence indicates that kallikreins are involved in many pathologic conditions. Of special interest is the potential role of kallikreins in the central nervous system. In addition, many kallikreins seem to be candidate tumor markers for many malignancies, especially those of endocrine-related organs.
Collapse
Affiliation(s)
- George M Yousef
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
90
|
Yayama K, Kunimatsu N, Teranishi Y, Takano M, Okamoto H. Tissue kallikrein is synthesized and secreted by human vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1593:231-8. [PMID: 12581867 DOI: 10.1016/s0167-4889(02)00393-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The generation of kinins on the surface of vascular endothelium has been postulated in two pathways involving plasma kallikrein and tissue kallikrein; the former pathway has been well documented, but the latter is controversial. To clarify the presence of a kinin-generating system on endothelium, we examined whether human umbilical vein endothelial cells (HUVEC) synthesize and release tissue kallikrein in vitro. Kallikrein-like activity hydrolyzing a peptide Pro-Phe-Arg-4-methyl-coumaryl-7-amide was detected in the culture medium of HUVEC and was inhibited by aprotinin but not by soybean trypsin inhibitor. Western blotting of HUVEC medium using anti-human tissue kallikrein antibodies demonstrated the release of tissue kallikrein from HUVEC, and the reverse transcription-polymerase chain reaction (RT-PCR) followed by Southern blotting revealed the expression of tissue kallikrein mRNA in HUVEC. HUVEC metabolically labeled with [35S]methionine released radioactive proteins corresponding to tissue kallikrein. RT-PCR also showed the expression of low-molecular-weight kininogen (L-kininogen) mRNA in HUVEC. The cGMP levels in HUVEC were significantly elevated by the incubation with angiotensin converting enzyme inhibitor, lisinopril, and the elevation was completely inhibited by aprotinin or bradykinin B2-receptor antagonist, FR172357. These results suggest that the endothelial cells continuously release an active form of tissue kallikrein which enables generation of kinins on the vascular endothelium.
Collapse
Affiliation(s)
- Katsutoshi Yayama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Ikawadani-cho, Nishi-ku, 651-2180, Kobe, Japan
| | | | | | | | | |
Collapse
|
91
|
Katori M, Majima M. The renal kallikrein-kinin system: its role as a safety valve for excess sodium intake, and its attenuation as a possible etiologic factor in salt-sensitive hypertension. Crit Rev Clin Lab Sci 2003; 40:43-115. [PMID: 12627748 DOI: 10.1080/713609329] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The distal tubules of the kidney express the full set of the components of the kallikrein-kinin system, which works independently from the plasma kallikrein-kinin system. Studies on the role of the renal kallikrein-kinin system, using congenitally kininogen-deficient Brown-Norway Katholiek rats and also bradykinin B2 receptor knockout mice, revealed that this system starts to function and to induce natriuresis and diuresis when sodium accumulates in the body as a result of excess sodium intake or aldosterone release, for example, by angiotensin II. Thus, it can be hypothesized that the system works as a safety valve for sodium accumulation. The large numbers of studies on hypertensive animal models and on essential hypertensive patients, particularly those with salt sensitivity, indicate a tendency toward the reduced excretion of urinary kallikrein, although this reduction is modified by potassium intake and impaired renal function. We hypothesize that the reduced excretion of the renal kallikrein may be attributable to a genetic defect of factor(s) in renal kallikrein secretion process and may cause salt-sensitive hypertension after salt intake.
Collapse
Affiliation(s)
- Makoto Katori
- Department of Pharmacology, Kitasato University School of Medicine, Kitasato 1-15-1, Sagamihara, Kanagawa, 228-8555, Japan.
| | | |
Collapse
|
92
|
Plendl J, Snyman C, Bhoola KD. Visualization of the sequential changes in immunolabelled tissue kininogenase which accompany follicular development and luteinization of angiogenic granulosa cells of the ovary. Int Immunopharmacol 2002; 2:1981-94. [PMID: 12489812 DOI: 10.1016/s1567-5769(02)00165-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The serine protease, tissue kininogenase (kallikrein), belongs to a unique family of enzymes that cleaves the decapeptide, kallidin, from the endogenous substrate kininogen. By analysis of genealogy patterns, rat KLK gene family members have been detected in ovarian luteinizing granulosa cells of both gonadotrophin-treated and nontreated control rats. Preliminary experiments suggest that when granulosa and endothelial cells are co-cultured, granulosa cells participate in the formation of vascular capillary tubes. This inherent capacity of granulosa cells to behave and respond like endothelial cells may be of importance in the aetiology of ovarian angiogenesis, which drives new blood vessel formation in the ovary. Recently, we demonstrated that tissue kininogenase showed intense immunolabelling in angiogenic endothelial cells isolated from bovine mature and regressing corpora lutea. Therefore, the question to answer was whether granulosa cells possess the same capacity to express the kallikrein-kinin cascade as do microvascular endothelial cells. As a first step, experiments were designed to determine the expression and visualization of tissue kininogenase (both active and pro-forms) as well as kininogen and kinin receptors in granulosa cells of different developmental stage and segments of the ovarian follicle by immunoperoxidase, fluorescent microscopy (confocal) and in situ hybridization.
Collapse
Affiliation(s)
- J Plendl
- Fachbereich Veterinärmedizin, Institut für Veterinär-Anatomie, Freie Universität Berlin, Koserstr 20, D14195, Berlin, Germany
| | | | | |
Collapse
|
93
|
Olsson AY, Lundwall A. Organization and evolution of the glandular kallikrein locus in Mus musculus. Biochem Biophys Res Commun 2002; 299:305-11. [PMID: 12437987 DOI: 10.1016/s0006-291x(02)02629-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The gene of tissue kallikrein and closely related genes constitute the glandular kallikrein (GK) gene family. The number of members varies between species, ranging from three human to 25 murine. Recently, the gene family was extended with 12 new members, KLK4-KLK15, that were identified adjacent to the classical GK genes on human chromosome 19. In this report, the structure and phylogeny of the mouse GK gene locus are described. A comparison of the human and murine loci shows that the locations of the tissue kallikrein gene and KLK4-KLK15 are conserved. The region between the tissue kallikrein gene and KLK15, devoid of genes in human, is expanded and contains 23 classical GK genes in mouse. Downstream of KLK15, where the genes encoding PSA and hK2 are located in human, mouse carries the pseudogene PsimGK25. Phylogenetic analyses show that classical GK genes emerged after the separation of the primate and rodent lineages, forming a subgroup within the newly extended GK family.
Collapse
Affiliation(s)
- A Yvonne Olsson
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, University hospital MAS, Malmö, Sweden.
| | | |
Collapse
|
94
|
Abstract
Serine proteases are proteolytic enzymes with an active serine residue in their catalytic site. Kallikreins are a subgroup of the serine protease family which is known to have diverse physiological functions. The human kallikrein gene family has now been fully characterized and includes 15 members tandemly located on chromosome 19q13.4. Here we discuss the common structural features of kallikreins at the DNA, mRNA and protein levels and summarize their tissue expression and hormonal regulation patterns. Kallikreins are expressed in many tissues including the salivary gland, endocrine tissues such as testis, prostate, breast and endometrium, and in the central nervous system. Most genes appear to be under steroid hormone regulation. The occurrence of several splice variants is common among kallikreins, and some of the splice variants seem to be tissue-specific and might be related to certain pathological conditions. Kallikreins are secreted in an inactive 'zymogen' form which is activated by cleavage of an N-terminal peptide. Some kalikreins can undergo autoactivation while others may be activated by other kallikreins or other proteases. Most kallikreins are predicted to have trypsin-like enzymatic activity except three which are probably chymotrypsin-like. New, but mainly circumstantial evidence, suggests that at least some kallikreins may be part of a novel enzymatic cascade pathway which is turned-on in aggressive forms of ovarian and probably other cancers.
Collapse
Affiliation(s)
- George M Yousef
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
95
|
Hural JA, Friedman RS, McNabb A, Steen SS, Henderson RA, Kalos M. Identification of naturally processed CD4 T cell epitopes from the prostate-specific antigen kallikrein 4 using peptide-based in vitro stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:557-65. [PMID: 12077288 DOI: 10.4049/jimmunol.169.1.557] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Kallikrein (KLK)4 is a recently described member of the tissue kallikrein gene family that is specifically expressed in normal and prostate tumor tissues. The tissue-specific expression profile of this molecule suggests that it might be useful as a vaccine candidate against prostate cancer. To examine the presence of CD4 T cells specific for KLK4 in PBMC of normal individuals, a peptide-based in vitro stimulation protocol was developed that uses overlapping KLK4-derived peptides spanning the majority of the KLK4 protein. Using this methodology, three naturally processed CD4 epitopes derived from the KLK4 sequence are identified. These epitopes are restricted by HLA-DRB1*0404, HLA-DRB1*0701, and HLA-DPB1*0401 class II alleles. CD4 T cell clones specific for these epitopes are shown to efficiently and specifically recognize both recombinant KLK4 protein and lysates from prostate tumor cell lines virally infected to express KLK4. CD4 T cells specific for these KLK4 epitopes are shown to exist in PBMC from multiple male donors that express the relevant class II alleles, indicating that a CD4 T cell repertoire specific for KLK4 is present and potentially expandable in prostate cancer patients. The demonstration that KLK4-specific CD4 T cells exist in the peripheral circulation of normal male donors and the identification of naturally processed KLK4-derived CD4 T cell epitopes support the use of KLK4 in whole gene-, protein-, or peptide-based vaccine strategies against prostate cancer. Furthermore, the identification of naturally processed KLK4-derived epitopes provides valuable tools for monitoring preexisting and vaccine-induced responses to this molecule.
Collapse
Affiliation(s)
- John A Hural
- Corixa Corporation and Infectious Disease Research Institute, Seattle, WA 98104, USA
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
Rheumatoid arthritis is a chronic multi-system disease of unknown aetiology. The current hypothesis is that an unknown antigen triggers an autoimmune response in a genetically susceptible individual. The predominant pathological change is that of an inflammatory synovitis, characterised by cellular infiltrates and angiogenesis, with subsequent bone and cartilage destruction. These pathological changes are as a result of the activation of a variety of cells, inflammatory mediators, and effector molecules. The pro-inflammatory kinins and cytokines appear to play a central role in the pathogenesis of rheumatoid arthritis. Sufficient evidence exists that establishes a key role for the kallikrein-kinin cascade in inflamed joints. In addition, there appears to be an inter-relationship between cytokines and kinins in the inflammatory process. Kinins induce the release of cytokines, and cytokines have been shown to augment the effects of kinins. This may lead to an enhancement and perpetuation of the inflammatory process. In this review, we report a first study, correlating markers of disease with the kallikrein-kinin cascade and with cytokines.
Collapse
Affiliation(s)
- Bilkish Cassim
- Department of Rheumatology, Nelson R. Mandela School of Medicine, University of Natal, Private Bag 7, Congella 4013, South Africa
| | | | | |
Collapse
|
97
|
Dedio J, Wiemer G, Rütten H, Dendorfer A, Schölkens BA, Müller-Esterl W, Wohlfart P. Tissue kallikrein KLK1 is expressed de novo in endothelial cells and mediates relaxation of human umbilical veins. Biol Chem 2001; 382:1483-90. [PMID: 11727832 DOI: 10.1515/bc.2001.182] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bradykinin released by the endothelium is thought to play an important local role in cardiovascular regulation. However, the molecular identity of endothelial proteases liberating bradykinin from its precursors remained unclear. Using RT-PCR and Southern blotting techniques we detected mRNA for tissue kallikrein (KLK1) in human umbilical vein endothelial cells and in bovine aortic endothelial cells. Protein expression was confirmed by precipitation of KLK1 from lysates of endothelial cells pre-labeled with [35S]-cysteine/methionine. Partial purification of tissue kallikrein from total endothelial cell extracts resulted in a protein triplet of about 50 kDa in Western blots using specific anti-KLK1 antibodies. The immunodetection of tissue kallikrein antigen in the fractions from ion exchange chromatography correlated with the presence of amidolytic tissue kallikrein activity. Stimulation of endothelial cells with angiotensin II (ANG-II), which recently has been shown to activate the vascular kinin system and to cause vasodilation, resulted in the release of bradykinin and kallidin. ANG-II-dependent relaxation of pre-constricted rings from human umbilical veins was abolished in the presence of a specific tissue kallikrein inhibitor. We conclude that endothelial cells de novo express significant amounts of tissue kallikrein, which likely serves in the local generation of vasoactive kinins.
Collapse
Affiliation(s)
- J Dedio
- Aventis Pharma Deutschland GmbH, Cardiovascular Disease Group, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|