51
|
Anderson MC, Floresco SB. Prefrontal-hippocampal interactions supporting the extinction of emotional memories: the retrieval stopping model. Neuropsychopharmacology 2022; 47:180-195. [PMID: 34446831 PMCID: PMC8616908 DOI: 10.1038/s41386-021-01131-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Neuroimaging has revealed robust interactions between the prefrontal cortex and the hippocampus when people stop memory retrieval. Efforts to stop retrieval can arise when people encounter reminders to unpleasant thoughts they prefer not to think about. Retrieval stopping suppresses hippocampal and amygdala activity, especially when cues elicit aversive memory intrusions, via a broad inhibitory control capacity enabling prepotent response suppression. Repeated retrieval stopping reduces intrusions of unpleasant memories and diminishes their affective tone, outcomes resembling those achieved by the extinction of conditioned emotional responses. Despite this resemblance, the role of inhibitory fronto-hippocampal interactions and retrieval stopping broadly in extinction has received little attention. Here we integrate human and animal research on extinction and retrieval stopping. We argue that reconceptualising extinction to integrate mnemonic inhibitory control with learning would yield a greater understanding of extinction's relevance to mental health. We hypothesize that fear extinction spontaneously engages retrieval stopping across species, and that controlled suppression of hippocampal and amygdala activity by the prefrontal cortex reduces fearful thoughts. Moreover, we argue that retrieval stopping recruits extinction circuitry to achieve affect regulation, linking extinction to how humans cope with intrusive thoughts. We discuss novel hypotheses derived from this theoretical synthesis.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Stan B Floresco
- Department of Psychology, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
52
|
Ahmari SE, Rauch SL. The prefrontal cortex and OCD. Neuropsychopharmacology 2022; 47:211-224. [PMID: 34400778 PMCID: PMC8617188 DOI: 10.1038/s41386-021-01130-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023]
Abstract
Obsessive Compulsive Disorder (OCD) is a highly prevalent and severe neuropsychiatric disorder, with an incidence of 1.5-3% worldwide. However, despite the clear public health burden of OCD and relatively well-defined symptom criteria, effective treatments are still limited, spotlighting the need for investigation of the neural substrates of the disorder. Human neuroimaging studies have consistently highlighted abnormal activity patterns in prefrontal cortex (PFC) regions and connected circuits in OCD during both symptom provocation and performance of neurocognitive tasks. Because of recent technical advances, these findings can now be leveraged to develop novel targeted interventions. Here we will highlight current theories regarding the role of the prefrontal cortex in the generation of OCD symptoms, discuss ways in which this knowledge can be used to improve treatments for this often disabling illness, and lay out challenges in the field for future study.
Collapse
Affiliation(s)
- Susanne E Ahmari
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Scott L Rauch
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
53
|
Nett KE, LaLumiere RT. Infralimbic cortex functioning across motivated behaviors: Can the differences be reconciled? Neurosci Biobehav Rev 2021; 131:704-721. [PMID: 34624366 PMCID: PMC8642304 DOI: 10.1016/j.neubiorev.2021.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/10/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
The rodent infralimbic cortex (IL) is implicated in higher order executive functions such as reward seeking and flexible decision making. However, the precise nature of its role in these processes is unclear. Early evidence indicated that the IL promotes the extinction and ongoing inhibition of fear conditioning and cocaine seeking. However, evidence spanning other behavioral domains, such as natural reward seeking and habit-based learning, suggests a more nuanced understanding of IL function. As techniques have advanced and more studies have examined IL function, identifying a unifying explanation for its behavioral function has become increasingly difficult. Here, we discuss evidence of IL function across motivated behaviors, including associative learning, drug seeking, natural reward seeking, and goal-directed versus habit-based behaviors, and emphasize how context-specific encoding and heterogeneous IL neuronal populations may underlie seemingly conflicting findings in the literature. Together, the evidence suggests that a major IL function is to facilitate the encoding and updating of contingencies between cues and behaviors to guide subsequent behaviors.
Collapse
Affiliation(s)
- Kelle E Nett
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States.
| | - Ryan T LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
54
|
Feng XY, Hu HD, Chen J, Long C, Yang L, Wang L. Acute neuroinflammation increases excitability of prefrontal parvalbumin interneurons and their functional recruitment during novel object recognition. Brain Behav Immun 2021; 98:48-58. [PMID: 34403738 DOI: 10.1016/j.bbi.2021.08.216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 01/09/2023] Open
Abstract
There is an emerging body of literature suggesting that unlike the chronic neuroinflammatory response, acute neuroinflammation is self-regulated and is beneficial for central nervous system homeostasis and cognitive integrity. However, the neurophysiological alterations upon acute neuroinflammation and their implications on cognitive function remain poorly understood. In the present study, we reliably established a mouse model of acute and self-limiting neuroinflammation by administering a single intraperitoneal injection of low-dose lipopolysaccharide, which induced reversible sickness behavior and increased pro-inflammatory cytokine expression in the medial prefrontal cortex (mPFC). During acute neuroinflammation, fast-spiking parvalbumin-expressing interneurons (PV interneurons) in the mPFC exhibited a hyperexcitable phenotype exemplified by increased input resistance, decreased rheobase current, and a higher frequency of action potentials. Furthermore, PV interneurons in the prelimbic subregion of the mPFC were excessively recruited into circuits supporting novel object recognition memory, which remained intact after acute neuroinflammation. Together, our findings suggest that alterations in PV neuronal excitability resulting from acute neuroinflammation may mediate neuronal recruitment and confer a beneficial outcome on functional integrity of NOR circuit in the mPFC.
Collapse
Affiliation(s)
- Xiao-Yi Feng
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Hai-Dong Hu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jian Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| | - Lei Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
55
|
Ma J, du Hoffmann J, Kindel M, Beas BS, Chudasama Y, Penzo MA. Divergent projections of the paraventricular nucleus of the thalamus mediate the selection of passive and active defensive behaviors. Nat Neurosci 2021; 24:1429-1440. [PMID: 34413514 PMCID: PMC8484052 DOI: 10.1038/s41593-021-00912-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022]
Abstract
The appropriate selection of passive and active defensive behaviors in threatening situations is essential for survival. Previous studies have shown that passive defensive responses depend on activity of the central nucleus of the amygdala (CeA), whereas active ones primarily rely on the nucleus accumbens (NAc). However, the mechanisms underlying flexible switching between these two types of responses remain unknown. Here, we show in mice that the paraventricular thalamus (PVT) mediates the selection of defensive behaviors through its interaction with the CeA and the NAc. We show that the PVT–CeA pathway drives conditioned freezing responses, whereas the PVT–NAc pathway is inhibited during freezing and instead signals active avoidance events. Optogenetic manipulations revealed that activity in the PVT–CeA or PVT–NAc pathway biases behavior toward the selection of passive or active defensive responses, respectively. These findings provide evidence that the PVT mediates flexible switching between opposing defensive behaviors.
Collapse
Affiliation(s)
- Jun Ma
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Johann du Hoffmann
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.,Rodent Behavioral Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Morgan Kindel
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - B Sofia Beas
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Yogita Chudasama
- Rodent Behavioral Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.,Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mario A Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
56
|
Dynamical prefrontal population coding during defensive behaviours. Nature 2021; 595:690-694. [PMID: 34262175 DOI: 10.1038/s41586-021-03726-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
Coping with threatening situations requires both identifying stimuli that predict danger and selecting adaptive behavioural responses to survive1. The dorsomedial prefrontal cortex (dmPFC) is a critical structure that is involved in the regulation of threat-related behaviour2-4. However, it is unclear how threat-predicting stimuli and defensive behaviours are associated within prefrontal networks to successfully drive adaptive responses. Here we used a combination of extracellular recordings, neuronal decoding approaches, pharmacological and optogenetic manipulations to show that, in mice, threat representations and the initiation of avoidance behaviour are dynamically encoded in the overall population activity of dmPFC neurons. Our data indicate that although dmPFC population activity at stimulus onset encodes sustained threat representations driven by the amygdala, it does not predict action outcome. By contrast, transient dmPFC population activity before the initiation of action reliably predicts avoided from non-avoided trials. Accordingly, optogenetic inhibition of prefrontal activity constrained the selection of adaptive defensive responses in a time-dependent manner. These results reveal that the adaptive selection of defensive responses relies on a dynamic process of information linking threats with defensive actions, unfolding within prefrontal networks.
Collapse
|
57
|
Campese VD. The lesser evil: Pavlovian-instrumental transfer & aversive motivation. Behav Brain Res 2021; 412:113431. [PMID: 34175357 DOI: 10.1016/j.bbr.2021.113431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
While our understanding of appetitive motivation includes accounts of rich cognitive phenomena, such as choice, sensory-specificity and outcome valuation, the same is not true in aversive processes. A highly sophisticated picture has emerged of Pavlovian fear conditioning and extinction, but progress in aversive motivation has been somewhat limited to these fundamental behaviors. Many differences between appetitive and aversive stimuli permit different kinds of analyses; a widely used procedure in appetitive studies that can expand the scope of aversive motivation is Pavlovian-instrumental transfer (PIT). Recently, this motivational transfer effect has been used to examine issues pertaining to sensory-specificity and the nature of defensive control in avoidance learning. Given enduring controversies and unresolved criticisms surrounding avoidance research, PIT offers a valuable, well-controlled procedure with which to similarly probe this form of motivation. Furthermore, while avoidance itself can be criticized as artificial, PIT can be an effective model for how skills learned through avoidance can be practically applied to encounters with threatening or fearful stimuli and stress. Despite sensory-related challenges presented by the limited aversive unconditioned stimuli typically used in research, transfer testing can nevertheless provide valuable information on the psychological nature of this historically controversial phenomenon.
Collapse
|
58
|
Piantadosi PT, Halladay LR, Radke AK, Holmes A. Advances in understanding meso-cortico-limbic-striatal systems mediating risky reward seeking. J Neurochem 2021; 157:1547-1571. [PMID: 33704784 PMCID: PMC8981567 DOI: 10.1111/jnc.15342] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
The risk of an aversive consequence occurring as the result of a reward-seeking action can have a profound effect on subsequent behavior. Such aversive events can be described as punishers, as they decrease the probability that the same action will be produced again in the future and increase the exploration of less risky alternatives. Punishment can involve the omission of an expected rewarding event ("negative" punishment) or the addition of an unpleasant event ("positive" punishment). Although many individuals adaptively navigate situations associated with the risk of negative or positive punishment, those suffering from substance use disorders or behavioral addictions tend to be less able to curtail addictive behaviors despite the aversive consequences associated with them. Here, we discuss the psychological processes underpinning reward seeking despite the risk of negative and positive punishment and consider how behavioral assays in animals have been employed to provide insights into the neural mechanisms underlying addictive disorders. We then review the critical contributions of dopamine signaling to punishment learning and risky reward seeking, and address the roles of interconnected ventral striatal, cortical, and amygdala regions to these processes. We conclude by discussing the ample opportunities for future study to clarify critical gaps in the literature, particularly as related to delineating neural contributions to distinct phases of the risky decision-making process.
Collapse
Affiliation(s)
- Patrick T. Piantadosi
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Lindsay R. Halladay
- Department of Psychology, Santa Clara University, Santa Clara, California 95053, USA
| | - Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
59
|
Oleksiak CR, Ramanathan KR, Miles OW, Perry SJ, Maren S, Moscarello JM. Ventral hippocampus mediates the context-dependence of two-way signaled avoidance in male rats. Neurobiol Learn Mem 2021; 183:107458. [PMID: 34015439 DOI: 10.1016/j.nlm.2021.107458] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/18/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023]
Abstract
Considerable work indicates that instrumental responding is context-dependent, but the neural mechanisms underlying this phenomenon are poorly understood. Given the important role for the hippocampal formation in contextual processing, we hypothesized that reversible inactivation of the hippocampus would impair the context-dependence of active avoidance. To test this hypothesis, we used a two-way signaled active avoidance (SAA) task that requires rats to shuttle across a divided chamber during a tone CS in order to avoid a footshock US. After training, avoidance responding was assessed in an extinction test in both the training context and a novel context in a counterbalanced order. Rats performed significantly more avoidance responses in the training context than in the novel context, demonstrating the context-dependence of shuttle avoidance behavior. To examine the role of the hippocampus in the context-dependence of SAA, we reversibly inactivated either the dorsal (DH) or ventral hippocampus (VH) prior to testing. Inactivation of the VH eliminated the context-dependence of SAA and elevated avoidance responding in the novel context to levels similar to that expressed in the training context. In contrast, DH inactivation had no effect on avoidance in either context, and neither manipulation affected freezing behavior. Therefore, the integrity of the VH, but not DH, is required for the expression of the context-dependence of avoidance behavior.
Collapse
Affiliation(s)
- Cecily R Oleksiak
- Texas A&M University Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4235, United States; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843-4235, United States
| | - Karthik R Ramanathan
- Texas A&M University Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4235, United States; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843-4235, United States
| | - Olivia W Miles
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843-4235, United States
| | - Sarah J Perry
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843-4235, United States
| | - Stephen Maren
- Texas A&M University Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4235, United States; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843-4235, United States.
| | - Justin M Moscarello
- Texas A&M University Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4235, United States; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843-4235, United States.
| |
Collapse
|
60
|
Illescas-Huerta E, Ramirez-Lugo L, Sierra RO, Quillfeldt JA, Sotres-Bayon F. Conflict Test Battery for Studying the Act of Facing Threats in Pursuit of Rewards. Front Neurosci 2021; 15:645769. [PMID: 34017234 PMCID: PMC8129192 DOI: 10.3389/fnins.2021.645769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Survival depends on the ability of animals to avoid threats and approach rewards. Traditionally, these two opposing motivational systems have been studied separately. In nature, however, they regularly compete for the control of behavior. When threat- and reward-eliciting stimuli (learned or unlearned) occur simultaneously, a motivational conflict emerges that challenges individuals to weigh available options and execute a single behavioral response (avoid or approach). Most previous animal models using approach/avoidance conflicts have often focused on the ability to avoid threats by forgoing or delaying the opportunity to obtain rewards. In contrast, behavioral tasks designed to capitalize on the ability to actively choose to execute approach behaviors despite threats are scarce. Thus, we developed a behavioral test battery composed of three conflict tasks to directly study rats confronting threats to obtain rewards guided by innate and conditioned cues. One conflict task involves crossing a potentially electrified grid to obtain food on the opposite end of a straight alley, the second task is based on the step-down threat avoidance paradigm, and the third one is a modified version of the open field test. We used diazepam to pharmacologically validate conflict behaviors in our tasks. We found that, regardless of whether competing stimuli were conditioned or innate, a low diazepam dose decreased risk assessment and facilitated taking action to obtain rewards in the face of threats during conflict, without affecting choice behavior when there was no conflict involved. Using this pharmacologically validated test battery of ethologically designed innate/learned conflict tasks could help understand the fundamental brain mechanisms underlying the ability to confront threats to achieve goals.
Collapse
Affiliation(s)
- Elizabeth Illescas-Huerta
- Cell Physiology Institute-Neuroscience, National Autonomous University of Mexico, Mexico City, Mexico
| | - Leticia Ramirez-Lugo
- Cell Physiology Institute-Neuroscience, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Jorge A Quillfeldt
- Department of Biophysics, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Francisco Sotres-Bayon
- Cell Physiology Institute-Neuroscience, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
61
|
Lateral Habenula Mediates Defensive Responses Only When Threat and Safety Memories Are in Conflict. eNeuro 2021; 8:ENEURO.0482-20.2021. [PMID: 33712440 PMCID: PMC8059882 DOI: 10.1523/eneuro.0482-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 11/23/2022] Open
Abstract
Survival depends on the ability to adaptively react or execute actions based on previous aversive salient experiences. Although lateral habenula (LHb) activity has been broadly implicated in the regulation of aversively motivated responses, it is not clear under which conditions this brain structure is necessary to regulate defensive responses to a threat. To address this issue, we combined pharmacological inactivations with behavioral tasks that involve aversive and appetitive events and evaluated defensive responses in rats. We found that LHb pharmacological inactivation did not affect cued threat conditioning (fear) and extinction (safety) learning and memory, anxiety-like or reward-seeking behaviors. Surprisingly, we found that LHb inactivation abolished reactive defensive responses (tone-elicited freezing) only when threat (conditioning) and safety memories (extinction and latent inhibition) compete during retrieval. Consistently, we found that LHb inactivation impaired active defensive responses [platform-mediated avoidance (PMA)], thereby biasing choice behavior (between avoiding a threat or approaching food) toward reward-seeking responses. Together, our findings suggest that LHb activity mediates defensive responses only when guided by competing threat and safety memories, consequently revealing a previously uncharacterized role for LHb in experience-dependent emotional conflict.
Collapse
|
62
|
Bouton ME, Maren S, McNally GP. BEHAVIORAL AND NEUROBIOLOGICAL MECHANISMS OF PAVLOVIAN AND INSTRUMENTAL EXTINCTION LEARNING. Physiol Rev 2021; 101:611-681. [PMID: 32970967 PMCID: PMC8428921 DOI: 10.1152/physrev.00016.2020] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the behavioral neuroscience of extinction, the phenomenon in which a behavior that has been acquired through Pavlovian or instrumental (operant) learning decreases in strength when the outcome that reinforced it is removed. Behavioral research indicates that neither Pavlovian nor operant extinction depends substantially on erasure of the original learning but instead depends on new inhibitory learning that is primarily expressed in the context in which it is learned, as exemplified by the renewal effect. Although the nature of the inhibition may differ in Pavlovian and operant extinction, in either case the decline in responding may depend on both generalization decrement and the correction of prediction error. At the neural level, Pavlovian extinction requires a tripartite neural circuit involving the amygdala, prefrontal cortex, and hippocampus. Synaptic plasticity in the amygdala is essential for extinction learning, and prefrontal cortical inhibition of amygdala neurons encoding fear memories is involved in extinction retrieval. Hippocampal-prefrontal circuits mediate fear relapse phenomena, including renewal. Instrumental extinction involves distinct ensembles in corticostriatal, striatopallidal, and striatohypothalamic circuits as well as their thalamic returns for inhibitory (extinction) and excitatory (renewal and other relapse phenomena) control over operant responding. The field has made significant progress in recent decades, although a fully integrated biobehavioral understanding still awaits.
Collapse
Affiliation(s)
- Mark E Bouton
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
63
|
A Signaled Locomotor Avoidance Action Is Fully Represented in the Neural Activity of the Midbrain Tegmentum. J Neurosci 2021; 41:4262-4275. [PMID: 33789917 DOI: 10.1523/jneurosci.0027-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Animals, including humans, readily learn to avoid harmful and threatening situations by moving in response to cues that predict the threat (e.g., fire alarm, traffic light). During a negatively reinforced sensory-guided locomotor action, known as signaled active avoidance, animals learn to avoid a harmful unconditioned stimulus (US) by moving away when signaled by a harmless conditioned stimulus (CS) that predicts the threat. CaMKII-expressing neurons in the pedunculopontine tegmentum area (PPT) of the midbrain locomotor region have been shown to play a critical role in the expression of this learned behavior, but the activity of these neurons during learned behavior is unknown. Using calcium imaging fiber photometry in freely behaving mice, we show that PPT neurons sharply activate during presentation of the auditory CS that predicts the threat before onset of avoidance movement. PPT neurons activate further during the succeeding CS-driven avoidance movement, or during the faster US-driven escape movement. PPT neuron activation was weak during slow spontaneous movements but correlated sharply with movement speed and, therefore, with the urgency of the behavior. Moreover, using optogenetics, we found that these neurons must discharge during the signaled avoidance interval for naive mice to effectively learn the active avoidance behavior. As an essential hub for signaled active avoidance, neurons in the midbrain tegmentum process the conditioned cue that predicts the threat and discharge sharply relative to the speed or apparent urgency of the avoidance (learned) and escape (innate) responses.SIGNIFICANCE STATEMENT During signaled active avoidance behavior, subjects move away to avoid a threat when directed by an innocuous sensory stimulus. Using imaging methods in freely behaving mice, we found that the activity of neurons in a part of the midbrain, known as the pedunculopontime tegmentum, increases during the presentation of the innocuous sensory stimulus that predicts the threat and also during the expression of the learned behavior as mice move away to avoid the threat. In addition, inhibiting these neurons abolishes the ability of mice to learn the behavior. Thus, neurons in this part of the midbrain code and are essential for signaled active avoidance behavior.
Collapse
|
64
|
Understanding the dynamic and destiny of memories. Neurosci Biobehav Rev 2021; 125:592-607. [PMID: 33722616 DOI: 10.1016/j.neubiorev.2021.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 01/16/2023]
Abstract
Memory formation enables the retention of life experiences overtime. Based on previously acquired information, organisms can anticipate future events and adjust their behaviors to maximize survival. However, in an ever-changing environment, a memory needs to be malleable to maintain its relevance. In fact, substantial evidence suggests that a consolidated memory can become labile and susceptible to modifications after being reactivated, a process termed reconsolidation. When an extinction process takes place, a memory can also be temporarily inhibited by a second memory that carries information with opposite meaning. In addition, a memory can fade and lose its significance in a process known as forgetting. Thus, following retrieval, new life experiences can be integrated with the original memory trace to maintain its predictive value. In this review, we explore the determining factors that regulate the fate of a memory after its reactivation. We focus on three post-retrieval memory destinies (reconsolidation, extinction, and forgetting) and discuss recent rodent studies investigating the biological functions and neural mechanisms underlying each of these processes.
Collapse
|
65
|
Pittig A, Boschet JM, Glück VM, Schneider K. Elevated costly avoidance in anxiety disorders: Patients show little downregulation of acquired avoidance in face of competing rewards for approach. Depress Anxiety 2021; 38:361-371. [PMID: 33258530 DOI: 10.1002/da.23119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 11/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathological avoidance is a transdiagnostic characteristic of anxiety disorders. Avoidance conditioning re-emerged as a translational model to examine mechanisms and treatment of avoidance. However, its validity for anxiety disorders remains unclear. METHODS This study tested for altered avoidance in patients with anxiety disorders compared to matched controls (n = 40/group) using instrumental conditioning assessing low-cost avoidance (avoiding a single aversive outcome) and costly avoidance (avoidance conflicted with gaining rewards). Autonomic arousal and threat expectancy were assessed as indicators of conditioned fear. Associations with dimensional symptom severity were examined. RESULTS Patients and controls showed frequent low-cost avoidance without group differences. Controls subsequently inhibited avoidance to gain rewards, which was amplified when aversive outcomes discontinued. In contrast, patients failed to reduce avoidance when aversive and positive outcomes competed (elevated costly avoidance) and showed limited reduction when aversive outcomes discontinued (persistent costly avoidance). Interestingly, elevated costly avoidance was not linked to higher conditioned fear in patients. Moreover, individual data revealed a bimodal distribution of costly avoidance: Some patients showed persistent avoidance, others showed little to no avoidance. Persistent versus low avoiders did not differ in other task-related variables, response to gains and losses in absence of threat, sociodemographic data, or clinical characteristics. CONCLUSIONS Findings suggest that anxious psychopathology is associated with a deficit to inhibit avoidance in presence of competing positive outcomes. This offers novel perspectives for research on mechanisms and treatment of anxiety disorders.
Collapse
Affiliation(s)
- Andre Pittig
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany.,Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Juliane M Boschet
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Valentina M Glück
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Kristina Schneider
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany.,Center of Mental Health, University of Würzburg, Würzburg, Germany
| |
Collapse
|
66
|
Bravo-Rivera H, Rubio Arzola P, Caban-Murillo A, Vélez-Avilés AN, Ayala-Rosario SN, Quirk GJ. Characterizing Different Strategies for Resolving Approach-Avoidance Conflict. Front Neurosci 2021; 15:608922. [PMID: 33716644 PMCID: PMC7947632 DOI: 10.3389/fnins.2021.608922] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/25/2021] [Indexed: 12/01/2022] Open
Abstract
The ability of animals to maximize benefits and minimize costs during approach-avoidance conflicts is an important evolutionary tool, but little is known about the emergence of specific strategies for conflict resolution. Accordingly, we developed a simple approach-avoidance conflict task in rats that pits the motivation to press a lever for sucrose against the motivation to step onto a distant platform to avoid a footshock delivered at the end of a 30 s tone (sucrose is available only during the tone). Rats received conflict training for 16 days to give them a chance to optimize their strategy by learning to properly time the expression of both behaviors across the tone. Rats unexpectedly separated into three distinct subgroups: those pressing early in the tone and avoiding later (Timers, 49%); those avoiding throughout the tone (Avoidance-preferring, 32%); and those pressing throughout the tone (Approach-preferring, 19%). The immediate early gene cFos revealed that Timers showed increased activity in the ventral striatum and midline thalamus relative to the other two subgroups, Avoidance-preferring rats showed increased activity in the amygdala, and Approach-preferring rats showed decreased activity in the prefrontal cortex. This pattern is consistent with low fear and high behavioral flexibility in Timers, suggesting the potential of this task to reveal the neural mechanisms of conflict resolution.
Collapse
Affiliation(s)
- Hector Bravo-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Patricia Rubio Arzola
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Albit Caban-Murillo
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Adriana N. Vélez-Avilés
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Shantée N. Ayala-Rosario
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Gregory J. Quirk
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
67
|
Abstract
OCD has lagged behind other psychiatric illnesses in the identification of molecular treatment targets, due in part to a lack of significant findings in genome-wide association studies. However, while progress in this area is being made, OCD's symptoms of obsessions, compulsions, and anxiety can be deconstructed into distinct neural functions that can be dissected in animal models. Studies in rodents and non-human primates have highlighted the importance of cortico-basal ganglia-thalamic circuits in OCD pathophysiology, and emerging studies in human post-mortem brain tissue point to glutamatergic synapse abnormalities as a potential cellular substrate for observed dysfunctional behaviors. In addition, accumulated evidence points to a potential role for neuromodulators including serotonin and dopamine in both OCD pathology and treatment. Here, we review current efforts to use animal models for the identification of molecules, cell types, and circuits relevant to OCD pathophysiology. We start by describing features of OCD that can be modeled in animals, including circuit abnormalities and genetic findings. We then review different strategies that have been used to study OCD using animal model systems, including transgenic models, circuit manipulations, and dissection of OCD-relevant neural constructs. Finally, we discuss how these findings may ultimately help to develop new treatment strategies for OCD and other related disorders.
Collapse
Affiliation(s)
- Brittany L Chamberlain
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA. .,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
68
|
Basal Ganglia Output Has a Permissive Non-Driving Role in a Signaled Locomotor Action Mediated by the Midbrain. J Neurosci 2020; 41:1529-1552. [PMID: 33328292 DOI: 10.1523/jneurosci.1067-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023] Open
Abstract
The basal ganglia are important for movement and reinforcement learning. Using mice of either sex, we found that the main basal ganglia GABAergic output in the midbrain, the substantia nigra pars reticulata (SNr), shows movement-related neural activity during the expression of a negatively reinforced signaled locomotor action known as signaled active avoidance; this action involves mice moving away during a warning signal to avoid a threat. In particular, many SNr neurons deactivate during active avoidance responses. However, whether SNr deactivation has an essential role driving or regulating active avoidance responses is unknown. We found that optogenetic excitation of SNr or striatal GABAergic fibers that project to an area in the pedunculopontine tegmentum (PPT) within the midbrain locomotor region abolishes signaled active avoidance responses, while optogenetic inhibition of SNr cells (mimicking the SNr deactivation observed during an active avoidance behavior) serves as an effective conditioned stimulus signal to drive avoidance responses by disinhibiting PPT neurons. However, preclusion of SNr deactivation, or direct inhibition of SNr fibers in the PPT, does not impair the expression of signaled active avoidance, indicating that SNr output does not drive the expression of a signaled locomotor action mediated by the midbrain. Consistent with a permissive regulatory role, SNr output provides information about the state of the ongoing action to downstream structures that mediate the action.SIGNIFICANCE STATEMENT During signaled active avoidance behavior, subjects move away to avoid a threat when directed by an innocuous sensory stimulus. Excitation of GABAergic cells in the substantia nigra pars reticulata (SNr), the main output of the basal ganglia, blocks signaled active avoidance, while inhibition of SNr cells is an effective stimulus to drive active avoidance. Interestingly, many SNr cells inhibit their firing during active avoidance responses, suggesting that SNr inhibition could be driving avoidance responses by disinhibiting downstream areas. However, interfering with the modulation of SNr cells does not impair the behavior. Thus, SNr may regulate the active avoidance movement in downstream areas that mediate the behavior, but does not drive it.
Collapse
|
69
|
Schuessler BP, Zambetti PR, Fukuoka KM, Kim EJ, Kim JJ. The Risky Closed Economy: A Holistic, Longitudinal Approach to Studying Fear and Anxiety in Rodents. Front Behav Neurosci 2020; 14:594568. [PMID: 33192372 PMCID: PMC7645110 DOI: 10.3389/fnbeh.2020.594568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/26/2020] [Indexed: 01/04/2023] Open
Abstract
Basic research of fear and anxiety in rodents has historically utilized a limited set of behavioral paradigms, for example, Pavlovian (classical) fear conditioning, the elevated plus-maze, or inhibitory (passive) avoidance. These traditional paradigms measure a limited selection of variables over a short duration, providing only a "snapshot" of fear and anxiety-related behavior. Overreliance on these paradigms and such behavioral snapshots ultimately lead to a narrow understanding of these complex motivational states. Here, we elaborate on the closed economy; a seldom-used paradigm that has been modified to comprehensively study fear and anxiety-related behavior and neurocircuitry in rodents. In this modified "Risky Closed Economy (RCE)" paradigm, animals live nearly uninterrupted in behavioral chambers where the need to acquire food and water and avoid threat is integrated into the task. Briefly, animals are free to acquire all of their food and water in a designated foraging zone. An unsignaled, unpredictable threat (footshock) is introduced into the foraging zone after a baseline activity and consumption period to model the risk of predation, which is then removed for a final extinction assessment. This longitudinal design, wherein data from a multitude of variables are collected automatically and continuously for 23 h/day over several weeks to months, affords a more holistic understanding of the effects of fear and anxiety on day-to-day behavior. Also, we discuss its general benefits relevant to other topics in neuroscience research, its limitations, and present data demonstrating for the first time The Risky Closed Economy's viability in mice.
Collapse
Affiliation(s)
- Bryan P. Schuessler
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Peter R. Zambetti
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Kisho M. Fukuoka
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Jeansok J. Kim
- Department of Psychology, University of Washington, Seattle, WA, United States
- Program in Neuroscience, University of Washington, Seattle, WA, United States
| |
Collapse
|
70
|
Campese VD, Kim IT, Kurpas B, Branigan L, Draus C, LeDoux JE. Motivational factors underlying aversive Pavlovian-instrumental transfer. ACTA ACUST UNITED AC 2020; 27:477-482. [PMID: 33060285 PMCID: PMC7571266 DOI: 10.1101/lm.052316.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
Abstract
While interest in active avoidance has recently been resurgent, many concerns relating to the nature of this form of learning remain unresolved. By separating stimulus and response acquisition, aversive Pavlovian-instrumental transfer can be used to measure the effect of avoidance learning on threat processing with more control than typical avoidance procedures. However, the motivational substrates that contribute to the aversive transfer effect have not been thoroughly examined. In three studies using rodents, the impact of a variety of aversive signals on shock-avoidance responding (i.e., two-way shuttling) was evaluated. Fox urine, as well as a tone paired with the delivery of the predator odor were insufficient modulatory stimuli for the avoidance response. Similarly, a signal for the absence of food did not generate appropriate aversive motivation to enhance shuttling. Only conditioned Pavlovian stimuli that had been paired with unconditioned threats were capable of augmenting shock-avoidance responding. This was true whether the signaled outcome was the same (e.g., shock) or different (e.g., klaxon) from the avoidance outcome (i.e., shock). These findings help to characterize the aversive transfer effect and provide a more thorough analysis of its generalization to warning signals for different kinds of threats. This feature of aversive motivation has not been demonstrated using conventional avoidance procedures and could be potentially useful for applying avoidance in treatment settings.
Collapse
Affiliation(s)
- Vinn D Campese
- Department of Psychology, University of Evansville, Evansville, Indiana 47722, USA
| | - Ian T Kim
- Behavioral and Neural Sciences Graduate Program, Rutgers University-Newark, Newark, New Jersey 07102, USA.,Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102, USA
| | - Botagoz Kurpas
- Department of Psychology, Kingsborough College, Brooklyn, New York 11235, USA
| | - Lauren Branigan
- Center for Neural Science, New York University, New York, New York 10010, USA
| | - Cassandra Draus
- Center for Neural Science, New York University, New York, New York 10010, USA
| | - Joseph E LeDoux
- Center for Neural Science, New York University, New York, New York 10010, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| |
Collapse
|
71
|
Diehl MM, Iravedra-Garcia JM, Morán-Sierra J, Rojas-Bowe G, Gonzalez-Diaz FN, Valentín-Valentín VP, Quirk GJ. Divergent projections of the prelimbic cortex bidirectionally regulate active avoidance. eLife 2020; 9:59281. [PMID: 33054975 PMCID: PMC7588229 DOI: 10.7554/elife.59281] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
The prefrontal cortex (PFC) integrates incoming information to guide our actions. When motivation for food-seeking competes with avoidance of danger, the PFC likely plays a role in selecting the optimal choice. In platform-mediated active avoidance, rats avoid a tone-signaled footshock by stepping onto a nearby platform, delaying access to sucrose pellets. This avoidance requires prelimbic (PL) PFC, basolateral amygdala (BLA), and ventral striatum (VS). We previously showed that inhibitory tone responses of PL neurons correlate with avoidability of shock (Diehl et al., 2018). Here, we optogenetically modulated PL terminals in VS and BLA to identify PL outputs regulating avoidance. Photoactivating PL-VS projections reduced avoidance, whereas photoactivating PL-BLA projections increased avoidance. Moreover, photosilencing PL-BLA or BLA-VS projections reduced avoidance, suggesting that VS receives opposing inputs from PL and BLA. Bidirectional modulation of avoidance by PL projections to VS and BLA enables the animal to make appropriate decisions when faced with competing drives.
Collapse
Affiliation(s)
- Maria M Diehl
- Departments of Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jorge M Iravedra-Garcia
- Departments of Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jonathan Morán-Sierra
- Departments of Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Gabriel Rojas-Bowe
- Departments of Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Fabiola N Gonzalez-Diaz
- Departments of Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Viviana P Valentín-Valentín
- Departments of Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Gregory J Quirk
- Departments of Psychiatry and Neurobiology & Anatomy, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
72
|
Manning EE, Bradfield LA, Iordanova MD. Adaptive behaviour under conflict: Deconstructing extinction, reversal, and active avoidance learning. Neurosci Biobehav Rev 2020; 120:526-536. [PMID: 33035525 DOI: 10.1016/j.neubiorev.2020.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022]
Abstract
In complex environments, organisms must respond adaptively to situations despite conflicting information. Under natural (i.e. non-laboratory) circumstances, it is rare that cues or responses are consistently paired with a single outcome. Inconsistent pairings are more common, as are situations where cues and responses are associated with multiple outcomes. Such inconsistency creates conflict, and a response that is adaptive in one scenario may not be adaptive in another. Learning to adjust responses accordingly is important for species to survive and prosper. Here we review the behavioural and brain mechanisms of responding under conflict by focusing on three popular behavioural procedures: extinction, reversal learning, and active avoidance. Extinction involves adapting from reinforcement to non-reinforcement, reversal learning involves swapping the reinforcement of cues or responses, and active avoidance involves performing a response to avoid an aversive outcome, which may conflict with other defensive strategies. We note that each of these phenomena relies on somewhat overlapping neural circuits, suggesting that such circuits may be critical for the general ability to respond appropriately under conflict.
Collapse
Affiliation(s)
- Elizabeth E Manning
- Department of Psychiatry, University of Pittsburgh, Suite 223, 450 Technology Drive, Pittsburgh, PA, 15224, USA; School of Biomedical Sciences and Pharmacy, University of Newcastle, MS306, University Drive, Callaghan, NSW, 2308, Australia.
| | - Laura A Bradfield
- Centre for Neuroscience and Regenerative Medicine, University of Technology Sydney (St. Vincent's Campus), 405 Liverpool St, Darlinghurst, NSW, 2010, Australia; St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital Sydney Limited, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia.
| | - Mihaela D Iordanova
- Department of Psychology/Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, Canada.
| |
Collapse
|
73
|
Single Cocaine Exposure Inhibits GABA Uptake via Dopamine D1-Like Receptors in Adolescent Mice Frontal Cortex. Neurotox Res 2020; 38:824-832. [DOI: 10.1007/s12640-020-00259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
|
74
|
Garcia-Keller C, Smiley C, Monforton C, Melton S, Kalivas PW, Gass J. N-Acetylcysteine treatment during acute stress prevents stress-induced augmentation of addictive drug use and relapse. Addict Biol 2020; 25:e12798. [PMID: 31282090 PMCID: PMC7439767 DOI: 10.1111/adb.12798] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Converging epidemiological studies show that a life-threatening event increases the incidence of posttraumatic stress disorder (PTSD), which carries 30% to 50% comorbidity with substance use disorders (SUDs). Such comorbidity results in greater drug use and poorer treatment outcomes. There is overlap between the enduring synaptic neuroadaptations produced in nucleus accumbens core (NAcore) by acute restraint stress and cocaine self-administration. Because of these coincident neuroadaptations, we hypothesized that an odor paired with acute restraint stress would reinstate drug seeking and chose two mechanistically distinct drugs of abuse to test this hypothesis: alcohol and cocaine. Rats were trained to self-administer either drug beginning 3 weeks after odor pairing with acute stress or sham, and acute restraint stress increased alcohol consumption. Following context extinction training, the stress-paired odor reinstated both alcohol and cocaine seeking, while an unpaired odor had no effect. N-Acetylcysteine (NAC) restores drug and stress-induced reductions in glial glutamate transporter-1 and has proven effective at reducing cue-induced reinstatement of drug seeking. We administered NAC for 5 days prior to reinstatement testing and abolished the capacity of the stress-paired odor to increase alcohol and cocaine seeking. Importantly, daily NAC given during or just following experiencing acute restraint stress also prevented the capacity of stress-paired odors to reinstate alcohol and cocaine seeking and prevented stress-induced deficits in behavioral flexibility. These data support using daily NAC treatment during or immediately after experiencing a strong acute stress to prevent subsequent conditioned stress responding, in particular relapse and cognitive deficits induced by stress-conditioned stimuli.
Collapse
Affiliation(s)
| | - Cora Smiley
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Cara Monforton
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Samantha Melton
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- These two authors are equivalent senior authors of this research
| | - Justin Gass
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- These two authors are equivalent senior authors of this research
| |
Collapse
|
75
|
Bennett MP, Roche B, Dymond S, Baeyens F, Vervliet B, Hermans D. Transitions from avoidance: Reinforcing competing behaviours reduces generalised avoidance in new contexts. Q J Exp Psychol (Hove) 2020; 73:2119-2131. [PMID: 32686989 PMCID: PMC7672781 DOI: 10.1177/1747021820943148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Generalised avoidance behaviours are a common diagnostic feature of anxiety-related disorders and a barrier to affecting changes in anxiety during therapy. However, strategies to mitigate generalised avoidance are under-investigated. Even less attention is given to reducing the category-based generalisation of avoidance. We therefore investigated the potential of an operant-based approach. Specifically, it was examined whether reinforcing competing (non-avoidance) behaviours to threat-predictive cues would interfere with the expression of generalised avoidance. Using a matching-to-sample task, artificial stimulus categories were established using physically dissimilar nonsense shapes. A member of one category (conditioned stimulus; CS1) was then associated with an aversive outcome in an Acquisition context, unless an avoidance response was made. Next, competing behaviours were reinforced in response to the CS1 in new contexts. Finally, we tested for the generalisation of avoidance to another member of the stimulus category (generalisation stimulus; GS1) in both a Novel context and the Acquisition context. The selective generalisation of avoidance to GS1 was observed, but only in the Acquisition context. In the Novel context, the generalisation of avoidance to GSs was significantly reduced. A comparison group (Experiment 2), which did not learn any competing behaviours, avoided GS1 in both contexts. These findings suggest that reinforcing competing behavioural responses to threat-predictive cues can lead to reductions in generalised avoidance. This study is among the first study to demonstrate sustained reductions in generalised avoidance resulting from operant-based protocols, and the clinical and research implications are discussed.
Collapse
Affiliation(s)
- Marc P Bennett
- Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, UK
| | - Bryan Roche
- National University of Ireland, Maynooth, Ireland
| | | | | | | | | |
Collapse
|
76
|
Kyriazi P, Headley DB, Paré D. Different Multidimensional Representations across the Amygdalo-Prefrontal Network during an Approach-Avoidance Task. Neuron 2020; 107:717-730.e5. [PMID: 32562662 PMCID: PMC7442738 DOI: 10.1016/j.neuron.2020.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023]
Abstract
The prelimbic (PL) area and basolateral amygdala (lateral [LA] and basolateral [BL] nuclei) have closely related functions and similar extrinsic connectivity. Reasoning that the computational advantage of such redundancy should be reflected in differences in how these structures represent information, we compared the coding properties of PL and amygdala neurons during a task that requires rats to produce different conditioned defensive or appetitive behaviors. Rather than unambiguous regional differences in the identities of the variables encoded, we found gradients in how the same variables are represented. Whereas PL and BL neurons represented many different parameters through minor variations in firing rates, LA cells coded fewer task features with stronger changes in activity. At the population level, whereas valence could be easily distinguished from amygdala activity, PL neurons could distinguish both valence and trial identity as well as or better than amygdala neurons. Thus, PL has greater representational capacity.
Collapse
Affiliation(s)
- Pinelopi Kyriazi
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA; Behavioral and Neural Sciences Graduate Program, Rutgers State University, Newark, NJ 07102, USA
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA.
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA.
| |
Collapse
|
77
|
Martínez-Rivera FJ, Sánchez-Navarro MJ, Huertas-Pérez CI, Greenberg BD, Rasmussen SA, Quirk GJ. Prolonged avoidance training exacerbates OCD-like behaviors in a rodent model. Transl Psychiatry 2020; 10:212. [PMID: 32620740 PMCID: PMC7334221 DOI: 10.1038/s41398-020-00892-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/12/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is characterized by compulsive behaviors that often resemble avoidance of perceived danger. OCD can be treated with exposure-with-response prevention (ERP) therapy in which patients are exposed to triggers but are encouraged to refrain from compulsions, to extinguish compulsive responses. The compulsions of OCD are strengthened by many repeated exposures to triggers, but little is known about the effects of extended repetition of avoidance behaviors on extinction. Here we assessed the extent to which overtraining of active avoidance affects subsequent extinction-with-response prevention (Ext-RP) as a rodent model of ERP, in which rats are extinguished to triggers, while the avoidance option is prevented. Male rats conditioned for 8d or 20d produced similar avoidance behavior to a tone paired with a shock, however, the 20d group showed a severe impairment of extinction during Ext-RP, as well as heightened anxiety. Furthermore, the majority of overtrained (20d) rats (75%) exhibited persistent avoidance following Ext-RP. In the 8d group, only a minority of rats (37%) exhibited persistent avoidance, and this was associated with elevated activity (c-Fos) in the prelimbic cortex and nucleus accumbens. In the 20d group, the minority of non-persistent rats (25%) showed elevated activity in the insular-orbital cortex and paraventricular thalamus. Lastly, extending the duration of Ext-RP prevented the deleterious effects of overtraining on extinction and avoidance. These rodent findings suggest that repeated expression of compulsion-like behaviors biases individuals toward persistent avoidance and alters avoidance circuits, thereby reducing the effectiveness of current extinction-based therapies.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA.
- Nash family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marcos J Sánchez-Navarro
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| | - Carlos I Huertas-Pérez
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| | - Benjamin D Greenberg
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University and Butler Hospital and the Providence VA Medical Center, Providence, RI, 02906, USA
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University and Butler Hospital and the Providence VA Medical Center, Providence, RI, 02906, USA
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| |
Collapse
|
78
|
Day HLL, Stevenson CW. The neurobiological basis of sex differences in learned fear and its inhibition. Eur J Neurosci 2020; 52:2466-2486. [PMID: 31631413 PMCID: PMC7496972 DOI: 10.1111/ejn.14602] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Learning that certain cues or environments predict threat enhances survival by promoting appropriate fear and the resulting defensive responses. Adapting to changing stimulus contingencies by learning that such cues no longer predict threat, or distinguishing between these threat-related and other innocuous stimuli, also enhances survival by limiting fear responding in an appropriate manner to conserve resources. Importantly, a failure to inhibit fear in response to harmless stimuli is a feature of certain anxiety and trauma-related disorders, which are also associated with dysfunction of the neural circuitry underlying learned fear and its inhibition. Interestingly, these disorders are up to twice as common in women, compared to men. Despite this striking sex difference in disease prevalence, the neurobiological factors involved remain poorly understood. This is due in part to the majority of relevant preclinical studies having neglected to include female subjects alongside males, which has greatly hindered progress in this field. However, more recent studies have begun to redress this imbalance and emerging evidence indicates that there are significant sex differences in the inhibition of learned fear and associated neural circuit function. This paper provides a narrative review on sex differences in learned fear and its inhibition through extinction and discrimination, along with the key gonadal hormone and brain mechanisms involved. Understanding the endocrine and neural basis of sex differences in learned fear inhibition may lead to novel insights on the neurobiological mechanisms underlying the enhanced vulnerability to develop anxiety-related disorders that are observed in women.
Collapse
Affiliation(s)
- Harriet L. L. Day
- School of BiosciencesUniversity of NottinghamLoughboroughUK
- Present address:
RenaSci LtdBioCity, Pennyfoot StreetNottinghamNG1 1GFUK
| | | |
Collapse
|
79
|
Prelimbic and Infralimbic Prefrontal Regulation of Active and Inhibitory Avoidance and Reward-Seeking. J Neurosci 2020; 40:4773-4787. [PMID: 32393535 DOI: 10.1523/jneurosci.0414-20.2020] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 11/21/2022] Open
Abstract
Flexible initiation or suppression of actions to avoid aversive events is crucial for survival. The prelimbic (PL) and infralimbic (IL) regions of the medial prefrontal cortex (mPFC) have been implicated in different aspects of avoidance and reward-seeking, but their respective contribution in instigating versus suppressing actions in aversive contexts remains to be clarified. We examined mPFC involvement in different forms of avoidance in rats well trained on different cued lever-press avoidance tasks. Active/inhibitory avoidance required flexible discrimination between auditory cues signaling foot-shock could be avoided by making or withholding instrumental responses. On a simpler active avoidance task, a single cue signaled when a lever press would avoid shock. PL inactivation disrupted active but not inhibitory avoidance on the discriminative task while having no effect on single-cued avoidance. In comparison, IL inactivation broadly impaired active and inhibitory avoidance. Conversely, on a cued appetitive go/no-go task, both IL and PL inactivation impaired inhibitory but not active reward-seeking, the latter effect being diametrically opposite to that observed on the avoidance task. These findings highlight the complex manner in which different mPFC regions aid in initiating or inhibiting actions in the service of avoiding aversive outcomes or obtaining rewarding ones. IL facilitates active avoidance but suppress inappropriate actions in appetitive and aversive contexts. In contrast, contextual valence plays a critical role in how the PL is recruited in initiating or suppressing actions, which may relate to the degree of cognitive control required to flexibly negotiate response or motivational conflicts and override prepotent behaviors.SIGNIFICANCE STATEMENT Choosing to make or withhold actions in a context-appropriate manner to avoid aversive events or obtain other goals is a critical survival skill. Different medial prefrontal cortex (mPFC) regions have been implicated in certain aspects of avoidance, but their contributions to instigating or suppressing actions remains to be clarified. Here, we show that the dorsal, prelimbic (PL) region of the medial PFC aids active avoidance in situations requiring flexible mitigation of response conflicts, but also aids in withholding responses to obtain rewards. In comparison the ventral infralimbic (IL) cortex plays a broader role in active and inhibitory avoidance as well as suppressing actions to obtain rewards. These findings provide insight into mechanisms underlying normal and maladaptive avoidance behaviors and response inhibition.
Collapse
|
80
|
Geramita MA, Yttri EA, Ahmari SE. The two‐step task, avoidance, and OCD. J Neurosci Res 2020; 98:1007-1019. [DOI: 10.1002/jnr.24594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/02/2020] [Accepted: 01/30/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Matthew A. Geramita
- Department of Psychiatry University of Pittsburgh Pittsburgh PA USA
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA USA
- Center for Neural Basis of Cognition University of Pittsburgh Pittsburgh PA USA
| | - Eric A. Yttri
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA USA
- Center for Neural Basis of Cognition University of Pittsburgh Pittsburgh PA USA
| | - Susanne E. Ahmari
- Department of Psychiatry University of Pittsburgh Pittsburgh PA USA
- Center for Neural Basis of Cognition University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
81
|
Olsson A, Knapska E, Lindström B. The neural and computational systems of social learning. Nat Rev Neurosci 2020; 21:197-212. [PMID: 32221497 DOI: 10.1038/s41583-020-0276-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 01/10/2023]
Abstract
Learning the value of stimuli and actions from others - social learning - adaptively contributes to individual survival and plays a key role in cultural evolution. We review research across species targeting the neural and computational systems of social learning in both the aversive and appetitive domains. Social learning generally follows the same principles as self-experienced value-based learning, including computations of prediction errors and is implemented in brain circuits activated across task domains together with regions processing social information. We integrate neural and computational perspectives of social learning with an understanding of behaviour of varying complexity, from basic threat avoidance to complex social learning strategies and cultural phenomena.
Collapse
Affiliation(s)
- Andreas Olsson
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Solna, Sweden.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Centre of Excellence for Neural Plasticity and Brain Disorders (BRAINCITY), Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Björn Lindström
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Solna, Sweden.,Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
82
|
Bravo-Rivera C, Sotres-Bayon F. From Isolated Emotional Memories to Their Competition During Conflict. Front Behav Neurosci 2020; 14:36. [PMID: 32226364 PMCID: PMC7080848 DOI: 10.3389/fnbeh.2020.00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 12/02/2022] Open
Abstract
Aversive or rewarding experiences are remembered better than those of lesser survival significance. These emotional memories, whether negative or positive, leave traces in the brain which can later be retrieved and strongly influence how we perceive, how we form associations with environmental stimuli and, ultimately, guide our decision-making. In this review aticle, we outline what constitutes an emotional memory by focusing on threat- and reward-related memories and describe how they are formed in the brain during learning and reformed during retrieval. Finally, we discuss how the field is moving from understanding emotional memory brain circuits separately, towards studying how these two opposing brain systems interact to guide choices during conflict. Here, we outline two novel tasks in rodents that model opposing binary choices (approach or avoid) guided by competing emotional memories. The prefrontal cortex (PFC) is a major integration hub of emotional information which is also known to be critical for decision-making. Consequently, brain circuits that involve this brain region may be key for understanding how the retrieval of emotional memories flexibly orchestrates adaptive choice behavior. Because several mental disorders (e.g., drug addiction and depression) are characterized by deficits in decision-making in the face of conflicting emotional memories (maladaptively giving more weight to one memory over the other), the development of choice-based animal models for emotional regulation could give rise to new approaches for the treatment of these disorders in humans.
Collapse
Affiliation(s)
| | - Francisco Sotres-Bayon
- Institute of Cell Physiology-Neuroscience, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
83
|
Çavdaroğlu B, Toy J, Schumacher A, Carvalho G, Patel M, Ito R. Ventral hippocampus inactivation enhances the extinction of active avoidance responses in the presence of safety signals but leaves discrete trial operant active avoidance performance intact. Hippocampus 2020; 30:913-925. [DOI: 10.1002/hipo.23202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Bilgehan Çavdaroğlu
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
| | - Jeffrey Toy
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
| | - Anett Schumacher
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
| | - Gabriel Carvalho
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
| | - Mihilkumar Patel
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
84
|
Ishikawa J, Sakurai Y, Ishikawa A, Mitsushima D. Contribution of the prefrontal cortex and basolateral amygdala to behavioral decision-making under reward/punishment conflict. Psychopharmacology (Berl) 2020; 237:639-654. [PMID: 31912190 DOI: 10.1007/s00213-019-05398-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
RATIONALE Control of reward-seeking behavior under conditions of punishment is an important function for survival. OBJECTIVES AND METHODS We designed a task in which rats could choose to either press a lever and obtain a food pellet accompanied by a footshock or refrain from pressing the lever to avoid footshock, in response to tone presentation. In the task, footshock intensity steadily increased, and the task was terminated when the lever press probability reached < 25% (last intensity). Rats were trained until the last intensity was stable. Subsequently, we investigated the effects of the pharmacological inactivation of the ventromedial prefrontal cortex (vmPFC), lateral orbitofrontal cortex (lOFC), and basolateral amygdala (BLA) on task performance. RESULTS Bilateral inactivation of the vmPFC, lOFC, and BLA did not alter lever press responses at the early stage of the task. The number of lever presses increased following vmPFC and BLA inactivation but decreased following lOFC inactivation during the later stage of the task. The last intensity was elevated by vmPFC or BLA inactivation but lowered by lOFC inactivation. Disconnection of the vmPFC-BLA pathway induced behavioral alterations that were similar to vmPFC or BLA inactivation. Inactivation of any regions did not alter footshock sensitivity and anxiety levels. CONCLUSIONS Our results demonstrate a strong role of the vmPFC and BLA and their interactions in reward restraint to avoid punishment and a prominent role of the lOFC in reward-seeking under reward/punishment conflict situations.
Collapse
Affiliation(s)
- Junko Ishikawa
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Yoshio Sakurai
- Laboratory of Neural Information, Systems Neuroscience, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Akinori Ishikawa
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Dai Mitsushima
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
85
|
Moscarello JM. Prefrontal cortex projections to the nucleus reuniens suppress freezing following two-way signaled avoidance training. ACTA ACUST UNITED AC 2020; 27:119-123. [PMID: 32071258 PMCID: PMC7029723 DOI: 10.1101/lm.050377.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022]
Abstract
Signaled active avoidance (SAA) behavior requires the suppression of defensive reactions, such as freezing, that conflict with the avoidance response. The neural mechanisms of this inhibitory process are not well understood. Here, we demonstrate that ventromedial prefrontal cortex projections to the nucleus reuniens of the thalamus are recruited following SAA training to suppress freezing in rats. This projection may serve as a crucial common pathway for the inhibition of innate defensive reactions that interfere with proactive behavior, thus facilitating adaptive coping.
Collapse
Affiliation(s)
- Justin M Moscarello
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-4235, USA
| |
Collapse
|
86
|
Miller DP, Allen MT, Servatius RJ. Partial Predictability in Avoidance Acquisition and Expression of Wistar-Kyoto and Sprague-Dawley Rats: Implications for Anxiety Vulnerability in Uncertain Situations. Front Psychiatry 2020; 11:848. [PMID: 32973587 PMCID: PMC7466649 DOI: 10.3389/fpsyt.2020.00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/04/2020] [Indexed: 11/20/2022] Open
Abstract
Individual differences or vulnerabilities must exist which bias some individuals toward psychopathology while others remain resilient in the face of trauma. Recent work has studied the effects of uncertainty on individuals expressing behavioral inhibition (BI). The current study extended this work with uncertainty to Wistar Kyoto (WKY) rats which are a behaviorally inhibited inbred strain that models learning vulnerabilities for anxiety disorders and posttraumatic stress disorder (PTSD). WKY rats exhibit superior avoidance performance in a signaled bar press avoidance task in which a tone conditioned stimulus (CS) signals a foot shock unconditional stimulus (US) when compared with non-inhibited Sprague-Dawley (SD) rats. In addition, WKY rats express enhanced eyeblink conditioning. Recent work with behaviorally inhibited humans has indicated that this enhanced eyeblink conditioning is more evident in conditions that insert CS- or US-alone trials into CS-US paired training, resulting in uncertain and suboptimal learning conditions. The current study examined the effects of partial predictability training, in which the CS signaled the US only one-half of the time, on the acquisition and expression of avoidance. Standard training with a fixed 60-s CS which predicted shock on 100% of trials was compared with training in which the CS predicted shock on 50% of trials (partial predictability) using a pseudorandom schedule. As expected, WKY rats acquired avoidance responses faster and to a greater degree than SD rats. Partial predictability of the US essentially reduced SD rats to escape responding. Partial predictability also reduced avoidance in WKY rats; however, adjusting avoidance rates for the number of potential pairings of the CS and US early in training suggested a similar degree of avoidance expression late in the last session of training. Enhanced active avoidance expression, even in uncertain learning conditions, can be interpreted as behaviorally inhibited WKY rats responding to the expectancy of the shock by avoiding, whereas non-inhibited SD rats were responding to the presence of the shock by escaping. Future work should explore how WKY and SD rats as well as behaviorally inhibited humans acquire and extinguish avoidance responses in uncertain learning situations.
Collapse
Affiliation(s)
- Daniel Paul Miller
- Neuroscience Department, Carthage College, Kenosha, WI, United States.,Department of Psychiatry, Stress and Motivated Behavior Institute, Upstate Medical University, Syracuse, NY, United States
| | - Michael Todd Allen
- Department of Psychiatry, Stress and Motivated Behavior Institute, Upstate Medical University, Syracuse, NY, United States.,School of Psychological Sciences, University of Northern Colorado, Greeley, CO, United States
| | - Richard J Servatius
- Department of Psychiatry, Stress and Motivated Behavior Institute, Upstate Medical University, Syracuse, NY, United States.,Department of Veterans Affairs, Syracuse Veterans Affairs Medical Center, Syracuse, NY, United States
| |
Collapse
|
87
|
Sangha S, Diehl MM, Bergstrom HC, Drew MR. Know safety, no fear. Neurosci Biobehav Rev 2020; 108:218-230. [PMID: 31738952 PMCID: PMC6981293 DOI: 10.1016/j.neubiorev.2019.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/27/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023]
Abstract
Every day we are bombarded by stimuli that must be assessed for their potential for harm or benefit. Once a stimulus is learned to predict harm, it can elicit fear responses. Such learning can last a lifetime but is not always beneficial for an organism. For an organism to thrive in its environment, it must know when to engage in defensive, avoidance behaviors and when to engage in non-defensive, approach behaviors. Fear should be suppressed in situations that are not dangerous: when a novel, innocuous stimulus resembles a feared stimulus, when a feared stimulus no longer predicts harm, or when there is an option to avoid harm. A cardinal feature of anxiety disorders is the inability to suppress fear adaptively. In PTSD, for instance, learned fear is expressed inappropriately in safe situations and is resistant to extinction. In this review, we discuss mechanisms of suppressing fear responses during stimulus discrimination, fear extinction, and active avoidance, focusing on the well-studied tripartite circuit consisting of the amygdala, medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Susan Sangha
- Department of Psychological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| | - Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
| | - Hadley C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA.
| | - Michael R Drew
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
88
|
Diehl MM, Bravo-Rivera C, Quirk GJ. The study of active avoidance: A platform for discussion. Neurosci Biobehav Rev 2019; 107:229-237. [PMID: 31509767 PMCID: PMC6936221 DOI: 10.1016/j.neubiorev.2019.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/19/2019] [Accepted: 09/06/2019] [Indexed: 11/27/2022]
Abstract
Traditional active avoidance tasks have advanced the field of aversive learning and memory for decades and are useful for studying simple avoidance responses in isolation; however, these tasks have limited clinical relevance because they do not model several key features of clinical avoidance. In contrast, platform-mediated avoidance (PMA) more closely resembles clinical avoidance because the response i) is associated with an unambiguous safe location, ii) is not associated with an artificial termination of the warning signal, and iii) is associated with a decision-based appetitive cost. Recent findings on the neuronal circuits of PMA have confirmed that amygdala-striatal circuits are essential for avoidance. In PMA, however, the prelimbic cortex facilitates the avoidance response early during the warning signal, perhaps through disinhibition of the striatum. Future studies on avoidance should account for additional factors such as sex differences and social interactions that will advance our understanding of maladaptive avoidance contributing to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria M Diehl
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936, Puerto Rico; Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506 United States
| | | | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936, Puerto Rico.
| |
Collapse
|
89
|
Abstract
Regions of the prefrontal and cingulate cortices play important roles in the regulation of behaviors elicited by threat. Dissecting out their differential involvement will greatly increase our understanding of the varied etiology of symptoms of anxiety. I review evidence for altered activity within the major divisions of the prefrontal cortex, including orbitofrontal, ventrolateral, dorsolateral, and ventromedial sectors, along with the anterior cingulate cortex in patients with clinical anxiety. This review is integrated with a discussion of current knowledge about the causal role of these different prefrontal and cingulate regions in threat-elicited behaviors from experimental studies in rodents and monkeys. I highlight commonalities and inconsistencies between species and discuss the current state of our translational success in relating findings across species. Finally, I identify key issues that, if addressed, may improve that success in the future.
Collapse
Affiliation(s)
- Angela C. Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
90
|
Headley DB, Kanta V, Kyriazi P, Paré D. Embracing Complexity in Defensive Networks. Neuron 2019; 103:189-201. [PMID: 31319049 PMCID: PMC6641575 DOI: 10.1016/j.neuron.2019.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022]
Abstract
The neural basis of defensive behaviors continues to attract much interest, not only because they are important for survival but also because their dysregulation may be at the origin of anxiety disorders. Recently, a dominant approach in the field has been the optogenetic manipulation of specific circuits or cell types within these circuits to dissect their role in different defensive behaviors. While the usefulness of optogenetics is unquestionable, we argue that this method, as currently applied, fosters an atomistic conceptualization of defensive behaviors, which hinders progress in understanding the integrated responses of nervous systems to threats. Instead, we advocate for a holistic approach to the problem, including observational study of natural behaviors and their neuronal correlates at multiple sites, coupled to the use of optogenetics, not to globally turn on or off neurons of interest, but to manipulate specific activity patterns hypothesized to regulate defensive behaviors.
Collapse
Affiliation(s)
- Drew B Headley
- Center for Molecular & Behavioral Neuroscience, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA
| | - Vasiliki Kanta
- Center for Molecular & Behavioral Neuroscience, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA; Behavioral and Neural Sciences Graduate Program, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA
| | - Pinelopi Kyriazi
- Center for Molecular & Behavioral Neuroscience, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA; Behavioral and Neural Sciences Graduate Program, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA
| | - Denis Paré
- Center for Molecular & Behavioral Neuroscience, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA.
| |
Collapse
|
91
|
Thibeault KC, Kutlu MG, Sanders C, Calipari ES. Cell-type and projection-specific dopaminergic encoding of aversive stimuli in addiction. Brain Res 2019; 1713:1-15. [PMID: 30580012 PMCID: PMC6506354 DOI: 10.1016/j.brainres.2018.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 01/02/2023]
Abstract
Drug addiction is a major public health concern across the world for which there are limited treatment options. In order to develop new therapies to correct the behavioral deficits that result from repeated drug use, we need to understand the neural circuit dysfunction that underlies the pathophysiology of the disorder. Because the initial reinforcing effects of drugs are dependent on increases in dopamine in reward-related brain regions such as the mesolimbic dopamine pathway, a large focus of addiction research has centered on the dysregulation of this system and its control of positive reinforcement and motivation. However, in addition to the processing of positive, rewarding stimuli, there are clear deficits in the encoding and valuation of information about potential negative outcomes and how they control decision making and motivation. Further, aversive stimuli can motivate or suppress behavior depending on the context in which they are encountered. We propose a model where rewarding and aversive information guides the execution of specific motivated actions through mesocortical and mesolimbic dopamine acting on D1- and D2- receptor containing neuronal populations. Volitional drug exposure alters the processing of rewarding and aversive stimuli through remodeling of these dopaminergic circuits, causing maladaptive drug seeking, self-administration in the face of negative consequences, and drug craving. Together, this review discusses the dysfunction of the circuits controlling different types of aversive learning as well as how these guide specific discrete behaviors, and provides a conceptual framework for how they should be considered in preclinical addiction models.
Collapse
Affiliation(s)
- Kimberly C Thibeault
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Munir Gunes Kutlu
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christina Sanders
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
92
|
Alexander L, Clarke HF, Roberts AC. A Focus on the Functions of Area 25. Brain Sci 2019; 9:E129. [PMID: 31163643 PMCID: PMC6627335 DOI: 10.3390/brainsci9060129] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
Subcallosal area 25 is one of the least understood regions of the anterior cingulate cortex, but activity in this area is emerging as a crucial correlate of mood and affective disorder symptomatology. The cortical and subcortical connectivity of area 25 suggests it may act as an interface between the bioregulatory and emotional states that are aberrant in disorders such as depression. However, evidence for such a role is limited because of uncertainty over the functional homologue of area 25 in rodents, which hinders cross-species translation. This emphasizes the need for causal manipulations in monkeys in which area 25, and the prefrontal and cingulate regions in which it is embedded, resemble those of humans more than rodents. In this review, we consider physiological and behavioral evidence from non-pathological and pathological studies in humans and from manipulations of area 25 in monkeys and its putative homologue, the infralimbic cortex (IL), in rodents. We highlight the similarities between area 25 function in monkeys and IL function in rodents with respect to the regulation of reward-driven responses, but also the apparent inconsistencies in the regulation of threat responses, not only between the rodent and monkey literatures, but also within the rodent literature. Overall, we provide evidence for a causal role of area 25 in both the enhanced negative affect and decreased positive affect that is characteristic of affective disorders, and the cardiovascular and endocrine perturbations that accompany these mood changes. We end with a brief consideration of how future studies should be tailored to best translate these findings into the clinic.
Collapse
Affiliation(s)
- Laith Alexander
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Hannah F Clarke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| |
Collapse
|
93
|
Onodera Y, Ichikawa R, Terao K, Tanimoto H, Yamagata N. Courtship behavior induced by appetitive olfactory memory. J Neurogenet 2019; 33:143-151. [PMID: 30955396 DOI: 10.1080/01677063.2019.1593978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reinforcement signals such as food reward and noxious punishment can change diverse behaviors. This holds true in fruit flies, Drosophila melanogaster, which can be conditioned by an odor and sugar reward or electric shock punishment. Despite a wide variety of behavior modulated by learning, conditioned responses have been traditionally measured by altered odor preference in a choice, and other memory-guided behaviors have been only scarcely investigated. Here, we analyzed detailed conditioned odor responses of flies after sugar associative learning by employing a video recording and semi-automated processing pipeline. Trajectory analyses revealed that multiple behavioral components were altered along with conditioned approach to the rewarded odor. Notably, we found that lateral wing extension, a hallmark of courtship behavior of D. melanogaster, was robustly increased specifically in the presence of the rewarded odor. Strikingly, genetic disruption of the mushroom body output did not impair conditioned courtship increase, while markedly weakening conditioned odor approach. Our results highlight the complexity of conditioned responses and their distinct regulatory mechanisms that may underlie coordinated yet complex memory-guided behaviors in flies.
Collapse
Affiliation(s)
- Yuya Onodera
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Rino Ichikawa
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Kanta Terao
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Hiromu Tanimoto
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Nobuhiro Yamagata
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| |
Collapse
|
94
|
|
95
|
Allen MT, Myers CE, Beck KD, Pang KCH, Servatius RJ. Inhibited Personality Temperaments Translated Through Enhanced Avoidance and Associative Learning Increase Vulnerability for PTSD. Front Psychol 2019; 10:496. [PMID: 30967806 PMCID: PMC6440249 DOI: 10.3389/fpsyg.2019.00496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/20/2019] [Indexed: 12/22/2022] Open
Abstract
Although many individuals who experience a trauma go on to develop post-traumatic stress disorder (PTSD), the rate of PTSD following trauma is only about 15-24%. There must be some pre-existing conditions that impart increased vulnerability to some individuals and not others. Diathesis models of PTSD theorize that pre-existing vulnerabilities interact with traumatic experiences to produce psychopathology. Recent work has indicated that personality factors such as behavioral inhibition (BI), harm avoidance (HA), and distressed (Type D) personality are vulnerability factors for the development of PTSD and anxiety disorders. These personality temperaments produce enhanced acquisition or maintenance of associations, especially avoidance, which is a criterion symptom of PTSD. In this review, we highlight the evidence for a relationship between these personality types and enhanced avoidance and associative learning, which may increase risk for the development of PTSD. First, we provide the evidence confirming a relationship among BI, HA, distressed (Type D) personality, and PTSD. Second, we present recent findings that BI is associated with enhanced avoidance learning in both humans and animal models. Third, we will review evidence that BI is also associated with enhanced eyeblink conditioning in both humans and animal models. Overall, data from both humans and animals suggest that these personality traits promote enhanced avoidance and associative learning, as well as slowing of extinction in some training protocols, which all support the learning diathesis model. These findings of enhanced learning in vulnerable individuals can be used to develop objective behavioral measures to pre-identify individuals who are more at risk for development of PTSD following traumatic events, allowing for early (possibly preventative) intervention, as well as suggesting possible therapies for PTSD targeted on remediating avoidance or associative learning. Future work should explore the neural substrates of enhanced avoidance and associative learning for behaviorally inhibited individuals in both the animal model and human participants.
Collapse
Affiliation(s)
- Michael Todd Allen
- School of Psychological Sciences, University of Northern Colorado, Greeley, CO, United States
- Rutgers Biomedical Health Sciences, Stress and Motivated Behavior Institute, Rutgers University, Newark, NJ, United States
- Central New York Research Corporation, Syracuse, NY, United States
| | - Catherine E. Myers
- Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, United States
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Kevin D. Beck
- Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, United States
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Kevin C. H. Pang
- Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, United States
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Richard J. Servatius
- Rutgers Biomedical Health Sciences, Stress and Motivated Behavior Institute, Rutgers University, Newark, NJ, United States
- Central New York Research Corporation, Syracuse, NY, United States
- Department of Veterans Affairs, Syracuse Veterans Affairs Medical Center, Syracuse, NY, United States
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
96
|
Riaz S, Puveendrakumaran P, Khan D, Yoon S, Hamel L, Ito R. Prelimbic and infralimbic cortical inactivations attenuate contextually driven discriminative responding for reward. Sci Rep 2019; 9:3982. [PMID: 30850668 PMCID: PMC6408592 DOI: 10.1038/s41598-019-40532-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
The infralimbic (IL) and prelimbic (PL) cortices of the medial prefrontal cortex (mPFC) have been shown to differentially control context-dependent behavior, with the PL implicated in the expression of contextually conditioned fear and drug-seeking, and the IL in the suppression of these behaviors. However, the roles of these subregions in contextually driven natural reward-seeking remain relatively underexplored. The present study further examined the functional dichotomy within the mPFC in the contextual control over cued reward-seeking, using a contextual biconditional discrimination (CBD) task. Rats were first trained to emit a nose poke response to the presentation of an auditory stimulus (e.g., X) for the delivery of sucrose reward, and to withhold a nose poke response to the presentation of another auditory stimulus (e.g., Y) in a context-specific manner (e.g. Context A: X+, Y−; Context B: X−, Y+). Following acquisition, rats received bilateral microinjections of GABA receptor agonists (muscimol and baclofen), or saline into the IL or PL, prior to a CBD training session and a probe test (under extinction conditions). Both IL and PL inactivation resulted in robust impairment in CBD performance, indicating that both subregions are involved in the processing of appetitively motivated contextual memories in reward-seeking.
Collapse
Affiliation(s)
- Sadia Riaz
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | | | - Dinat Khan
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | - Sharon Yoon
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | - Laurie Hamel
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada. .,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
97
|
Shumake J, Jones C, Auchter A, Monfils MH. Data-driven criteria to assess fear remission and phenotypic variability of extinction in rats. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0035. [PMID: 29352033 DOI: 10.1098/rstb.2017.0035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
Fear conditioning is widely employed to examine the mechanisms that underlie dysregulations of the fear system. Various manipulations are often used following fear acquisition to attenuate fear memories. In rodent studies, freezing is often the main output measure to quantify 'fear'. Here, we developed data-driven criteria for defining a standard benchmark that indicates remission from conditioned fear and for identifying subgroups with differential treatment responses. These analyses will enable a better understanding of individual differences in treatment responding.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Jason Shumake
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA.,Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Carolyn Jones
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Allison Auchter
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Marie-Hélène Monfils
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA .,Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
98
|
Martínez-Rivera FJ, Bravo-Rivera C, Velázquez-Díaz CD, Montesinos-Cartagena M, Quirk GJ. Prefrontal circuits signaling active avoidance retrieval and extinction. Psychopharmacology (Berl) 2019; 236:399-406. [PMID: 30259076 PMCID: PMC6461357 DOI: 10.1007/s00213-018-5012-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Neurons in PL and IL project densely to two areas implicated in active avoidance: the basolateral amygdala (BLA) and the ventral striatum (VS). We therefore combined c-Fos immunohistochemistry with retrograde tracers to characterize signaling in platform-mediated active avoidance. METHODS Male rats were infused with retrograde tracers (CTB, FB) into basolateral amygdala and ventral striatum and conditioned to avoid tone-signaled footshocks by stepping onto a nearby platform. In a subsequent test session, rats received either 2 unreinforced tones (avoidance retrieval) or 15 unreinforced tones (avoidance extinction) followed by analysis of c-Fos combined with fluorescent imaging of retrograde tracers. RESULTS Retrieval of avoidance did not activate IL neurons, but did activate PL neurons projecting to BLA, and to a lesser extent VS. Extinction of avoidance activated IL neurons projecting to both BLA and VS, as well as PL neurons projecting to VS. CONCLUSIONS Our observation that avoidance retrieval is signaled by PL projections to BLA suggests that PL may modulate VS indirectly via BLA, and agrees with other findings implicating BLA in active avoidance. Less expected was the signaling of extinction via PL inputs to VS, which may converge with IL inputs to VS to inhibit expression of avoidance.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico.
| | - Christian Bravo-Rivera
- Neuroscience Division, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Coraly D Velázquez-Díaz
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - Marlian Montesinos-Cartagena
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| |
Collapse
|
99
|
Rosas-Vidal LE, Lozada-Miranda V, Cantres-Rosario Y, Vega-Medina A, Melendez L, Quirk GJ. Alteration of BDNF in the medial prefrontal cortex and the ventral hippocampus impairs extinction of avoidance. Neuropsychopharmacology 2018; 43:2636-2644. [PMID: 30127343 PMCID: PMC6224579 DOI: 10.1038/s41386-018-0176-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 01/09/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is critical for establishing activity-related neural plasticity. There is increasing interest in the mechanisms of active avoidance and its extinction, but little is known about the role of BDNF in these processes. Using the platform-mediated avoidance task combined with local infusions of an antibody against BDNF, we show that blocking BDNF in either prelimbic (PL) or infralimbic (IL) medial prefrontal cortex during extinction training impairs subsequent recall of extinction of avoidance, differing from extinction of conditioned freezing. By combining retrograde tracers with BDNF immunohistochemistry, we show that extinction of avoidance increases BDNF expression in ventral hippocampal (vHPC) neurons, but not amygdala neurons, projecting to PL and IL. Using the CRISPR/Cas9 system, we further show that reducing BDNF production in vHPC neurons impairs recall of avoidance extinction. Thus, the vHPC may mediate behavioral flexibility in avoidance by driving extinction-related plasticity via BDNFergic projections to both PL and IL. These findings add to the growing body of knowledge implicating the hippocampal-prefrontal pathway in anxiety-related disorders and extinction-based therapies.
Collapse
Affiliation(s)
- Luis E Rosas-Vidal
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Valeria Lozada-Miranda
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Yisel Cantres-Rosario
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Alexis Vega-Medina
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Loyda Melendez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA.
| |
Collapse
|
100
|
Gee DG, Bath KG, Johnson CM, Meyer HC, Murty VP, van den Bos W, Hartley CA. Neurocognitive Development of Motivated Behavior: Dynamic Changes across Childhood and Adolescence. J Neurosci 2018; 38:9433-9445. [PMID: 30381435 PMCID: PMC6209847 DOI: 10.1523/jneurosci.1674-18.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The ability to anticipate and respond appropriately to the challenges and opportunities present in our environments is critical for adaptive behavior. Recent methodological innovations have led to substantial advances in our understanding of the neurocircuitry supporting such motivated behavior in adulthood. However, the neural circuits and cognitive processes that enable threat- and reward-motivated behavior undergo substantive changes over the course of development, and these changes are less well understood. In this article, we highlight recent research in human and animal models demonstrating how developmental changes in prefrontal-subcortical neural circuits give rise to corresponding changes in the processing of threats and rewards from infancy to adulthood. We discuss how these developmental trajectories are altered by experiential factors, such as early-life stress, and highlight the relevance of this research for understanding the developmental onset and treatment of psychiatric disorders characterized by dysregulation of motivated behavior.
Collapse
Affiliation(s)
- Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT 06520,
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Carolyn M Johnson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Heidi C Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA 19122
| | - Wouter van den Bos
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands, and
| | | |
Collapse
|