51
|
Doherty JJ, Alagarsamy S, Bough KJ, Conn PJ, Dingledine R, Mott DD. Metabotropic glutamate receptors modulate feedback inhibition in a developmentally regulated manner in rat dentate gyrus. J Physiol 2004; 561:395-401. [PMID: 15513941 PMCID: PMC1665349 DOI: 10.1113/jphysiol.2004.074930] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated group II metabotropic glutamate receptor (mGluR) modulation of glutamatergic input onto hilar-border interneurones and its regulation of feedback inhibition in the dentate gyrus. Selective activation of group II mGluRs with (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) depressed mossy fibre (MF)-evoked excitatory drive to these interneurones with significantly greater depression in juvenile than adult rats. During 20 Hz MF stimulus trains, EPSCs became depressed. Depression during the early, but not later part of the train was significantly greater in juvenile than adult rats and was blocked by the mGluR antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495). In dentate granule cells from juvenile rats polysynaptic feedback IPSCs, but not monosynaptic IPSCs, were strongly suppressed by DCG-IV. DCG-IV also suppressed feedback inhibition of perforant path-evoked population spikes. In contrast, in adult animals DCG-IV did not significantly depress feedback inhibition. During 20 Hz stimulus trains in juvenile animals the summation of polysynaptic, but not monosynaptic IPSCs was suppressed by synaptically activated group II mGluRs. Blockade of these mGluRs with LY341495 significantly increased the area and duration of the summated IPSC, causing greater feedback inhibition of granule cell firing. In contrast, in adult animals LY341495 did not alter feedback inhibition following the stimulus train. These findings indicate that group II mGluRs modulate excitatory drive to interneurones in a developmentally regulated manner and thereby modulate feedback inhibition in the dentate gyrus.
Collapse
Affiliation(s)
- James J Doherty
- Department of Pharmacology, Emory University Medical School, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
52
|
Santhakumar V, Aradi I, Soltesz I. Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 2004; 93:437-53. [PMID: 15342722 DOI: 10.1152/jn.00777.2004] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mossy cell loss and mossy fiber sprouting are two characteristic consequences of repeated seizures and head trauma. However, their precise contributions to the hyperexcitable state are not well understood. Because it is difficult, and frequently impossible, to independently examine using experimental techniques whether it is the loss of mossy cells or the sprouting of mossy fibers that leads to dentate hyperexcitability, we built a biophysically realistic and anatomically representative computational model of the dentate gyrus to examine this question. The 527-cell model, containing granule, mossy, basket, and hilar cells with axonal projections to the perforant-path termination zone, showed that even weak mossy fiber sprouting (10-15% of the strong sprouting observed in the pilocarpine model of epilepsy) resulted in the spread of seizure-like activity to the adjacent model hippocampal laminae after focal stimulation of the perforant path. The simulations also indicated that the spatially restricted, lamellar distribution of the sprouted mossy fiber contacts reported in in vivo studies was an important factor in sustaining seizure-like activity in the network. In contrast to the robust hyperexcitability-inducing effects of mossy fiber sprouting, removal of mossy cells resulted in decreased granule cell responses to perforant-path activation in agreement with recent experimental data. These results indicate the crucial role of mossy fiber sprouting even in situations where there is only relatively weak mossy fiber sprouting as is the case after moderate concussive experimental head injury.
Collapse
|
53
|
Lee SH, Sohn JW, Ahn SC, Park WS, Ho WK. Li+ enhances GABAergic inputs to granule cells in the rat hippocampal dentate gyrus. Neuropharmacology 2004; 46:638-46. [PMID: 14996541 DOI: 10.1016/j.neuropharm.2003.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 10/28/2003] [Accepted: 11/12/2003] [Indexed: 11/30/2022]
Abstract
Defects in GABAergic interneurons are thought to be involved in the pathophysiology of bipolar disorder, and Li+ has been used as a primary therapeutic agent in the treatment. We used the patch clamp technique to investigate whether Li+ affects on spontaneous GABAergic synaptic inputs to granule cells (GCs) in hippocampal dentate gyrus. Extracellularly applied Li+ (25 mM) markedly increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs), an effect completely blocked by picrotoxin or bicuculline. Li+ increased sIPSCs frequency in the presence of tetrodotoxin (TTX), but to a lesser extent than its absence. Li+ caused no change in the cumulative amplitude distribution of miniature IPSCs, indicating that a presynaptic mechanism is involved. When TTX was added in the presence of Li+, large-amplitude sIPSCs (>30 pA) were abolished specifically with no effect on small-amplitude sIPSCs (<20 pA). Intracellular Li+ (6 mM) applied via the patch pipette depolarized the resting membrane potential in fast-spiking interneurons, resulting in an increase in spontaneous action potential (AP) firing. This change, however, was not observed in GCs. These results suggest that Li(+)-induced spontaneous AP firing in GABAergic interneurons contributes to the increase in GABAergic synaptic inputs to GCs.
Collapse
Affiliation(s)
- Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Ku, Seoul 110-799, South Korea
| | | | | | | | | |
Collapse
|
54
|
Ganter P, Szücs P, Paulsen O, Somogyi P. Properties of horizontal axo-axonic cells in stratum oriens of the hippocampal CA1 area of rats in vitro. Hippocampus 2004; 14:232-43. [PMID: 15098728 DOI: 10.1002/hipo.10170] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Local-circuit gamma-aminobutyric acid (GABA)ergic interneurons constitute a diverse population of cells, which remain poorly defined into functionally distinct subclasses. Traditionally, dendritic and axonal arbors have been used to describe cell classes. In the present report, we characterize a set of hippocampal interneurons, horizontal axo-axonic cells, located in stratum oriens. They displayed the pattern of axonal arborization characteristic of axo-axonic cells with radially aligned rows of boutons making synapses exclusively on axon initial segments of pyramidal cells, as shown by electron microscopy. However, in contrast to previously described axo-axonic cells, which have radial dendrites spanning all layers, the dendrites of the horizontal axo-axonic cells were restricted to stratum oriens and ran parallel with the layers for several hundred micrometers. Single action potentials elicited by depolarizing current steps in these cells were often followed by a fast- and medium-duration afterhyperpolarization, distinguishing them from fast-spiking interneurons. In two out of four cells, trains of action potentials showed prominent early spike frequency adaptation and a characteristic "accommodative hump." Excitatory postsynaptic potentials (EPSPs) could be evoked by stimuli delivered to stratum oriens. Paired recordings unequivocally confirmed direct synaptic inputs from CA1 pyramidal cells. The kinetics of the EPSPs were fast (rise time 1.7 +/- 0.6 ms, mean +/- SD, n = 3; decay time constant 19.3 +/- 2.4 ms). They showed paired-pulse depression with inter-stimulus intervals of 10-50 ms. One pair showed a reciprocal connection establishing a direct feedback loop. The axo-axonic cell-evoked inhibitory postsynaptic potentials (IPSPs) were reliable (failure rate approximately 10%). Our data show that the laminar distribution of the dendrites of axo-axonic cells can vary, suggesting distinct synaptic inputs. However, this remains to be shown directly, and we cannot exclude the possibility that all axo-axonic cells may gather similar synaptic input, leaving them as one distinct class of interneuron.
Collapse
Affiliation(s)
- Paul Ganter
- MRC Anatomical Neuropharmacology Unit, Oxford University, United Kingdom.
| | | | | | | |
Collapse
|
55
|
Scharfman HE, Sollas AL, Berger RE, Goodman JH. Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol 2004; 90:2536-47. [PMID: 14534276 DOI: 10.1152/jn.00251.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mossy fiber sprouting is a form of synaptic reorganization in the dentate gyrus that occurs in human temporal lobe epilepsy and animal models of epilepsy. The axons of dentate gyrus granule cells, called mossy fibers, develop collaterals that grow into an abnormal location, the inner third of the dentate gyrus molecular layer. Electron microscopy has shown that sprouted fibers from synapses on both spines and dendritic shafts in the inner molecular layer, which are likely to represent the dendrites of granule cells and inhibitory neurons. One of the controversies about this phenomenon is whether mossy fiber sprouting contributes to seizures by forming novel recurrent excitatory circuits among granule cells. To date, there is a great deal of indirect evidence that suggests this is the case, but there are also counterarguments. The purpose of this study was to determine whether functional monosynaptic connections exist between granule cells after mossy fiber sprouting. Using simultaneous recordings from granule cells, we obtained direct evidence that granule cells in epileptic rats have monosynaptic excitatory connections with other granule cells. Such connections were not obtained when age-matched, saline control rats were examined. The results suggest that indeed mossy fiber sprouting provides a substrate for monosynaptic recurrent excitation among granule cells in the dentate gyrus. Interestingly, the characteristics of the excitatory connections that were found indicate that the pathway is only weakly excitatory. These characteristics may contribute to the empirical observation that the sprouted dentate gyrus does not normally generate epileptiform discharges.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Haverstraw 10993-1195, USA.
| | | | | | | |
Collapse
|
56
|
Jonas P, Bischofberger J, Fricker D, Miles R. Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci 2004; 27:30-40. [PMID: 14698608 DOI: 10.1016/j.tins.2003.10.010] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Peter Jonas
- Physiologisches Institut der Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
57
|
Maccaferri G, Lacaille JC. Interneuron Diversity series: Hippocampal interneuron classifications--making things as simple as possible, not simpler. Trends Neurosci 2003; 26:564-71. [PMID: 14522150 DOI: 10.1016/j.tins.2003.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nervous system is made up of many specific types of neuron intricately intertwined to form complex networks. Identifying and defining the characteristic features of the many different neuronal types is essential for achieving a cellular understanding of complex activity from perception to cognition. So far, cortical GABAergic interneurons have represented the epitome of cellular diversity in the CNS. Despite the desperate need for effective classification criteria allowing a common language among neuroscientists, interneurons still evoke memories of Babel. Several approaches are now available to overcome the challenges and problems associated with the various classification systems used so far.
Collapse
Affiliation(s)
- Gianmaria Maccaferri
- Feinberg School of Medicine, Department of Physiology, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
58
|
Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, von der Behrens W, Kempermann G. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 2003; 24:603-13. [PMID: 14664811 DOI: 10.1016/s1044-7431(03)00207-0] [Citation(s) in RCA: 398] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We here show that the early postmitotic stage of granule cell development during adult hippocampal neurogenesis is characterized by the transient expression of calretinin (CR). CR expression was detected as early as 1 day after labeling dividing cells with bromodeoxyuridine (BrdU), but not before. Staining for Ki-67 confirmed that no CR-expressing cells were in cell cycle. Early after BrdU, CR colocalized with immature neuronal marker doublecortin; and later with persisting neuronal marker NeuN. BrdU/CR-labeled cells were negative for GABA and GABAA1 receptor, but early on expressed granule cell marker Prox-1. After 6 weeks, no new neurons expressed CR, but all contained calbindin. Stimuli inducing adult neurogenesis have limited (enriched environment), strong (voluntary wheel running), and very strong effects on cell proliferation (kainate-induced seizures). In these models the induction of cell proliferation was paralleled by an increase of CR-positive cells, indicating the stimulus-dependent progression from cell division to a postmitotic stage.
Collapse
Affiliation(s)
- Moritz D Brandt
- Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 2003; 23:9357-66. [PMID: 14561863 PMCID: PMC6740569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Neurogenesis in the dentate gyrus of the adult mammalian hippocampus has been proven in a series of studies, but the differentiation process toward newborn neurons is still unclear. In addition to the immunohistochemical study, electrophysiological membrane recordings of precursor cells could provide an alternative view to address this differentiation process. In this study, we performed green fluorescent protein (GFP)-guided selective recordings of nestin-positive progenitor cells in adult dentate gyrus by means of nestin-promoter GFP transgenic mice, because nestin is a typical marker for precursor cells in the adult dentate gyrus. The patch-clamp recordings clearly demonstrated the presence of two distinct subpopulations (type I and type II) of nestin-positive cells. Type I cells had a lower input resistance value of 77.1 M(Omega) (geometric mean), and their radial processes were stained with anti-glial fibrillary acidic protein antibody. On the other hand, type II nestin-positive cells had a higher input resistance value of 2110 MOmega and expressed voltage-dependent sodium current. In most cases, type II cells were stained with anti-polysialylated neural cell adhesion molecule. Taken together with a bromodeoxyuridine pulse-chase analysis, our results may reflect a rapid and dynamic cell conversion of nestin-positive progenitor, from type I to type II, at an early stage of adult neurogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Satoshi Fukuda
- Department of Integrated Biosciences, University of Tokyo, Kashiwa 277-8562, Japan
| | | | | | | | | | | |
Collapse
|
60
|
Arancibia S, Payet O, Givalois L, Tapia-Arancibia L. Acute stress and dexamethasone rapidly increase hippocampal somatostatin synthesis and release from the dentate gyrus hilus. Hippocampus 2002; 11:469-77. [PMID: 11530851 DOI: 10.1002/hipo.1061] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Somatostatin is a neuropeptide whose facilitatory action in the generation of long-term potentiation (LTP) in the hippocampal dentate gyrus has been associated with memory processes. Since stress and memory seem to share some neural pathways, we studied somatostatin release from dentate gyrus hilar cells of the hippocampus in unanesthetized free-moving rats subjected to stress or dexamethasone treatments. In parallel, the number of dentate gyrus hilar cells expressing somatostatin mRNA was quantified by nonradioactive in situ hybridization in these two experimental conditions. Rats were stereotaxically implanted with a push-pull cannula in the dentate gyrus hilar region. Animals were perfused 1 week later in basal or stress (30 min immobilization stress) conditions. The other group was intraperitoneally injected with the synthetic glucocorticoid dexamethasone (3 mg/kg b.w.). Samples were collected every 15 min for somatostatin radioimmunoassay. In parallel, in other groups of animals undergoing the same treatments, brains were removed for in situ hybridization studies with an oligonucleotide labeled with digoxigenin that recognizes somatostatin-14. The results showed that stress induced a significant increase in somatostatin release from dentate gyrus hilar cells 30-45 min after immobilization stress application. Dexamethasone-injected animals exhibited a similar response 45 min after drug administration. In situ hybridization analysis revealed that the two treatments significantly increased the number of cells expressing somatostatin mRNA in the hilar region. In conclusion, somatostatin interneurons of the hippocampal hilar region appear to be a novel stress stimulus target. Their rapid reactivity, expressed as modifications of both somatostatin release and number of cells expressing somatostatin mRNA, provides an interesting model of neuronal plasticity.
Collapse
Affiliation(s)
- S Arancibia
- Laboratoire de Plasticité Cérébrale, UMR 5102 CNRS, Université de Montpellier 2, France.
| | | | | | | |
Collapse
|
61
|
McQuiston AR, Katz LC. Electrophysiology of interneurons in the glomerular layer of the rat olfactory bulb. J Neurophysiol 2001; 86:1899-907. [PMID: 11600649 DOI: 10.1152/jn.2001.86.4.1899] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the mammalian olfactory bulb, glomeruli are surrounded by a heterogeneous population of interneurons called juxtaglomerular neurons. As they receive direct input from olfactory receptor neurons and connect with mitral cells, they are involved in the initial stages of olfactory information processing, but little is known about their detailed physiological properties. Using whole cell patch-clamp techniques, we recorded from juxtaglomerular neurons in rat olfactory bulb slices. Based on their response to depolarizing pulses, juxtaglomerular neurons could be divided into two physiological classes: bursting and standard firing. When depolarized, the standard firing neurons exhibited a range of responses: accommodating, nonaccommodating, irregular firing, and delayed to firing patterns of action potentials. Although the firing pattern was not rigorously predictive of a particular neuronal morphology, most short axon cells fired accommodating trains of action potentials, while most delayed to firing cells were external tufted cells. In contrast to the standard firing neurons, bursting neurons produced a calcium-channel-dependent low-threshold spike when depolarized either by current injection or by spontaneous or evoked postsynaptic potentials. Bursting neurons also could oscillate spontaneously. Most bursting cells were either periglomerular cells or external tufted cells. Based on their mode of firing and placement in the bulb circuit, these bursting cells are well situated to drive synchronous oscillations in the olfactory bulb.
Collapse
Affiliation(s)
- A R McQuiston
- Howard Hughes Medical Institute and Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | | |
Collapse
|
62
|
Berretta S, Munno DW, Benes FM. Amygdalar activation alters the hippocampal GABA system: "partial" modelling for postmortem changes in schizophrenia. J Comp Neurol 2001; 431:129-38. [PMID: 11169995 DOI: 10.1002/1096-9861(20010305)431:2<129::aid-cne1060>3.0.co;2-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abnormalities in amygdala and hippocampus have been shown to coexist in schizophrenia (SZ). In the hippocampus, compelling evidence suggests that a disruption of GABA neurotransmission is present mainly in sectors CA4, CA3, and CA2. The amygdala sends important inputs to the hippocampus and is also believed to have a defective GABA system in schizophrenia. To explore the possibility that changes in the hippocampal GABAergic system could be related to an increased inflow of activity originating in the amygdala, a "partial" animal model has been developed. In awake, freely moving, rats a GABA(A) receptor antagonist was infused locally into the basolateral nuclear complex of the amygdala (BLn). Within 2 hours, a decreased density of both the 65- and 67-kDa isoforms of glutamate decarboxylase (GAD(65) and GAD(67)) -immunoreactive (IR) terminals was detected on neuron somata in sectors CA3 and CA2, but not in CA1, CA3, or dentate gyrus. An increase of GAD(67)-IR somata was also found in the dentate gyrus and CA4. In anterograde tracer studies, amygdalo-hippocampal projection fibers were exclusively found in CA3 and CA2, but not CA1. Taken together, these results indicate that activation of amygdalo-hippocampal afferents is associated with the induction of significant changes in the GABA system of the hippocampus, with a subregional distribution that is remarkably similar to that found in SZ. Under pathologic conditions, an excessive discharge of excitatory activity emanating from the amygdala could be capable of altering inhibitory modulation along the trisynaptic pathway. This mechanism may potentially contribute to disturbances of GABAergic function in the major psychoses. Such "partial" rodent modelling provides an important strategy for deciphering the effect of altered cortico-limbic circuits in SZ.
Collapse
Affiliation(s)
- S Berretta
- Laboratory for Structural Neuroscience, Mailman Research Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | | | | |
Collapse
|
63
|
Acsády L, Katona I, Martínez-Guijarro FJ, Buzsáki G, Freund TF. Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. J Neurosci 2000; 20:6907-19. [PMID: 10995835 PMCID: PMC6772844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2000] [Revised: 06/19/2000] [Accepted: 06/29/2000] [Indexed: 02/17/2023] Open
Abstract
Perisomatic inhibitory innervation of all neuron types profoundly affects their firing characteristics and vulnerability. In this study we examined the postsynaptic targets of perisomatic inhibitory cells in the hilar region of the dentate gyrus where the proportion of potential target cells (excitatory mossy cells and inhibitory interneurons) is approximately equal. Both cholecystokinin (CCK)- and parvalbumin-immunoreactive basket cells formed multiple contacts on the somata and proximal dendrites of mossy cells. Unexpectedly, however, perisomatic inhibitory terminals arriving from these cell types largely ignored hilar GABAergic cell populations. Eighty-ninety percent of various GABAergic neurons including other CCK-containing basket cells received no input from CCK-positive terminals. Parvalbumin-containing cells sometimes innervated each other but avoided 75% of other GABAergic cells. Overall, a single mossy cell received 40 times more CCK-immunoreactive terminals and 15 times more parvalbumin-positive terminals onto its soma than the cell body of an average hilar GABAergic cell. In contrast to the pronounced target selectivity in the hilar region, CCK- and parvalbumin-positive neurons innervated each other via collaterals in stratum granulosum and moleculare. Our observations indicate that the inhibitory control in the hilar region is qualitatively different from other cortical areas at both the network level and the level of single neurons. The paucity of perisomatic innervation of hilar interneurons should have profound consequences on their action potential generation and on their ensemble behavior. These findings may help explain the unique physiological patterns observed in the hilus and the selective vulnerability of the hilar cell population in various pathophysiological conditions.
Collapse
Affiliation(s)
- L Acsády
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | | | | | | | | |
Collapse
|
64
|
Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 2000; 20:6144-58. [PMID: 10934264 PMCID: PMC6772593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2000] [Revised: 05/05/2000] [Accepted: 05/12/2000] [Indexed: 02/17/2023] Open
Abstract
A group of neurons with the characteristics of dentate gyrus granule cells was found at the hilar/CA3 border several weeks after pilocarpine- or kainic acid-induced status epilepticus. Intracellular recordings from pilocarpine-treated rats showed that these "granule-like" neurons were similar to normal granule cells (i. e., those in the granule cell layer) in membrane properties, firing behavior, morphology, and their mossy fiber axon. However, in contrast to normal granule cells, they were synchronized with spontaneous, rhythmic bursts of area CA3 pyramidal cells that survived status epilepticus. Saline-treated controls lacked the population of granule-like cells at the hilar/CA3 border and CA3 bursts. In rats that were injected after status epilepticus with bromodeoxyuridine (BrdU) to label newly born cells, and also labeled for calbindin D(28K) (because it normally stains granule cells), many double-labeled neurons were located at the hilar/CA3 border. Many BrdU-labeled cells at the hilar/CA3 border also were double-labeled with a neuronal marker (NeuN). Taken together with the recent evidence that granule cells that are born after seizures can migrate into the hilus, the results suggest that some newly born granule cells migrate as far as the CA3 cell layer, where they become integrated abnormally into the CA3 network, yet they retain granule cell intrinsic properties. The results provide insight into the physiological properties of newly born granule cells in the adult brain and suggest that relatively rigid developmental programs set the membrane properties of newly born cells, but substantial plasticity is present to influence their place in pre-existing circuitry.
Collapse
Affiliation(s)
- H E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, West Haverstraw, New York 10993-1195, USA.
| | | | | |
Collapse
|
65
|
Ross ST, Soltesz I. Selective depolarization of interneurons in the early posttraumatic dentate gyrus: involvement of the Na(+)/K(+)-ATPase. J Neurophysiol 2000; 83:2916-30. [PMID: 10805688 DOI: 10.1152/jn.2000.83.5.2916] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interneurons innervating dentate granule cells are potent regulators of the entorhino-hippocampal interplay. Traumatic brain injury, a leading cause of death and disability among young adults, is frequently associated with rapid neuropathological changes, seizures, and short-term memory deficits both in humans and experimental animals, indicating significant posttraumatic perturbations of hippocampal circuits. To determine the pathophysiological alterations that affect the posttraumatic functions of dentate neuronal networks within the important early (hours to days) posttraumatic period, whole cell patch-clamp recordings were performed from granule cells and interneurons situated in the granule cell layer of the dentate gyrus of head-injured and age-matched, sham-operated control rats. The data show that a single pressure wave-transient delivered to the neocortex of rats (mimicking moderate concussive head trauma) resulted in a characteristic ( approximately 10 mV), transient (<4 days), selective depolarizing shift in the resting membrane potential of dentate interneurons, but not in neighboring granule cells. The depolarization was not associated with significant changes in action potential characteristics or input resistance, and persisted in the presence of antagonists of ionotropic and metabotropic glutamate, and GABA(A) and muscarinic receptors, as well as blockers of voltage-dependent sodium channels and of the h-current. The differential action of the cardiac glycosides oubain and stophanthidin on interneurons from control versus head-injured rats indicated that the depolarization of interneurons was related to the trauma-induced decrease in the activity of the electrogenic Na(+)/K(+)-ATPase. In contrast, the Na(+)/K(+)-ATPase activity in granule cells did not change. Intracellular injection of Na(+), Ca(2+)-chelator and ATP, as well as ATP alone, abolished the difference between the resting membrane potentials of control and injured interneurons. The selective posttraumatic depolarization increased spontaneous firing in interneurons, enhanced the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) in granule cells, and augmented the efficacy of depolarizing inputs to discharge interneurons. These results demonstrate that mechanical neurotrauma delivered to a remote site has highly selective effects on different cell types even within the same cell layer, and that the electrogenic Na(+)-pump plays a role in setting the excitability of hippocampal interneuronal networks after injury.
Collapse
Affiliation(s)
- S T Ross
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-1280, USA
| | | |
Collapse
|
66
|
|
67
|
|
68
|
Molnár P, Nadler JV. Mossy fiber-granule cell synapses in the normal and epileptic rat dentate gyrus studied with minimal laser photostimulation. J Neurophysiol 1999; 82:1883-94. [PMID: 10515977 DOI: 10.1152/jn.1999.82.4.1883] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dentate granule cells become synaptically interconnected in the hippocampus of persons with temporal lobe epilepsy, forming a recurrent mossy fiber pathway. This pathway may contribute to the development and propagation of seizures. The physiology of mossy fiber-granule cell synapses is difficult to characterize unambiguously, because electrical stimulation may activate other pathways and because there is a low probability of granule cell interconnection. These problems were addressed by the use of scanning laser photostimulation in slices of the caudal hippocampal formation. Glutamate was released from a caged precursor with highly focused ultraviolet light to evoke action potentials in a small population of granule cells. Excitatory synaptic currents were recorded in the presence of bicuculline. Minimal laser photostimulation evoked an apparently unitary excitatory postsynaptic current (EPSC) in 61% of granule cells from rats that had experienced pilocarpine-induced status epilepticus followed by recurrent mossy fiber growth. An EPSC was also evoked in 13-16% of granule cells from the control groups. EPSCs from status epilepticus and control groups had similar peak amplitudes ( approximately 30 pA), 20-80% rise times (approximately 1.2 ms), decay time constants ( approximately 10 ms), and half-widths (approximately 8 ms). The mean failure rate was high (approximately 70%) in both groups, and in both groups activation of N-methyl-D-aspartate receptors contributed a small component to the EPSC. The strong similarity between responses from the status epilepticus and control groups suggests that they resulted from activation of a similar synaptic population. No EPSC was recorded when the laser beam was focused in the dentate hilus, suggesting that indirect activation of hilar mossy cells contributed little, if at all, to these results. Recurrent mossy fiber growth increases the density of mossy fiber-granule cell synapses in the caudal dentate gyrus by perhaps sixfold, but the new synapses appear to operate very similarly to preexisting mossy fiber-granule cell synapses.
Collapse
Affiliation(s)
- P Molnár
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
69
|
Mott DD, Li Q, Okazaki MM, Turner DA, Lewis DV. GABAB-Receptor-mediated currents in interneurons of the dentate-hilus border. J Neurophysiol 1999; 82:1438-50. [PMID: 10482760 DOI: 10.1152/jn.1999.82.3.1438] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA(B)-receptor-mediated inhibition was investigated in anatomically identified inhibitory interneurons located at the border between the dentate gyrus granule cell layer and hilus. Biocytin staining was used to visualize the morphology of recorded cells. A molecular layer stimulus evoked a pharmacologically isolated slow inhibitory postsynaptic current (IPSC), recorded with whole cell patch-clamp techniques, in 55 of 63 interneurons. Application of the GABA(B) receptor antagonists, CGP 35348 (400 microM) or CGP 55845 (1 microM) to a subset of 25 interneurons suppressed the slow IPSC by an amount ranging from 10 to 100%. In 56% of these cells, the slow IPSC was entirely GABA(B)-receptor-mediated. However, in the remaining interneurons, a component of the slow IPSC was resistant to GABA(B) antagonists. Subtraction of this antagonist resistant current from the slow IPSC isolated the GABA(B) component (IPSC(B)). This IPSC(B) had a similar onset and peak latency to that recorded from granule cells but a significantly shorter duration. The GABA(B) agonist, baclofen (10 microM), produced a CGP 55845-sensitive outward current in 19 of 27 interneurons. In the eight cells that lacked a baclofen current, strong or repetitive ML stimulation also failed to evoke an IPSC(B), indicating that these cells lacked functional GABA(B) receptor-activated potassium currents. In cells that expressed a baclofen current, the amplitude of this current was approximately 50% smaller in interneurons with axons that projected into the granule cell dendritic layer (22.2 +/- 5.3 pA; mean +/- SE) than in interneurons with axons that projected into or near the granule cell body layer (46.1 +/- 10.0 pA). Similarly, the IPSC(B) amplitude was smaller in interneurons projecting to dendritic (9.4 +/- 2.7 pA) than perisomatic regions (34.3 +/- 5.1 pA). These findings suggest that GABA(B) inhibition more strongly regulates interneurons with axons that project into perisomatic than dendritic regions. To determine the functional role of GABA(B) inhibition, we examined the effect of IPSP(B) on action potential firing and synaptic excitation of these interneurons. IPSP(B) and IPSP(A) both suppressed depolarization-induced neuronal firing. However, unlike IPSP(A), suppression of firing by IPSP(B) could be easily overcome with strong depolarization. IPSP(B) markedly suppressed N-methyl-D-aspartate but not AMPA EPSPs, suggesting that GABA(B) inhibition may play a role in regulating slow synaptic excitation of these interneurons. Heterogeneous expression of GABA(B) currents in hilar border interneurons therefore may provide a mechanism for the differential regulation of excitation of these cells and thereby exert an important role in shaping neuronal activity in the dentate gyrus.
Collapse
Affiliation(s)
- D D Mott
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
70
|
McQuiston AR, Madison DV. Muscarinic receptor activity induces an afterdepolarization in a subpopulation of hippocampal CA1 interneurons. J Neurosci 1999; 19:5703-10. [PMID: 10407011 PMCID: PMC6783057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
Cholinergic input to the hippocampus may be involved in important behavioral functions and the pathophysiology of neurodegenerative diseases. Muscarinic receptor activity in interneurons of the hippocampus may play a role in these actions. In this study, we investigated the effects of muscarinic receptor activity on the excitability of different subtypes of interneurons in rat hippocampal CA1. Most interneurons displayed an afterhyperpolarizing potential (AHP) after depolarization by injected current or synaptic stimulation. In the presence of a muscarinic agonist, the AHP of a subset of these interneurons was replaced by an afterdepolarization (ADP), often of sufficient magnitude to evoke action potentials in the absence of further stimulation. The ADP was insensitive to cadmium and low extracellular calcium. It was blocked by low extracellular sodium but not by tetrodotoxin or low concentrations of amiloride. Muscarinic ADPs were sometimes observed in isolation but were often accompanied by depolarizing, hyperpolarizing, or biphasic changes in the membrane potential. Interneurons with muscarinic ADPs were found in all strata of CA1 and did not fall into a single morphological classification. The potential functions of the prolonged action potential output of interneurons produced by the ADP could include changes in hippocampal circuit properties and facilitation of the release of peptide cotransmitters in these interneurons.
Collapse
Affiliation(s)
- A R McQuiston
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
71
|
Dietrich D, Clusmann H, Kral T, Steinhäuser C, Blümcke I, Heinemann U, Schramm J. Two electrophysiologically distinct types of granule cells in epileptic human hippocampus. Neuroscience 1999; 90:1197-206. [PMID: 10338290 DOI: 10.1016/s0306-4522(98)00574-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated the electrophysiology of morphologically identified human granule cells with conventional current-clamp recordings. Slices were prepared from 14 human epileptic sclerotic hippocampi. Granule cells appeared to have a diverse electrophysiology. Each cell was distinguished by the shape of the afterhyperpolarization following single action potentials. Two types could be discerned: type I afterhyperpolarizations were monophasic and brief (typically 10-40 ms), whilst type II afterhyperpolarizations were biphasic and long (typically 50-100 ms). The two types also differed in their repetitive firing behaviour and action potential morphology: type I cells had significantly weaker spike frequency adaptation, lower action potential amplitude and smaller action potential upstroke/downstroke ratio. Thus, the firing pattern of type I cells resembled that of rodent dentate interneurons. In contrast, the corresponding parameters of type II cells were comparable to rodent dentate granule cells. Despite the distinct firing patterns, membrane properties were not different. The two types of cells also differed in their synaptic responses to stimulation of the perforant path. At strong suprathreshold stimulation intensity, type I cells always generated multiple action potentials, whereas type II cells usually spiked once only. Slow inhibitory postsynaptic potentials were not detected in type I neurons, but were easily identified in type II neurons. Extracellular recordings of perforant path-evoked field potentials in the cell layer confirmed that the majority of granule cells showed multiple discharges even when we recorded simultaneously from a type II cell that generated one action potential only. The morphology of both types of cells was characteristic of what has been described for primate dentate granule cells. Based on comparisons with previous studies on rodent and human granule cells, we tentatively hypothesize that: (i) the majority of granule cells from sclerotic hippocampus display an hyperexcitable epileptogenic electrophysiology; (ii) there is a subset of granule cells whose electrophysiology is preserved and is more comparable to granule cells from non-epileptic hippocampus.
Collapse
Affiliation(s)
- D Dietrich
- Klinik für Neurochirurgie, Universität Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
72
|
Chitwood RA, Hubbard A, Jaffe DB. Passive electrotonic properties of rat hippocampal CA3 interneurones. J Physiol 1999; 515 ( Pt 3):743-56. [PMID: 10066901 PMCID: PMC2269181 DOI: 10.1111/j.1469-7793.1999.743ab.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. The linear membrane responses of CA3 interneurones were determined with the use of whole-cell patch recording methods. The mean input resistance (RN) for all cells in this study was 526 +/- 16 MOmega and the slowest membrane time constant (tau0) was 73 +/- 3 ms. 2. The three-dimensional morphology of 63 biocytin-labelled neurones was used to construct compartmental models. Specific membrane resistivity (Rm) and specific membrane capacitance (Cm) were estimated by fitting the linear membrane response. Acceptable fits were obtained for 24 CA3 interneurones. The mean Rm was 61.9 +/- 34.2 Omega cm2 and the mean Cm was 0.9 +/- 0.3 microF cm-2. Intracellular resistance (Ri) could not be resolved in this study. 3. Examination of voltage attenuation revealed a significantly low synaptic efficiency from most dendritic synaptic input locations to the soma. 4. Simulations of excitatory postsynaptic potentials (EPSPs) were analysed at both the site of synaptic input and at the soma. There was little variability in the depolarization at the soma from synaptic inputs placed at different locations along the dendritic tree. The EPSP amplitude at the site of synaptic input was progressively larger with distance from the soma, consistent with a progressive increase in input impedance. 5. The 'iso-efficiency' of spatially different synaptic inputs arose from two opposing factors: an increase in EPSP amplitude at the synapse with distance from the soma was opposed by a nearly equivalent increase in voltage attenuation. These simulations suggest that, in these particular neurones, the amplitude of EPSPs measured at the soma will not be significantly affected by the location of synaptic inputs.
Collapse
Affiliation(s)
- R A Chitwood
- Division of Life Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
73
|
Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J Physiol 1999; 514 ( Pt 2):327-41. [PMID: 9852317 PMCID: PMC2269073 DOI: 10.1111/j.1469-7793.1999.315ae.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The distribution of ATP-sensitive K+ channels (KATP channels) was investigated in four cell types in hippocampal slices prepared from 10- to 13-day-old rats: CA1 pyramidal cells, interneurones of stratum radiatum in CA1, complex glial cells of the same area and granule cells of the dentate gyrus. The neuronal cell types were identified visually and characterized by the shapes and patterns of their action potentials and by neurobiotin labelling. 2. The patch-clamp technique was used to study the sensitivity of whole-cell currents to diazoxide (0.3 mM), a KATP channel opener, and to tolbutamide (0.5 mM) or glibenclamide (20 microM), two KATP channel inhibitors. The fraction of cells in which whole-cell currents were activated by diazoxide and inhibited by tolbutamide was 26% of pyramidal cells, 89 % of interneurones, 100% of glial cells and 89% of granule cells. The reversal potential of the diazoxide-induced current was at the K+ equilibrium potential and a similar current activated spontaneously when cells were dialysed with an ATP-free pipette solution. 3. Using the single-cell RT-PCR method, the presence of mRNA encoding KATP channel subunits (Kir6.1, Kir6.2, SUR1 and SUR2) was examined in CA1 pyramidal cells and interneurones. Subunit mRNA combinations that can result in functional KATP channels (Kir6.1 together with SUR1, Kir6.2 together with SUR1 or SUR2) were detected in only 17% of the pyramidal cells. On the other hand, KATP channels may be formed in 75% of the interneurones, mainly by the combination of Kir6.2 with SUR1 (58% of all interneurones). 4. The results of these combined analyses indicate that functional KATP channels are present in principal neurones, interneurones and glial cells of the rat hippocampus, but at highly different densities in the four cell types studied.
Collapse
Affiliation(s)
- C Zawar
- I. Physiologisches Institut der Universitat des Saarlandes, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
74
|
Ní Dhúill CM, Fox GB, Pittock SJ, O'Connell AW, Murphy KJ, Regan CM. Polysialylated neural cell adhesion molecule expression in the dentate gyrus of the human hippocampal formation from infancy to old age. J Neurosci Res 1999; 55:99-106. [PMID: 9890438 DOI: 10.1002/(sici)1097-4547(19990101)55:1<99::aid-jnr11>3.0.co;2-s] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Modulation of neural cell adhesion molecule polysialylation (NCAM PSA) state has been proposed to underlie morphofunctional change associated with consolidation of memory in the rodent, and its age-dependent decline to be related to impaired cognitive function. To establish whether this may be a human correlate of cognitive decline, we determined the age-dependent expression of PSA in the human hippocampal dentate gyrus using postmortem tissue derived from individuals who exhibited no obvious neuropathology. As in the rodent, PSA immunoreactivity in the 5-month human infant was associated mainly with a population of granule-like cells and their mossy fibre axons. Cell numbers were maximal during the first 3 years of life but declined by an order of magnitude between the second and third decades and remained relatively constant thereafter and was restricted to the granule cell layer/hilar border. In contrast to the rodent, diffuse immunostaining was observed in the inner molecular layer; however, as development advanced, this became relocated to the outer molecular layer from 2 years of age onwards. In addition, numerous polysialylated hilar neurons became evident at 2-3 years of age and remained constant until the eighth decade of life. These findings suggest NCAM polysialylation to play a crucial developmental role within a period concluding with adolescence, and that an attenuated NCAM PSA-mediated neuroplasticity continues throughout the human lifespan. The importance of the developmental phase of NCAM PSA expression in the emergence of schizophrenia is discussed.
Collapse
Affiliation(s)
- C M Ní Dhúill
- Department of Pharmacology, University College, Belfield, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
75
|
Jinno S, Aika Y, Fukuda T, Kosaka T. Quantitative analysis of GABAergic neurons in the mouse hippocampus, with optical disector using confocal laser scanning microscope. Brain Res 1998; 814:55-70. [PMID: 9838044 DOI: 10.1016/s0006-8993(98)01075-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The numerical densities (NDs) of glutamic acid decarboxylase (GAD) 67 immunoreactive (IR) neurons in the mouse hippocampus were estimated according to the optical disector method using a confocal laser scanning microscope (CLSM), and the cell sizes of disector-counted neurons were measured. Particularly, we focused on the dorsoventral differences of the NDs and cell sizes in individual subdivisions and layers. The NDs of GAD67-IR neurons were larger at the ventral level than at the dorsal level in most subdivisions and layers, except in the stratum pyramidale (SP) of the CA1 region and stratum radiatum (SR) of the CA3 region. In the whole hippocampus, the ND of GAD67-IR neurons was 5.7+/-0.2x103/mm3 at the dorsal level, and 7.3+/-0.3x103/mm3 at the ventral level. The laminar differences showed that the NDs of GAD67-IR neurons in the principal cell layers were generally larger than those in the dendritic layers in each subdivision. The ND of GAD67-IR neurons was largest in the SP of the CA1 region at the dorsal level (13.5+/-0.9x103/mm3), and smallest in the molecular layer (ML) of the dentate gyrus (DG) at the dorsal level (1.7+/-0.2x103/mm3). The mean cell sizes of GAD67-IR neurons also showed prominent dorsoventral and laminar differences. In the CA3 region, the mean cell size of GAD67-IR neurons was smaller at the dorsal level than at the ventral level, while in the DG, it was larger at the dorsal level than at the ventral level. On the other hand, the mean cell size of GAD67-IR neurons in the CA1 region showed no significant dorsoventral difference. In the whole hippocampus, the mean cell size of GAD67-IR neurons was slightly smaller at the dorsal level (somatic profile area 149.2+/-2.5 microm2) than at the ventral level (154.2+/-2.9 microm2). The laminar differences showed that the mean cell sizes of GAD67-IR neurons in the principal cell layers were generally larger than those in the dendritic layers in each subdivision. The mean cell size of GAD67-IR neurons was largest in the SP of the CA3 region at the ventral level (180.7+/-8.7 microm2), and smallest in the stratum lacunosum-moleculare (SLM) of the CA3 region at the dorsal level (115.9+/-7.9 microm2). The cell size distributions in individual layers revealed that GAD67-IR neurons were roughly classified into two subgroups. The composition of these subgroups suggested the heterogeneity of GAD67-IR neurons in the mouse hippocampus in view of cell size
Collapse
Affiliation(s)
- S Jinno
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| | | | | | | |
Collapse
|
76
|
Hollrigel GS, Ross ST, Soltesz I. Temporal patterns and depolarizing actions of spontaneous GABAA receptor activation in granule cells of the early postnatal dentate gyrus. J Neurophysiol 1998; 80:2340-51. [PMID: 9819247 DOI: 10.1152/jn.1998.80.5.2340] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell patch-clamp recordings were used to investigate the properties of the gamma-aminobutyric acid type A (GABAA) receptor-mediated spontaneous synaptic events in immature granule cells of the developing, early postnatal day (P0-P6) rat dentate gyrus. With Cs-gluconate-filled whole cell patch pipettes at 0 mV in control medium, spontaneous inhibitory postsynaptic currents (sIPSCs) occurred in prominent bursts (peak amplitude of the bursts 406.9 +/- 58.4 pA; intraburst IPSC frequency 71.0 +/- 12.4 Hz) at 0.05 +/- 0.02 Hz in every immature granule cell younger than P7. Between the bursts of IPSCs, lower frequency (1.7 +/- 0.7 Hz), interburst IPSCs could be observed. Bicuculline and picrotoxin as well as the intracellularly applied chloride-channel blockers CsF- and 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS) abolished the intraburst as well as the interburst IPSCs, indicating that the IPSCs were mediated by GABAA receptor channels. The bursts of IPSCs, but not the interburst IPSCs, were blocked by the simultaneous application of the glutamate receptor antagonists 2-amino-5-phosphovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione, indicating the importance of the glutamatergic excitatory drive onto the interneurons in the early postnatal dentate gyrus. The spontaneously occurring excitatory postsynaptic currents in immature granule cells, observable after the intracellular blockade of GABAA receptor channels with CsF- and DIDS, appeared exclusively as single events at low frequencies, i.e., they did not occur in prominent bursts. Gramicidin-based perforated patch-clamp recordings determined that the reversal potential for the burst of IPSCs (-46.6 +/- 3.1 mV) was more depolarized than the resting membrane potential (-54.2 +/- 4.2 mV) but more hyperpolarized than the action potential threshold (-41. 8 +/- 1.7 mV). The depolarizing action of the bursts of synaptic events most often evoked only a single action potential per burst. Simultaneous whole cell patch recordings, with KCl-filled patch pipettes at -60 mV in current clamp from pairs of immature granule cells of the developing dentate gyrus, determined that the bursts of IPSPs took place in a similar temporal pattern but with imperfect synchrony in neighboring granule cells (average lag between the onsets of the bursts between granule cell pairs 77.7 +/- 8.6 ms). These results show that the spontaneous activation of GABAA receptors in immature dentate granule cells displays unique properties that are distinct from the temporal patterns and biophysical features of spontaneous GABAA receptor activation taking place in the developing Ammon's horn and in the adult dentate gyrus.
Collapse
Affiliation(s)
- G S Hollrigel
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-1280, USA
| | | | | |
Collapse
|
77
|
Cannon RC, Turner DA, Pyapali GK, Wheal HV. An on-line archive of reconstructed hippocampal neurons. J Neurosci Methods 1998; 84:49-54. [PMID: 9821633 DOI: 10.1016/s0165-0270(98)00091-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an on-line archive of neuronal geometry to encourage the use of realistic dendritic structures in morphometry and for neuronal modeling, located at web address www.neuro.soton.ac.uk. Initially we have included full three-dimensional representations of 87 neurons from the hippocampus, obtained following intracellular staining with biocytin and reconstruction using Neurolucida. The archive system includes a structure editor for correcting any departures from valid branching geometry and which allows simple errors in the digitisation to be corrected. The editor employs a platform-independent file format which enforces the constraints that there should be no isolated branches and no closed loops. It also incorporates software for interconversion between the archive format and those used by various neuronal reconstruction and modelling packages. The raw data from digitisation software can be included in the archive as well as edited reconstructions and any further information available. Cross-referenced tables and indexes are updated automatically and are sorted according to a number of fields including the cell type, contributor, submission date and published reference. Both the archive and the structure editor should facilitate the quantitative use of full three-dimensional reconstructions of neurons from the hippocampus and other brain regions.
Collapse
Affiliation(s)
- R C Cannon
- Neuroscience Research Group, School of Biological Sciences, Southampton University, UK
| | | | | | | |
Collapse
|
78
|
Turner DA, Buhl EH, Hailer NP, Nitsch R. Morphological features of the entorhinal-hippocampal connection. Prog Neurobiol 1998; 55:537-62. [PMID: 9670217 DOI: 10.1016/s0301-0082(98)00019-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The goal of this review in an overview of the structural elements of the entorhinal-hippocampal connection. The development of the dendrites of hippocampal neurons will be outlined in relation to afferent pathway specificity and the mature dendritic structure compared. Interneurons will be contrasted to pyramidal cells in terms of processing of physiological signals and convergence and divergence in control of hippocampal circuits. Mechanisms of axonal guidance and target recognition, target structures, the involvement of receptor distribution on hippocampal dendrites and the involvement of non-neuronal cellular elements in the establishment of specific connections will be presented. Mechanisms relevant for the maintenance of shape and morphological specializations of hippocampal dendrites will be reviewed. One of the significant contexts in which to view these structural elements is the degree of plasticity in which they participate, during development and origination of dendrites, mature synaptic plasticity and after lesions, when the cells must continue to maintain and reconstitute function, to remain part of the circuitry in the hippocampus. This review will be presented in four main sections: (1) interneurons-development, role in synchronizing influence and hippocampal network functioning; (2) principal cells in CA1, CA3 and dentate gyrus regions-their development, function in terms of synaptic integration, differentiating structure and alterations with lesions; (3) glia and glia/neuronal interactions-response to lesions and developmental guidance mechanisms; and (4) network and circuit aspects of hippocampal morphology and functioning. Finally, the interwoven role of these various elements participating in hippocampal network function will be discussed.
Collapse
Affiliation(s)
- D A Turner
- Neurosurgery and Neurobiology, Duke University Medical Center 27710, USA.
| | | | | | | |
Collapse
|
79
|
Chitwood RA, Jaffe DB. Calcium-dependent spike-frequency accommodation in hippocampal CA3 nonpyramidal neurons. J Neurophysiol 1998; 80:983-8. [PMID: 9705484 DOI: 10.1152/jn.1998.80.2.983] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interneurons of the hippocampal formation are traditionally identified electrophysiologically as those cells that fire trains of weakly accommodating action potentials in response to depolarizing current injection. We studied the firing properties of nonpyramidal neurons in the five substrata of the CA3b region of hippocampus. With the use of whole cell recording methods we found that nonpyramidal neurons fired in a range from weak to strong spike-frequency accommodation (SFA) that was calcium dependent. Slow afterhyperpolarizations were not associated with strong SFA. In addition a subset of interneurons ( approximately 20%) fired with an irregular firing pattern that was generally calcium independent. These results suggest a calcium-dependent mechanism for SFA in nonpyramidal neurons that is distinct from pyramidal cells and further demonstrates the heterogeneity of hippocampal interneurons.
Collapse
Affiliation(s)
- R A Chitwood
- Division of Life Sciences, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | |
Collapse
|
80
|
Abstract
The physiological interactions between the dentate gyrus (DG) and CA3 were studied in urethane-anesthetized rats by using field potential recording and current source density (CSD) analysis. Stimulation of CA3b resulted in a short-latency (<2.5-ms onset latency) antidromic population spike in both the DG and CA3c. An excitation (current sink) at the middle molecular layer (MML) was observed at 3-ms latency, possibly mediated by the backfiring of perforant path fibers that projected to both DG and CA3. CA3 stimulation also resulted in a sink at the dendritic layers of CA3c, which was likely mediated by excitatory CA3 recurrent collaterals. It was inferred that the DG was excited at the inner molecular layer (IML) after stimulation near the CA3b/CA3c border. This IML excitation (sink) probably resulted from orthodromic CA3 or hilar projections to the IML and not from mossy fiber backfiring. The IML and the CA3c dendritic sinks were blocked by an intracerebroventricular injection of a non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2, 3-dione, but not by a gamma-aminobutyric acid type A (GABA(A)) receptor antagonist, bicuculline. CA3b stimulation evoked population spike bursts (3-7-ms latency) in both DG and CA3c when GABA(A) inhibition was suppressed by bicuculline, thus confirming that the excitatory afferents project from CA3b to DG and CA3c. A CA3 conditioning stimulus pulse given 30-200 ms before a perforant-path test pulse increased the amplitude of the perforant-path-evoked DG population spike (as compared with the test response without conditioning). After a moderate-intensity stimulation of CA3, a late (<20-ms latency) excitation of the MML of the DG was found. The late DG excitation was blocked by procaine injection at the medial perforant path, suggesting its origin from the medial entorhinal cortex. In conclusion, rich interactions between CA3 and other hippocampal structures were studied quantitatively by CSD analysis in vivo. We infer that CA3 provides an early excitatory feedback path to DG through recurrent collaterals or hilar interneurons and a late feedback through the medial entorhinal cortex.
Collapse
Affiliation(s)
- K Wu
- Department of Physiology, The University of Western Ontario, London, Canada
| | | | | |
Collapse
|
81
|
Doherty J, Dingledine R. Differential regulation of synaptic inputs to dentate hilar border interneurons by metabotropic glutamate receptors. J Neurophysiol 1998; 79:2903-10. [PMID: 9636096 DOI: 10.1152/jn.1998.79.6.2903] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Regulation of synaptic transmission by metabotropic glutamate receptors (mGluRs) was examined at two excitatory inputs to interneurons with cell bodies at the granule cell-hilus border in hippocampal slices taken from neonatal rats. Subgroup-selective mGluR agonists altered the reliability, or probability of transmitter release, of evoked minimal excitatory synaptic inputs and decreased the amplitudes of excitatory postsynaptic currents (EPSCs) evoked with conventional stimulation. The group II-selective agonist, (2S,1R',2R',3R')-2-(2, 3-dicarboxylcyclopropyl) glycine (DCG-IV; 1 microM), reversibly depressed the reliability of EPSCs evoked by stimulation of the dentate granule cell layer. However, DCG-IV had no significant effect on EPSCs evoked by CA3 stimulation in the majority (82%) of hilar border interneurons. Both the group III-selective agonist, -(+)-2-amino-4-phosphonobutyric acid (-AP4; 3 microM), and the group I-selective agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG; 20 microM) reversibly depressed synaptic input to interneurons from both CA3 and the granule cell layer. We conclude that multiple pharmacologically distinct mGluRs presynaptically regulate synaptic transmission at two excitatory inputs to hilar border interneurons. Further, the degree of mGluR-meditated depression of excitatory drive is greater at synapses from dentate granule cells onto interneurons than at synapses from CA3 pyramidal cells.
Collapse
Affiliation(s)
- J Doherty
- Department of Pharmacology, Emory University Medical School, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
82
|
Abstract
Dual intracellular recordings of hilar interneurons and CA3 pyramidal cells were performed in transverse slices of guinea pig hippocampus in the presence of the convulsant compound 4-aminopyridine (4-AP) and ionotropic glutamate receptor antagonists. Under these conditions, interneurons burst fire synchronously, producing synchronized inhibitory postsynaptic potentials (sIPSPs) in pyramidal cells. Three different hilar interneuron subpopulations that contributed to the sIPSP were identified based on their projection properties and morphology. These three types were pyramidal-like stellate interneurons, spheroid interneurons, and oviform interneurons. Physiologically, pyramidal-like stellate interneurons could be differentiated from the other interneuron subpopulations because they generated short synchronized bursts of action potentials coincident with the hyperpolarizing and depolarizing gamma-aminobutyric acid-A (GABAA)-mediated inhibitory postsynaptic potentials (IPSPs) recorded in pyramidal cells. The bursts in pyramidal-like stellate cells were abolished by theGABAA-receptor blocker, bicuculline. In contrast, spheroid interneurons of the dentate-hilus (D-H) border and oviform hilar interneurons exhibited prolonged bicuculline-resistant bursts that occurred coincident with the GABAB pyramidal cell sIPSPs. Pyramidal-like stellate interneurons likely did not contribute to the generation of synchronized GABAB responses in hippocampal pyramidal cells. Spheroid interneurons were unique among these subpopulations of interneurons in that the bicuculline-resistant bursts in spheroid interneurons were sustained by a synaptic depolarization that persisted in the presence of antagonists of ionotropic glutamate, GABAA and GABAB receptors [6-cyano-7-nitroquinoxaline-2,3-dione, 20 microM; 3-3(2-carboxipiperazine-4-yl)propyl-1-phosphonate, 20 microM; bicuculline, 10-15 microM; CGP 55845A, 20 microM]. This novel depolarizing potential reversed between -30 and 0 mV. No noticeable synaptic depolarization sustaining burst firing could be isolated in oviform interneurons, suggesting that firing in this interneuron subpopulation was synchronized by nonsynaptic mechanisms. The results of the present study indicate that the hilar inhibitory circuit is composed of at least three different subpopulations of interneurons, distinguishable by their morphological characteristics and synaptic inputs and outputs. These findings give further support to the hypothesis that there are distinct populations of interneurons producing GABAA and GABAB responses with defined functional roles within the hippocampal inhibitory circuit. Notably, we found that spheroid interneurons were unique among the hilar interneurons studied, in that the synchronized bursts observed in these cells are sustained by a novel ionotropic glutamate and GABA receptor-independent synaptic depolarization.
Collapse
Affiliation(s)
- M Forti
- Department of Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA
| | | |
Collapse
|
83
|
Abstract
Hippocampal inhibitory cells are diverse. It is supposed that they fall into functionally distinct subsets defined by a similar morphology and physiology. Switching between functions could be accomplished by activating receptors for modulating transmitters expressed selectively by different subsets of interneurons. We tested this hypothesis by comparing morphology, physiology, and neurotransmitter receptor expression for CA1 hippocampal interneurons. We distinguished 16 distinct morphological phenotypes and 3 different modes of discharge. Subsets of inhibitory cells were excited or inhibited by agonists at receptors for noradrenaline, muscarine, serotonin, and mGluRs. Most cells responded to 2 or 3 agonists, and 25 different response combinations were detected. Subsets defined by morphology, physiology, and receptor expression did not coincide, suggesting that hippocampal interneurons cannot easily be segregated into a few well-defined groups.
Collapse
Affiliation(s)
- P Parra
- Laboratoire de Neurobiologie Cellulaire, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
84
|
Lübke J, Frotscher M, Spruston N. Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. J Neurophysiol 1998; 79:1518-34. [PMID: 9497429 DOI: 10.1152/jn.1998.79.3.1518] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Because of their strategic position between the granule cell and pyramidal cell layers, neurons of the hilar region of the hippocampal formation are likely to play an important role in the information processing between the entorhinal cortex and the hippocampus proper. Here we present an electrophysiological characterization of anatomically identified neurons in the fascia dentata as studied using patch-pipette recordings and subsequent biocytin-staining of neurons in slices. The resting potential, input resistance (RN), membrane time constant (taum), "sag" in hyperpolarizing responses, maximum firing rate during a 1-s current pulse, spike width, and fast and slow afterhyperpolarizations (AHPs) were determined for several different types of hilar neurons. Basket cells had a dense axonal plexus almost exclusively within the granule cell layer and were distinguishable by their low RN, short taum, lack of sag, and rapid firing rates. Dentate granule cells also lacked sag and were identifiable by their higher RN, longer taum, and lower firing rates than basket cells. Mossy cells had extensive axon collaterals within the hilus and a few long-range collaterals to the inner molecular layer and CA3c and were characterized physiologically by small fast and slow AHPs. Spiny and aspiny hilar interneurons projected primarily either to the inner or outer segment of the molecular layer and had a dense intrahilar axonal plexus, terminating onto somata within the hilus and CA3c. Physiologically, spiny hilar interneurons generally had higher RN values than mossy cells and a smaller slow AHP than aspiny interneurons. The specialized physiological properties of different classes of hilar neurons are likely to be important determinants of their functional operation within the hippocampal circuitry.
Collapse
Affiliation(s)
- J Lübke
- Anatomisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
85
|
Hájos N, Mody I. Synaptic communication among hippocampal interneurons: properties of spontaneous IPSCs in morphologically identified cells. J Neurosci 1997; 17:8427-42. [PMID: 9334415 PMCID: PMC6573737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1997] [Revised: 08/12/1997] [Accepted: 08/15/1997] [Indexed: 02/05/2023] Open
Abstract
The properties of spontaneous IPSCs (sIPSCs) recorded with whole-cell patch-clamp techniques were investigated in various anatomically identified hippocampal CA1 interneurons and were compared with those recorded in pyramidal cells. Neurons labeled with biocytin or neurobiotin were classified on the basis of their dendritic and axonal arborizations, leading to the identification of previously unknown interneuron types projecting to the dendritic region of pyramidal cells. In most interneurons, the average sIPSCs decayed slower than did those observed in pyramidal cells. The properties of sIPSCs were homogeneous within a given morphologically identified neuron type. Many interneurons had comparable somatic size, location, and dendritic arbor but displayed extremely different axonal projections paralleled by distinct sIPSC properties. Thus, physiological comparisons are only meaningful after the complete morphological identification of the recorded cells. The decay of sIPSCs matched for amplitudes and rise times could vary over 10-fold in a given interneuron, consistent with electrotonic filtering and possibly with different GABAA receptor subunit assemblies present at distinct synapses. Our findings demonstrate an extensive connectivity among hippocampal interneurons through GABAA synapses of various properties that may underlie complex network oscillations at different frequencies.
Collapse
Affiliation(s)
- N Hájos
- Department of Neurology and Physiology, Reed Neurological Research Center, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-1769, USA
| | | |
Collapse
|